路软土地基沉降变形监测分析与预报
- 格式:pdf
- 大小:254.58 KB
- 文档页数:9
高速公路软基沉降变形监测与分析摘要:文中针对广佛高速扩建工程软基情况,分析了典型断面软基的表面沉降、分层沉降和侧向水平位移等监控观测结果,以为确保软基路段施工期的安全稳定、有效控制工后沉降及保证工程质量提供科学依据。
关键词:公路;软基;沉降;位移;施工质量广佛高速扩建工程全长15.18 km。
佛开高速所在地为珠江三角洲平原地带,沿线近一半路段为软基地段,主要地貌类型为海冲积向平原,沿线表层基本为0.9~3.2 m 厚填筑土,在填筑土下广泛分布一层软土,基本由淤泥质亚粘土、淤泥质亚砂土和淤泥质粉砂土组成,连续分布。
软土埋深浅,层厚变化大(3.5~35 m),具有含水量高、空隙比大、压缩性高、容许承载力低、抗剪强度弱、易触变的特点,对路基、路面、人工构造物及桥梁桩基的稳定具有破坏作用。
要有效地解决稳定问题和变形控制问题,软基监控工作很重要,可根据监控所收集的数据,调整施工期加载速率;预测沉降发展趋势,确定预压时间;提供施工期间沉降土方量的计算依据,确保软基路段施工期的安全稳定,有效控制工后沉降,保证工程质量。
1 软基监测为了更全面、准确地掌握软基在施工过程中的变化动态,根据广佛高速扩建工程软基段淤泥层厚度、路堤填土高度、软基处理方式等情况,对典型断面进行表面沉降、分层沉降、水平位移等现场观测,具体观测断面见表1。
1.1 表面沉降观测通过表面沉降监测和理论分析,控制全线的填土速率,达到安全、快捷填筑的目的;提供沉降土方与中心沉降量的关系,为全线施工土方的工程计量提供依据;通过对软基沉降的观测和最终沉降的计算,掌握软基路段的地基固结和沉降情况,以便采取最佳措施减少工后沉降。
沉降板由底板、金属测杆、保护套管组成。
底板埋设于路堤底面位置,金属测杆和保护套管随填土高度的增加而逐步接高。
通过水准仪测量金属测杆标高以确定沉降量。
K9+328处软基厚度全线最大,达32 m,采用袋装砂井+预压处理,路堤填土6 m。
该路段的路堤填筑安全要求较高,须防止路基失稳。
42科技资讯 SC I EN C E & TE C HN O LO G Y I NF O R MA T IO N工 程 技 术我国东南沿海和内陆广泛分布有含水量大、压缩性高的淤泥质软粘土,在荷载作用下容易产生沉降而影响建筑物的正常使用。
对于软土地基上的建设公路、铁路、房屋建筑等工程,地基沉降观测和分析常被认为工程成败的关键。
文章通过湖南某公路的沉降观测实验,阐述了沉降观测中的仪器布置要点,对沉降观测的孔隙水压力进行了分析。
1 仪器布置及分析要点该公路某断面淤泥厚度3.6m~5m,塑料排水板超载预压处理软土路基,塑料排水板间距1.2m,处理深度9m ,预压填土高度6.3m,土工格栅两层,设计要求预压期6个月。
根据试验路段的地质条件、路基设计情况及试验目的试验监控仪器布置见图1。
观测的目的是探讨不同工程条件下软土地基内、填土路堤内各点的表面沉降、分层沉降、侧向位移、孔隙水压力与时间发展的关系和规律。
表面沉降:是地基变形和固结的直观反映,可以判断地基是否稳定、控制填土速率以及预测地基的固结情况。
为了提高沉降观测精度必须做到“三同一固定”,即采用相同的观测路线和监测方法,使用同一仪器,在基本相同的环境和条件下工作,固定测站、转点和监测人员。
孔隙水压力:是地基土体应力变化的重要指标,可以了解地基土体内应力的转化情况,反映地基土体的固结快慢,判断地基强度增长情况。
掌握孔压变化规律对指导路堤填筑速率有十分重要的意义。
侧向位移:是判断地基是否处于稳定状态的重要指标之一。
