最新中考数学真题及答案
- 格式:pdf
- 大小:657.10 KB
- 文档页数:23
安徽省2024年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .15【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A .70.94410⨯B .69.4410⨯C .79.4410⨯D .694.410⨯【答案】B【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10n a ⨯(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:944万694400009.4410==⨯,故选:B .3.某几何体的三视图如图所示,则该几何体为()A .B .C .D .【答案】D【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项.故选:D .4.下列计算正确的是()A .356a a a +=B .632a a a ÷=C .()22a a -=Da=5.若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为()A .2πB .3πC .4πD .6π6.已知反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为()A .3-B .1-C .1D .3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可7.如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是()A B C .2D .8.已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是()A .12a -<<B .112b <<C .2241a b -<+<D .1420a b -<+<【答案】C∴442a -<<-,021b <<,∴4421a b -<+<-,选项D 错误,不符合题意;故选:C9.在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A .ABC AED ∠=∠B .BAF EAF ∠=∠C .BCF EDF ∠=∠D .ABD AEC∠=∠【答案】D【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,然后根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A 、连结AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD=又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连结BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =,AFB AFE ∠=∠又∵点F 为CD 的中点,∴CF DF =,∵BC DE =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;C 、连结BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,∴BF EF =,CFB DFE ∠=∠,∵AB AE =,AF AF =,∴()SAS ABF AEF ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出相应结论,符合题意;故选:D.10.如图,在RtABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为()A .B .C .D .∵90ABC ∠=︒,AB =∴22AC AB BC =+=∵BD 是边AC 上的高.二、填空题11.若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12.,祖冲之给出圆周率的一种分数形式的近似值为227(填“>”或“<”).13.不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.由树状图可得,共有12种等结果,其中恰为∴恰为2个红球的概率为21126=,故答案为:1.14.如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为.∵MN EF ⊥,∴CC FE '∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=︒,∴343290∠+∠=∠+∠=︒,∵四边形ABCD 是正方形,四边形∴90A B C D ∠=∠=∠=∠=∴567690∠+∠=∠+∠=︒,∴57∠=∠,三、解答题15.解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16.如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.(2)连接1BB ,1CC ,∵点B 与1B ,点C 与1C 分别关于点∴1DB DB =,1DC DC =,∴四边形11BC B C 是平行四边形,∴122104S CC B ==⨯⨯⨯= (3)∵根据网格信息可得出5AB =∴ABC 是等腰三角形,∴AE 也是线段BC 的垂直平分线,∵B ,C 的坐标分别为,()2,8,(10,4∴点21084,22E ++⎛⎫ ⎪⎝⎭,即()6,6E .(答案不唯一)17.乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩,答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18.数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-L L一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.19.科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).20.如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.【答案】(1)见详解21.综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1求图1中a 的值.【数据分析与运用】任务2A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.Y的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且22.如图1,ABCDAM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.23.已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.。
机密★启用前2024年广东省初中学业水平考试数学满分120分 考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是( )A. 2B. -2C. 8D. -82. 下列几何图形中,既是中心对称图形也是轴对称图形的是( )A. B. C. D.3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A. 43.8410⨯B. 53.8410⨯C. 63.8410⨯D.538.410⨯4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A. 120︒B. 90︒C. 60︒D. 30︒5. 下列计算正确的是( )A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a -+=D. ()5210a a =6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )A 14 B. 13 C. 12 D. 347. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 208. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >>9. 方程233x x=-的解为( )A. 3x = B. 9x =- C. 9x = D. 3x =-10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是().A. B. C. D.二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.14. 计算:333a a a -=--_______.15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.三、解答题(一):本大题共3小题,每小题7分,共21分.16. 计算:011233-⨯-+-.17. 如图,ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A 6879在B7787C 8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】的步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.的【23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.机密★启用前2024年广东省初中学业水平考试数学满分120分考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是()A. 2B. -2C. 8D. -8【答案】B【解析】【分析】根据有理数的加法法则,即可求解.【详解】∵-5+3=-(5-3)=-2,故答案是:B.【点睛】本题主要考查有理数的加法法则,掌握“异号两数相加,取绝对值较大的数的符号,并把较大数的绝对值减去较小数的绝对值”是解题的关键.2. 下列几何图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .不是轴对称图形,是中心对称图形,故不符合题意;C .既是轴对称图形,又是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意;故选:C .3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A. 43.8410⨯B. 53.8410⨯C. 63.8410⨯D. 538.410⨯【答案】B【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值.根据绝对值大于1的数,用科学记数法表示为10n a ⨯,其中110a ≤<,n 的值为整数位数少1.【详解】解:384000大于1,用科学记数法表示为10n a ⨯,其中 3.84a =,5n =, ∴384000用科学记数法表示为53.8410⨯,故选:B .4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A. 120︒B. 90︒C. 60︒D. 30︒【答案】C【解析】【分析】本题考查了平行线的性质.熟练掌握平行线的性质是解题的关键.由题意知,AC DE ∥,根据ACE E ∠=∠,求解作答即可.【详解】解:由题意知,AC DE ∥,∴60ACE E ∠=∠=︒,故选:C .5. 下列计算正确的是( )A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a -+=D. ()5210a a =【答案】D【解析】【分析】本题主要考查了同底数幂乘除法计算,幂的乘方计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、257a a a ⋅=,原式计算错误,不符合题意;B 、826a a a ÷=,原式计算错误,不符合题意;C 、253a a a -+=,原式计算错误,不符合题意;D 、()5210a a =,原式计算正确,符合题意;故选:D .6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )A. 14 B. 13 C. 12 D. 34【答案】A【解析】【分析】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.直接根据概率公式求解即可.【详解】解:根据题意,选中“巴蜀文化”的概率是14,故选:A .7. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 20【答案】B【解析】【分析】本题主要考查了算术平方根的应用,先求出一个正方形的面积,再根据正方形的面积计算公式求出对应的边长即可.【详解】解:∵完全相同的4个正方形面积之和是100,∴一个正方形的面积为100425÷=,∴5=,故选:B .8. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >>【答案】A【解析】【分析】本题考查了二次函数的图象和性质、二次函数图象上点的坐标特征等知识点,根据二次函数的解析式得出函数图象的对称轴是y 轴(直线0x =),图象的开口向上,在对称轴的右侧,y 随x 的增大而增大,再比较即可.【详解】解∶ 二次函数2y x =的对称轴为y 轴,开口向上,∴当0x >时, y 随x 的增大而增大,∵点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,且012<<,∴321y y y >>,故选∶A .9. 方程233x x=-的解为( )A. 3x = B. 9x =- C. 9x = D. 3x =-【答案】C【解析】【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:233x x=-去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是( )A. B. C. D.【答案】B【解析】【分析】本题考查一次函数与一元一次不等式,解不等式的方法:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围.找到当2x <函数图象位于x 轴的下方的图象即可.【详解】解∶∵不等式0kx b +<的解集是2x <,∴当2x <时,0y <,观察各个选项,只有选项B 符合题意,故选:B .二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.