必修1 2.2.2对数函数及其性质(2)
- 格式:docx
- 大小:79.85 KB
- 文档页数:2
2.2.2对数函数及其性质一、教学内容分析《普通高中课程标准数学教科书·必修(1)》(人民教育出版社)高中一年级第二单元2.2.2《对数函数的图象和性质》第一课时。
函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。
必修(Ⅰ)2.2.2对数函数及其性质,按课标要求教学时间为3个学时,本节课为第1课时,本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。
为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。
二、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。
学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。
最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。
三、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。
通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。
第2课时 对数函数及其性质(二)学习目标 1.掌握对数型复合函数单调区间的求法及单调性的判定方法.2.会解简单的对数不等式.3.了解反函数的概念及它们的图象特点.知识点一 不同底的对数函数图象的相对位置一般地,对于底数a >1的对数函数,在(1,+∞)区间内,底数越大越靠近x 轴;对于底数0<a <1的对数函数,在(1,+∞)区间内,底数越小越靠近x 轴. 知识点二 反函数的概念一般地,像y =a x 与y =log a x (a >0,且a ≠1)这样的两个函数互为反函数.(1)y =a x 的定义域R 就是y =log a x 的值域;而y =a x 的值域(0,+∞)就是y =log a x 的定义域. (2)互为反函数的两个函数y =a x (a >0,且a ≠1)与y =log a x (a >0,且a ≠1)的图象关于直线y =x 对称.(3)互为反函数的两个函数的单调性相同.但单调区间不一定相同.1.y =log 2x 2在(0,+∞)上为增函数.( √ )2.212log y x 在(0,+∞)上为增函数.( × )3.ln x <1的解集为(-∞,e).( × )4.y =a x 与x =log a y 的图象相同.( √ )题型一 比较大小例1 (1)若a =log 0.23,b =log 0.22.5,c =log 0.20.3,则( ) A.a >b >c B.c >b >a C.a >c >b D.c >a >b答案 B解析 因为0.3<2.5<3,且y =log 0.2x 在(0,+∞)上是减函数,所以c >b >a . (2)比较下列各组数的大小:①log 534与log 543;②1135log 2log 2与;③log 23与log 54.解 ①方法一 对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.方法二 因为log 534<0,log 543>0,所以log 534<log 543.②由于1321log 21log 3=,1521log 21log 5=,又对数函数y =log 2x 在(0,+∞)上是增函数,且0<15<13<1,所以0>log 213>log 215,所以1log 213<1log 215,所以3151l 2log 2og <.③取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54. 反思感悟 比较对数值大小时常用的四种方法 (1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化. (3)底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论.跟踪训练1 (1)设a =log 2π,12log πb =,c =π-2,则( )A.a >b >cB.b >a >cC.a >c >bD.c >b >a 答案 C解析 a =log 2π>1,12log π0b <=,c =π-2∈(0,1),所以a >c >b .(2)比较下列各组值的大小: ①2233log 0.5,log 0.6;②log 1.51.6,log 1.51.4;③log 0.57,log 0.67;④log 3π,log 20.8.解 ①因为函数23log y x =是减函数,且0.5<0.6,所以2233log 0.5log 0.6>.②因为函数y =log 1.5x 是增函数,且1.6>1.4, 所以log 1.51.6>log 1.51.4.③因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5,即log 0.67<log 0.57. ④因为log 3π>log 31=0,log 20.8<log 21=0,所以log 3π>log 20.8. 题型二 对数不等式的解法 例2 (1)7171lo lo g (g 4)x x >- ;(2)log a (2x -5)>log a (x -1). 解 (1)由题意可得⎩⎪⎨⎪⎧x >0,4-x >0,x <4-x ,解得0<x <2.所以原不等式的解集为{x |0<x <2}.(2)当a >1时,原不等式等价于⎩⎪⎨⎪⎧ 2x -5>0,x -1>0,2x -5>x -1.解得x >4.当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5<x -1,解得52<x <4.综上所述,当a >1时,原不等式的解集为{x |x >4};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪52<x <4. 反思感悟 对数不等式的三种考查类型及解法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况进行讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式(b =log a a b ),再借助y =log a x 的单调性求解.(3)形如log f (x )a >log g (x )a (f (x ),g (x )>0且不等于1,a >0)的不等式,可利用换底公式化为同底的对数进行求解,或利用函数图象求解.跟踪训练2 (1)求满足不等式log 3x <1的x 的取值集合; (2)若log a 25<1(a >0,且a ≠1),求实数a 的取值范围.解 (1)因为log 3x <1=log 33,所以x 满足的条件为⎩⎪⎨⎪⎧x >0,log 3x <log 33,即0<x <3.所以x 的取值集合为{x |0<x <3}. (2)log a 25<1,即log a 25<log a a .当a >1时,函数y =log a x 在定义域内是增函数, 所以log a 25<log a a 总成立;当0<a <1时,函数y =log a x 在定义域内是减函数, 由log a 25<log a a ,得a <25,即0<a <25.所以实数a 的取值范围为⎝⎛⎭⎫0,25∪(1,+∞).题型三 对数型复合函数的单调性命题角度1 求单调区间例3 求函数212log (1)y x =-的单调区间.解 要使212log (1)y x =-有意义,则1-x 2>0,所以x 2<1,所以-1<x <1, 因此函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).当x ∈(-1,0]时,x 增大,t 增大,y =12log t 减小.所以当x ∈(-1,0]时,212log (1)y x =-是减函数;同理可知,当x ∈[0,1)时,212log (1)y x =-是增函数.即函数212log (1)y x =-的单调递减区间是(-1,0],单调递增区间为[0,1).反思感悟 求形如y =log a f (x )的函数的单调区间的步骤 (1)求出函数的定义域.(2)研究函数t =f (x )和函数y =log a t 在定义域上的单调性. (3)判断出函数的增减性求出单调区间.跟踪训练3 求函数f (x )=log 2(1-2x )的单调区间.解 因为1-2x >0,所以x <12.又设u =1-2x ,则y =log 2u 是(0,+∞)上的增函数. 又u =1-2x ,则当x ∈⎝⎛⎭⎫-∞,12时,u (x )是减函数, 所以函数f (x )=log 2(1-2x )的单调递减区间是⎝⎛⎭⎫-∞,12. 命题角度2 已知复合函数单调性求参数范围例4 已知函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,求实数a 的取值范围.考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 令g (x )=x 2-ax +a ,g (x )在⎝⎛⎦⎤-∞,a 2上是减函数,∵0<12<1,∴12log ()y g x =是减函数,而已知复合函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,∴只要g (x )在(-∞,2)上单调递减,且g (x )>0在x ∈(-∞,2)上恒成立, 即⎩⎪⎨⎪⎧2≤a 2,g (2)=(2)2-2a +a ≥0,∴22≤a ≤2(2+1),故所求a 的取值范围是[22,22+2].