土体的深层位移常利用测斜仪测得,测斜管采用膜量与土体相近的材料做成,当土体产生侧向变形时,测斜管也随之移动,利用测斜仪可测出这种变化,直接反映不同深度的地基土体侧向位移大小。
分层沉降:是不同深度处地基土体变形和固结的直观反映,通过分层可以分析不同深度处地基土体变形趋势。
2 孔隙水压力观测结果分析为了了解目前土体的固结程度和土体的最终沉降量,需对沉降监测成果进行整理和分析。
沉降观测方案软土路基沉降观测方案路基作为一种土工结构物,最突出的问题是稳定和沉降,为掌握路堤在施工期间的重点变形动态,确保线路开通达到预期的速度目标值、满足运营平顺度和舒适度的要求,施工期必须进行沉降和稳定观测,一方面保证路堤在施工中的安全和稳定,另一方面能正确预测工后沉降,使工后沉降控制在设计的允许范围内。
1、路堤填筑容易出现的问题1.1、因地基抗剪强度不够引起路堤侧向整体滑动,边坡外侧土体隆起。
1.2、构造物与路堤衔接处产生差异沉降。
2、沉降观测目的2.1、控制填土速率。
2.2、确定基床表层施工时间。
2.3、实测路基沉降,为预测工后沉降提供依据。
3、路基观测项目路基观测项目主要是地基土体变形,包括垂直与水平变形,其观测项目具体见表1。
表1 路基沉降观测项目表4、地基变形监测实施原则4.1、路基工后沉降控制要求区间正线路基工后沉降控制标准按设计速度200km/h控制:一般地段150mm;路桥过渡段80mm;沉降速率40mm/年。
联络线:一般地段200mm;路桥过渡段100mm;沉降速率50mm/年。
主要站线(到发线等)200mm;次要站线(牵出线等)300mm。
软土路堤在填筑过程中,必须控制填土速率。
区间正线控制标准为:路堤中心地面沉降速率≤1.0cm/d,坡脚水平位移速率≤0.5cm/d。
4.2、监测断面设置原则4.2.1、测点的设置位置不仅要根据设计要求,同时还应针对施工掌握的地质、地形等情况调整或增设。
4.2.2、观测点需设置在同一横断面上,这样有利于测点看护,便于集中观测,统一观测频率,更重要的是便于各观测项目数据的综合分析。
4.2.3、路基面沉降观测:在路基面中心及左右两侧路肩处设路基面沉降观测桩,纵向间距不大于100m,并保证每工点至少有一个观测断面。
地表沉降观测:沉降观测断面设置原则上断面间距不大于200m,根据工点长度、工程地质条件,监测断面数量应加以调整,且每个工点不小于2个观测断面,桥路过渡段起始位置各设一个沉降观测断面。
软土路基沉降监测方案一、方案背景在道路建设过程中,路基的沉降是一项非常重要的监测工作。
特别是在软土地区,软土的力学性质复杂,容易出现沉降和变形现象。
因此,为了确保道路的安全和稳定,需要进行软土路基沉降的监测工作。
二、监测方法1.传统方法传统的软土路基沉降监测方法主要包括水准测量和实测法。
(1)水准测量:通过进行水准网的布设和水准观测,测量路基不同位置的高程变化,从而得到路基的沉降量。
(2)实测法:通过在路基上布设测点,定期进行测量,比较测量结果与设计高程的差异,得出路基的沉降量。
2.现代方法现代的软土路基沉降监测方法主要包括全站仪测量、遥感技术和激光扫描测量。
(1)全站仪测量:通过定期使用全站仪对测点进行高程测量,以及对测点周围的变形进行测量分析,得出路基的沉降量和变形情况。
(2)遥感技术:通过卫星或无人机获取路基的影像数据,利用影像处理技术进行路基的沉降监测和变形分析。
(3)激光扫描测量:通过使用激光扫描仪对路基进行扫描,获取路基的三维点云数据,从而得到路基的沉降量和变形情况。
三、监测周期软土路基的沉降监测应根据实际情况确定监测周期。
一般来说,监测周期可以按照以下几种情况进行划分:1.施工期监测:在路基施工期间,应定期进行监测,以及时掌握施工过程中的沉降情况。
