03-01简谐近似和简正坐标
- 格式:ppt
- 大小:653.00 KB
- 文档页数:14
固体物理教学⼤纲课程名称固体物理课程性质专业必修课《固体物理》教学⼤纲⼀、课程名称:固体物理⼆、课程性质:专业必修课三、课程教学⽬的:(⼀)课程⽬标:通过固体物理学课程的学习,使学⽣树⽴起晶体内原⼦、电⼦等微观粒⼦运动的物理图像及其有关模型,掌握晶体内微观粒⼦的运动规律及其与晶体宏观性能的物理联系,深刻理解晶体宏观性能的微观物理本质,为进⼀步学习和研究固体物理学各种专门问题及相关领域的内容建⽴初步的理论基础。
(⼆)教学⽬标:第⼀章晶体结构【教学⽬标】通过本章的教学,使学⽣了解晶格结构的实例、⾮晶态和准晶态的特征;理解和掌握晶体结构的周期性特征及其描述⽅法;理解和掌握晶体结构的对称性特征及其描述⽅法;理解和掌握倒格⼦的定义及其与正格⼦的关系;熟悉有关晶体结构的基本分析与计算。
借助于多媒体展⽰,使学⽣建⽴起晶体结构特征的直观图像。
第⼆章晶体的结合【教学⽬标】通过本章的教学,使学⽣了解晶体结合⼒的⼀般性质;掌握晶体的结合类型与特征;理解元素和化合物晶体结合的规律性;掌握离⼦晶体的结合能、体积弹性模量的计算;掌握范德⽡⽿斯晶体的结合能、体积弹性模量的计算。
在教学中,能够使学⽣认识到吸引与排斥的⽭盾的差别和对⽴统⼀是认识与理解固体的结合规律与性质的关键,培养学⽣的辩证思维能⼒。
第三章晶格振动与晶体的热学性质【教学⽬标】通过本章的教学,能够使学⽣理解简谐近似、格波概念、声⼦概念;理解玻恩-卡曼边界条件;了解三维格波的⼀般规律、晶格振动的⾮简谐效应;了解确定晶格振动谱的实验⽅法;掌握⼀维单原⼦、双原⼦晶格振动的格波解与⾊散关系;掌握晶格振动模式密度的计算⽅法;理解晶格热容量的量⼦理论、掌握爱因斯坦模型与德拜模型;理解格林爱森近似、掌握晶格状态⽅程。
结合例题分析和习题训练,提⾼学⽣分析问题和解决问题的能⼒。
第四章能带理论【教学⽬标】通过本章的教学,使学⽣能够了解晶体能带理论的基本假设和处理问题的基本思路;理解布洛赫定理及其推论的证明,掌握晶体能带的基本特征;熟悉克龙尼克—潘纳模型的求解与结论;熟悉布⾥渊区、费⽶⾯等基本概念;了解平⾯波⽅法、赝势⽅法;掌握近⾃由电⼦近似⽅法及其结论;掌握紧束缚近似⽅法的运⽤;掌握能态密度的计算⽅法。
数学简谐运动知识点总结一、简谐运动的定义简谐运动是指物体在恢复力的作用下,做的振幅恒定,周期恒定的往复运动。
所谓恢复力,是指当物体偏离平衡位置时,作用于物体上的力与物体位移的方向相反,且与位移成正比的力。
简谐运动的典型例子是弹簧振子和单摆。
二、简谐运动的公式1. 位移公式设物体做简谐运动的位移为x,位移的频率为f,位移的相位为φ,则位移x随时间t的变化规律可以表示为:x = A*cos(2πft + φ)其中A为振幅,f为频率,φ为相位。
2. 速度公式简谐运动的速度可以表示为位移对时间的导数,即:v = -2πfA*sin(2πft + φ)其中v为速度。
3. 加速度公式简谐运动的加速度可以表示为速度对时间的导数,即:a = -4π²f²A*cos(2πft + φ)其中a为加速度。
三、简谐振动的特性1. 振幅恒定在简谐振动中,物体的振动幅度是恒定不变的,即物体在振动过程中的最大位移保持不变。
2. 周期恒定在简谐振动中,物体完成一个完整的振动往复运动所需要的时间是恒定的,即物体的振动周期是固定不变的。
3. 运动规律非常规整简谐振动的运动规律非常规整,其位移、速度和加速度随时间的变化都可以用简明的数学函数来描述。
四、简谐振动的能量1. 动能和势能在简谐振动中,物体具有动能和势能。
其动能可表示为:T = 0.5mv²其中m为物体的质量,v为物体的速度。
其势能可表示为:U = 0.5kx²其中k为恢复力系数,x为物体的位移。
2. 总能量在简谐振动中,物体的总能量可表示为动能和势能的和,即:E = T + U当物体在振动过程中,其总能量是恒定的。
3. 能量转换在简谐振动过程中,物体的动能和势能会不断地相互转换,但总能量保持不变。
五、简谐振动的参数简谐振动有许多重要的参数,其中包括振幅、周期、频率、角频率、相位等。
1. 振幅简谐振动的振幅是物体在振动过程中位移的最大值,代表了物体振动的幅度大小。
简谐运动简谐运动的表达式和图象Ⅱ1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。
机械振动产生的条件是:(1)回复力不为零。
(2)阻力很小。
使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
2、简谐振动:在机械振动中最简单的一种理想化的振动。
对简谐振动可以从两个方面进行定义或理解:(1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。
(2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。
3、描述振动的物理量,研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。
(1)位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。
位移是矢量,其最大值等于振幅。
(2)振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。
振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。
(3)周期T:振动物体完成一次余振动所经历的时间叫做周期。
所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。
(4)频率f:振动物体单位时间内完成全振动的次数。
(5)角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。
引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。
因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。
周期、频率、角频率的关系是:。
(6)相位:表示振动步调的物理量。
现行中学教材中只要求知道同相和反相两种情况。
4、研究简谐振动规律的几个思路:(1)用动力学方法研究,受力特征:回复力F =-Kx;加速度,简谐振动是一种变加速运动。