反思感悟 若a >1,则y =log a f (x )的单调性与y =f (x )的单调性相同,若0<a <1,则y =log a f (x )的单调性与y =f (x )的单调性相反.另外应注意单调区间必须包含于原函数的定义域. 跟踪训练4 若函数f (x )=log a (6-ax )在[0,2]上为减函数,则a 的取值范围是( ) A.(0,1) B.(1,3) C.(1,3] D.[3,+∞) 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围 答案 B解析 函数由y =log a u ,u =6-ax 复合而成,因为a >0,所以u =6-ax 是减函数,那么函数y =log a u 就是增函数,所以a >1,因为[0,2]为定义域的子集,所以当x =2时,u =6-ax 取得最小值,所以6-2a >0,解得a <3,所以1<a <3.故选B.1.不等式log 2(x -1)>-1的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x >23 B.{x |x >2}C.{x |x >1}D.⎩⎨⎧⎭⎬⎫x ⎪⎪x >32 答案 D解析 ∵log 2(x -1)>-1=log 212,∴x -1>12,即x >32.2.函数f (x )=-2x +5+lg(2-x -1)的定义域为( )A.(-5,+∞)B.[-5,+∞)C.(-5,0)D.(-2,0) 答案 C解析 由⎩⎪⎨⎪⎧x +5>0,2-x -1>0,∴⎩⎪⎨⎪⎧ x >-5,2-x >20,∴⎩⎪⎨⎪⎧x >-5,x <0,∴-5<x <0,故选C.3.如果2121l log og 0x y <<,那么( )A.y <x <1B.x <y <1C.1<x <yD.1<y <x 考点 对数不等式 题点 解对数不等式 答案 D4.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=________. 考点 函数的反函数 题点 求函数的反函数 答案 log 2x5.函数f (x )=ln x 2的单调减区间为____________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (-∞,0)1.与对数函数有关的复合函数的单调区间、奇偶性、不等式问题都要注意定义域的影响.2.y =a x 与x =log a y 的图象是相同的,只是为了适应习惯用x 表示自变量,y 表示因变量,把x =log a y 换成y =log a x ,y =log a x 才与y =a x 关于直线y =x 对称,因为点(a ,b )与点(b ,a )关于直线y =x 对称.一、选择题1.函数y =log 3(2x -1)的定义域为( ) A.[1,+∞) B.(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1考点 对数不等式 题点 解对数不等式 答案 A解析 要使函数有意义,需满足⎩⎪⎨⎪⎧log 3(2x -1)≥0,2x -1>0,∴⎩⎪⎨⎪⎧2x -1≥1,2x -1>0,∴x ≥1, ∴函数y =log 3(2x -1)的定义域为[1,+∞). 2.若log a 2<log b 2<0,则下列结论正确的是( ) A.0<a <b <1 B.0<b <a <1 C.a >b >1 D.b >a >1答案 B解析 因为log a 2<0,log b 2<0, 所以0<a <1,0<b <1, 又log a 2<log b 2, 所以a >b , 故0<b <a <1.3.函数f (x )=12log x 的单调递增区间是( )A.⎝⎛⎦⎤0,12 B.(0,1] C.(0,+∞) D.[1,+∞)答案 D解析 f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.函数y =15log (1-3x )的值域为( )A.RB.(-∞,0)C.(0,+∞)D.(1,+∞) 答案 C解析 因为3x >0,所以-3x <0, 所以1-3x <1.又y =15log t (t =1-3x )是关于t 的减函数,所以y =15log t >15log 1=0.5.已知log a 12<2,那么a 的取值范围是( )A.0<a <22B.a >22C.22<a <1 D.0<a <22或a >1 考点 对数不等式 题点 解对数不等式 答案 D解析 当a >1时,由log a 12<log a a 2得a 2>12,故a >1;当0<a <1时,由log a 12<log a a 2得0<a 2<12,故0<a <22. 综上可知,a 的取值范围是0<a <22或a >1. 6.函数y =13log (-3+4x -x 2)的单调递增区间是( )A.(-∞,2)B.(2,+∞)C.(1,2)D.(2,3) 答案 D解析 由-3+4x -x 2>0,得x 2-4x +3<0,得1<x <3. 设t =-3+4x -x 2,其图象的对称轴为x =2. ∵函数y =13log t 为减函数,∴要求函数y =13log (-3+4x -x 2)的单调递增区间,即求函数t =-3+4x -x 2,1<x <3的单调递减区间, ∵函数t =-3+4x -x 2,1<x <3的单调递减区间是(2,3),∴函数y =13log (-3+4x -x 2)的单调递增区间为(2,3),故选D.7.已知函数f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减,则a 的取值范围为( ) A.(-∞,4] B.[4,+∞ ) C.[-4,4] D.(-4,4] 答案 D解析 令g (x )=x 2-ax +3a ,∵f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减, ∴函数g (x )在区间[2,+∞)上单调递增,且恒大于0, ∴12a ≤2且g (2)>0, ∴a ≤4且4+a >0,∴-4<a ≤4, 故选D.8.已知指数函数y =⎝⎛⎭⎫1a x,当x ∈(0,+∞)时,有y >1,则关于x 的不等式log a (x -1)≤log a (6-x )的解集为( ) A.⎣⎡⎭⎫72,+∞ B.⎝⎛⎦⎤-∞,72 C.⎝⎛⎦⎤1,72 D.⎣⎡⎭⎫72,6答案 D解析 ∵y =⎝⎛⎭⎫1a x 在x ∈(0,+∞)时,有y >1, ∴1a>1,∴0<a <1. 于是由log a (x -1)≤log a (6-x ), 得⎩⎪⎨⎪⎧x -1≥6-x ,x -1>0,6-x >0,解得72≤x <6,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪72≤x <6.故选D. 二、填空题9.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点⎝⎛⎭⎫32,23,则a =________. 考点 函数的反函数 题点 反函数的图象与性质 答案2解析 因为点⎝⎛⎭⎫32,23在y =f (x )的图象上,所以点⎝⎛⎭⎫23,32在y =a x 的图象上,则有32=23a , 即a 2=2,又因为a >0,所以a = 2. 10.函数y =log 2(x 2-1)的增区间为________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (1,+∞)解析 由x 2-1>0得函数的定义域为{x |x <-1或x >1},又y =log 2x 在定义域上单调递增,y =x 2-1在(1,+∞)上单调递增,∴函数的增区间为(1,+∞).11.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x -1)<f (2-x )的解集是________. 答案 {x |1<x <2} 解析 ∵f (2)>f (3), ∴f (x )=log a x 是减函数,由f (2x -1)<f (2-x ),得⎩⎪⎨⎪⎧2x -1>0,2-x >0,2x -1>2-x ,∴⎩⎪⎨⎪⎧x >12,x <2,x >1,∴1<x <2. 三、解答题12.已知函数f (x )=log 2(x +1)-2. (1)若f (x )>0,求x 的取值范围; (2)若x ∈(-1,3],求f (x )的值域. 解 (1)函数f (x )=log 2(x +1)-2, ∵f (x )>0,即log 2(x +1)-2>0, ∴log 2(x +1)>2,∴x +1>4,∴x >3. 故x 的取值范围是x >3. (2)∵x ∈(-1,3], ∴x +1∈(0,4],∴log 2(x +1)∈(-∞,2], ∴log 2(x +1)-2∈(-∞,0], 故f (x )的值域为(-∞,0]. 13.已知f (x )=12log (x 2-ax -a ).(1)当a =-1时,求f (x )的单调区间及值域;(2)若f (x )在⎝⎛⎭⎫-∞,-12上为增函数,求实数a 的取值范围. 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 (1)当a =-1时,f (x )=12log (x 2+x +1),∵x 2+x +1=⎝⎛⎭⎫x +122+34≥34, ∴12log (x 2+x +1)≤123log 4=2-log 23, ∴f (x )的值域为(-∞,2-log 23].