2.后期监测:在路基施工完成后,应根据实际情况选择适当的监测周期进行监测。
可以根据路基的使用情况、附近地质环境等因素综合考虑,一般建议每隔3-6个月进行一次监测。
四、监测内容软土路基的沉降监测应包括以下内容:1.高程测量:测量不同位置的高程变化,以获得路基的沉降量。
2.变形测量:测量路基周围地形的变形情况,包括沉降、空洞、裂缝等。
3.老边界标志物的测量:测量距离路基边界近的建筑物、管线等结构物的沉降情况,以评估可能的影响。
4.设备的安装与维护:监测过程中需要安装监测设备,并定期对设备进行校验和维护。
五、监测报告根据监测结果,编制监测报告,报告内容应包括:1.监测目的和范围:明确监测的目的和范围。
高填方工程中软土地基沉降与变形监测及分析报告一、引言软土地基是一种特殊的地质条件,经常存在沉降和变形的问题。
本报告旨在对高填方工程中软土地基的沉降和变形进行监测和分析,并提出相应的解决方案。
二、背景软土地基是指由粉砂、粉质黏土、淤泥等软土构成的地基。
在高填方工程中,由于填土层的压实,在软土地基上会产生沉降和变形。
这些问题可能对建筑物的稳定性和安全性产生不利影响,因此,及时进行监测和分析是非常必要的。
三、监测方法1. 钻孔观测法:通过钻孔取样,获取软土地基沉降和变形的数据。
该方法具有操作简便、数据准确等优点。
2. 岩土仪器监测法:利用岩土仪器对软土地基的压力、位移等参数进行实时监测,可以提供连续的数据。
四、监测结果分析通过对软土地基进行监测,我们获得了以下结果:1. 沉降分析:根据监测数据,软土地基在填土施工后发生了一定程度的沉降。
整个软土地基的平均沉降量为XXmm,其中较大的沉降点出现在填土边缘处。
2. 变形分析:通过监测数据分析,软土地基在填土施工后出现了不同程度的变形。
主要表现为水平位移和竖向变形。
水平位移主要出现在填土边缘处,最大位移量约为XXmm;竖向变形主要出现在填土中心区域,最大沉降量约为XXmm。
五、问题分析1. 影响因素:软土地基沉降和变形的主要影响因素有:填土的厚度、填土的施工方式、软土的地质特征等。
2. 不均匀沉降:由于填土的不均匀性,软土地基的沉降和变形呈现出不均匀的特点。
这可能导致高填方工程中的不平整或不对称性问题。
六、解决方案针对软土地基的沉降和变形问题,我们提出以下解决方案:1. 控制填土厚度:通过合理控制填土的厚度,可以减少软土地基的沉降和变形。
2. 采用加固措施:可以考虑在软土地基上施加加固材料,如钢板桩、橡胶软基等,以提高地基的稳定性和承载能力。
七、结论通过对高填方工程中软土地基的沉降和变形进行监测和分析,我们得出以下结论:1. 高填方工程中软土地基发生一定程度的沉降和变形,特别是在填土边缘和中心区域。
试析软土路基沉降观测方法
试析软土路基沉降观测方法
摘要:软土路基的沉降直接影响到车舒适性和行车安全,降低了高速公路的通行能力。
本文首先介绍了软土路基沉降观测的流程,阐述了软土路基沉降观测的保证措施,最后得出了软土路基沉降的响因素。
关键词:软土路基;沉降观测
随着人们对安全问题越来越重视,高速公路在建设过程中的要求也就越来越高,公路路基中的沉降要求就是其中关键的内容。
只有通过对软土路基沉降过程中相关数据进行准确的测量,获得准确的信息数据,才能精确的计算出路面的形变是否符合要求。
在这一过程中,关键的步骤就是准确的获取相关数据。
1监测元件的埋设及保护
1.1监测点设置
在经过对本地断高速公路地形的观察,了解相应的地形特点,才能够进行相应观测元件的设置:
a)通常来说,检测元件对路面剖面距离监测的范围应小于等于50m,检测高度视情况而定,如果监测的地形平坦,路基构成均匀,则高度应不大于5m。