【答案】5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.【答案】3x ≥##3x≤【解析】【分析】本题主要考查了求不等式组解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >,∴不等式组的解集为3x ≥,故答案为:3x ≥.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.【答案】1【解析】【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.14. 计算:333a a a -=--_______.【答案】1【解析】的【分析】本题主要考查了同分母分式减法计算,根据同分母分式减法计算法则求解即可.【详解】解:331333a a a a a --==---,故答案为:1.15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.【答案】10【解析】【分析】本题考查了菱形的性质,三角形中线的性质,利用菱形的性质、三角形中线的性质求出6ADE S = ,8ABF S = ,根据ABF △和菱形的面积求出23BF BC =,2BF CF=,则可求出CDF 的面积,然后利用ADE BEF CDF ABCD S S S S S =---阴影菱形 求解即可.【详解】解:连接AF BD 、,∵菱形ABCD 的面积为24,点E 是AB 的中点,BEF △的面积为4,∴1116222ADE ABD ABCD S S S ==⨯=菱形 ,28ABF BEF S S == ,设菱形ABCD 中BC 边上的高为h ,则12ABFABCD BF h S S BC h ⋅=⋅菱形 ,即18224BF BC=,∴23BF BC =,∴2BF CF=,∴12212ABF CDF BF h S BF S CFCF h ⋅===⋅ ,∴4CDF S =△,∴10ADE BEF CDF ABCD S S S S S =---=阴影菱形 ,故答案为:10.三、解答题(一):本大题共3小题,每小题7分,共21分.16.计算:011233-⨯-+-.【答案】2【解析】【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂,先计算零指数幂,负整数指数幂和算术平方根,再计算乘法,最后计算加减法即可.【详解】解:011233-⨯-+-111233⨯+-=11233=+-2=.17. 如图,在ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.【答案】(1)见解析(2)证明见解析【解析】【分析】本题考查了尺规作角平分线,角平分线的性质定理,切线的判定等知识.熟练上述知识是解题的关键.(1)利用尺规作角平分线的方法解答即可;(2)如图2,作DE AB ⊥于E ,由角平分线性质定理可得DE DC =,由DE 是半径,DE AB ⊥,可证AB 与D 相切.【小问1详解】解:如图1,AD 即为所作;【小问2详解】证明:如图2,作DE AB ⊥于E ,∵AD 是CAD ∠的平分线,DC AC ⊥,DE AB ⊥,∴DE DC =,∵DE 是半径,DE AB ⊥,∴AB 与D 相切.18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,的GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.【答案】(1)6.1m(2)66.7m【解析】【分析】本题主要考查了矩形的性质,解直角三角形的实际应用:(1)先由矩形的性质得到90Q P ∠=∠=︒,再解Rt ABQ 得到AQ =,接着解直角三角形得到BC =,进而求出AP =,据此可得答案;(2)解Rt BCE 得到 3.2m BE =,解Rt ABQ 得到 2.7m BQ =,再根据有20个停车位计算出QM 的长即可得到答案.【小问1详解】解:∵四边形PQMN 是矩形,∴90Q P ∠=∠=︒,在Rt ABQ 中,60ABQ ∠=︒, 5.4m AB =,∴sin AQ AB ABQ =⋅=∠,30QAB ∠=︒,∵四边形ABCD 是矩形,∴90AD BC BAD BCD ABC BCE =====︒,∠∠∠∠,∴30CBE ∠=︒,∴tan CE BC CBE ==∠,∴AD =;∵180309060PAD =︒-︒-︒=︒∠,∴cos AP AD PAD =⋅=∠,∴ 6.1m PQ AP AQ =+=≈【小问2详解】解:在Rt BCE 中, 3.2m sin CE BE CBE==∠,在Rt ABQ 中,cos 2.7m BQ AB ABQ =⋅=∠,∵该充电站有20个停车位,∴2066.7m QM QB BE =+=,∵四边形ABCD 是矩形,∴66.7m PN QM ==.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A 6879B7787C 8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.【答案】(1)王先生会选择B 景区去游玩(2)王先生会选择A 景区去游玩(3)最合适的景区是B 景区,理由见解析【解析】【分析】本题主要考查了求平均数和求加权平均数:(1)根据加权平均数的计算方法分别计算出三个景区的得分即可得到答案;(2)根据平均数计算方法分别计算出三个景区的得分即可得到答案;(3)设计对应的权重,仿照(1)求解即可.小问1详解】解:A 景区得分为630%815%740%915%7.15⨯+⨯+⨯+⨯=分,B 景区得分为730%715%840%715%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%815%640%615%6.9⨯+⨯+⨯+⨯=分,∵6.97.157.4<<,∴王先生会选择B 景区去游玩;【小问2详解】的【解:A 景区得分67897.54+++=分,B 景区得分77877.254+++=分,C 景区得分668874+++=分,∵77.257.5<<,∴王先生会选择A 景区去游玩;【小问3详解】解:最合适的景区是B 景区,理由如下:设特色美食、自然风光、乡村民宿及科普基地四个方面的占比分别为30%20%40%10%,,,,A 景区得分为630%820%740%910%7.1⨯+⨯+⨯+⨯=分,B 景区得分为730%720%840%710%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%820%640%610%7⨯+⨯+⨯+⨯=分,∵77.17.4<<,∴王先生会选择B 景区去游玩.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【解析】【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润⨯销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,()()5210050w x x =--+的25050300x x =-++2150312.52x ⎛⎫=--+ ⎪⎝⎭,∵500-<,∴当12x =时,w 有最大值,最大值为312.5,∴5 4.5x -=,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 的圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)【答案】(1)能,见解析(23cm 【解析】【分析】本题考查了圆锥,解题的关键是:(1)利用圆锥的底面周长=侧面展开扇形的弧长求出圆锥展开图的扇形圆心角,即可判断;(2)利用圆锥的底面周长=侧面展开扇形的弧长,求出滤纸围成圆锥形底面圆的半径,利用勾股定理求出圆锥的高,然后利用圆锥体积公式求解即可.【小问1详解】解:能,理由:设圆锥展开图的扇形圆心角为n ︒,根据题意,得77180n ππ⋅=,解得180n =°,∴将圆形滤纸对折,将其中一层撑开,围成圆锥形,此时滤纸能紧贴此漏斗内壁;【小问2详解】解:设滤纸围成圆锥形底面圆的半径为cm r ,高为cm h ,根据题意,得18052180ππr ⨯=,解得52r =,∴h ==,∴圆锥的体积为223115332r h ππ⎛⎫=⨯= ⎪⎝⎭.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.【拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)存在,证明见解析【解析】【分析】本题考查了旋转的性质、中位线的性质、外角定理、相似三角形的判定与性质、勾股定理、三角函数,圆内接四边形的对角互补熟练.掌握知识点以及灵活运用是解题的关键.(1)根据中位线的性质、旋转的性质即可证明;(2)利用旋转的性质、外角定理、中位线的性质证明A FD DGC ''△∽△后即可证明;(3)当两圆相交,连接交点与两圆心所构成的四边形为圆内接四边形,其中一组对角互补,即两角之和为180︒.根据圆内接四边形的对角互补,将问题转化为求出两圆的位置关系即可证明.【详解】证明:(1) DE 是ABC 的中位线,∴12DE BC =且12AD DB AB ==.又 ADC △绕点D 按逆时针方向旋转得到A DC ''∴DE AD=∴AB BC =.(2)由题意可知:DC DC '=,DA DA '=,CDC ADA ''∠=∠.作DG CC '⊥,则12CG C G CC ''==且12CDG C DG CDC ''∠=∠=∠,又 BD DA DA '==,∴A BD BA D ''∠=∠.根据外角定理A DA A BD BA D '''∠=∠-∠,∴12BA D A DA ''∠=∠,∴BA D C CG ''∠=∠.又 DB DA '=,DF 是A BD ' 的中位线,∴'DF A B ⊥,∴90A FD '∠=︒,∴A FD DGC ''△∽△,∴DF A DC G CD '='',∴12DF BDCD C C =',∴2DF CD BD CC ⋅='⋅.(3)假设存在点G 使得180AGD CGE ∠+∠=︒,如图分别以AD ,CE 为直径画圆,圆心分别为1O ,2O ,半径分别为r ,R ,则165r =,163R =.过点1O 作1O H BC ⊥于点H ,过点D 作1DF O H ⊥于点F ,则有DF BC ∥,四边形DEHF 为长方形,∴190O FD FHB DEB ∠=∠=∠=︒,1O DF DBE ∠=∠,∴1O FD DEB △∽△,∴11O DO F DF DB DE BE ==,11O DDBDE O F =.又 在BDE 中,4·tan 343DE BE B ==⨯=,5BD ===,1516r O D ==,根据勾股定理可得:4DE FH ==,5DB =,∴16425O F =,4825DF EH ==.∴111644 6.5625O H O F =+==,216482563.4132575O H R EH =-=-=≈.在12Rt O HO △中,127.39O O =≈.又 16168.553r R +=+≈,∴12O O r R <+,∴两圆有交点,满足180AGD CGE ∠+∠=︒.23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.【答案】(1)证明见解析;(2)163k =;(3)68k ≤≤【解析】【分析】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,用含,m k 的代数式表示出,k C am am ⎛⎫ ⎪⎝⎭,再代入k y x=验证即可得解;(2)先由点B 的坐标和k 表示出2DC k =-,再由折叠性质得出2DE BE=,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,证出DHE EFB ∽,由比值关系可求出24k HF =+,最后由HF DC =即可得解;(3)当O 过点B 时,如图所示,过点D 作DH x 轴交y 轴于点H ,求出k 的值,当O 过点A 时,根 据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x 轴交y 轴于点H ,求出k 的值,进而即可求出k 的取值范围.【详解】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,∵AD x 轴,∴D 点的纵坐标为k m , ∴将k y m =代入y ax =中得:k m ax =得,∴k x am=,∴,k k D am m ⎛⎫ ⎪⎝⎭,∴,k C am am ⎛⎫ ⎪⎝⎭,∴将k x am =代入k y x=中得出y am =,∴函数k y x =的图象必经过点C ;(2)∵点()1,2B 在直线y ax =上,∴2a =,∴2y x =,∴A 点的横坐标为1,C 点的纵坐标为2,∵函数ky x =的图象经过点A ,C ,∴22k C ⎛⎫⎪⎝⎭,,()1,A k ,∴2k D k ⎛⎫⎪⎝⎭,∴2DC k =-,∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,∴12kBE BC ==-,90BED BCD ∠=∠=︒,∴2212DC k DEk BC BE -===-,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,∵AD x 轴,∴H ,A ,D 三点共线,∴90HED BEF ∠+∠=︒,90BEF EBF ∠+∠=︒,∴HED EBF ∠=∠,∵90DHE EFB ∠=∠=︒,∴DHE EFB ∽,∴2DHHEDEEF BF BE ===,∵1BF =,2kDH =∴2HE =,4kEF =,∴24kHF =+,由图知,HF DC =,∴224kk +=-,∴163k =;(3)∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,当点E ,A 重合,∴AC BD ⊥,∵四边形ABCD 为矩形,∴四边形ABCD 为正方形,45ABP DBC ∠=∠=︒,∴sin 45APAB BC CD DA =====︒,12AP PC BP AC ===,BP AC ⊥,∵BC x ∥轴,∴直线y ax =为一,三象限的夹角平分线,∴y x =,当O 过点B 时,如图所示,过点D 作DH x ∥轴交y 轴于点H ,∵AD x ∥轴,∴H ,A ,D 三点共线,∵以点O 为圆心,AC 长为半径作O ,OP =,∴23OP OB BP AC BP AP AP AP =+=+=+==∴AP =,∴2AB AD ===,2BD AP ==,2BO AC AP ===,∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,∴22HO DH ==,∴4HO HD ==,∴422HA HD DA =-=-=,∴()2,4A ,∴248k =⨯=,当O 过点A 时,根 据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x ∥轴交y 轴于点H ,∵AO OC AC ==,∴AOC 为等边三角形,∵OP AC ⊥,∴160302AOP ∠=⨯︒=︒,∴tan 30AP OP PD =︒⨯===,2AC BD AP ===,∴AB AD ===,OD BP PD =+=+, ∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,==∴3HO HD ==+,∴33HA HD DA =-=+-=,∴(3A +,∴((336k =⨯+=,∴当O 与ABC 的边有交点时,k 的取值范围为68k ≤≤.【点睛】本题主要考查了相似三角形的判定和性质,解直角三角形,一次函数的性质,反比例函数的性质,矩形的性质,正方形的判定和性质,轴对称的性质,圆的性质等知识点,熟练掌握其性质,合理作出辅助线是解决此题的关键.。