∵y =x 2+x +1在⎝⎛⎦⎤-∞,-12上单调递减,在⎝⎛⎭⎫-12,+∞上单调递增,y =12log x 在(0,+∞)上单调递减,∴f (x )的单调增区间为⎝⎛⎦⎤-∞,-12, 单调减区间为⎝⎛⎭⎫-12,+∞. (2)令u (x )=x 2-ax -a =⎝⎛⎭⎫x -a 22-a 24-a , ∵f (x )在⎝⎛⎭⎫-∞,-12上为单调增函数, 又∵y =12log u (x )为单调减函数,∴u (x )在⎝⎛⎭⎫-∞,-12上为单调减函数,且u (x )>0在⎝⎛⎭⎫-∞,-12上恒成立. ⎝⎛⎭⎫提示:⎝⎛⎭⎫-∞,-12⊆⎝⎛⎭⎫-∞,a 2 因此⎩⎨⎧ a 2≥-12,u ⎝⎛⎭⎫-12≥0,即⎩⎪⎨⎪⎧a ≥-1,14+a 2-a ≥0, 解得-1≤a ≤12. 故实数a 的取值范围是⎣⎡⎦⎤-1,12.14.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为________.考点 对数函数的综合问题题点 与单调性有关的对数函数综合问题答案 12解析 当a >1时,y =a x 与y =log a (x +1)在[0,1]上是增函数, ∴f (x )max =a +log a 2,f (x )min =a 0+log a 1=1,∴a +log a 2+1=a ,∴log a 2=-1,a =12(舍去); 当0<a <1时,y =a x 与y =log a (x +1)在[0,1]上是减函数,∴f (x )max =a 0+log a (0+1)=1,f (x )min =a +log a 2,∴a +log a 2+1=a ,∴a =12. 综上所述,a =12. 15.已知函数f (x )=lg(1+x )-lg(1-x ).(1)求函数f (x )的定义域,并证明f (x )是定义域上的奇函数;(2)用定义证明f (x )在定义域上是增函数;(3)求不等式f (2x -5)+f (2-x )<0的解集.(1)解 由对数函数的定义得⎩⎪⎨⎪⎧ 1-x >0,1+x >0,得⎩⎪⎨⎪⎧x <1,x >-1, 即-1<x <1,∴函数f (x )的定义域为(-1,1).∵f (-x )=lg(1-x )-lg(1+x )=-f (x ),∴f (x )是定义域上的奇函数.(2)证明 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=lg(1+x 1)-lg(1-x 1)-lg(1+x 2)+lg(1-x 2)=lg (1+x 1)(1-x 2)(1+x 2)(1-x 1). ∵-1<x 1<x 2<1,∴0<1+x 1<1+x 2,0<1-x 2<1-x 1,于是0<1+x 11+x 2<1,0<1-x 21-x 1<1, 则0<(1+x 1)(1-x 2)(1+x 2)(1-x 1)<1,∴lg (1+x 1)(1-x 2)(1+x 2)(1-x 1)<0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),即函数f (x )是(-1,1)上的增函数.(3)解 ∵f (x )在(-1,1)上是增函数且为奇函数,∴不等式f (2x -5)+f (2-x )<0可转化为f (2x -5)<-f (2-x )=f (x -2),∴⎩⎪⎨⎪⎧ -1<2x -5<1,-1<x -2<1,2x -5<x -2,解得2<x <3.∴不等式的解集为{x |2<x <3}.。
2.2.2对数函数及其性质重难点题型【举一反三系列】【知识点1 对数函数的定义】1.对数函数的概念一般地,把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2.两种特殊的对数函数(1)常用对数函数:以10为底的对数函数x y lg =. (2)自然对数函数:以无理数e 为底的对数函数x y ln =. 【知识点2 对数函数的图象与性质】 对数函数的图象与性质列表如下:温馨提示:掌握对数函数的图象和性质,其关键是理解图象的特征,利用几何直观掌握函数的性质. 【知识点3 反函数】在指数函数)10(≠>=a a a y x ,中,x 是自变量,y 是x 的函数,其定义域是R ,值域是(0,+∞);在对数函数)1,0(log ≠>=a a y x a 中,y 是自变量,x 是y 的函数,其定义域是R ,值域是(0,+∞), 像这样的两个函数叫作互为反函数.【考点1 对数函数的概念】【例1】(2019秋•林芝县校级月考)下列函数是对数函数的是()A.y=log3(x+1)B.y=log a(2x)(a>0,且a≠1)C.y=lnxD.【变式1-1】给出下列函数:①y=x2;②y=log3(x﹣1);③y=log x+1x;④y=logπx.其中是对数函数的有()A.1个B.2个C.3个D.4个【变式1-2】下列函数表达式中,是对数函数的有()①y=log x2;②y=log a x(a∈R)③y=log8x;④y=lnx⑤y=log x(x+2);⑥y=2log4x⑦y=log2(x+1)A.1个B.2个C.3个D.4个【变式1-3】下列函数中,是对数函数的个数为()①y=log a x2(a>0,且a≠1);②y=log2x﹣1;③y=2log8x;④y=log x a(x>0,且x≠1);⑤y=log5x;⑥y=log a x(a>0,a≠1)A.1B.2C.3D.4【考点2 利用对数函数的性质比较大小】【例2】(2019秋•福田区校级月考)设,则a,b,c的大小关系是()A.a<b<c B.b<c<a C.a<c<b D.c<b<a【变式2-1】(2019秋•天山区校级月考)已知正实数a,b,c满足log a2=2,log3b=,c6=7,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.c<b<a D.c<a<b【变式2-2】(2019秋•沙坪坝区校级月考)已知a=log30.3,b=30.3,c=0.30.2,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【变式2-3】(2019•西湖区校级模拟)下列关系式中,成立的是()A.B.C.D.【考点3 与对数函数有关的函数图象识别】【例3】(2018秋•合阳县期末)已知a>0,b>0,且ab=1,a≠1,则函数f(x)=a x与函数g(x)=﹣log b x在同一坐标系中的图象可能是()A.B.C.D.【变式3-1】(2019•西湖区校级模拟)若当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,则函数y=log a||的图象大致为()A.B.C.D.【变式3-2】(2018秋•船营区校级月考)函数f(x)=的图象可能是()A.B.C.D.【变式3-3】(2019秋•洛南县期末)函数y=|lg(x+1)|的图象是()A.B.C.D.【考点4 对数函数图象过定点问题】【例4】(2018秋•赣州期中)函数y=log a(x﹣1)+log a(x+1)(a>0且a≠1)的图象必过定点()A.()B.(0,﹣)C.()D.()【变式4-1】(2019秋•水富县校级月考)已知函数y=3+log a(2x+3)(a>0,a≠1)的图象必经过定点P,则P点坐标是()A.(1,3)B.(﹣,4)C.(﹣1,3)D.(﹣1,4)【变式4-2】(2018秋•烟台期中)函数y=log a(x+2)+a x+1+2(a>0,且a≠1)的图象必经过的点是()A.(0,2)B.(2,2)C.(﹣1,2)D.(﹣1,3)【变式4-3】(2019秋•赣州期末)已知a>0,a≠1,则f(x)=log a的图象恒过点()A.(1,0)B.(﹣2,0)C.(﹣1,0)D.(1,4)【考点5 有关对数函数奇偶性问题】【例5】(2018•肇庆二模)已知f(x)=lg(10+x)+lg(10﹣x),则f(x)是()A.f(x)是奇函数,且在(0,10)是增函数B.f(x)是偶函数,且在(0,10)是增函数C.f(x)是奇函数,且在(0,10)是减函数D.f(x)是偶函数,且在(0,10)是减函数【变式5-1】(2019秋•南充期末)已知函数f(x)=log a(x﹣m)的图象过点(4,0)和(7,1),则f (x)在定义域上是()A.增函数B.减函数C.奇函数D.偶函数【变式5-2】(2019秋•新宁县校级期中)对于函数,下列说法正确的是()A.f(x)是奇函数B.f(x)是偶函数C.f(x)是非奇非偶函数D.f(x)既是奇函数又是偶函数【变式5-3】(2016春•石家庄校级月考)函数f(x)=ln(1+2x),g(x)=ln(1﹣2x),则f(x)+g(x)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数【考点6 与对数函数有关的定义域问题】【例6】(2018秋•肇庆期末)函数y=的定义域为()A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【变式6-1】(2019•西湖区校级模拟)函数的定义域是()A.B.C.D.【变式6-2】(2018秋•宜宾期末)函数y=的定义域是()A.(,+∞)B.(,1]C.(﹣∞,1]D.[1,+∞)【变式6-3】(2018春•连城县校级月考)函数y=的定义域是()A.[1,+∞)B.(,+∞)C.(1,+∞)D.(,1]【考点7 与对数函数有关的值域问题】【例7】(2019秋•南昌校级期中)函数y=log4(2x+3﹣x2)值域为.【变式7-1】(2019春•赣榆区校级月考)函数的值域为.【变式7-2】(2019秋•九原区校级期末)函数y=(x)2﹣x2+5 在2≤x≤4时的值域为.【变式7-3】(2019秋•松江区期末)函数的值域为.【考点8 与对数函数有关的最值问题】【例8】(2019秋•离石区校级月考)设x≥0,y≥0且x+2y=,则函数u=log0.5(8xy+4y2+1)的最大值为.【变式8-1】(2019秋•田阳县校级月考)函数f(x)=log a(x+1)在[0,3]上的最大值与最小值的差为2,则a的值为.