金属的塑性变形与再结晶
- 格式:doc
- 大小:41.00 KB
- 文档页数:3
金属的塑性变形与再结晶一、实验目的:1、了解显微镜下滑移线、变形孪晶和退火孪晶特征。
2、了解金属经冷加工变形后显微组织及机械性能的变化。
3、讨论冷加工变形对再结晶晶粒大小的影响。
二、实验内容:1、观察工业纯铁冷变形滑移线,纯锌的变形孪晶,黄铜或纯铜的退火孪晶。
2、观察工业纯铁经冷变形(0%、20%、40%、60%)后的显微组织。
3、用变形度不同的工业纯铝片,退火后测定晶粒大小。
三、实验内容讨论:1、显微镜下的滑移线与变形孪晶:当金属以滑移和孪晶两种方式塑性变形时,可以在显微镜下看到变形结果。
我们之所以能看到滑移线(叫滑移带更符合实际)是因为晶体滑移时,使试样的抛光表面产生高低不一的台阶所致。
滑移线的形状取决于晶体结构和位错运动,有直线形的,有波浪形的,有平行的,有互相交叉的,显示了滑移方式的不同。
变形量越大,滑移线愈多、愈密。
在密排六方结构中,常可看到变形孪晶,这是因为此类金属结构难以进行滑移变形。
孪晶可以看成是滑移的一种特殊对称形式,其结果使晶体的孪生部分相对于晶体的其余部分产生了位向的改变。
由于位向不同,孪晶区与腐蚀剂的作用也不同于其他部分,在显微镜下,孪晶区是一条较浅或较深的带。
在不同的金属中,变形孪晶的形状也不同,例如在变形锌中可看到孪晶变形区域,其特征为竹叶状,α—Fe则为细针状。
除变形孪晶外,有些金属如黄铜在退火时也常常出现以平行直线为边界的孪晶带,这类孪晶称为退火孪晶。
滑移和孪晶的区别:制备滑移线试样时,是试样先经过表面抛光,然后再经过微量塑性变形。
如果变形后再把表面抛光,则滑移线就看不出来了。
制备孪晶试样时,是先经塑性变形,然后再抛光腐蚀,可见:(1)对于滑移线不管样品是否经过腐蚀均可看到,而孪晶只有在磨光腐蚀后才可看见。
(2)滑移线经再次磨光即消失,而孪晶在样品表面磨光腐蚀后仍然保留着。
滑移线和磨痕的区别在于前者是不会穿过晶界的。
2、冷变形后金属的显微组织和机械性能冷加工变形后,晶粒的大小、形状及分布都会发生改变。
一,实验目的1、观察显微镜下滑移绒、变形孪晶与退火孪晶的特征;2、了解金属经冷加工变形后显微组织及机械性能的变化;3、讨论冷加工变形度对再结晶后晶粒大小的影响。
二、概述1 显微镜下的滑移线与变形挛晶金属受力超过弹性极限后,在金属中特产生塑性变形。
金属单晶体变形机理指出,塑性变形的基本方式为滑移和孪晶两种。
所谓滑移时晶体在切应力作用下借助于金属薄层沿滑移面相对移动(实质为位错沿滑移面运动)的结果。
滑移后在滑移面两侧的晶体位相保持不变。
把抛光的纯铝试样拉伸,试样表面会有变形台阶出现,一组细小的台阶在显微镜下只能观察到一条黑线,即称为滑移带。
变形后的显微姐织是由许多滑移带(平行的黑线)所组成。
在显微镜下能清楚地看到多晶体变形的特点:各晶粒内滑移带的方向不同(因晶粒方位各不相同),各晶粒之间形变程度不均匀,有的晶粒内滑移带多(即变形量大),有的晶粒内滑移带少(即变形量小);在同一晶粒内,晶粒中心与晶粒边界变形量也不相同,晶粒中心滑移带密,而边界滑移带稀,并可发现在一些变形量大的晶粒内,滑移沿几个系统进行,经常看见双滑移现象(在面心立方晶格情况下很易发现),即两组平行的黑线在晶粒内部交错起来,将晶粒分成许多小块。
另一种变形的方式为孪晶。
不易产生滑移的金属,如六方晶系镉、镁、铍、锌等,或某些金属当其滑移发生困难的时候,在切应力的作用下将发生的另一形式的变形,即晶体的—部分以一定的晶面(孪晶面或双晶面)为对称面;与晶体的另一部分发生对称移动,这种变形方式称为孪晶或双晶。
孪晶的结果是孪晶面两侧晶体的位向发生变化,呈镜面对称。
所以孪晶变形后,由于对光的反射能力不同,在显微镜下能看到较宽的变形痕迹——孪晶带或双晶带。