2024年湖南省初中学业水平考试数 学本试题卷共6页.时量120分钟.满分120分.注意事项:1.答题前,考生先将自己的姓名、准考证号写在答题卡和本试题卷上,并认真核对条形码上的姓名、准考证号和相关信息:2.选择题部分请按题号用2B 铅笔填涂方框,修改时用橡皮擦干净,不留痕迹;3.非选择题部分请按题号用0.5毫米黑色墨水签字笔书写,否则作答无效:4.在草稿纸、试题卷上作答无效;5.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;6.答题卡上不得使用涂改液、涂改胶和贴纸.一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在日常生活中,若收入300元记作300+元,则支出180元应记作( )A. 180+元 B. 300+元C. 180-元D. 480-元2. 据《光明日报》2024年3月14日报道:截至2023年末,我国境内有效发明专利量达到401.5万件,高价值发明专利占比超过四成,成为世界上首个境内有效发明专利数量突破400万件的国家,将4015000用科学记数法表示应为( )A. 70.401510⨯ B. 64.01510⨯ C. 540.1510⨯ D.34.01510⨯3. 如图,该纸杯的主视图是()A. B. C. D.4. 下列计算正确是( )A. 22321a a -= B. 32(0)a a a a ÷=≠ C. 236a a a ⋅= D.()3326a a =5.)AB. C. 14D.6. 下列命题中,正确的是( )A. 两点之间,线段最短B. 菱形的对角线相等C. 正五边形的外角和为720︒D. 直角三角形是轴对称图形7. 如图,AB ,AC 为O 的两条弦,连接OB ,OC ,若45A ∠=︒,则BOC ∠的度数为( )A. 60︒B. 75︒C. 90︒D. 135︒8. 某班的5名同学1分钟跳绳的成绩(单位:次)分别为:179,130,192,158,141.这组数据的中位数是( )A. 130B. 158C. 160D. 1929. 如图,在ABC 中,点D E ,分别为边AB AC ,的中点.下列结论中,错误的是( )A DE BC∥ B. ADE ABC△△∽ C. 2BC DE =D.的..12ADE ABC S S =10. 在平面直角坐标系xOy 中,对于点(),P x y ,若x ,y 均为整数,则称点P 为“整点”.特别地,当yx(其中0xy ≠)的值为整数时,称“整点”P 为“超整点”,已知点()24,3P a a -+在第二象限,下列说法正确的是( )A. 3a <-B. 若点P 为“整点”,则点P 的个数为3个C. 若点P 为“超整点”,则点P 的个数为1个D. 若点P 为“超整点”,则点P 到两坐标轴的距离之和大于10二、填空题:本题共8小题,每小题3分,共24分.11. 计算:()2024--=________.12. 有四枚材质、大小、背面图案完全相同的中国象棋棋子“”“”“”“”,将它们背面朝上任意放置,从中随机翻开一枚,恰好翻到棋子“”的概率是________.13. 分式方程21x +=1的解是_______.14. 一个等腰三角形的一个底角为40︒,则它的顶角的度数是________度.15. 若关于x 的一元二次方程2420x x k -+=有两个相等的实数根,则k 的值为________.16. 在一定条件下,乐器中弦振动的频率f 与弦长l 成反比例关系,即kf l=(k 为常数.0k ≠),若某乐器的弦长l 为0.9米,振动频率f 为200赫兹,则k 的值为________.17. 如图,在锐角三角形ABC 中,AD 是边BC 上高,在BA ,BC 上分别截取线段BE ,BF ,使BE BF =;分别以点E ,F 为圆心,大于12EF 的长为半径画弧,在ABC ∠内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN AB ⊥于点N .若2MN =,4AD MD =,则AM =________.的18. 如图,左图为《天工开物》记载的用于春(chōng )捣谷物的工具——“碓(duì)”的结构简图,右图为其平面示意图,已知AB CD ⊥于点B ,AB 与水平线l 相交于点O ,OE l ⊥.若4BC =分米,12OB =分米.60BOE ∠=︒,则点C 到水平线l 的距离CF为________分米(结果用含根号的式子表示).三、解答题:本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.19. 计算:01|3|cos 602⎛⎫-+-+︒ ⎪⎝⎭.20. 先化简,再求值:22432x x x x x-⋅++,其中3x =.21. 某校为了解学生五月份参与家务劳动的情况,随机抽取了部分学生进行调查、家务劳动的项目主要包括:扫地、拖地、洗碗、洗衣、做饭和简单维修等.学校德育处根据调查结果制作了如下两幅不完整的统计图:请根据以上信息,解答下列问题:(1)本次被抽取的学生人数为 人;(2)补全条形统计图:(3)在扇形统计图中,“4项及以上”部分所对应扇形的圆心角度数是︒;(4)若该校有学生1200人,请估计该校五月份参与家务劳动的项目数量达到3项及以上的学生人数.22. 如图,在四边形ABCD 中,AB CD ∥,点E 在边AB 上, .请从“①B AED ∠=∠;②AE BE =,AE CD =”这两组条件中任选一组作为已知条件,填在横线上(填序号),再解决下列问题:(1)求证:四边形BCDE 为平行四边形;(2)若AD AB ⊥,8AD =,10BC =,求线段AE 的长.23. 某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?24. 某数学研究性学习小组在老师的指导下,利用课余时间进行测量活动.活动主题测算某水池中雕塑底座的底面积测量工具皮尺、测角仪、计算器等模型抽象某休闲广场的水池中有一雕塑,其底座的底面为矩形ABCD ,其示意图如下:活动过程测绘过程与数据信息①在水池外取一点E ,使得点C ,B ,E 在同一条直线上;②过点E 作GH CE ⊥,并沿EH 方向前进到点F ,用皮尺测得EF的长为4米;③在点F 处用测角仪测得60.3CFG ∠=︒,45BFG ∠=︒,21.8AFG ∠=︒;④用计算器计算得:sin60.30.87︒≈,cos60.30.50︒≈,tan60.3 1.75︒≈.sin21.80.37︒≈,cos21.80.93︒≈,tan21.80.40︒≈.请根据表格中提供的信息,解决下列问题(结果保留整数):(1)求线段CE 和BC 的长度:(2)求底座的底面ABCD 的面积.25. 已知二次函数2y x c =-+的图像经过点()2,5A -,点()11,P x y ,()22,Q x y 是此二次函数的图像上的两个动点.(1)求此二次函数表达式;(2)如图1,此二次函数的图像与x 轴的正半轴交于点B ,点P 在直线AB 的上方,过点P 作PC x ⊥轴于点C ,交AB 于点D ,连接AC DQ PQ ,,.若213x x =+,求证DCPDQ A S S △△的值为定值;(3)如图2,点P 在第二象限,212x x =-,若点M 在直线PQ 上,且横坐标为11x -,过点M 作MN x ⊥轴于点N ,求线段MN 长度的最大值.26. 【问题背景】已知点A 是半径为r 的O 上的定点,连接OA ,将线段OA 绕点O 按逆时针方向旋转9(0)0αα︒<<︒得到OE ,连接AE ,过点A 作O 的切线l ,在直线l 上取点C ,使得CAE ∠为锐角.【初步感知】(1)如图1,当60α=︒时,CAE ∠=︒;的【问题探究】(2)以线段AC 为对角线作矩形ABCD ,使得边AD 过点E ,连接CE ,对角线AC ,BD 相交于点F .①如图2,当2AC r =时,求证:无论α在给定的范围内如何变化,BC CD ED =+总成立:②如图3,当43=AC r ,23CE OE =时,请补全图形,并求tan α及A BB C的值.2024年湖南省初中学业水平考试数 学本试题卷共6页.时量120分钟.满分120分.注意事项:1.答题前,考生先将自己的姓名、准考证号写在答题卡和本试题卷上,并认真核对条形码上的姓名、准考证号和相关信息:2.选择题部分请按题号用2B 铅笔填涂方框,修改时用橡皮擦干净,不留痕迹;3.非选择题部分请按题号用0.5毫米黑色墨水签字笔书写,否则作答无效:4.在草稿纸、试题卷上作答无效;5.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;6.答题卡上不得使用涂改液、涂改胶和贴纸.一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在日常生活中,若收入300元记作300+元,则支出180元应记作( )A. 180+元 B. 300+元C. 180-元D. 480-元【答案】C 【解析】【分析】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.首先审清题意,明确“正”和“负”所表示的意义,结合题意解答即可;【详解】解:收入为“+”,则支出为“-”,那么支出180元记作180-元.故选:C .2. 据《光明日报》2024年3月14日报道:截至2023年末,我国境内有效发明专利量达到401.5万件,高价值发明专利占比超过四成,成为世界上首个境内有效发明专利数量突破400万件的国家,将4015000用科学记数法表示应为( )A. 70.401510⨯ B. 64.01510⨯ C. 540.1510⨯ D.34.01510⨯【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:4015000用科学记数法表示为64.01510⨯.故选:B .3. 如图,该纸杯的主视图是()A. B. C. D.【答案】A 【解析】【分析】直接依据主视图即从几何体的正面观察,进而得出答案.此题主要考查了简单几何体的三视图,正确把握观察角度是解题的关键.【详解】解:该纸杯的主视图是选项A ,故选:A .4. 下列计算正确的是( )A. 22321a a -= B. 32(0)a a a a ÷=≠ C. 236a a a ⋅= D.()3326a a =【答案】B 【解析】【分析】本题考查了合并同类项,同底数幂的乘除法,积的乘方,根据以上运算法则逐项分析即可.【详解】解:A 、22232a a a -=,故该选项不正确,不符合题意; B 、32(0)a a a a ÷=≠,故该选项正确,符合题意;C 、235a a a ⋅=,故该选项不正确,不符合题意; D 、()3328a a =,故该选项不正确,不符合题意;故选:B .5. )A. B. C. 14 D.【答案】D 【解析】【分析】此题主要考查了二次根式的乘法,正确计算是解题关键.直接利用二次根式的乘法运算法则计算得出答案.=故选:D6. 下列命题中,正确的是( )A. 两点之间,线段最短B. 菱形的对角线相等C. 正五边形的外角和为720︒D. 直角三角形是轴对称图形【答案】A 【解析】【分析】本题考查了命题与定理的知识,多边形外角性质,菱形性质及轴对称图形的特点,解题的关键是掌握这些基础知识点.【详解】解:A 、两点之间,线段最短,正确,是真命题,符合题意;B 、菱形的对角线互相垂直,不一定相等,选项错误,是假命题,不符合题意;C 、正五边形的外角和为360︒,选项错误,是假命题,不符合题意;D 、直角三角形不一定轴对称图形,只有等腰直角三角形是轴对称图形,选项错误,是假命题,不符合题意;故选:A .7. 如图,AB ,AC 为O 的两条弦,连接OB ,OC ,若45A ∠=︒,则BOC ∠的度数为( )A. 60︒B. 75︒C. 90︒D. 135︒【答案】C【解析】【分析】本题考查了圆周角定理,熟知在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半是解题的关键.根据圆周角定理可知12A BOC ∠=∠,即可得到答案.【详解】根据题意,圆周角A ∠和圆心角BOC ∠同对着 BC,∴12A BOC ∠=∠,45A ∠=︒ ,224590BOC A ∴∠=∠=⨯︒=︒.故选:C .8. 某班的5名同学1分钟跳绳的成绩(单位:次)分别为:179,130,192,158,141.这组数据的中位数是( )A. 130B. 158C. 160D. 192【答案】B【解析】【分析】本题考查了中位数,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.据此求解即可.【详解】解:从小到大排序为130,141,158,179,192,最中间的数是158,∴中位数是158,故选:B .是9. 如图,在ABC 中,点D E ,分别为边AB AC ,的中点.下列结论中,错误的是( )A DE BC ∥ B. ADE ABC △△∽ C. 2BC DE = D. 12ADE ABC S S = 【答案】D【解析】【分析】本题考查了三角形中位线的性质,相似三角形的判定和性质,由三角形中位线性质可判断A C 、;由相似三角形的判定和性质可判断B D 、,掌握三角形中位线的性质及相似三角形的判定和性质是解题的关键.【详解】解:∵点D E ,分别为边AB AC ,的中点,∴DE BC ∥,2BC DE =,故A C 、正确;∵DE BC ∥,∴ADE ABC △△∽,故B 正确;∵ADE ABC △△∽,∴221124ADE ABC S DE S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭△△,∴14ADE ABC S S = ,故D 错误;故选:D .10. 在平面直角坐标系xOy 中,对于点(),P x y ,若x ,y 均为整数,则称点P 为“整点”.特别地,当y x(其中0xy ≠)的值为整数时,称“整点”P 为“超整点”,已知点()24,3P a a -+在第二象限,下列说法正确的是( )A. 3a <- B. 若点P 为“整点”,则点P 的个数为3个C. 若点P 为“超整点”,则点P 的个数为1个D. 若点P 为“超整点”,则点P 到两坐标轴的距离之和大于10【答案】C.