【变式8-2】(2019春•天津期末)若函数y=log a(x2﹣ax+1)有最小值,则a的取值范围是.【变式8-3】(2019秋•会宁县校级期中)已知函数f(x)=2+log3x,x∈[1,9],函数y=[f(x)]2+f(x2)的最大值为.【考点9 与对数函数的单调性有关的问题】【例9】(2019春•吉林期末)已知函数f(x)=log a(x+3)﹣log a(3﹣x),a>0且a≠1.(1)求函数f(x)的定义域;(2)判断并证明函数f(x)的奇偶性;(3)若a>1,指出函数的单调性,并求函数f(x)在区间[0,1]上的最大值.【变式9-1】(2018秋•南岗区校级期中)已知f(x)=log a(a>0,且a≠1,m≠﹣1)是定义在区间(﹣1,1)上的奇函数,(1)求f(0)的值和实数m的值;(2)判断函数f(x)在区间(﹣1,1)上的单调性,并说明理由;(3)若f()>0且f(b﹣2)+f(2b﹣2)>0成立,求实数b的取值范围.【变式9-2】(2019秋•番禺区校级期中)已知函数.(1)求函数的定义域.(2)讨论函数f(x)的奇偶性.(3)判断函数f(x)的单调性,并用定义证明.【变式9-3】(2019秋•荔湾区校级期末)已知函数f(x)=log3(1+x)﹣log3(1﹣x).(1)求函数f(x)定义域,并判断f(x)的奇偶性.(2)判断函数f(x)在定义域内的单调性,并用单调性定义证明你的结论.(3)解关于x的不等式f(1﹣x)+f(1﹣x2)>0.2.2.2对数函数及其性质重难点题型【举一反三系列】【知识点1 对数函数的定义】 1.对数函数的概念一般地,把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 2.两种特殊的对数函数(1)常用对数函数:以10为底的对数函数x y lg =. (2)自然对数函数:以无理数e 为底的对数函数x y ln =. 【知识点2 对数函数的图象与性质】对数函数的图象与性质列表如下:温馨提示:掌握对数函数的图象和性质,其关键是理解图象的特征,利用几何直观掌握函数的性质. 【知识点3 反函数】在指数函数)10(≠>=a a a y x ,中,x 是自变量,y 是x 的函数,其定义域是R ,值域是(0,+∞);在对数函数)1,0(log ≠>=a a y x a 中,y 是自变量,x 是y 的函数,其定义域是R ,值域是(0,+∞), 像这样的两个函数叫作互为反函数.【考点1 对数函数的概念】【例1】(2019秋•林芝县校级月考)下列函数是对数函数的是( ) A .y =log 3(x +1)B.y=log a(2x)(a>0,且a≠1)C.y=lnxD.【分析】根据对数函数的定义即可得出.【答案】解:根据对数函数的定义可得:只有y=lnx为对数函数.故选:C.【点睛】本题考查了对数函数的定义,考查了推理能力与计算能力,属于基础题.【变式1-1】给出下列函数:①y=x2;②y=log3(x﹣1);③y=log x+1x;④y=logπx.其中是对数函数的有()A.1个B.2个C.3个D.4个【分析】由对数函数的定义依次判断即可.【答案】解:①y=x2的真数为x2,故不是对数函数;②y=log3(x﹣1)的真数为x﹣1,故不是对数函数;③y=log x+1x的底数为x+1,故不是对数函数;④y=logπx是对数函数;故选:A.【点睛】本题考查了对数函数的定义的应用.【变式1-2】下列函数表达式中,是对数函数的有()①y=log x2;②y=log a x(a∈R)③y=log8x;④y=lnx⑤y=log x(x+2);⑥y=2log4x⑦y=log2(x+1)A.1个B.2个C.3个D.4个【分析】根据对数函数的定义,y=log a x(a>0,且a≠1),逐一分析给定函数是否为指数函数,可得结论.【答案】解:①y=log x2不是对数函数;②y=log a x(a∈R)不是对数函数;③y=log8x是对数函数;④y=lnx是对数函数;⑤y=log x(x+2)不是对数函数;⑥y=2log4x不是对数函数;⑦y=log2(x+1)不是对数函数;综上所述,对数函数有2个,故选:B.【点睛】本题考查的知识点是对数函数的定义,熟练掌握对数函数的定义,是解答的关键.【变式1-3】下列函数中,是对数函数的个数为()①y=log a x2(a>0,且a≠1);②y=log2x﹣1;③y=2log8x;④y=log x a(x>0,且x≠1);⑤y=log5x;⑥y=log a x(a>0,a≠1)A.1B.2C.3D.4【分析】根据对数函数的定义进行判断即可.【答案】解:①y=log a x2(a>0,且a≠1),真数不是变量x,不是对数函数;②y=log2x﹣1,不是对数函数;③y=2log8x;系数不是1,不是对数函数④y=log x a(x>0,且x≠1),底数不是常数,不是对数函数;⑤y=log5x,满足对数函数的定义,是对数函数;⑥y=log a x(a>0,a≠1)满足对数函数的定义,是对数函数,故是对数函数的有⑤⑥,共有2个,故选:B.【点睛】本题主要考查函数概念的判断,根据对数函数的定义是解决本题的关键.【考点2 利用对数函数的性质比较大小】【例2】(2019秋•福田区校级月考)设,则a,b,c的大小关系是()A.a<b<c B.b<c<a C.a<c<b D.c<b<a【分析】根据对数的换底公式可得出,从而可得出2<log420<log315,且可得出,这样即可得出a,b,c的大小关系.【答案】解:,,,且log54>log53>0,∴,∴2=log416<log420<log315,∴a<c<b.故选:C.【点睛】考查对数的换底公式,以及指数函数和对数函数的单调性,增函数的定义,不等式的性质.【变式2-1】(2019秋•天山区校级月考)已知正实数a,b,c满足log a2=2,log3b=,c6=7,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.c<b<a D.c<a<b【分析】根据条件可得出,从而得出a6=8,b6=9且c6=7,a,b,c都是正数,这样即可得出a,b,c的大小关系.【答案】解:∵log a2=2,log3b=,c6=7,∴∴a6=8,b6=9,c6=7,且a,b,c都是正数,∴c<a<b故选:C.【点睛】考查对数的定义,对数与指数的互化,以及指数的运算,幂函数的单调性.【变式2-2】(2019秋•沙坪坝区校级月考)已知a=log30.3,b=30.3,c=0.30.2,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【分析】容易得出,从而可得出a,b,c的大小关系.【答案】解:∵log30.3<log31=0,30.3>30=1,0<0.30.2<0.30=1∴a<c<b.故选:B.【点睛】考查对数函数、指数函数的单调性,以及增函数、减函数的定义.【变式2-3】(2019•西湖区校级模拟)下列关系式中,成立的是()A.B.C.D.【分析】容易得出,从而可得出正确的选项.【答案】解:∵log34>log33=1,0<0.31.7<0.30=1,log0.310<log0.31=0,∴.故选:A.【点睛】考查对数函数和指数函数的单调性,增函数和减函数的定义.【考点3 与对数函数有关的函数图象识别】【例3】(2018秋•合阳县期末)已知a>0,b>0,且ab=1,a≠1,则函数f(x)=a x与函数g(x)=﹣log b x在同一坐标系中的图象可能是()A.B.C.D.【分析】根据a与b的正负,利用指数函数与对数函数的性质判断即可确定出其图象.【答案】解:∵a>0,b>0,且ab=1,a≠1,∴函数f(x)=a x与函数g(x)=﹣log b x在同一坐标系中的图象可能是,故选:B.【点睛】此题考查了指数函数与对数函数的图象,熟练掌握指数、对数函数的图象与性质是解本题的关键.【变式3-1】(2019•西湖区校级模拟)若当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,则函数y=log a||的图象大致为()A.B.C.D.【分析】由于当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,利用指数函数的图象和性质可得0<a<1.先画出函数y=log a|x|的图象,此函数是偶函数,当x>0时,即为y=log a x,而函数y=log a||=﹣log a|x|,即可得出图象.【答案】解:∵当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1.因此,必有0<a<1.先画出函数y=log a|x|的图象:红颜色的图象.而函数y=log a||=﹣log a|x|,其图象如黑颜色的图象.故选:B.【变式3-2】(2018秋•船营区校级月考)函数f(x)=的图象可能是()A.B.C.D.【分析】先求出函数的定义域,再判断函数为奇函数,即图象关于原点对称,故可以排除BC,再根据函数值域,可排除D.【答案】解:∵f(x)=,∴函数定义域为(﹣∞,0)∪(0,+∞),∵,∴函数f(x)为奇函数,图象关于原点对称,故排除B、C,∵当0<x<1时,lnx<0,∴f(x)=<0,x∈(0,1)故排除D.故选:A.【点睛】本题主要考查了绝对值函数以及函数的值域、奇偶性和单调性,属于基础题.【变式3-3】(2019秋•洛南县期末)函数y=|lg(x+1)|的图象是()A.B.C.D.【分析】本题研究一个对数型函数的图象特征,函数y=|lg(x+1)|的图象可由函数y=lg(x+1)的图象将X轴下方的部分翻折到X轴上部而得到,故首先要研究清楚函数y=lg(x+1)的图象,由图象特征选出正确选项【答案】解:由于函数y=lg(x+1)的图象可由函数y=lgx的图象左移一个单位而得到,函数y=lgx的图象与X轴的交点是(1,0),故函数y=lg(x+1)的图象与X轴的交点是(0,0),即函数y=|lg(x+1)|的图象与X轴的公共点是(0,0),考察四个选项中的图象只有A选项符合题意故选:A.