在密排六方结构的锌中,由于其滑移系少,则易以孪晶方式变形,在显微镜下看到变形孪晶呈发亮的竹叶状特征。
对体心立方结构的a一F,在常温时变形以滑移方式进行,而e在0℃以下受冲击载荷时,则以孪晶方式变形,而面心立方结构大多是以滑移方式变形的。
实验三金属塑性变形与再结晶一、实验目的认识金属冷变形加工后及经过再结晶退火后的组织性能和特征变化;研究形变程度对再结晶退火前后组织和性能的影响。
加深对加工硬化现象和回复再结晶的认识。
二、基本原理1、金属冷塑性变形后的显微组织和性能变化金属冷塑性变形为金属在再结晶温度以下进行的塑性变形。
金属在发生塑性变形时,外观和尺寸发生了永久性变化,其内部晶粒由原来的等轴晶逐渐沿加工方向伸长,在晶粒内部也出现了滑移带或孪晶带,当变形程度很大时,晶界消失,晶粒被拉成纤维状。
相应的,金属材料的硬度、强度、矫顽力和电阻等性能增加,而塑性、韧性和抗腐蚀性降低。
这一现象称为加工硬化。
为了观察滑移带,通常将已抛光并侵蚀的试样经适量的塑性变形后再进行显微组织观察。
注意:在显微镜下滑移带与磨痕是不同的,一般磨痕穿过晶界,其方向不变,而滑移带出现在晶粒内部,并且一般不穿过晶界。
2、冷塑性变形后金属加热时的显微组织与性能变化金属经冷塑性变形后,在加热时随着加热温度的升高会发生回复、再结晶、和晶粒长大。
(1)回复当加热温度较低时原子活动能力尚低,金属显微组织无明显变化,仍保持纤维组织的特征。
但晶格畸变已减轻,残余应力显著下降。
但加工硬化还在,固其机械性能变化不大。
(2)再结晶金属加热到再结晶温度以上,组织发生显著变化。
首先在形变大的部位(晶界、滑移带、孪晶等)形成等轴晶粒的核,然后这些晶核依靠消除原来伸长的晶粒而长大,最后原来变形的晶粒完全被新的等轴晶粒所代替,这一过程为再结晶。
由于金属通过再结晶获得新的等轴晶粒,因而消除了冷加工显微组织、加工硬化和残余应力,使金属又重新恢复到冷塑性变形以前的状态。
金属的再结晶过程是在一定的温度范围能进行的,通常规定在一小时内再结晶完成95%所对应的温度为再结晶温度,实验证明,金属熔点越高,再结晶温度越高,其关系大致为:T=0.4T熔。
(3)晶粒长大再结晶完成后,继续升温(或保温),则等轴晶粒以并容的方式聚集长大,温度越高,晶粒越大。
实验二金属的塑性变形与再结晶一、实验目的1、了解工业纯铁经冷塑性变形后,变形量对硬度和显微组织的影响2、研究变形量对工业纯铝再结晶退火后晶粒大小的影响二、实验原理金属在外力作用下,当应力超过其弹性极限时将发生不可恢复的永久变形称为塑性变形。
金属发生塑性变形后,除了外形和尺寸发生改变外,其显微组织与各种性能也发生明显的变化。
经塑性变形后,随着变形量的增加,金属内部晶粒沿变形方向被拉长为偏平晶粒。
变形量越大,晶粒伸长的程度越明显。
变形量很大时,各晶粒将呈现出“纤维状”组织。
同时内部组织结构的变化也将导致机械性能的变化。
即随着变形量的增加,金属的强度、硬度上升,塑性、韧性下降,这种现象称为加工硬化或应变硬化。
在本实验中,首先以工业纯铁为研究对象,了解不同变形量对硬度和显微组织的影响。
冷变形后的金属是不稳定的,在重新加热时会发生回复、再结晶和晶粒长大等过程。
其中再结晶阶段金属内部的晶粒将会由冷变形后的纤维状组织转变为新的无畸变的等轴晶粒,这是一个晶粒形核与长大的过程。
此过程完成后金属的加工硬化现象消失。
金属的力学性能将取决于再结晶后的晶粒大小。
对于给定材料,再结晶退火后的晶粒大小主要取决于塑性变形时的变形量及退火温度等因素。
变形量越大,再结晶后的晶粒越细;金属能进行再结晶的最小变形量通常在2~8%之间,此时再结晶后的晶粒特别粗大,称此变形度为临界变形度。
大于此临界变形度后,随变形量的增加,再结晶后的晶粒逐渐细化。