【解析】【分析】本题考查了新定义,点到坐标轴的距离,各象限内点的特征等知识,利用各象限内点的特征求出a 的取值范围,即可判断选项A ,利用“整点”定义即可判断选项B ,利用“超整点”定义即可判断选项C ,利用“超整点”和点到坐标轴的距离即可判断选项D .【详解】解:∵点()24,3P a a -+在第二象限,∴24030a a -<⎧⎨+>⎩,∴32a -<<,故选项A 错误;∵点()24,3P a a -+为“整点”, 32a -<<,∴整数a 为2-,1-,0,1,∴点P 的个数为4个,故选项B 错误;∴“整点”P 为()8,1-,()6,2-,()4,3-,()2,4-,∵1188=--,2163=--,3344=--,422=--∴“超整点”P 为()2,4-,故选项C 正确;∵点()24,3P a a -+为“超整点”,∴点P 坐标为()2,4-,∴点P 到两坐标轴的距离之和246+=,故选项D 错误,故选:C .二、填空题:本题共8小题,每小题3分,共24分.11. 计算:()2024--=________.【答案】2024【解析】【分析】本题考查了求一个数的相反数,熟练掌握相反数的定义是解题的关键.根据相反数的定义,即可求解.【详解】解:()20242024--=,故答案为:2024.12. 有四枚材质、大小、背面图案完全相同的中国象棋棋子“”“”“”“”,将它们背面朝上任意放置,从中随机翻开一枚,恰好翻到棋子“”的概率是________.【答案】14【解析】【分析】本题考查了概率,熟练掌握概率公式是解本题的关键.概率=所求情况数与总情况数之比.根据概率公式计算即可.【详解】解:∵共有4枚棋子,∴从中任意摸出一张,恰好翻到棋子“”的概率是14.故答案为:1413. 分式方程21x +=1的解是_______.【答案】x=1【解析】【分析】先给方程两边同乘最简公分母x+1,把分式方程转化为整式方程2=x+1,求解后并检验即可.【详解】解:方程的两边同乘x+1,得2=x+1,解得x=1.检验:当x=1时,x+1=2≠0.所以原方程的解为x=1.故答案为:x=1.【点睛】此题考查了解分式方程,掌握解分式方程的一般步骤及方法是解题的关键.14. 一个等腰三角形的一个底角为40︒,则它的顶角的度数是________度.【答案】100【解析】【分析】本题考查了等腰三角形的性质和三角形内角和,解答时根据等腰三角形两底角相等,求出顶角度数即可.【详解】解:因为其底角为40°,所以其顶角180402100=︒-︒⨯=︒.故答案为:100.15. 若关于x 的一元二次方程2420x x k -+=有两个相等的实数根,则k 的值为________.【答案】2【解析】【分析】本题考查根据一元二次方程根的情况求参数.一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根,则240b ac ∆=->;有两个相等的实数根,则240b ac ∆=-=;没有实数根,则24<0b ac ∆=-.据此即可求解.【详解】解:由题意得:()22444120b ac k ∆=-=--⨯⨯=,解得:2k =故答案为:216. 在一定条件下,乐器中弦振动的频率f 与弦长l 成反比例关系,即k f l=(k 为常数.0k ≠),若某乐器的弦长l 为0.9米,振动频率f 为200赫兹,则k 的值为________.【答案】180【解析】【分析】本题考查了待定系数法求反比例函数解析式,把0.9l =,200f =代入k f l =求解即可.【详解】解:把0.9l =,200f =代入k f l =,得2000.9k =,解得180k =,故答案为:180.17. 如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE BF =;分别以点E ,F 为圆心,大于12EF 的长为半径画弧,在ABC ∠内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN AB ⊥于点N .若2MN =,4AD MD =,则AM =________.【答案】6【解析】【分析】本题考查了尺规作图,角平分线的性质等知识,根据作图可知BP 平分ABC ∠,根据角平分线的性质可知2DM MN ==,结合4AD MD =求出AD ,AM .详解】解:作图可知BP 平分ABC ∠,∵AD 是边BC 上的高,MNAB ⊥,2MN =,∴2MD MN ==,∵4AD MD =,∴8AD =,∴6AM AD MD =-=,故答案为:6.18. 如图,左图为《天工开物》记载的用于春(chōng )捣谷物的工具——“碓(duì)”的结构简图,右图为其平面示意图,已知AB CD ⊥于点B ,AB 与水平线l 相交于点O ,OE l ⊥.若4BC =分米,12OB =分米.60BOE ∠=︒,则点C 到水平线l 的距离CF 为________分米(结果用含根号的式子表示).【答案】(6-##()6-+【解析】【分析】题目主要考查解三角形及利用三角形等面积法求解,延长DC 交l 于点H ,连接OC,根据题意及解三角形确定BH =OH =,再由等面积法即可求解,作出辅助线是解题关键.【详解】解:延长DC 交l 于点H ,连接OC ,如图所示:在Rt OBH △中,906030BOH ∠=︒-︒=︒,12dmOB =【12tan 30BH ∴=⨯︒=,OH =OBH OCH OBCS S S =+△△△ 111222OB BH OH CF OB BC ∴⋅=⋅+⋅即11112124222CF ⨯=⨯+⨯⨯,解得:6CF =-.故答案为:(6-.三、解答题:本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.19计算:01|3|cos 602⎛⎫-+-+︒ ⎪⎝⎭【答案】52【解析】【分析】题目主要考查实数的混合运算,特殊角的三角函数、零次幂的运算等,先化简绝对值、零次幂及特殊角的三角函数、算术平方根,然后计算加减法即可,熟练掌握各个运算法则是解题关键.【详解】解:01|3|cos 602⎛⎫-+-+︒ ⎪⎝⎭13122=++-52=.20. 先化简,再求值:22432x x x x x-⋅++,其中3x =.【答案】1x x +,43【解析】【分析】本题主要考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.先计算乘法,再计算加法,然后把3x =代入化简后的结果,即可求解.【详解】解:22432x x x x x-⋅++()()22232x x x x x x+-⋅++=.23x x x-=+1x x +=,当3x =时,原式31433+==.21. 某校为了解学生五月份参与家务劳动的情况,随机抽取了部分学生进行调查、家务劳动的项目主要包括:扫地、拖地、洗碗、洗衣、做饭和简单维修等.学校德育处根据调查结果制作了如下两幅不完整的统计图:请根据以上信息,解答下列问题:(1)本次被抽取的学生人数为 人;(2)补全条形统计图:(3)在扇形统计图中,“4项及以上”部分所对应扇形的圆心角度数是 ︒;(4)若该校有学生1200人,请估计该校五月份参与家务劳动项目数量达到3项及以上的学生人数.【答案】(1)100(2)见解析 (3)36(4)300人【解析】【分析】题目主要考查条形统计图与扇形统计图,样本估计总体,求扇形统计图圆心角等,理解题意,结合统计图得出相关信息是解题关键.(1)根据参与1项家务劳动的人数及比例即可得出结果;(2)先求出参加3项家务劳动的学生人数,然后补全统计图即可;(3)用360度乘以4项及以上所占的比例即可;(4)用总人数乘以参与家务劳动的项目数量达到3项及以上的比例即可.【小问1详解】解:根据题意得:3030%100÷=人,的故答案为:100;【小问2详解】100330421015----=,补全统计图如下:【小问3详解】1036036100︒⨯=︒,故答案为:36;【小问4详解】15101200300100+⨯=人.22. 如图,在四边形ABCD 中,AB CD ∥,点E 在边AB 上, .请从“①B AED ∠=∠;②AE BE =,AE CD =”这两组条件中任选一组作为已知条件,填在横线上(填序号),再解决下列问题:(1)求证:四边形BCDE 为平行四边形;(2)若AD AB ⊥,8AD =,10BC =,求线段AE 的长.【答案】(1)①或②,证明见解析;(2)6【解析】【分析】题目主要考查平行四边形的判定和性质,勾股定理解三角形,理解题意,熟练掌握平行四边形的判定和性质是解题关键.(1)选择①或②,利用平行四边形的判定证明即可;(2)根据平行四边形的性质得出10DE BC ==,再由勾股定理即可求解.【小问1详解】解:选择①,证明:∵B AED ∠=∠,∴DE CB ∥,∵AB CD ∥,∴四边形BCDE 为平行四边形;选择②,证明:∵AE BE =,AE CD =,∴CD BE =,∵AB CD ∥,∴四边形BCDE 为平行四边形;【小问2详解】解:由(1)得10DE BC ==,∵AD AB ⊥,8AD =,∴6AE ==.23. 某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?【答案】(1)50元、30元(2)400棵【解析】【分析】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)设脐橙树苗和黄金贡柚树苗的单价分别为x 元/棵,y 元/棵,根据“购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元”列方程组求解即可;(2)购买脐橙树苗a 棵,根据“总费用不超过38000元”列不等式求解即可.【小问1详解】解:设脐橙树苗和黄金贡柚树苗的单价分别为x 元/棵,y 元/棵,根据题意,得211023190x y x y +=⎧⎨+=⎩,解得5030x y =⎧⎨=⎩,答:脐橙树苗和黄金贡柚树苗的单价分别为50元/棵,30元/棵;【小问2详解】解:设购买脐橙树苗a 棵,则购买黄金贡柚树苗()1000a -棵,根据题意,得()5030100038000a a +-≤,解得400a ≤,答:最多可以购买脐橙树苗400棵.24. 某数学研究性学习小组在老师的指导下,利用课余时间进行测量活动.活动主题测算某水池中雕塑底座的底面积测量工具皮尺、测角仪、计算器等模型抽象某休闲广场的水池中有一雕塑,其底座的底面为矩形ABCD ,其示意图如下:活动过程测绘过程与数据信息①在水池外取一点E ,使得点C ,B ,E 在同一条直线上;②过点E 作GH CE ⊥,并沿EH 方向前进到点F ,用皮尺测得EF的长为4米;③在点F 处用测角仪测得60.3CFG ∠=︒,45BFG ∠=︒,21.8AFG ∠=︒;④用计算器计算得:sin60.30.87︒≈,cos60.30.50︒≈,tan60.3 1.75︒≈.sin21.80.37︒≈,cos21.80.93︒≈,tan21.80.40︒≈.请根据表格中提供的信息,解决下列问题(结果保留整数):(1)求线段CE 和BC 的长度:(2)求底座的底面ABCD 的面积.【答案】(1)7米;3米(2)18平方米【解析】【分析】题目主要考查解三角形的应用,理解题意,结合图形求解是解题关键.(1)根据题意得tan tan60.3 1.75CE CFE EF∠=︒=≈,即可确定CE 长度,再由45BFG ∠=︒得出4BE EF ==米,即可求解;(2)过点A 作AM GH ⊥于点M ,继续利用正切函数确定6AB ME ==米,即可求解面积.【小问1详解】解:∵GH CE ⊥,EF 的长为4米,60.3CFG ∠=︒,∴tan tan60.3 1.75CE CFE EF∠=︒=≈,∴7CE =米;∵45BFG ∠=︒,∴4BE EF ==米,∴3CB CE BE =-=米;【小问2详解】过点A 作AM GH ⊥于点M ,如图所示:∵21.8AFG ∠=︒,∴tan tan21.80.4AM AFG MF∠=︒=≈,∵4AM BE ==米,∴10MF =米,∴1046AB ME ==-=米,∴底座的底面ABCD 的面积为:3618⨯=平方米.25. 已知二次函数2y x c =-+的图像经过点()2,5A -,点()11,P x y ,()22,Q x y 是此二次函数的图像上的两个动点.(1)求此二次函数的表达式;(2)如图1,此二次函数的图像与x 轴的正半轴交于点B ,点P 在直线AB 的上方,过点P 作PC x ⊥轴于点C ,交AB 于点D ,连接AC DQ PQ ,,.若213x x =+,求证DC PDQ A S S △△的值为定值;(3)如图2,点P 在第二象限,212x x =-,若点M 在直线PQ 上,且横坐标为11x -,过点M 作MN x ⊥轴于点N ,求线段MN 长度的最大值.【答案】(1)29y x =-+(2)为定值3,证明见解析(3)374【解析】【分析】(1)用待定系数法求解即可;(2)先求出直线AB 的解析式,()211,9P x x -+,则()()2113,39Q x x +-++,()11,3D x x -+,表示出()()23PD x x =+-+,13CD x =-+,代入DC PDQA S S △△即可求解;(3)设()211,9P x x -+,则()2112,49Q x x --+,求出直线PQ 的解析式,把11x x =-代入即可求出线段MN 长度的最大值.【小问1详解】∵二次函数2y x c =-+的图像经过点()2,5A -,∴54c =-+,∴9c =,∴29y x =-+;【小问2详解】当0y =时,209x =-+,∴123,3x x =-=,∴()3,0B ,设直线AB 的解析式为y kx b =+,∴2530k b k b -+=⎧⎨+=⎩,∴13k b =-⎧⎨=⎩,∴3y x =-+,设()211,9P x x -+,则()()2113,39Q x x +-++,()11,3D x x -+,∴()()()2211111193623PD x x x x x x =-+--+=-++=+-+,13CD x =-+.∴()()()()()11111233332PDQ ADC S x x x x S x x +-++-==-++ ,∴DCPDQA S S △△的值为定值;【小问3详解】设()211,9P x x -+,则()2112,49Q x x --+,设直线PQ 的解析式为y mx n =+,∴2112119249mx n x mx n x ⎧+=-+⎨-+=-+⎩,∴12129m x n x =⎧⎨=-+⎩,∴12129y x x x -=+,当11x x =-时,()22111113712924y x x x x ⎛⎫=--+=-++ ⎪⎝⎭,∴当12x =-时,线段MN 长度的最大值374.【点睛】本题考查了待定系数法求函数解析式,二次函数与几何综合,数形结合是解答本题的关键.26. 【问题背景】已知点A 是半径为r 的O 上的定点,连接OA ,将线段OA 绕点O 按逆时针方向旋转9(0)0αα︒<<︒得到OE ,连接AE ,过点A 作O 的切线l ,在直线l 上取点C ,使得CAE ∠为锐角.【初步感知】(1)如图1,当60α=︒时,CAE ∠= ︒;【问题探究】(2)以线段AC 为对角线作矩形ABCD ,使得边AD 过点E ,连接CE ,对角线AC ,BD 相交于点F .