【点睛】本题考查对数函数的图象与性质,解答本题关键是掌握住对数型函数的图象图象的变化规律,由这些规律得出函数y=|lg(x+1)|的图象的特征,再由这些特征判断出函数图象应该是四个选项中的那一个【考点4 对数函数图象过定点问题】【例4】(2018秋•赣州期中)函数y=log a(x﹣1)+log a(x+1)(a>0且a≠1)的图象必过定点()A.()B.(0,﹣)C.()D.()【分析】根据对数函数的性质求出定点的坐标即可.【答案】解:y=log a(x﹣1)+log a(x+1)=log a(x2﹣1),令x2﹣1=1,解得:x=±,而x﹣1>0,解得:x>1,故x=,故函数的图象过(,0),故选:C.【点睛】本题考查了对数函数的性质,考查特殊值问题,是一道基础题.【变式4-1】(2019秋•水富县校级月考)已知函数y=3+log a(2x+3)(a>0,a≠1)的图象必经过定点P,则P点坐标是()A.(1,3)B.(﹣,4)C.(﹣1,3)D.(﹣1,4)【分析】令2x+3=1,求得x的值,从而求得P点的坐标.【答案】解:令2x+3=1,可得x=﹣1,此时y=3.即函数y=3+log a(2x+3)(a>0,a≠1))的图象必经过定点P的坐标为(﹣1,3).故选:C.【点睛】本题主要考查对数函数的单调性和特殊点,属于基础题.【变式4-2】(2018秋•烟台期中)函数y=log a(x+2)+a x+1+2(a>0,且a≠1)的图象必经过的点是()A.(0,2)B.(2,2)C.(﹣1,2)D.(﹣1,3)【分析】根据log a1=0,a0=1,求出定点的坐标即可.【答案】解:令x+2=1,解得:x=﹣1,故y=0+1+2=3,故图象过(﹣1,3),故选:D.【点睛】本题考查了对数函数,指数函数的性质,根据log a1=0,a0=1是解题的关键.【变式4-3】(2019秋•赣州期末)已知a>0,a≠1,则f(x)=log a的图象恒过点()A.(1,0)B.(﹣2,0)C.(﹣1,0)D.(1,4)【分析】令=1,解得x=﹣2,y=0,进而得到f(x)=log a的图象恒过点的坐标.【答案】解:令=1,解得:x=﹣2,故f(﹣2)=log a1=0恒成立,即f(x)=log a的图象恒过点(﹣2,0),故选:B.【点睛】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.【考点5 有关对数函数奇偶性问题】【例5】(2018•肇庆二模)已知f(x)=lg(10+x)+lg(10﹣x),则f(x)是()A.f(x)是奇函数,且在(0,10)是增函数B.f(x)是偶函数,且在(0,10)是增函数C.f(x)是奇函数,且在(0,10)是减函数D.f(x)是偶函数,且在(0,10)是减函数【分析】求出函数的定义域,根据函数奇偶性的定义以及复合函数的单调性判断即可.【答案】解:由得:x∈(﹣10,10),故函数f(x)的定义域为(﹣10,10),关于原点对称,又由f(﹣x)=lg(10﹣x)+lg(10+x)=f(x),故函数f(x)为偶函数,而f(x)=lg(10+x)+lg(10﹣x)=lg(100﹣x2),y=100﹣x2在(0,10)递减,y=lgx在(0,10)递增,故函数f(x)在(0,10)递减,故选:D.【点睛】本题考查了函数的单调性和函数的奇偶性问题,考查转化思想,是一道基础题.【变式5-1】(2019秋•南充期末)已知函数f(x)=log a(x﹣m)的图象过点(4,0)和(7,1),则f (x)在定义域上是()A.增函数B.减函数C.奇函数D.偶函数【分析】把(4,0)和(7,1)代入f(x)列出方程组解出a,m,根据对数函数的性质判断.【答案】解:∵f(x)的图象过点(4,0)和(7,1),∴,解得.∴f(x)=log4(x﹣3).∴f(x)是增函数.∵f(x)的定义域是(3,+∞),不关于原点对称.∴f(x)为非奇非偶函数.故选:A.【点睛】本题考查了对数函数的性质,属于基础题.【变式5-2】(2019秋•新宁县校级期中)对于函数,下列说法正确的是()A.f(x)是奇函数B.f(x)是偶函数C.f(x)是非奇非偶函数D.f(x)既是奇函数又是偶函数【分析】根据函数奇偶性的定义判断函数的奇偶性即可.【答案】解:由>0,解得:﹣1<x<1,故函数f(x)的定义域是(﹣1,1),关于原点对称,而f(﹣x)=log2=﹣log2=﹣f(x),故f(x)是奇函数,故选:A.【点睛】本题考查了函数的奇偶性问题,是一道基础题.【变式5-3】(2016春•石家庄校级月考)函数f(x)=ln(1+2x),g(x)=ln(1﹣2x),则f(x)+g(x)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数【分析】首先令h(x)=f(x)+g(x),求出h(x)的定义域,而后用函数奇偶性定义求证.【答案】解:令h(x)=f(x)+g(x)=ln(2x+1)+ln(1﹣2x)由得:﹣<x<,h(x)定义域为(﹣,),∴h(﹣x)=ln(1﹣2x)+ln(1+2x)=h(x),所以,h(x)为偶函数.故选:B.【点睛】本题主要考查了奇偶函数的定义域要求,以及函数奇偶性定义,属基础题.【考点6 与对数函数有关的定义域问题】【例6】(2018秋•肇庆期末)函数y=的定义域为()A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【分析】根据分式的分母不为0,对数的真数大于0,建立关系式,解之即可.【答案】解:要使函数有意义则解得x>1且x≠2∴函数的定义域为(1,2)∪(2,+∞)故选:C.【点睛】本题考查函数定义域的求解,属基础题,做这类题目的关键是找对自变量的限制条件.【变式6-1】(2019•西湖区校级模拟)函数的定义域是()A.B.C.D.【分析】由函数的解析式列出不等式进行求解即可.【答案】解:由题意得,,解得x>,则函数的定义域是,故选:C.【点睛】本题考查了函数的定义域的求法,属于基础题.【变式6-2】(2018秋•宜宾期末)函数y=的定义域是()A.(,+∞)B.(,1]C.(﹣∞,1]D.[1,+∞)【分析】首先由根式有意义得到log0.5(4x﹣3)≥0,然后求解对数不等式得到原函数的定义域.【答案】解:要使原函数有意义,则log0.5(4x﹣3)≥0,即0<4x﹣3≤1,解得.所以原函数的定义域为(].故选:B.【点睛】本题考查了对数函数定义域,训练了对数不等式的解法,是基础的计算题.【变式6-3】(2018春•连城县校级月考)函数y=的定义域是()A.[1,+∞)B.(,+∞)C.(1,+∞)D.(,1]【分析】利用对数的性质求解.【答案】解:函数y=的定义域满足:,解得.故选:D.【点睛】本题考查对数函数的定义域的求法,解题时要注意对数性质的灵活运用,是基础题.【考点7 与对数函数有关的值域问题】【例7】(2019秋•南昌校级期中)函数y=log4(2x+3﹣x2)值域为.【分析】运用复合函数的单调性分析函数最值,再通过配方求得值域.【答案】解:设u(x)=2x+3﹣x2=﹣(x﹣1)2+4,当x=1时,u(x)取得最大值4,∵函数y=log4x为(0,+∞)上的增函数,∴当u(x)取得最大值时,原函数取得最大值,即y max=log4u(x)max=log44=1,因此,函数y=log4(2x+3﹣x2)的值域为(﹣∞,1],故填:(﹣∞,1].【点睛】本题主要考查了函数值域的求法,涉及对数函数的单调性,用到配方法和二次函数的性质,属于基础题.【变式7-1】(2019春•赣榆区校级月考)函数的值域为.【分析】先将原函数y=log0.5(x2+x+)转化为两个基本函数令t=x2+x+=(x+)2+,y=log0.5t 的,再用复合函数的单调性求解.【答案】解:令t=x2+x+=(x+)2+∈[,+∞],∵函数y=log0.5t的在定义域上是减函数,∴y∈(﹣∞,2];故答案为(﹣∞,2].【点睛】本题主要考查用复合函数的单调性来求函数的值域,本题关键是求出二次函数的值域,属于基础题.【变式7-2】(2019秋•九原区校级期末)函数y=(x)2﹣x2+5 在2≤x≤4时的值域为.【分析】利用换元法,令t=由2≤x≤4 可得﹣1≤t≤﹣,由题意可得y==(t﹣1)2+4,又因为函数在[﹣1,﹣]单调递减,从而可求函数的值域.【答案】解:令t=,因为2≤x≤4,所以﹣1≤t≤﹣,则y==(t﹣1)2+4,又因为函数在[﹣1,﹣]单调递减,当t=﹣是函数有最小值,当t=﹣1时函数有最大值8;故答案为:{y|}【点睛】本题主要考查了对数的运算性质,换元法的应用,二次函数性质的应用及函数的单调性的应用,属于基础知识的简单综合试题.【变式7-3】(2019秋•松江区期末)函数的值域为.【分析】由函数的解析式可得,当x<1时,f(x)>;当x≥1时,f(x)≥0,综上可得f(x)的值域.【答案】解:由于函数,故当x<1时,f(x)=>.当x≥1时,f(x)=log2x≥log21=0.综上可得,f(x)≥0,故函数的值域为[0,+∞),故答案为[0,+∞).【点睛】本题主要考查求函数的值域,指数函数、对数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题.【考点8 与对数函数有关的最值问题】【例8】(2019秋•离石区校级月考)设x≥0,y≥0且x+2y=,则函数u=log0.5(8xy+4y2+1)的最大值为.【分析】由已知中x≥0,y≥0且x+2y=,可得y∈[0,],8xy+4y2+1=﹣12y2+8y+1,结合二次函数的图象和性质及对数函数的图象和性质,可得答案.