同时,对于那些地形变化较大的路段,检测剖面的检测距离应该适当;
b)在石质材料构成的路堑路基面上埋3个桩对路基进行检测(见图1);
图1路堑监测剖面图
c)如下图所示,利用沉降板对路堤基底进行检测。
如果路基两侧的斜坡度大于1∶5的情况时,就应该在路基地步距离路基中线两米的地方在增加两个监测板,对路基进行监测;在公路路基的表面合理的埋下三个观测桩;对于那些地层变化较大的路基以及路基层比普通地段较厚的路基应该进行更加准确的监测工作,具体的,可以多增加沉降管的埋设来实现。
(见图2);
图2路堤沉降监测剖面图。
软土地区路基沉降观测与控制技术解析软土地区路基陷落是一个广泛存在于建筑工程中的问题,对于这一问题的观测与控制技术的研究与应用是建筑师和工程师们的关注重点。
本文将从软土地区路基陷落问题的背景介绍入手,探讨观测与控制的技术手段,并提出一些实用的解决方案。
首先,软土的特点是其含水量较高,由于土体的湿度增加而引起的体积变化是造成软土地区路基陷落的主要原因之一。
因此,观测与控制技术的第一要务是对土体湿度进行实时监测。
目前常用的技术手段包括土壤含水率传感器的安装与应用、浸润水位监测仪器的使用等。
这些仪器能够实时测量土壤中的湿度,及时发现土体湿度变化的趋势,从而为后续的控制措施提供依据。
除了湿度的观测,对于软土地区路基陷落问题,还需要了解土壤的荷载承载能力。
利用静力触探、动力触探等手段,可以对土壤的物理性质、力学性质进行全面地检测与评估。
同时,可根据触探数据进行地质层位分析与土壤力学参数的计算,为后续的工程设计和控制措施提供可靠的依据。
在观测的基础上,控制技术的研究是能够及时、有效地应对软土地区路基陷落问题的关键。
一种常用的控制措施是对软土地区进行加固处理,包括采用地基加固技术、土体固化技术、钢筋混凝土桩基技术等。
这些技术能够增加土壤的承载力与稳定性,从而达到控制地基沉降的目的。
此外,还可以通过改变路基的结构和设计,以减小软土地区路基陷落的潜在危害。
例如,采用增设预应力混凝土梁、加宽路基、选择合适的路基填料等手段,能够有效地减少软土地区路基沉降的风险。
综上所述,软土地区路基陷落观测与控制技术的研究对于建筑工程的顺利进行至关重要。
通过对土壤湿度与荷载承载能力的实时监测,结合地基加固与路基设计的措施,能够减小软土地区路基陷落的风险,并保证工程的安全与稳定。
建筑师和工程师们应当加强对该领域的研究与应用,以推动工程技术的进步与发展。
公路软土地基沉降监测与稳定性分析摘要:高速公路属线形构造物,岩土地质条件复杂,其中软土地基是高速公路常见的地基形式之一。
软土地基稳定性、承载能力低,其处治效果关系到路基的整体稳定性,处治不当很容易产生不均匀沉降,导致路基产生变形破坏。
在路基施工过程中,为了确定沉降变形规律,选取有代表性的监测断面开展沉降监测,通过分析沉降监测结果确定路基的稳定性。
结合某高速公路软基处治案例,在施工过程中分别对采用换填法和CFG桩两种方法处治的软土地基开展沉降监测,收集监测数据作为分析路基稳定性的主要依据。
关键词:公路;软土地基;沉降监测;稳定性1工程概况某高速公路设计速度100km/h,路基设计宽度26m,采用双向四车道高速公路技术标准。
该项目沿线分布有多处软土地基,其中K24+426—K28+077段最长,长度为3651m,地层主要为黏性土、淤泥质土等,天然含水率为30%左右,天然孔隙比0.9左右,地基承载能力低。
软土地层厚度为3~7.5m,地基下伏基岩主要为三叠系灰岩。
该地区雨季降雨量大,光照充足,植被生长期长,夏季炎热,全年降雨量在1300mm左右。
该施工区域地下水主要为裂隙水,地下水位相对较高,且含水量高。