在本实验中将研究工业纯铝经不同变形量拉伸后在550℃温度再结晶退火后其晶粒大小,从而验证变形量对再结晶晶粒大小的影响。
三、实验设备和材料1、实验设备箱式电阻炉、万能拉伸机、卡尺、低倍4X型金相显微镜、洛氏硬度计等2、实验材料(1)变形度为0%、30%、50%、70%的工业纯铁试样两套,其中一套用于塑性变形后的硬度测定,一套为已制备好的不同变形量下的金相标准试样,用于观察组织(2)工业纯铝试样,尺寸为160mm×20m m×0.5mm,(3)腐蚀液:40mlHNO3+30mlHCl+30mlH2O+5g纯Cu),硝酸溶液四、实验内容及步骤1、测定工业纯铁的硬度(HRB )与变形度的关系,观察不同塑性变形量后工业纯铁的金相显微组织(1)将工业纯铁的试样在万能拉伸实验机上分别进行0%、30%、50%、70%的压缩变形。
第四章金属的塑性变形与再结晶铸态组织具有晶粒粗大且不均匀、组织不致密及成分偏析等缺陷,需要经压力加工再使用。
金属的压力加工,就是通过使金属产生一定的塑性变形获得制件。
压力加工不仅改变其外形尺寸,且使内部的组织和性能发生改变。
因此研究金属塑性变形以及变形后材料的组织结构的变化规律,对于深入了解金属材料各项力学性能指标的本质,充分发挥材料强度的潜力,正确制定和改进金属压力加工的工艺,提高产品的质量以及合理使用材料等都具有重要意义。
第一节金属的塑性变形[教学目的] 理解单晶体的塑性变形,掌握多晶体的塑性变形。
[教学重点] 多晶体的塑性变形。
[教学难点] 多晶体的塑性变形。
[教学方法] 讲授。
[教学内容]所有变形中,塑性变形对组织和性能的影响最大。
为认识塑性变形的规律,首先研究单晶体的塑性变形。
一单晶体的塑性变形单晶体的塑性变形主要通过滑移和孪生方式进行。
1 滑移切应力作用下,晶体的一部分沿着一定晶面(滑移面)上的一定方向(滑移方向)相对于另一部分发生滑动,称为滑移。
外力在一定的晶面分解为垂直于晶面的正应力σN和平行于晶面的切应力τN。
σN引发弹性变形和脆性断裂,断口呈金属光泽;τN引发弹性变形、弹塑性变形和韧性断裂,断口灰暗无光泽。
滑移变形的5个要点:1)滑移只能在切应力作用下发生;2)滑移主要发生在原子排列最紧密或较紧密的晶面上,并沿着这些晶面上原子排列最紧密的方向进行。
(原因:最密排晶面之间的距离最远;最密排晶面上原子与邻近原子之间的阻力最小)3)滑移必然伴随着晶体的转动(正应力引起)。
4)滑移是滑移面上的位错运动造成的。
位错运动所需切应力远远小于刚性的整体滑移所需的切应力。
如铜刚性滑移要1540MPa,实际只有1MPa。
二多晶体的塑性变形1 晶界与晶粒位向的影响①晶界竹节现象多晶体金属中,晶界原子的排列不规则,局部晶格畸变严重,且易产生杂质原子和空位等缺陷的偏聚。
位错运动到晶界附近时容易受到晶界的阻碍。
金属的塑性变形与再结晶
一、实验目的:
1、了解显微镜下滑移线、变形孪晶和退火孪晶特征。
2、了解金属经冷加工变形后显微组织及机械性能的变化。
3、讨论冷加工变形对再结晶晶粒大小的影响。
二、实验内容:
1、观察工业纯铁冷变形滑移线,纯锌的变形孪晶,黄铜或纯铜的退火孪晶。
2、观察工业纯铁经冷变形(0%、20%、40%、60%)后的显微组织。
3、用变形度不同的工业纯铝片,退火后测定晶粒大小。
三、实验内容讨论:
1、显微镜下的滑移线与变形孪晶:
当金属以滑移和孪晶两种方式塑性变形时,可以在显微镜下看到变形结果。
我们之所以能看到滑移线(叫滑移带更符合实际)是因为晶体滑移时,使试样的抛光表面产生高低不一的台阶所致。
滑移线的形状取决于晶体结构和位错运动,有直线形的,有波浪形的,有平行的,有互相交叉的,显示了滑移方式的不同。
变形量越大,滑移线愈多、愈密。
在密排六方结构中,常可看到变形孪晶,这是因为此类金属结构难以进行滑移变形。