①如图2,当2AC r =时,求证:无论α在给定的范围内如何变化,BC CD ED =+总成立:②如图3,当43=AC r ,23CE OE =时,请补全图形,并求tan α及A B B C的值.【答案】(1)30︒;①证明见解析;②补全图形见解析,43,12【解析】【分析】(1)可证OEA △是等边三角形,则60OAE ∠=︒,由直线l 是O 的切线,得到90OAC ∠=︒,故906030CAE ∠=︒-︒=︒;(2)①根据矩形的性质与切线的性质证明OAE FCD △≌△,则AE CD =,而BC AD =,由AD AE DE =+,得到BC CD DE =+;②过点O 作OG AE ⊥于点G ,AH OE ⊥于点H ,在Rt AOC 中,先证明点E 在线段OC 上,4tan 3AC AO α==,由等腰三角形的性质得12EOG α∠=,根据互余关系可得12EAH EOG α∠=∠=,可求4tan 3AH OH α==,解OAE △,求得1tan 2EAH ∠=,可证明12ACB α∠=,故在Rt ABC △中,1tan tan 22AB ACB BC α∠===.【详解】解:(1)由题意得60AOE α∠==︒,∵OA OE =,∴OEA △是等边三角形,∴60OAE ∠=︒,∵直线l 是O 的切线,∴90OAC ∠=︒,∴906030CAE ∠=︒-︒=︒,故答案为:30︒;(2)①如图:∵OA OE =,∴OAE OEA ∠=∠,∵AOE α∠=,∴180OAE OEA α∠+∠+=︒,∴18019022OAE αα︒-∠==︒-,∵90OAC ∠=︒,∴12DAC α∠=,∵四边形ABCD 是矩形,∴FA DF =,12CF DF AC r ===,∴12DAC FDA α∠=∠=,∴1122DFC ααα∠=+=,∵OA OE r ==,∴,OA FC OE FD ==,∵AOE DFC ∠=∠,∴OAE FCD △≌△,∴AE CD =,∵四边形ABCD 是矩形,∴BC AD =,∵AD AE DE =+,∴BC CD DE =+;②补全图形如图:过点O 作OG AE ⊥于点G ,AH OE ⊥于点H ,在Rt AOC 中,4,3OA r AC r ==,∴由勾股定理得53OC r =,∵23CEOE =,∴23CE r =,∴OC OE CE =+,∴点E 在线段OC 上,∴在Rt ACO ,4tan 3AC AO α==,∵OG AE ⊥,OA OE =,∴12EOG α∠=,∵AH OE ⊥,∴90EOG OEA EAH OEA ∠+∠=∠+∠=︒,∴12EAH EOG α∠=∠=,在Rt OAH △中,4tan 3AHOH α==,∴设4,3AH m OH m ==,∴由勾股定理得5OA OE m ==,∴532HE m m m =-=,∴在Rt AHE △中,1tan tan22HE EAH AH α∠===∵四边形ABCD 是矩形,∴AD BC ∥,∴12ACB DAC α∠=∠=,而12EAH α∠=,∴12ACB α∠=,∴在Rt ABC △中,1tan tan 22AB ACB BC α∠===.【点睛】本题考查了圆的切线的性质,等腰三角形的性质,全等三角形的判定与性质,矩形的性质,解直角三角形,勾股定理,熟练掌握知识点,正确添加辅助线是解决本题的关键.。
绝密★启用前2024年河南省中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图,数轴上点P表示的数是( )A. −1B. 0C. 1D. 22.据统计,2023年我国人工智能核心产业规模达5784亿元.数据“5784亿”用科学记数法表示为( )A. 5784×108B. 5.784×1010C. 5.784×1011D. 0.5784×10123.如图,乙地在甲地的北偏东50°方向上,则∠1的度数为( )A. 60°B. 50°C. 40°D. 30°4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A.B.C.D.5.下列不等式中,与−x>1组成的不等式组无解的是( )A. x>2B. x<0C. x<−2D. x>−36.如图,在▱ABCD中,对角线AC,BD相交于点O,点E为OC的中点,EF//AB 交BC于点F.若AB=4,则EF的长为( )A. 12B. 1 C. 43D. 27.计算(a·a···a⏟a个)3的结果是( )A. a5B. a6C. a a+3D. a3a8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A. 19B. 16C. 15D. 13⏜的中点,连接BD,CD.以点D为圆心,BD的长为半径在⊙O内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是( )A. 当P=440W时,I=2AB. Q随I的增大而增大C. I每增加1A,Q的增加量相同D. P越大,插线板电源线产生的热量Q越多第II卷(非选择题)二、填空题:本题共5小题,每小题3分,共15分。
重庆市2024年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑.1. 下列四个数中,最小的数是( )A 2- B. 0 C. 3D. 12-2. 下列四种化学仪器示意图中,是轴对称图形的是( )A. B.C. D.3. 已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A. 3- B. 3C. 6- D. 64. 如图,AB CD ∥,165∠=︒,则2∠的度数是( ).的A. 105︒B. 115︒C. 125︒D. 135︒5. 若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是( )A. 1:3B. 1:4C. 1:6D. 1:96. 烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A. 20B. 22C. 24D. 267. 已知m =,则实数m 的范围是( )A. 23m << B. 34m << C. 45m << D. 56m <<8. 如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A. 328π-B. 4π-C. 324π- D. 8π-9. 如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FGC E的值为( )A.B.C.D.10. 已知整式1110:nn n n M a x a xa x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:011(3)()2π--+=_____.12. 如果一个多边形的每一个外角都是40︒,那么这个多边形的边数为______.13. 重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为_____.14. 随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是______.15. 如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF =______.16. 若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为______.17. 如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF =______.DG =______.18. 我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是______.把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为______.三、解答题:(本大题8个小题,第19题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. 计算:(1)()()22x x y x y -++;(2)22111a a a a-⎛⎫+÷ ⎪+⎝⎭.20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b众数a 79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EFAC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想结论:④.22. 为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那的的么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?23. 如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)24. 如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港.1.41≈1.73≈2.45≈)(1)求A ,C 两港之间距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.25. 如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.的(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.26. 在ABC 中,AB AC =,点D 是BC 边上一点(点D 不与端点重合).点D 关于直线AB 的对称点为点E ,连接,AD DE .在直线AD 上取一点F ,使EFD BAC ∠∠=,直线EF 与直线AC 交于点G .(1)如图1,若60,,BAC BD CD BAD α∠=︒<∠=,求AGE ∠的度数(用含α的代数式表示);(2)如图1,若60,BAC BD CD ∠=︒<,用等式表示线段CG 与DE 之间的数量关系,并证明;(3)如图2,若90BAC ∠=︒,点D 从点B 移动到点C 的过程中,连接AE ,当AEG △为等腰三角形时,请直接写出此时CGAG的值.重庆市2024年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑.1. 下列四个数中,最小的数是( )A. 2- B. 0C. 3D. 12-【答案】A 【解析】【分析】本题考查了有理数比较大小,解题的关键是掌握比较大小的法则.根据正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵13022>>->-,∴最小的数是2-;故选:A .2. 下列四种化学仪器的示意图中,是轴对称图形的是( )A. B.C. D.【答案】C 【解析】【分析】此题考查了轴对称图形的概念,根据概念逐一判断即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键.【详解】A 、不是轴对称图形,故本选项不符合题意;B 、不是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项符合题意;D 、不是轴对称图形,故本选项不符合题意;故选:C .3. 已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A. 3- B. 3C. 6- D. 6【答案】C 【解析】【分析】本题考查了待定系数法求反比例解析式,把()3,2-代入()0ky k x=≠求解即可.【详解】解:把()3,2-代入()0ky k x=≠,得326k =-⨯=-.故选C .4. 如图,AB CD ∥,165∠=︒,则2∠的度数是( )A. 105︒B. 115︒C. 125︒D. 135︒【答案】B【解析】∠=∠=︒,由邻补角性质得【分析】本题主要考查了平行线的性质,根据平行线的性质得3165∠+∠=︒,然后求解即可,熟练掌握两直线平行,同位角相等是解题的关键.23180【详解】解:如图,∥,∵AB CD∠=∠=︒,∴3165∠+∠=︒,∵23180∠=︒,∴2115故选:B.5. 若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是()A. 1:3B. 1:4C. 1:6D. 1:9【答案】D【解析】【分析】此题考查了相似三角形的性质,根据“相似三角形的面积比等于相似比的平方”解答即可.【详解】解:两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是1:9,故选:D.6. 烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A. 20B. 22C. 24D. 26【答案】B【解析】【分析】本题考查数字的变化类,根据图形,可归纳出规律表达式的特点,再解答即可.【详解】解:由图可得,第1种如图①有4个氢原子,即2214+⨯=第2种如图②有6个氢原子,即2226+⨯=第3种如图③有8个氢原子,即2238+⨯=⋯,∴第10种化合物的分子结构模型中氢原子的个数是:221022+⨯=;故选:B .7. 已知m =,则实数m 的范围是( )A. 23m << B. 34m << C. 45m << D. 56m <<【答案】B【解析】【分析】此题考查的是求无理数的取值范围,二次根式的加减运算,掌握求算术平方根的取值范围的方法是解决此题的关键.先求出m ==,即可求出m 的范围.【详解】解:∵m =-=-==,∵34<<,∴34m <<,故选:B .8. 如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A. 328π- B. 4π-C. 324π- D. 8π-【答案】D【解析】【分析】本题考查扇形面积的计算,勾股定理等知识.根据题意可得28AC AD ==,由勾股定理得出AB =,用矩形的面积减去2个扇形的面积即可得到结论.【详解】解:连接AC ,根据题意可得28AC AD ==,∵矩形ABCD ,∴4AD BC ==,90ABC ∠=︒,在Rt ABC △中,AB ==,∴图中阴影部分的面积2904428360ππ⨯=⨯-⨯=.故选:D .9. 如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FG C E的值为( )A.B. C. D.【答案】A【解析】【分析】过点F 作DC 延长线的垂线,垂足为点H ,则90H ∠=︒,证明ADE EHF ≌,则1AD EH ==,设DE HF x ==,得到HF CH x ==,则45HCF ∠=︒,故CF =,同理可求CG ==)1FG CG CF x =-=-,因此FGCE ==.