地表水系发育,雨季冲沟内有流水。
为了提高软土地基承载力,根据软土层厚度分别采用换填法和CFG法对软土地基段进行加固处治。
2软土地基施工沉降监测方案软土地基沉降监测采用电子水准仪,按照二等水准测量方法进行测量。
基准桩埋设在距路堤中线50m以外的稳定地点,防止施工过程中受到施工车辆的破坏。
基准桩采用预制混凝土桩,打入硬土层后在地面浇筑1m×1m×0.2m的观测平台,桩顶高出观测平台0.15m。
每隔100~200m设置一个监测断面,每个监测断面埋设3个沉降板,对沉降较严重的桥头、过渡段等适当加强观测。
沉降板埋设应保证测量垂直于地面,并布设显著标志,防止在施工过程中损坏。
在路堤填筑过程中,随着填筑高度的增加接长测杆的高度,并在测杆外部加PVC保护套管。
高速公路软基处理及沉降观测分析摘要:本文阐述了高速公路软基沉降观测的方法和频率。
提出沉降观测的观测频率、水准测量等级以及沉降观测的实施的具体要求。
关键词:高速公路;软基;沉降观测;精度;频率Abstract: This paper describes the method and frequency of observations of the settlement of soft ground in expressway. It proposes the settlement observation frequency, leveling level and the implementation of the specific requirements of the settlement observation.Keywords: highway; soft ground; settlement observation; precision; frequency 中图分类号:U412.36+6文献标识码:A文章编号:1、工程案例某高速公路第九合同段K43+234.855~K45+800,全长为2.565km,其中软土路基为2.016km。
本项目地处泥沙沉积区,沿线鱼塘纵横,河道交错,淤泥较厚,上覆0.5~5m 的素土外,其下26~40m 均为淤泥或淤泥质。
这些土质呈流塑、软塑状,扰动易失水离析,具有高压缩性、高含水量、低强度低承载力的特点,工程性质较差,在此种地基上修筑高填方路基,路基很不稳定。
为了保证路基的稳定,必须对软土地基进行处理,同时,应在路基填筑的过程中加强沉降稳定观测,来指导路基的施工。
本合同段根据本路段软基特点共设置28 个观测断面,在路基中心及路肩共布设84 个接杆式沉降板,在路基的坡脚处共125 个水平位移边桩,112 个侧向位移基桩。
通过观测地表位移边桩的水平位移来获悉路基的稳定性,通过对地表沉降板的高程量测来测量软土路基的沉降量。
高速公路软土路基施工沉降及稳定性监测软土路基施工的沉降问题直接影响了工程的质量和进度,因此在施工前一定要确定好设计方案,提早发现软土路基的沉降,及时进行监测,从而做到早知道早预防,以减少路基沉降现象的发生,为高速公路的安全稳定提供有力保障,本文就是根据软土路基施工沉降及稳定性监控的重要性,分别从不同的角度阐述了软土路基沉降的观测方法,具体步骤,观测精度确定,监测设备,监测频率及控制标准。
1软土路基施工沉降及稳定性监测的重要性在软土路基施工中存在着一些问题,例如填土施工完成后,怎样使软土路基不产生沉降或沉降较小,怎样使其产生的沉降达到所设计的标准,怎样使路基的预留高度达到设计标准,怎样控制沉降问题,以保证不同位置的接头处保持平整稳固,使其减少跳车现象。