【答案】解:∵x+2y=,∴x=﹣2y,由x≥0,y≥0,可得y∈[0,],则8xy+4y2+1=﹣12y2+8y+1,令t=﹣12y2+8y+1,当y∈[0,]时,t∈[1,],又由u=log0.5t为减函数,故当t=1时函数u=log0.5(8xy+4y2+1)的最大值为0,故答案为:0.【点睛】本题考查的知识点是对数函数的值域和最值,其中熟练掌握对数函数的图象和性质是解答的关键.【变式8-1】(2019秋•田阳县校级月考)函数f(x)=log a(x+1)在[0,3]上的最大值与最小值的差为2,则a的值为.【分析】对a分a>1与0<a<1两类讨论,利用函数的单调性即可.【答案】解:若a>1,f(x)=log a(x+1)在[0,3]上单调递增,∴f(x)max=log a4=2log a2,f(x)min=log a1=0,∵f(x)max﹣f(x)min=2,∴2log a2﹣0=2,∴log a2=1,故a=2;若0<a<1,f(x)=log a(x+1)在[0,3]上单调递减,同理可得a=.故答案为:2或.【点睛】本题考查对数函数的单调性与最值,考查分类讨论思想,属于中档题.【变式8-2】(2019春•天津期末)若函数y=log a(x2﹣ax+1)有最小值,则a的取值范围是.【分析】先根据复合函数的单调性确定函数g(x)=x2﹣ax+1的单调性,进而分a>1和0<a<1两种情况讨论:①当a>1时,考虑对数函数的图象与性质得到x2﹣ax+1的函数值恒为正;②当0<a<1时,△=a2﹣4<0恒成立,x2﹣ax+1没有最大值,从而不能使得函数y=log a(x2﹣ax+1)有最小值.最后取这两种情形的并集即可.【答案】解:令g(x)=x2﹣ax+1(a>0,且a≠1),①当a>1时,y=log a x在R+上单调递增,∴要使y=log a(x2﹣ax+1)有最小值,必须g(x)min>0,∴△<0,解得﹣2<a<2∴1<a<2;②当0<a<1时,g(x)=x2﹣ax+1没有最大值,从而不能使得函数y=log a(x2﹣ax+1)有最小值,不符合题意.综上所述:1<a<2;故答案为:1<a<2.【点睛】本题考查对数函数的值域最值,着重考查复合函数的单调性,突出分类讨论与转化思想的考查,是中档题.【变式8-3】(2019秋•会宁县校级期中)已知函数f(x)=2+log3x,x∈[1,9],函数y=[f(x)]2+f(x2)的最大值为.【分析】根据f(x)的定义域为[1,9]先求出y=[f(x)]2+f(x2)的定义域为[1,3],然后利用二次函数的最值再求函数g(x)=[f(x)]2+f(x2)=(2+log3x)2+(2+log3x2)=(log3x+3)2﹣3的最大值.【答案】解:由f(x)的定义域为[1,9]可得y=[f(x)]2+f(x2)的定义域为[1,3],又g(x)=(2+log3x)2+(2+log3x2)=(log3x+3)2﹣3,∵1≤x≤3,∴0≤log3x≤1.∴当x=3时,g(x)有最大值13.故答案为:13【点睛】根据f(x)的定义域,先求出g(x)的定义域是正确解题的关键步骤,属于易错题.【考点9 与对数函数的单调性有关的问题】【例9】(2019春•吉林期末)已知函数f(x)=log a(x+3)﹣log a(3﹣x),a>0且a≠1.(1)求函数f(x)的定义域;(2)判断并证明函数f(x)的奇偶性;(3)若a>1,指出函数的单调性,并求函数f(x)在区间[0,1]上的最大值.【分析】(1)由题意可得,从而求定义域;(2)可判断函数f(x)是奇函数,再证明如下;(3)当a>1时,由复合函数的单调性及四则运算可得f(x)为增函数,从而求最值.【答案】解:(1)由题意知,;解得,﹣3<x<3;故函数f(x)的定义域为(﹣3,3);(2)函数f(x)是奇函数,证明如下,函数f(x)的定义域(﹣3,3)关于原点对称;则f(﹣x)=log a(﹣x+3)﹣log a(3+x)=﹣f(x),故函数f(x)是奇函数.(3)当a>1时,由复合函数的单调性及四则运算可得,f(x)=log a(x+3)﹣log a(3﹣x)为增函数,则函数f(x)在区间[0,1]上单调递增,故f max(x)=f(1)=log a2.【点睛】本题考查了函数的定义域,奇偶性,单调性,最值的判断与应用,属于基础题.【变式9-1】(2018秋•南岗区校级期中)已知f(x)=log a(a>0,且a≠1,m≠﹣1)是定义在区间(﹣1,1)上的奇函数,(1)求f(0)的值和实数m的值;(2)判断函数f(x)在区间(﹣1,1)上的单调性,并说明理由;(3)若f()>0且f(b﹣2)+f(2b﹣2)>0成立,求实数b的取值范围.【分析】(1)根据奇函数的特性,可得f(0)=0,再由f(﹣x)=﹣f(x),m≠﹣1,可得实数m的值;(2)结合对数函数的图象和性质,及复合函数同增异减的原则,可得函数f(x)在区间(﹣1,1)上的单调性;(3)由f()>0,可得函数f(x)在区间(﹣1,1)上的单调递增,结合函数的定义域和奇偶性,解不等式,可得实数b的取值范围.【答案】解:(1)∵f(x)=log a(a>0,且a≠1,m≠﹣1)是定义在区间(﹣1,1)上的奇函数,∴f(0)=0,且f(﹣x)=﹣f(x),即=﹣,即+==log a1=0,故m2=1,又∵m≠﹣1,故m=1,(2)由(1)得f(x)==,令t=,则t在区间(﹣1,1)上单调递减,当0<a<1时,y=log a t为减函数,此时函数f(x)在区间(﹣1,1)上的单调递增;当a>1时,y=log a t为增函数,此时函数f(x)在区间(﹣1,1)上的单调递减;(3)若f()=>0,则0<a<1,由(1)得,函数f(x)在区间(﹣1,1)上的单调递增,若f(b﹣2)+f(2b﹣2)>0,则f(b﹣2)>﹣f(2b﹣2),则f(b﹣2)>f(2﹣2b),则﹣1<2﹣2b<b﹣2<1,解得:b∈(,)【点睛】本题考查的知识点是对数函数的图象与性质,难度不大,属于基础题.【变式9-2】(2019秋•番禺区校级期中)已知函数.(1)求函数的定义域.(2)讨论函数f(x)的奇偶性.(3)判断函数f(x)的单调性,并用定义证明.【分析】(1)解不等式得出x的范围,从而得出函数f(x)的定义域;(2)将﹣x代入函数f(x)的解析式,利用对数的运算性质得到f(﹣x)=﹣f(x),从而得出答案;(3)在区间(1,+∞)上任取x1>x2>1,作差f(x1)﹣f(x2),通过对数的运算性质以及对数函数的单调性得出差值f(x1)﹣f(x2)的符号,从而得出函数f(x)在区间(1,+∞)上的单调性,再利用同样的方法可得出函数f(x)在区间(﹣∞,1)上的单调性.【答案】解:(1),零和负数无对数,,可得x<﹣1或x>1,则定义域为(﹣∞,﹣1)∪(1,+∞);(2)函数f(x)的定义域为(﹣∞,﹣1)∪(1,+∞),关于原点对称,=,因此,函数f(x)为奇函数;(3)函数f(x)在区间(﹣∞,﹣1)和(1,+∞)上都是减函数,下面利用定义来证明.先利用定义证明函数f(x)在区间(1,+∞)上的单调性.任取x1>x2>1,则==,∵x1>x2>1,则x1x2+x2﹣x1﹣1<x1x2+x1﹣x2﹣1,此时,g a1=0,即f(x1)<f(x2),所以,函数f(x)在区间(1,+∞)上单调递减,同理可证函数f(x)在区间(﹣∞,﹣1)上也为减函数.【点睛】本题考察函数的定义域的求解,考察对数型函数的奇偶性与单调性的定义,关键在于利用定义来判断函数的基本性质,以及熟悉定义法判断函数基本性质的基本步骤,属于中等题.【变式9-3】(2019秋•荔湾区校级期末)已知函数f(x)=log3(1+x)﹣log3(1﹣x).(1)求函数f(x)定义域,并判断f(x)的奇偶性.(2)判断函数f(x)在定义域内的单调性,并用单调性定义证明你的结论.(3)解关于x的不等式f(1﹣x)+f(1﹣x2)>0.【分析】(1)根据对数函数的性质以及函数的定义域,根据函数的奇偶性的定义判断函数的奇偶性即可;(2)根据函数单调性的定义判断函数的单调性即可;(3)根据函数的单调性以及函数的奇偶性判断即可.【答案】解:(1)要使函数f(x)=log3(1+x)﹣log3(1﹣x)有意义,必须满足,解得:﹣1<x<1,∴函数f(x)的定义域是(﹣1,1),综上所述,结论是:函数f(x)的定义域是(﹣1,1).f(x)=log3(1+x)﹣log3(1﹣x)=log3().f(﹣x)=log3=﹣log3.∴f(x)为奇函数.(2)函数f(x)=log3(),在区间(﹣1,1)上任取两个不同的自变量x1,x2,且设x1<x2,则f(x1)﹣f(x2)=log3,又(1+x1)(1﹣x2)﹣(1﹣x1)(1+x2)=2(x1﹣x2)<0,即(1+x1)(1﹣x2)<(1﹣x1)(1+x2),∵﹣1<x1<x2<1,∴1+x1>0,1﹣x2>0,∵(1+x1)(1﹣x2)>0,∴<1,∴log3<0,即f(x1)>f(x2),∴函数f(x)是定义域内的单调递增函数.(3)∵f(x)为奇函数,∴f(1﹣x)+f(1﹣x2)>0∴f(1﹣x)>f(x2﹣1),又∵f(x)在定义域上单调递增,∴1﹣x>x2﹣1,x2+x﹣2<0,即(x+2)(x﹣1)<0,∴﹣2<x<1,而,解得:0<x<,综上:0<x<1.【点睛】本题考查了函数的单调性、奇偶性问题,考查导数的应用以及转化思想,是一道中档题.。