【详解】解:过点F 作DC 延长线的垂线,垂足为点H ,则90H ∠=︒,由旋转得,90EA EF AEF =∠=︒,∵四边形ABCD 是正方形,∴90D Ð=°,DC AB ∥,DA DC BC ==,设1DA DC BC ===,∴D H ∠=∠,∵12AEH AEF D ∠=∠+∠=∠+∠,∴12∠=∠,∴ADE EHF ≌,∴DE HF =,1AD EH ==,设DE HF x ==,则1CE DC DE x =-=-,∴()11CH EH EC x x =-=--=,∴HF CH x ==,而90H ∠=︒,∴45HCF ∠=︒,∴sin 45HFCF ==︒,∵DC AB ∥,∴45HCF G ∠=∠=︒,同理可求CG ==∴)1FG CG CF x =-==-,∴FG CE ==,故选:A .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,解直角三角形,旋转的性质,正确添加辅助线,构造“一线三等角全等”是解题的关键.10. 已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3【答案】D【解析】【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= ,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:011(3)()2π--+=_____.【答案】3【解析】【分析】根据零指数幂和负指数幂的意义计算.【详解】解:011(3)(1232π--+=+=,故答案为:3.【点睛】本题考查了整数指数幂的运算,熟练掌握零指数幂和负指数幂的意义是解题关键.12. 如果一个多边形的每一个外角都是40︒,那么这个多边形的边数为______.【答案】9【解析】【分析】本题考查了多边形的外角和定理,用外角和360︒除以40︒即可求解,掌握多边形的外角和等于360︒是解题的关键.【详解】解:360409︒÷︒=,∴这个多边形的边数是9,故答案为:9.13. 重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为_____.【答案】19【解析】【分析】本题考查了画树状图法或列表法求概率,根据画树状图法求概率即可,熟练掌握画树状图法或列表法求概率是解题的关键.【详解】解:画树状图如下:由图可知,共有9种等可能的情况,其中甲、乙两人同时选择景点B 的情况有1种,∴甲、乙两人同时选择景点B 的的概率为19,故答案为:19.14. 随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是______.【答案】10%【解析】【分析】本题主要考查一元二次方程的应用.设平均增长率为x ,然后根据题意可列方程进行求解.【详解】解:设平均增长率为x ,由题意得:()240148.4x +=,解得:10.110%x ==,2 2.1x =-(不符合题意,舍去);故答案为:10%.15. 如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF =______.【答案】3【解析】【分析】先根据平行线分线段成比例证AF EF =,进而得22DE CD AC CF ====,4AD =,再证明CAB DEA ≌,得4BC AD ==,从而即可得解.【详解】解:∵CD CA =,过点D 作DE CB ∥,CD CA =,DE DC =,∴1FA CA FE CD==,CD CA DE ==,∴AF EF =,∴22DE CD AC CF ====,∴4AD AC CD =+=,∵DE CB ∥,∴CFA E ∠∠=,ACB D ∠∠=,∵CAB CFA ∠=∠,∴CAB E ∠∠=,∵CD CA =,DE CD =,∴CA DE =,∴CAB DEA ≌,∴4BC AD ==,∴3BF BC CF =-=,故答案为:3,【点睛】本题主要考查了平行线的性质,三角形的中位线定理,平行线分线段成比例以及全等三角形的判定及性质,熟练掌握三角形的中位线定理,平行线分线段成比例以及全等三角形的判定及性质是解题的关键.16. 若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为______.【答案】16【解析】【分析】本题考查了分式方程的解,以及解一元一次不等式组.先解不等式组,根据关于x 的一元一次不等式组至少有两个整数解,确定a 的取值范围8a ≤,再把分式方程去分母转化为整式方程,解得22a y -=,由分式方程的解为非负整数,确定a 的取值范围2a ≥且4a ≠,进而得到28a ≤≤且4a ≠,根据范围确定出a 的取值,相加即可得到答案.【详解】解:()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩①②,解①得:4x <,解②得:23a x -≥, 关于x 的一元一次不等式组至少有两个整数解,∴223a -≤,解得8a ≤,解方程13211a y y -=---,得22a y -=, 关于y 的分式方程的解为非负整数,∴202a -≥且212a -≠,2a -是偶数,解得2a ≥且4a ≠,a 是偶数,∴28a ≤≤且4a ≠,a 是偶数,则所有满足条件的整数a 的值之和是26816++=,故答案为:16.17. 如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF =______.DG =______.【答案】①. 8 ②. 【解析】【分析】连接DO 并延长,交O 于点H ,连接GH ,设CE 、AB 交于点M ,根据四边形ACDE 为平行四边形,得出∥D E A C ,8AC DE ==,证明AB DE ⊥,根据垂径定理得出142DF EF DE ===,根据勾股定理得出3OF ==,求出538AF OA OF =+=+=;证明EFM CAM ∽,得出EF FM AC AM =,求出83FM =,根据勾股定理得出EM ===,证明EFM HGD ∽,得出FM EM DG DH =,求出DG =.【详解】解:连接DO 并延长,交O 于点H ,连接GH ,设CE 、AB 交于点M ,如图所示:∵以AB 为直径的O 与AC 相切于点A ,∴AB AC ⊥,∴90CAB ∠=︒,∵四边形ACDE 为平行四边形,∴∥D E A C ,8AC DE ==,∴90BFD CAB ==︒∠∠,∴AB DE ⊥,∴142DF EF DE ===,∵10AB =,∴152DO BO AO AB ====,∴3OF ==,∴538AF OA OF =+=+=;∵∥D E A C ,∴EFM CAM ∽,∴EF FMAC AM =,∴48FMAF FM =-,即488FMFM =-,解得:83FM =,∴EM ===∵DH 为直径,∴90DGH ∠=︒,∴DGH EFM ∠=∠,∵ DG DG =,∴DEG DHG =∠∠,∴EFM HGD ∽,∴FMEMDG DH =,即83310DG =,解得:DG =.故答案为:8【点睛】本题主要考查了平行四边形的性质,垂径定理,圆周角定理,切线的性质,勾股定理,三角形相似的判定和性质,解题的关键是作出辅助线,熟练掌握三角形相似的判定方法.18. 我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是______.把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为______.【答案】①. 82 ②. 4564【解析】【分析】本题考查了新定义,设10m a b =+,则108n a b =+-(19a ≤≤,08b ≤≤)根据最小的“方减数”可得10,18m n ==,代入,即可求解;根据B 除以19余数为1,且22m n k +=(k 为整数),得出34719a b ++为整数,308a b ++是完全平方数,在19a ≤≤,08b ≤≤,逐个检验计算,即可求解.【详解】①设10m a b =+,则108n a b =+-(19a ≤≤,08b ≤≤)由题意得:()()2210108m n a b a b -=+-+-,∵19a ≤≤,“方减数”最小,∴1a =,则10m b =+,18n b =-,∴()()2222101810020188221m n b b b b b b b -=+--=++-+=++,则当0b =时,2m n -最小,为82,故答案为:82;②设10m a b =+,则108n a b =+-(19a ≤≤,08b ≤≤)∴10001001081010998B a b a b a b =+++-=++∵B 除以19余数为1,∴1010997a b ++能被19整除∴134********B a b a b -++=++为整数,又22m n k +=(k 为整数)∴()210108308a b a b a b +++-=++是完全平方数,∵19a ≤≤,08b ≤≤∴308a b ++最小为49,最大为256即716k ≤≤设34719a b t ++=,t 为正整数,则13t ≤≤当1t =时,3412a b +=,则334b a =-,则330830384a b a a ++=+-+是完全平方数,又19a ≤≤,08b ≤≤,无整数解,当2t =时,3431a b +=,则3134a b -=,则3133083084a a b a -++=++是完全平方数,又19a ≤≤,08b ≤≤,无整数解,当3t =时,3450a b +=,则5034a b -=,则5033083084a ab a -++=++是完全平方数,经检验,当6,8a b ==时,3473648757193a b ++=⨯+⨯+==⨯,23068819614⨯++==,3,14t k ==,∴68,60m n ==,∴268604564A =-=故答案为:82,4564.三、解答题:(本大题8个小题,第19题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19 计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪+⎝⎭.【答案】(1)222x y +;(2)11a a +-.【解析】【分析】(1)根据单项式乘以多项式和完全平方公式法则分别计算,然后合并同类项即可;(2)先将括号里的异分母分式相减化为同分母分式相减,再算分式的除法运算得以化简;本题考查了单项式乘以多项式,完全平方公式和分式的化简,熟练掌握运算法则是解题的关键.【小问1详解】解:原式22222x xy x xy y =-+++,222x y =+;【小问2详解】解:原式()()()1111a a a a a a +-+=÷+,()()()11·11a a a a a a ++=+-,11a a +=-.20. 为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:.66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b 众数a 79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?【答案】(1)86,87.5,40;(2)八年级学生竞赛成绩较好,理由见解析;(3)该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.【解析】【分析】(1)根据表格及题意可直接进行求解;(2)根据平均分、中位数及众数分析即可得出结果;(3)由题意可得出参加此次竞赛活动成绩优秀的百分比,然后可进行求解;本题主要考查扇形统计图及中位数、众数、平均数,熟练掌握扇形统计图及中位数、众数、平均数是解题的关键.【小问1详解】根据七年级学生竞赛成绩可知:86出现次数最多,则众数为86,八年级竞赛成绩中A 组:2010%2⨯=(人),B 组:2020%4⨯=(人),C 组:6人,所占百分比为6100%30%20⨯=D 组:202468---=(人)所占百分比为%110%20%30%40%m =---=,则40m =,∴八年级的中位数为第1011、个同学竞赛成绩的平均数,即C 组第45、个同学竞赛成绩的平均数878887.52b +==,故答案为:86,87.5,40;【小问2详解】八年级学生竞赛成绩较好,理由:七、八年级的平均分均为85分,八年级的中位数高于七年级的中位数,整体上看八年级学生竞赛成绩较好;【小问3详解】640040%50032020⨯+⨯=(人),答:该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【解析】【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【小问1详解】解:如图所示,即为所求;【小问2详解】证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22. 为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条是。