同时由于软土硬度低,稳固性差,固结慢,所以在施工中容易造成地基不稳,引起路基滑坡,因此在施工中要控制好填土的速度,来确保路基的稳固,从而保证工程的质量和进度。
在此过程中,就体现了路基施工沉降的观测目的,其中包括根据实测数据来观测填土的速率以保证施工中的安全稳固,根据实测曲线预测施工后的沉降以确保施工后的沉降在设计允许的范围内,同时实测路基沉降为路基计算提供了依据。
2软土路基的观测方法及其步骤在施工过程中,首先开始的是工作基点桩的制作和埋设,在此过程中要根据观测对象的分布情况来确定利用施工控制点作为监测控制点,监测控制点的设立在本工程中起到了很关键的作用,所以应定期的进行观测,在这个过程中地表沉降观测仪器的设置和埋设方法是很关键的,而各种路基设备的埋设方法也是多种多样的,其中包括地表水位移量及隆起量观测仪器的埋设方法,地下土体水平位移观测仪器的埋设方法,地基内部土体观测仪器的埋设方法,孔隙水压力计埋设方法等,施工路段的地表沉降观测是在原来的地面上埋设沉降板来进行高程观测,沉降板由沉降地板,沉降杆,管箍,保护套管和套管冒组成的,观测人员要按照设计的桩号断面将沉降板埋在土层中,在施工路段的地表水平位移是通过埋设边桩进行测量的边桩,埋设在路堤的两侧以及外沟的边缘,同时结合稳定性分析在预测可能发生滑坡的地方进行设置,地下土体水平位移观测器具的埋设和观测方法是将先将有四个相互垂直导槽的测斜管埋到土中,测量时,把活动式测头放入测斜管,让侧头上的导向滚轮卡在测斜管内壁的槽中,顺着槽活动,这种形式的侧头可以连续的测定沿测斜管整个深度的水平位移变化。
软土段路基沉降观测分析摘要:以某城际铁路DK13+015.6~147.4处软土路基处理为例,对CFG桩加固处理之后的沉降观测进行了分析。
关键词:沉降观测;双曲线;软土路基;沉降曲线1 一般特征和典型基本形式选取该段4个沉降观测点,编号分别为0013026L1、0013080L1、0013117L1、和0013137L1。
根据现场实测数据,绘出“时间—填土高—沉降量”路基地表沉降的关系曲线图。
它们代表典型软土段路基施工过程实测沉降曲线图,具有软土段路基沉降曲线的一般特征和典型基本形式。
通过对测点实测数据的整理,分类归纳出阶段性观测值,作为进一步分析的依据。
2 工后沉降分析和预测路基填筑完工后,路基的施工荷载施加完成,根据实测值,可采用双曲线法进行沉降分析和预测,得出模拟值与实测值的差异以及沉降变化趋势。
2.1典型实测点数据整理从具有软土路基段沉降的一般特征和典型基本形式测点中选取0013105L1的沉降观测点为研究对象。
该点位于线路软弱土路段上,填筑高度5.306m。
本段路基填筑材料为AB组填料,地基处理采用CFG桩加固。
从2008年8月开始对该点进行观测,到2010年2月结束,历时18个月,累计观测110余次,施工期约每1天采集数据一次,路堤施工完工后半年内约5~8天观测一次,完工6个月后约30天观测一次。
2.2双曲线法双曲线沉降计算具体过程如下:(1)确定起始时间T,路基填筑结束时T=0;(2)根据实测数据计算T/(ST-S施);(3)依据表2.4所列,绘制T与T/(ST-S施)的关系图;(4)确定系数A、B的值;系数A为图2.7中拟合线与T/(ST-S施)轴相交值,系数B为拟合线与T轴夹角的正切值。
计算得,A=4.252366 B=0.04529(5)将系数A、B代入公式ST=S施+T/(A+B×T)和S终=S施+1/B,可以由双曲线关系推算出沉降-时间曲线;ST=S施+T/(1.252366+0.04529×T)S终=S施+1/0.4529 S终=37.407mm S施=15.33mm工后总沉降量S工后=S终-S施=22.077mm(6)路基工后模拟沉降量和实测沉降量对比。