课题:§2.2.2对数函数(二)教学任务:(1)进一步理解对数函数的图象和性质;(2)熟练应用对数函数的图象和性质,解决一些综合问题;(3)通过例题和练习的讲解与演练,培养学生分析问题和解决问题的能力.教学重点:对数函数的图象和性质.教学难点:对对数函数的性质的综合运用. 教学过程: 一、回顾与总结1. 函数x y x y x y lg ,log ,log 52===的图象如图所示,回答下列问题. (1)说明哪个函数对应于哪个图象,并解释为什么?(2)函数x y a log =与x y a1log =,0(>a 且)0≠a 有什么关系?图象之间又有什么特殊的关系?(3)以x y x y x y lg ,log ,log 52===的图象为基础,在同一坐标系中画出x y x y x y 1015121log ,log ,log ===的图象.(4)已知函数x y x y x y x y a a a a 4321log ,log ,log ,log ====的图象,则底数之间的关系:.教○1 ○2 ○3 log =y xa 1 log =y x a2 log =y x a3 log =y xa 42. 完成下表(对数函数x y a log =,0(>a 且)0≠a 的图象和性质)10<<a 1>a图 象定义域 值域 性 质3. 根据对数函数的图象和性质填空.○1 已知函数x y 2log =,则当0>x 时,∈y ;当1>x 时,∈y ;当10<<x 时,∈y ;当4>x 时,∈y .○1 已知函数x y 31lo g =,则当10<<x 时,∈y ;当1>x 时,∈y ;当5>x 时,∈y ;当20<<x 时,∈y ;当2>y 时,∈x .二、应用举例例1. 比较大小:○1 πa log ,e alog ,0(>a 且)0≠a ; ○2 21log 2,)1(log 22++a a )(R a ∈. 解:(略)例2.已知)13(log -a a 恒为正数,求a 的取值范围.解:(略)[总结点评]:(由学生独立思考,师生共同归纳概括). . 例3.求函数)78lg()(2-+-=x x x f 的定义域及值域. 解:(略)注意:函数值域的求法.例4.(1)函数x y a log =在[2,4]上的最大值比最小值大1,求a 的值;(2)求函数)106(log 23++=x x y 的最小值. 解:(略)注意:利用函数单调性求函数最值的方法,复合函数最值的求法.例5.(2003年上海高考题)已知函数xxx x f -+-=11log 1)(2,求函数)(x f 的定义域,并讨论它的奇偶性和单调性. 解:(略)注意:判断函数奇偶性和单调性的方法,规范判断函数奇偶性和单调性的步骤.例6.求函数)54(log )(22.0++-=x x y x f 的单调区间. 解:(略)注意:复合函数单调性的求法及规律:“同增异减”. 练习:求函数)23(log 221x x y --=的单调区间.三、作业布置考试卷一套。
2。
2。
2 对数函数及其性质疱丁巧解牛知识·巧学·升华一、对数函数及其性质1.对数函数一般地,函数y=log a x (a>0,a ≠1)叫对数函数,其中x 是自变量,函数的定义域是(0,+∞)。
因为对数函数是由指数函数变化而来的,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞),指数函数与对数函数的定义域和值域是互换的。
只有形如y=log a x (a>0,a ≠1,x>0)的函数才叫对数函数。
像y=log a (x+1),y=2log a x ,y=log a x+3等函数,它们是由对数函数变化而得到的,都不是对数函数。
对数函数同指数函数一样都是基本初等函数,它来自于实践.2.对数函数的图象和性质(1)下面先画指数函数y=log 2x 及y=log 1/2x 图象列出x ,y 的对应值表,用描点法画出图象:描点即可完成y=log 2x,y=x 21log 的图象,如下图.0 1 2 4 8 x—1—2 y=log 1/2x-3s由表及图可以发现:我们可以通过函数y=log 2x 的图象得到函数y=log 0。
5x 的图象.利用换底公式可以得到:y=log 0。
5x=-log 2x ,点(x,y)与点(x,-y )关于x 轴对称,所以y=log 2x 的图象上任意一点(x ,y )关于x 轴对称点(x ,-y )在y=log 0。
5x 的图象上,反之亦然.根据这种对称性就可以利用函数y=log 2x 的图象画出函数y=log 0.5x 的图象.方法点拨 注意此处空半格①作对数函数图象,其关键是作出三个特殊点(a 1,-1),(1,0),(a ,1).一般情况下,作对数函数图象有这三点就足够了.不妨叫做“三点作图法。
"②函数y=log a x 与y=x a 1log 的图象关于x 轴对称。
(2)对数函数y=log a x 在底数a >1及0<a <1这两种情况下的图象和性质如下表所示: a >1 0<a <1图 象定义域(0,+∞) 值 域R 性 质 (1)过点(1,0),即x=1时,y=0要点提示(1)对数函数的图象恒在y轴右方.(2)对数函数的单调性取决于它的底数。
高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质(第2课时)对数函数及其性质的应用(习题课)应用案巩固提升新人教A 版必修1[A 基础达标]1.已知a =log 0.60.5,b =ln 0.5,c =0.60.5,则( ) A .a >b >c B .a >c >b C .c >a >bD .c >b >a解析:选B.a =log 0.60.5>log 0.60.6=1,b =ln 0.5<0,0<c =0.60.5<0.60=1, 故a >c >b .2.(2019·衡阳高一检测)函数y =log 15(1-3x)的值域为( )A .(-∞,+∞)B .(-∞,0)C .(0,+∞)D .(1,+∞)解析:选C.因为3x>0,所以-3x<0, 所以1-3x<1.又y =log 15t (t =1-3x)是关于t 的减函数,所以y =log 15t >log 151=0.选C.3.(2019·聊城高一检测)关于函数f (x )=log 12(1-2x )的单调性的叙述正确的是( )A .f (x )在⎝ ⎛⎭⎪⎫12,+∞上是增函数B .f (x )在⎝ ⎛⎭⎪⎫12,+∞上是减函数 C .f (x )在⎝ ⎛⎭⎪⎫-∞,12上是增函数D .f (x )在⎝⎛⎭⎪⎫-∞,12上是减函数 解析:选C.由1-2x >0,得x <12,所以f (x )=log 12(1-2x )的定义域为⎝⎛⎭⎪⎫-∞,12.由于底数12∈(0,1),所以函数f (x )=log 12(1-2x )的单调性与y =1-2x 的单调性相反.因为y =1-2x 在(-∞,+∞)上是减函数,所以f (x )在⎝⎛⎭⎪⎫-∞,12上是增函数,故选C. 4.(2019·六安高一检测)若a >1,且log 1ax 1=log a x 2=log a +1x 3<0,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 3<x 2<x 1D .x 3<x 1<x 2解析:选C.因为log 1ax 1=log a x 2=log a +1x 3<0,所以lg x 1lg 1a=lg x 2lg a =lg x 3lg (a +1)<0,因为a >1,则lg 1a<0,lg(a +1)>lg a >0,所以lg x 1>0,lg x 2<0,lg x 3<0,且lg x 2>lgx 3,所以x 1>1,0<x 3<x 2<1,所以x 3<x 2<x 1.5.下列函数为奇函数的是( )A .f (x )=lg ⎝⎛⎭⎪⎫2x +12xB .f (x )=|lg x |C .f (x )=lg |x |D .f (x )=lg 1-x1+x解析:选D.对于选项A 中的函数f (x )=lg ⎝ ⎛⎭⎪⎫2x +12x ,函数定义域为R ,f (-x )=lg ⎝ ⎛⎭⎪⎫2-x +12-x =lg ⎝ ⎛⎭⎪⎫12x +2x =f (x ),故选项A 中的函数为偶函数;对于选项B 中的函数f (x )=|lg x |,由于函数定义域为(0,+∞),不关于原点对称,故选项B 中的函数既不是奇函数,也不是偶函数;对于选项C 中的函数f (x )=lg|x |,定义域为(-∞,0)∪(0,+∞),关于原点对称,f (-x )=lg|-x |=lg|x |=f (x ),故选项C 中的函数为偶函数;对于选项D 中的函数f (x )=lg 1-x 1+x ,由于函数的定义域为(-1,1),关于原点对称,f (-x )=lg 1+x 1-x =-lg 1-x1+x=-f (x ),故选项D 中的函数为奇函数.故选D.6.若lg(2x -4)≤1,则x 的取值范围是________. 解析:由lg(2x -4)≤1得lg(2x -4)≤lg 10, 所以0<2x -4≤10, 解得2<x ≤7. 答案:(2,7]7.(2019·凉州高一检测)已知函数y =log 2(1-x )的值域为(-∞,0),则其定义域是________.解析:因为函数y =log 2(1-x )的值域为(-∞,0),所以0<1-x <1,即-1<x -1<0,解得0<x <1,所以该函数的定义域为(0,1).答案:(0,1)8.设a >1,函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为12,则a =________.解析:因为a >1,所以f (x )=log a x 在[a ,2a ]上递增, 所以log a (2a )-log a a =12,即log a 2=12,所以a 12=2,a =4.答案:49.已知函数f (x )是定义在R 上的奇函数.当x >0时,f (x )=log 2x . (1)求f (x )的解析式; (2)解关于x 的不等式f (x )≤12.解:(1)设x <0,则-x >0, 因为当x >0时,f (x )=log 2x , 所以f (-x )=log 2(-x ), 又因为函数f (x )是奇函数,所以f (x )=-f (-x )=-log 2(-x ). 当x =0时,f (0)=0,综上所述,f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,0,x =0,-log 2(-x ),x <0.