2024年安徽省中考数学试卷(附答案解析)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)﹣5的绝对值是()A.5B.﹣5C.D.﹣【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选:A.2.(4分)据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A.0.944×107B.9.44×106C.9.44×107D.94.4×106【解答】解:944万=9440000=9.44×106,故选:B.3.(4分)某几何体的三视图如图所示,则该几何体为()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:根据三视图进行观察,下半部分是圆柱,上半部分是圆锥,故选:D.4.(4分)下列计算正确的是()A.a3+a3=a6B.a6÷a3=a2C.(﹣a)2=a2D.=a【分析】利用合并同类项法则,同底数幂除法法则,幂的乘方,二次根式逐项判断即可.【解答】解:A、a3+a3=2a3,故A选项错误;B、a6÷a3=a3,故B选项错误;C、(﹣a)2=a2,故C选项正确;D、,故D选项错误;故选:C.5.(4分)若扇形AOB的半径为6,∠AOB=120°,则的长为()A.2πB.3πC.4πD.6π【分析】利用弧长计算公式计算即可.【解答】解:=,故选:C.【点评】本题考查了弧长的计算,掌握弧长计算公式是解题的关键.6.(4分)已知反比例函数y=(k≠0)与一次函数y=2﹣x的图象的一个交点的横坐标为3,则k的值为()A.﹣3B.﹣1C.1D.3【分析】将x=3代入一次函数中,求得y=﹣1,再将(3,﹣1)代入反比例函数中,求得k的值.【解答】解:将x=3代入y=2﹣x中,得:y=﹣1,将(3,﹣1)代入y=中,得:k=﹣3,故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,将交点横坐标代入解析式中是解题的关键.7.(4分)如图,在Rt△ABC中,AC=BC=2,点D在AB的延长线上,且CD=AB,则BD的长是()A.B.C.2﹣2D.【分析】由等腰直角三角形的性质可得AB=2,AH=BH=CH=,由勾股定理可求DH的长,即可求解.【解答】解:如图,过点C作CH⊥AB于H,∵AC=BC=2,∠ACB=90°,CH⊥AB,∴AB=2,AH=BH=CH=,∵CD=AB=2,∴DH===,∴DB=﹣,故选:B.【点评】本题考查了等腰直角三角形的性质,勾股定理,掌握等腰直角三角形的性质是解题的关键.8.(4分)已知实数a,b满足a﹣b+1=0,0<a+b+1<1,则下列判断正确的是()A.﹣<a<0B.<b<1C.﹣2<2a+4b<1D.﹣1<4a+2b<0【分析】由a﹣b+1=0得出b=a+1,代入0<a+b+1<1可得﹣1<a<﹣,再求0<b<,分别代入选项判断即可.【解答】解:∵a﹣b+1=0,∴b=a+1,∵0<a+b+1<1,∴0<a+a+1+1<1,即0<2a+2<1∴﹣1<a<﹣,故选项A错误,不合题意.∵b=a+1,﹣1<a<﹣,∴0<b<,故选项B错误,不合题意.由﹣1<a<﹣得,﹣2<2a<﹣1,﹣4<4a<﹣2,由0<b<得,0<4b<2,0<2b<1,∴﹣2<2a+4b<1,故选项C正确,符合题意.∴﹣4<4a+2b<﹣1,选项D错误,不合题意.故选:C.【点评】本题主要考查了解一元一次不等式,掌握解一元一次不等式是解题关键.9.(4分)在凸五边形ABCDE中,AB=AE,BC=DE,F是CD的中点.下列条件中,不能推出AF与CD一定垂直的是()A.∠ABC=∠AED B.∠BAF=∠EAF C.∠BCF=∠EDF D.∠ABD=∠AEC【分析】将每个选项的条件分别作为已知条件,结合题干,通过证三角形全等,再看能否证明AF⊥CD 即可【解答】选项A:连接AC、AD,∵AB=AE,∠ABC=∠AED,BC=DE,∴△ABC≌△AED(SAS),∴AC=AD,∵F是AD的中点,∴AF⊥CD,所以选项A不合题意;选项B:连接BF、EF,∵AB=AE,∠BAF=∠EAF,AF=AF,∴△ABF≌△AEF(SAS),∴∠AFB=∠AFE,BF=EF,∴△BFC≌△EFD(SSS),∴∠BFC=∠EFD,∴∠BFC+∠AFB=∠EFD+∠AFE,即∠AFC=∠AFD=90°,∴AF⊥CD,所以选项B不合题意;选项C:思路与选项B大致相同,先证△BFC≌△EFD(SAS),再证△ABF≌△AEF(SSS),∴∠BFC+∠AFB=∠EFD+∠AFE,即∠AFC=∠AFD=90°,∴AF⊥CD,所以选项C不合题意;选项D的条件无法证出全等,故证不出AF⊥CD,所以选项D符合题意.故答案选:D.【点评】本题主要考查全等三角形的判定和性质,熟练掌握全等三角形的相关知识是解题关键.10.(4分)如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且DE⊥DF.设AE=x,四边形DEBF的面积为y,则y关于x的函数图象为()A.B.C.D.【分析】过D作DH⊥AB于H,求出AC==2,BD==;可得CD==AE•DH=x×==,AD=AC﹣CD=,故DH==,从而S△ADEx,S△BDE=BE•DE=(4﹣x)×=﹣x;证明△BDE∽△CDF,可得=()2==S△BDE=(﹣x)=﹣x,从而y=S△ABC﹣S△ADE﹣S△CDF=﹣x+,观,故S△CDF察各选项可知,A符合题意.【解答】解:过D作DH⊥AB于H,如图:∵∠ABC=90°,AB=4,BC=2,∴AC==2,∵BD是边AC上的高,∴BD===;∴CD ==,AD =AC ﹣CD =,∴DH ===,∴S △ADE =AE •DH =x ×=x ,S △BDE =BE •DE =(4﹣x )×=﹣x ;∵∠BDE =90°﹣∠BDF =∠CDF ,∠DBE =90°﹣∠CBD =∠C ,∴△BDE ∽△CDF ,∴=()2=()2=,∴S △CDF =S △BDE =(﹣x )=﹣x ,∴y =S △ABC ﹣S △ADE ﹣S △CDF =×2×4﹣x ﹣(﹣x )=﹣x +,∵﹣<0,∴y 随x 的增大而减小,且y 与x 的函数图象为线段(不含端点),观察各选项图象可知,A 符合题意;故选:A .【点评】本题考查动点问题的函数图象,涉及相似三角形判定与性质,勾股定理及应用,面积法等,解题的关键是求出y 与x 的函数关系式.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)若分式有意义,则实数x 的取值范围是.【分析】根据分式分母不为0进行计算即可.【解答】解:∵分式有意义,∴x ﹣4≠0,∴x ≠4,故答案为:x ≠4.12.(5分)我国古代数学家张衡将圆周率取值为,祖冲之给出圆周率的一种分数形式的近似值为.比较大小:(填“>”或“<”).【解答】解:()2=10,()2=,∵10,∴,故答案为:>.13.(5分)不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.【分析】先画出树状图,再根据树状图求概率.【解答】解:由图可知,共有12种可能的结果,其中2个红球的结果出现2次,∴P=,故答案为:.14.(5分)如图,现有正方形纸片ABCD,点E,F分别在边AB,BC上.沿垂直于EF的直线折叠得到折痕MN,点B,C分别落在正方形所在平面内的点B′,C′处,然后还原.(1)若点N在边CD上,且∠BEF=α,则∠C′NM=(用含α的式子表示);(2)再沿垂直于MN的直线折叠得到折痕GH,点G,H分别在边CD,AD上,点D落在正方形所在平面内的点D′处,然后还原.若点D′在线段B′C′上,且四边形EFGH是正方形,AE=4,EB=8,MN与GH的交点为P,则PH的长为3.【解答】解:(1)∵MN⊥EF,∠BEF=α,∴∠EMN=90°﹣α,∵CD∥AB,∴∠CNM=∠EMN=90°﹣α,∴∠C′NM=∠CNM=90°﹣α.故答案为:90°﹣α.(2)如图,设PH与NC'交于点G',∵四边形ABCD和四边形EFGH是正方形,∴∠A=∠D=∠GHE=90°,GH=EH,∴∠AHE+∠GHD=∠AHE+∠AEH=90°∴∠GHD=∠AEH,∴△EAH≌△HDG(AAS)同理可证△EAH≌△HDG≌△GCF≌△FBE,∴DH=CG=AE=4,DG=EB=8,∴GH==4,∵MN⊥GH,且∠C′NM=∠CNM,∴MN垂直平分GG',即PG=PG'=GG',且NG=NG',∵四边形CBMN沿MN折叠,∴CN=C'N,∴CN﹣NG=C'N﹣NG',即C'G'=CG=4,∵△GDH沿GH折叠得到△GD'H,∴GD'=GD=8,∵∠HC'G'=∠HD'G=90°,∴C'G'∥D'G,∴==,∴HG'=GG'=HG=2,又∵PG'=GG'=,∴PH=PG'+HG'=3.故答案为:3.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:x2﹣2x=3.【分析】利用因式分解解方程.【解答】解:x2﹣2x=3,x2﹣2x﹣3=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy,格点(网格线的交点)A,B,C,D的坐标分别为(7,8),(2,8),(10,4),(5,4).(1)以点D为旋转中心,将△ABC旋转180°得到△A1B1C1,画出△A1B1C1;(2)直接写出以B,C1,B1,C为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E,使得射线AE平分∠BAC,写出点E的坐标.【解答】解:(1)如图,画出△A1B1C1;(2)以B,C1,B1,C为顶点的四边形的面积=10×8﹣2××2×4﹣2××4×8=40;(3)如图,点E即为所求(答案不唯一),点E的坐标(6,6).四、(本大题共2小题,每小题8分,满分16分)17.(8分)乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地,采用新技术种植A ,B 两种农作物.种植这两种农作物每公顷所需人数和投入资金如下表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A 48B39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元,问A ,B 这两种农作物的种植面积各多少公顷?【解答】解:设A 种农作物的种植面积是x 公顷,B 种农作物的种植面积是y 公顷,根据题意得:,解得:.答:A 种农作物的种植面积是3公顷,B 种农作物的种植面积是4公顷.18.(8分)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为x 2﹣y 2(x ,y 均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果1=12﹣023=22﹣125=32﹣227=42﹣329=52﹣42…4=22﹣028=32﹣1212=42﹣2216=52﹣3220=62﹣42…一般结论2n ﹣1=n 2﹣(n ﹣1)24n =按上表规律,完成下列问题:(ⅰ)24=()2﹣()2;(ⅱ)4n =;(2)兴趣小组还猜测:像2,6,10,14,…这些形如4n ﹣2(n 为正整数)的正整数N 不能表示为x 2﹣y 2(x ,y 均为自然数).师生一起研讨,分析过程如下:假设4n ﹣2=x 2﹣y 2,其中x ,y 均为自然数.分下列三种情形分析:①若x,y均为偶数,设x=2k,y=2m,其中k,m均为自然数,则x2﹣y2=(2k)2﹣(2m)2=4(k2﹣m2)为4的倍数.而4n﹣2不是4的倍数,矛盾.故x,y不可能均为偶数.②若x,y均为奇数,设x=2k+1,y=2m+1,其中k,m均为自然数,则x2﹣y2=(2k+1)2﹣(2m+1)2=为4的倍数.而4n﹣2不是4的倍数,矛盾.故x,y不可能均为奇数.③若x,y一个是奇数一个是偶数,则x2﹣y2为奇数.而4n﹣2是偶数,矛盾.故x,y不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【分析】(1)(i)由所给数据可推出24=4×6=(6+1)2﹣(6﹣1)2=72﹣52;(ii)结合第一问推导数据发现规律:4n=4•n=(n+1)2﹣(n﹣1)2;(2)利用平方差公式因式分解即可得到答案.【解答】解:(1)(i)4=4×1=(1+1)2﹣(1﹣1)2,8=4×2=(2+1)2﹣(2﹣1)2,12=4×3=(3+1)2﹣(3﹣1)2,20=4×5=(5+1)2﹣(5﹣1)2,24=4×6=(6+1)2﹣(6﹣1)2=72﹣52,......4n=4•n=(n+1)2﹣(n﹣1)2.故答案为:7,5;(ii)由(1)推导的规律可知4n=4•n=(n+1)2﹣(n﹣1)2.故答案为:(n+1)2﹣(n﹣1)2.(3)(2k+1)2﹣(2m+1)2=(2k+1+2m+1)(2k+1﹣2m﹣1)=4(k2﹣m2+k﹣m).故答案为:4(k2﹣m2+k﹣m).五、(本大题共2小题,每小题10分,满分20分)19.(10分)科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B处发出,经水面点E折射到池底点A处.已知BE与水平线的夹角α=36.9°,点B到水面的距离BC=1.20m,点A处水深为1.20m,到池壁的水平距离AD=2.50m.点B,C,D在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求的值(精确到0.1).参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.【分析】根据题意得出,∠CEB=α=36.9°,EH=1.20m,从而求出CE,AH,AE的长,分别求出sinβ和sinγ的值,得出结果.【解答】解:过点E作EH⊥AD于点H,由题意可知,∠CEB=α=36.9°,EH=1.20m,∴(m),AH=AD﹣CE=2.50﹣1.60=0.90(m),∴=1.50(m),∴,∵=cosα=0.80,∴.【点评】本题考查了解直角三角形的应用,理解题意得出线段长度是解题的关键.20.(10分)如图,⊙O是△ABC的外接圆,D是直径AB上一点,∠ACD的平分线交AB于点E,交⊙O 于另一点F,FA=FE.(1)求证:CD⊥AB;(2)设FM⊥AB,垂足为M,若OM=OE=1,求AC的长.【分析】(1)证明∠CEB+∠DCE=∠BCE+∠ACE=∠ACB=90°,即可得到∠CDE=90°,由此得出CD⊥AB;(2)求出AB和BC的长,即可求出AC的长.【解答】(1)证明:∵FA=FE,∴∠FAE=∠AEF,∵∠FAE与∠BCE都是所对的圆周角,∴∠FAE=∠BCE,∵∠AEF=∠CEB,∴∠CEB=∠BCE,∵CE平分∠ACD,∴∠ACE=∠DCE∵AB是直径,∴∠ACB=90°,∴∠CEB+∠DCE=∠BCE+∠ACE=∠ACB=90°,∴∠CDE=90°,∴CD⊥AB;(2)解:由(1)知,∠BEC=∠BCE,∴BE=BC,∵AF=EF,FM⊥AB,∴MA=ME=2,AE=4,∴圆的半径OA=OB=AE﹣OE=3,∴BC=BE=OB﹣OE=2,在△ABC中,AB=6,BC=2,∠ACB=90°,∴.【点评】本题考查了圆周角定理,勾股定理,垂径定理等,掌握定理并综合运用是解题的关键.六、(本题满分12分)21.(12分)综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x(单位:cm)表示.将所收集的样本数据进行如下分组:组别A B C D Ex 3.5≤x<4.5 4.5≤x<5.5 5.5≤x<6.5 6.5≤x<7.57.5≤x≤8.5整理样本数据,并绘制甲、乙两园样本数据的频数分布直方图,部分信息如下:任务1求图1中a的值.【数据分析与运用】任务2A,B,C,D,E五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是(填正确结论的序号).①两园样本数据的中位数均在C组;②两园样本数据的众数均在C组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.【分析】(1)用200分别减去其它各组的频数可得a的值;(2)根据加权平均数公式计算即可;(3)分别根据中位数、众数和极差的定义解答即可;(4)根据统计图数据判断即可.【解答】解:(1)由题意得,a=200﹣(15+70+50+25)=40;(2)(15×4+50×5+70×6+50×7+15×8)=6,故乙园样本数据的平均数为6;(3)由统计图可知,两园样本数据的中位数均在C组,故①正确;甲园的众数在B组,乙园的众数在C组,故②结论错误;两园样本数据的最大数与最小数的差不一定相等,故③结论错误;故答案为:①;(4)乙园的柑橘品质更优,理由如下:由样本数据频数分布直方图可得,乙园一级柑橘所占比例大于甲园,因此可以认为乙园的柑橘品质更优.【点评】本题考查频数分布直方图,样本估计总体,频数分布表,加权平均数、中位数、众数以及极差,解题的关键是读懂图象信息,属于中考常考题型.七、(本题满分12分)22.