孪晶可以看成是滑移的一种特殊对称形式,其结果使晶体的孪生部分相对于晶体的其余部分产生了位向的改变。
由于位向不同,孪晶区与腐蚀剂的作用也不同于其他部分,在显微镜下,孪晶区是一条较浅或较深的带。
在不同的金属中,变形孪晶的形状也不同,例如在变形锌中可看到孪晶变形区域,其特征为竹叶状,α—Fe则为细针状。
除变形孪晶外,有些金属如黄铜在退火时也常常出现以平行直线为边界的孪晶带,这类孪晶称为退火孪晶。
滑移和孪晶的区别:制备滑移线试样时,是试样先经过表面抛光,然后再经过微量塑性变形。
如果变形后再把表面抛光,则滑移线就看不出来了。
制备孪晶试样时,是先经塑性变形,然后再抛光腐蚀,可见:(1)对于滑移线不管样品是否经过腐蚀均可看到,而孪晶只有在磨光腐蚀后才可看见。
(2)滑移线经再次磨光即消失,而孪晶在样品表面磨光腐蚀后仍然保留着。
滑移线和磨痕的区别在于前者是不会穿过晶界的。
2、冷变形后金属的显微组织和机械性能
冷加工变形后,晶粒的大小、形状及分布都会发生改变。
晶粒沿外力方向被拉长(或缩短),当变形量很大时晶界已不明显,这时已分不出一颗颗晶粒,看到的只是纤维状组织。
在变形过程中,由于滑移面的转动及晶粒的破碎,晶格弯曲造成临界切应力的提高,均使继续变形发生困难,即产生了所谓加工硬化现象,即金属的强度随着变形度的增加而增加。
3、冷加工变形后的金属在加热时的变化
金属经变形后其组织处于不稳定状态,因而在随后加热过程中,进行回复,再结晶及晶粒长大三个过程。
再结晶退火后金属被软化,即加工硬化被消除,再结晶后金属的机械性能取决于晶粒大小,而晶粒大小则受预先冷变形和再结晶退火温度所控制。
变形度对再结晶后晶粒大小的影响,特别显著。
当金属的变形度越大时,再结晶后的晶粒越小。
金属有一个能进行再结晶的最小变形度,此时可得到最大的晶粒。
这个变形度叫临界变形度(铝约为2%),低于这个变形度,金属不会发生再结晶。
当变形度一定时,加热温度越高,再结晶进行得越快,再结晶后形成的新晶粒也越大。
1、实验材料及设备
(1)抛光的工业纯铁试样——观察其滑移线。
(2)常温下具有一定变形度的锌试样——观察变形孪晶。
(3)变形度为40%的α黄铜(或纯铜)经750℃退火30分钟——观察退火孪晶。
(4)变形度为0%、20%、40%、60%的工业纯铁试样一套,研究冷加工变形后的组织。
(5)尺寸为150×15×0.5mm铝片五根,研究变形度对再结晶后的晶粒大小的影响。
(6)金相显微镜。
(7)拉伸试验机。
(8)加热炉。
2、实验步骤:
(1)把经抛光的工业纯铁,装在拉伸试验机上,当缓慢进行拉伸时,逐渐出现一些变形痕迹——滑移线;继续拉伸时滑移线的数量和宽度不断增加,由于滑移线一般不能穿越晶界,因而晶界被逐渐显露出来,在显微镜下进行观察。
(2)观察锌的变形孪晶和纯铜的退火孪晶的特征。
(3)观察工业纯铁冷变形(0%、20%、40%、60%)试样的组织。
(4)测定变形度不同的纯铝片经退火后晶粒大小,建立“变形度与再结晶晶粒大小”曲线:
①五人一组,一人一根纯铝片。
②用软铅笔在试片中部划出100mm长度的计算距离。
③试片两端打上编号,编号顺序见下表:
④在拉伸机上分别将试样拉伸到所要求的尺寸。
⑤变形的试片,全班集中起来,一起放入550℃的加热炉内。
加热、保温30分钟。
⑥试片冷却后,(可以水冷)进行宏观腐蚀,以显示晶粒大小。
用1︰1硝酸盐酸溶液浸蚀,当能清楚地看到晶粒时,即可用水冲洗。
⑦数出一平方厘米的晶粒数(n)并计算晶粒大小(a),填入下表中:
⑧从所得a即可作出“变形与再结晶晶粒大小”关系曲线。
1、写出实验目的、内容。
2、画出所观察样品,工业纯铁的滑移线,纯锌的变形孪晶,铜的退火孪晶的组织示意图。
3、根据实验记录,建立纯铝片“变形度与再结晶后晶粒大小的关系曲线图。
并给以简要的解释和讨论变形度对金属再结晶晶粒大小的影响。