(2)由(1)得不等式f (x )≤12可化为x >0时,log 2x ≤12,解得0<x ≤ 2.x =0时,0≤12满足条件.x <0时,-log 2(-x )≤12,解得x ≤-22. 综上可知,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≤-22或0≤x ≤2.10.已知函数f (x )=log 2(1+x 2).求证:(1)函数f (x )是偶函数;(2)函数f (x )在区间(0,+∞)上是增函数.证明:(1)函数f (x )的定义域是R ,f (-x )=log 2[1+(-x )2]=log 2(1+x 2)=f (x ),所以函数f (x )是偶函数.(2)设x 1,x 2为(0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=log 2(1+x 21)-log 2(1+x 22)=log 21+x 211+x 22.因为0<x 1<x 2,所以0<x 21<x 22,0<1+x 21<1+x 22,所以0<1+x 211+x 22<1.又函数y =log 2x 在(0,+∞)上是增函数,所以log 21+x 211+x 22<0.所以f (x 1)<f (x 2).所以函数f (x )在区间(0,+∞)上是增函数.[B 能力提升]11.log 12(a 2+a +1)与log 1234的大小关系为( )A .log 12(a 2+a +1)≥log 1234B .log 12(a 2+a +1)>log 1234C .log 12(a 2+a +1)≤log 1234D .log 12(a 2+a +1)<log 1234解析:选C.因为y =log 12x 在(0,+∞)上是减函数,而a 2+a +1=⎝ ⎛⎭⎪⎫a +122+34≥34,所以log 12(a 2+a +1)≤log 1234.12.(2019·大庆高一检测)若⎪⎪⎪⎪⎪⎪log a 14=log a 14,且|log b a |=-log b a .则a ,b 满足的关系式是( )A .a >1且b >1B .a >1且0<b <1C .b >1且0<a <1D .0<a <1且0<b <1解析:选C.因为⎪⎪⎪⎪⎪⎪log a 14=log a 14,且|log b a |=-log b a ,所以log a 14>0,log b a <0,即0<a <1,b >1.13.已知函数f (x )=log a (1-x )+log a (x +3)(0<a <1). (1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-2,求a 的值.解:(1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0,解得-3<x <1,所以定义域为(-3,1).(2)函数可化为f (x )=log a (1-x )(x +3)=log a (-x 2-2x +3)=log a [-(x +1)2+4],因为-3<x <1,所以0<-(x +1)2+4≤4,又0<a <1,所以log a [-(x +1)2+4]≥log a 4,即f (x )的最小值为log a 4.由log a 4=-2,得a -2=4,所以a =4-12=12.14.(选做题)已知函数f (x )=log a (3-ax ),(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.解:(1)由题设,3-ax >0对x ∈[0,2]恒成立,且a >0,a ≠1.设g (x )=3-ax , 则g (x )在[0,2]上为减函数,所以g (x )min =g (2)=3-2a >0,所以a <32.所以实数a 的取值范围是(0,1)∪⎝ ⎛⎭⎪⎫1,32. (2)假设存在这样的实数a ,则由题设知f (1)=1, 即log a (3-a )=1,所以a =32.此时f (x )=log 32⎝ ⎛⎭⎪⎫3-32x . 但x =2时,f (x )=log 320无意义.故这样的实数a 不存在.。
必修1《2.2.2 对数函数及其性质》一、教材分析本小节选自《普通高中课程标准数学教科书-数学必修(一)》第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。
对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有很多类似之处。
与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,水平要求也更高。
学习对数函数是对指数函数知识和方法的巩固、深化和提升,也为解决函数综合问题及其在实际上的应用奠定良好的基础。
二、学生学习情况分析刚从初中升入高一的学生,仍保留着初中生很多学习特点,水平发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。
因为函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算水平有所下降,这双重问题增加了对数函数教学的难度。
教师必须理解到这个点,教学中要控制要求的拔高,注重学习过程。
三、设计理念本节课以建构主义基本理论为指导,以新课标基本理念为依据实行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。
四、教学目标1.通过具体实例,直观理解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2.能借助计算器或计算机画出具体对数函数的图象,探索并理解对数函数的单调性与特殊点;3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生使用函数的观点解决实际问题。
五、教学重点与难点重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.六、教学过程设计教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结(一)熟悉背景、引入课题1.让学生看材料:如图1材料(多媒体):某种细胞分裂时,由1个分裂成2个,2个分裂成4个……,假设要求这种细胞经过多少次分裂,大约能够得到细胞1万个,10万个……,不难发现:分裂次数y就是要得到的细胞个数x的函数,即;图12.引导学生观察这个函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:①对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:,都不是对数函数.②对数函数对底数的限制:,且.3.根据对数函数定义填空;例1 (1)函数y=log a x2的定义域是___________ (其中a>0,a≠1)(2) 函数y=log a(4-x) 的定义域是___________ (其中a>0,a≠1)说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理解,所以把教材中的解答题改为填空题,节省时间,点到为止。
2.2.2对数函数及其性质(2)
教学目的:
(1)进一步理解对数函数的图象和性质;
(2)熟练应用对数函数的图象和性质,解决一些综合问题;
(3)通过例题和练习的讲解与演练,培养学生分析问题和解决问题的能力
教学重点: 掌握对数函数的图象和性质
教学难点:对对数函数的性质的综合运用
教学过程: 一、回顾与总结
1.函数x y x y x y lg ,log ,log 52===的图象如图所示,回答下列问题. (1)说明哪个函数对应于哪个图象,并解释为什么? (2)函数x y a log =与x y a
1log =,0(>a 且)
0≠a 有什么关系?图象之间又有什么特殊的关系? (3)以x y x y x y lg ,log ,log 52===的图象为基础,在
同
一坐
标系
中画出
x y x y x y 10
15
12
1log ,log ,log ===的图象.
(4)已知函数x y x y x y x y a a a a 4321
log ,log ,log ,log ====的图象,则底数之间的关
系: .
2.完成下表(对数函数x y a log =,0(>a 且)0≠a 的图象和性质)
○1 ○2 ○
3 log =y x a
1 log =y x a
2 log =y x a
3 log =y x a
4
3.○1 已知函数x y 2
log =,则当0>x 时,∈y ;当1>x 时,∈y ;当10<<x 时,∈y ;当4>x 时,∈y .
○2 已知函数x y 3
1
log =,则当10<<x 时,∈y ;当1>x 时,∈y ;当5>x 时,∈y ;当20<<x 时,∈y ;当2>y 时,∈x . 二、应用举例
例1 比较大小:○1 πa log ,e a log ,0(>a 且)0≠a ; ○2 2
1
log 2
,)1(log 22++a a )(R a ∈. 解:(略)
例2.已知)13(log -a a 恒为正数,求a 的取值范围.
解:(略)
例3.求函数)78lg()(2-+-=x x x f 的定义域及值域.
解:(略)注意:函数值域的求法.
例4.(1)函数x y a log =在[2,4]上的最大值比最小值大1,求a 的值; (2)求函数)106(log 23++=x x y 的最小值.
解:(略)
注意:利用函数单调性求函数最值的方法,复合函数最值的求法. 三、作业布置
教学反思:
学生通过对这一部分知识的学习,理解了对数的概念及其运算性质,部分学生知道用换底公式能将一般对数转化成自然对数或常用对数;通过具体实例,直观了解对数函数模型所刻画的数量关系,了解对数函数的单调性与特殊点.。