(12分)如图1,▱ABCD的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且AM=CN.点E,F分别是BD与AN,CM的交点.(1)求证:OE=OF;(2)连接BM交AC于点H,连接HE,HF.(ⅰ)如图2,若HE∥AB,求证:HF∥AD;(ⅱ)如图3,若▱ABCD为菱形,且MD=2AM,∠EHF=60°,求的值.【分析】(1)证明△AOE≌△COF(ASA),即可得到OE=OF;(2)(i)证明△HOF∽△AOD,即可得到HF∥AD;(ii)先求出OA=2OH,OB=5OE,即可得到的值.【解答】(1)证明:∵▱ABCD,∴AD∥BC,OA=OC,∴AM∥CN,∵AM=CN,∴四边形AMCN是平行四边形,∴AN∥CM,∴∠OAE=∠OCF,在△AOE与△COF中,,∴△AOE≌△COF(ASA),∴OE=OF;(2)(i)证明:∵HE∥AB,∴,∵OB=OD,OE=OF,∴,∵∠HOF=∠AOD,∴△HOF∽△AOD,∴∠OHF=∠OAD,∴HF∥AD;(ii)解:∵▱ABCD为菱形,∴AC⊥BD,∵OE=OF,∠EHF=60°,∴∠EHO=∠FHO=30°,∴,∵AM∥BC,MD=2AM,∴=,即HC=3AH,∴OA+OH=3(OA﹣OH),∴OA=2OH,∵BN∥AD,MD=2AM,AM=CN,∴,即3BE=2ED,∴3(OB﹣OE)=2(OB+OE),∴OB=5OE,∴,∴的值是.【点评】本题考查了平行四边形的性质与判定,相似三角形的性质与判定,全等三角形的性质与判定等,综合运用性质与判定方法是解题的关键.八、(本题满分14分)23.(14分)已知抛物线y=﹣x2+bx(b为常数)的顶点横坐标比抛物线y=﹣x2+2x的顶点横坐标大1.(1)求b的值;(2)点A(x1,y1)在抛物线y=﹣x2+2x上,点B(x1+t,y1+h)在抛物线y=﹣x2+bx上.(ⅰ)若h=3t,且x1≥0,t>0,求h的值;(ⅱ)若x1=t﹣1,求h的最大值.【分析】(1)求出抛物线y=﹣x2+bx的顶点横坐标为,y=﹣x2+2x的顶点横坐标为1,根据题意列方程,即可求出b的值;(2)先求出h=﹣t2﹣2x1t+2x1+4t,(i)列方程即可求出h的值;(ii)求出h关于t的方程,配顶点式求出h最大值.【解答】解:(1)∵抛物线y=﹣x2+bx的顶点横坐标为,y=﹣x2+2x的顶点横坐标为1,∴,∴b=4;(2)∵点A(x1,y1)在抛物线y=﹣x2+2x上,∴,∵B(x1+t,y1+h)在抛物线y=﹣x2+4x上,∴,t),∴h=﹣t2﹣2x1t+2x1+4t,(i)∵h=3t,∴3t=﹣t2﹣2x1t+2x1+4t,∴t(t+2x1)=t+2x1,∵x1≥0,t>0,∴t+2x1>0,∴t=1,∴h=3;(ii)将x1=t﹣1代入h=﹣t2﹣2x1t+2x1+4t,∴h=﹣3t2+8t﹣2,,∵﹣3<0,∴当,即时,h取最大值.。
2024年云南省中考数学真题试卷(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1.中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作()A.100米B.100-米C.200米D.200-米2.某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为()A.45.7810⨯ B.357.810⨯ C.257810⨯ D.578010⨯3.下列计算正确的是()A.33456x x x += B.635x x x ÷= C.()327a a = D.()333ab a b =4.在实数范围内有意义,则x 的取值范围是()A.0x > B.0x ≥ C.0x < D.0x ≤5.某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A.正方体B.圆柱C.圆锥D.长方体6.一个七边形的内角和等于()A.540︒B.900︒C.980︒D.1080︒7.甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数x (单位:环)和方差2s 如下表所示甲乙丙丁x 9.99.58.28.52s 0.090.650.162.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁8.已知AF 是等腰ABC ∆底边BC 上的高,若点F 到直线AB 的距离为3,则点F 到直线AC 的距离为()A.32B.2C.3D.729.两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是()A.()280160x -= B.()280160x -=C.()80160x -= D.()801260x -=10.按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,第n 个代数式是()A.2nx B.()1nn x- C.1n nx + D.()1nn x+11.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A.爱B.国C.敬D.业12.在Rt ABC △中,90B Ð=°,已知34AB BC ==,,则tan A 的值为()A.45B.35C.43D.3413.如图,CD 是O 的直径,点A ,B 在O 上.若 AC BC=,36AOC ∠= ,则D ∠=()A.9B.18C.36oD.4514.分解因式:39a a -=()A.()()33a a a -+ B.()29a a + C.()()33a a -+ D.()29a a -15.某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A.700π平方厘米B.900π平方厘米C.1200π平方厘米D.1600π平方厘米二、填空题(本大题共4小题,每小题2分,共8分)16.若关于x 的一元二次方程220x x c -+=无实数根,则c 的取值范围是______.17.已知点()2,P n 在反比例函数10y x=的图象上,则n =__________.18.如图,AB 与CD 交于点O ,且AC BD ∥.若12OA OC AC OB OD BD ++=++,则AC BD=__________.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有______人.三、解答题(本大题共8小题,共62分)20.计算:120117sin3062-⎛⎫++--- ⎪⎝⎭.21.如图,在ABC ∆和AED △中,AB AE =,BAE CAD ∠=∠,AC AD =.求证:ABC AED ≌△△.22.某旅行社组织游客从A地到B地的航天科技馆参观,已知A地到B地的路程为300千米,乘坐C型车比乘坐D型车少用2小时,C型车的平均速度是D型车的平均速度的3倍,求D型车的平均速度.23.为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆a,植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆a,植物园b,科技馆c三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a,选择植物园b为b,选择科技馆c为c,记七年级年级组的选择为x,八年级年级组的选择为y.(1)请用列表法或画树状图法中的一种方法,求(),x y所有可能出现的结果总数(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.24.如图,在四边形ABCD 中,点E ,F ,G ,H 分别是各边的中点,且AB CD ∥,AD BC ∥,四边形EFGH 是矩形.(1)求证:四边形ABCD 是菱形(2)若矩形EFGH 的周长为22,四边形ABCD 的面积为10,求AB 的长.25.A ,B 两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A ,B 两种型号的吉祥物,有关信息见下表成本(单位:元/个)销售价格(单位:元/个)A 型号35aB 型号42b若顾客在该超市购买8个A 种型号吉祥物和7个B 种型号吉祥物,则一共需要670元;购买4个A 种型号吉祥物和5个B 种型号吉祥物,则一共需要410元.(1)求a ,b 的值(2)若某公司计划从该超市购买A ,B 两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x (单位:个)不少于B 种型号吉祥物数量的43,又不超过B 种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y 元,求y 的最大值.注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.26.已知抛物线21y x bx =+-的对称轴是直线32x =.设m 是抛物线21y x bx =+-与x 轴交点的横坐标,记533109m M -=.(1)求b 的值(2)比较M 与2的大小.27.如图,AB 是O 的直径,点D ,F 是O 上异于A ,B 的点.点C 在O 外,CA CD =,延长BF 与CA 的延长线交于点M ,点N 在BA 的延长线上,AMN ABM ∠∠=,AM BM AB MN ⋅=⋅.点H 在直径AB 上,90AHD ∠= ,点E 是线段DH 的中点.(1)求AFB ∠的度数(2)求证:直线CM 与O 相切(3)看一看,想一想,证一证以下与线段CE ,线段EB ,线段CB 有关的三个结论:CE EB CB +<,CE EB CB +=,CE EB CB +>,你认为哪个正确?请说明理由.2024年云南省中考数学真题试卷解析一、选择题.1.【答案】B 2.【答案】A 3.【答案】D 4.【答案】B 5.【答案】D 6.【答案】B【解析】解:一个七边形的内角和等于()72180900-⨯︒=︒故选:B .7.【答案】A【解析】由表中数据可知,射击成绩的平均数最大的是甲,射击成绩方差最小的也是甲∴中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择甲故选:A .8.【答案】C 【解析】解:如图∵AF 是等腰ABC 底边BC 上的高∴AF 平分BAC∠∴点F 到直线AB ,AC 的距离相等∵点F 到直线AB 的距离为3∴点F 到直线AC 的距离为3.故选:C .9.【答案】B 【解析】解: 甲种药品成本的年平均下降率为x 根据题意可得()280160x -=故选:B .10.【答案】D【解析】解:∵按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ∴第n 个代数式是()1n n x +故选:D .11.【答案】D 12.【答案】C【解析】解:∵90B Ð=°,34AB BC ==,∴tan A =43BC AB =故选:C .13.【答案】B 【解析】解:连接OB∵ AC BC=∴36BOC AOC ∠=∠=︒∴1182D BOC ∠=∠=︒故选:B .14.【答案】A【解析】解:()()()329933a a a a a a a -=-=+-故选:A .15.【答案】C【解析】解:圆锥的底面圆周长为2π3060π⨯=厘米∴圆锥的侧面积为160π401200π2⨯⨯=平方厘米故选:C .二、填空题.16.【答案】1c >17.【答案】5【解析】解: 点()2,P n 在反比例函数10y x=的图象上1052n ∴==故答案为:5.18.【答案】12【解析】解: AC BD∥ACO BDO∴ ∽∴AC BD =12OA OC AC OB OD BD ++=++故答案为:12.19.【答案】120【解析】解:该校喜欢跳绳的学生大约有100012%120⨯=人故答案为:120.三、解答题.20.【答案】2【解析】解:120117sin3062-⎛⎫++--- ⎪⎝⎭1116522=++--2=.21.【解析】证明: BAE CAD∠=∠∴BAE EAC CAD EAC ∠+∠=∠+∠,即BAC EAD∠=∠在ABC 和AED △中AB AE BAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABC AED ∆∆≌.22.【答案】D 型车的平均速度为100km /h【解析】解:设D 型车的平均速度为km /h x ,则C 型车的平均速度是3km /hx根据题意可得,30030023x x-=整理得,6600x=解得100x=经检验100x=是该方程的解答:D型车的平均速度为100km/h.23.【答案】(1)见解析(2)23【解析】【小问1详解】解:由题意可列表如下a ba(),a a(),b ab(),a b(),b bc(),a c(),b c由表格可知,(),x y所有可能出现的结果总数为以上6种【小问2详解】解:由表格可知,该校七年级年级组、八年级年级组选择的研学基地互不相同的情况有4种∴P(七年级年级组、八年级年级组选择的研学基地互不相同)42 63 ==.24.【答案】(1)见解析(2【小问1详解】解:连接BD,ACAB CD ∥,AD BC∥∴四边形ABCD 是平行四边形四边形ABCD 中,点E ,F ,G ,H 分别是各边的中点GF BD ∴∥,HG AC∥ 四边形EFGH 是矩形HG GF∴⊥∴BD AC⊥∴四边形ABCD 是菱形【小问2详解】解: 四边形ABCD 中,点E ,F ,G ,H 分别是各边的中点12GF EH BD ∴==,12HG EF AC == 矩形EFGH 的周长为22∴22BD AC += 四边形ABCD 是菱形即111122BD AC OA OB +=+= 四边形ABCD 的面积为101102BD AC ∴⋅=,即210OA OB ⋅=()2222121OA OB OA OA OB OB +=+⋅+= ∴2212110111OA OB +=-=∴AB ==.25.【答案】(1)4050a b =⎧⎨=⎩(2)564【小问1详解】解:由题知,8767045410a b a b +=⎧⎨+=⎩解得4050a b =⎧⎨=⎩【小问2详解】解: 购买A 种型号吉祥物的数量x 个则购买B 种型号吉祥物的数量()90x -个 且购买A 种型号吉祥物的数量x (单位:个)不少于B 种型号吉祥物数量的43∴()4903x x ≥-解得3607x ≥A 种型号吉祥物的数量又不超过B 种型号吉祥物数量的2倍.∴()290x x ≤-解得60x ≤即360607x ≤≤由题知,()()()4035504290y x x =-+--整理得3720y x =-+ y 随x 的增大而减小∴当52x =时,y 的最大值为352720564y =-⨯+=.26.【答案】(1)3b =-(2)当32M +=时,2M >;当32M =时,2M <.【小问1详解】解:∵抛物线21y x bx =+-的对称轴是直线32x =∴3212b -=⨯∴3b =-【小问2详解】解:∵m 是抛物线21y x bx =+-与x 轴交点的横坐标∴2310m m --=∴213m m-=∴422219m m m -+=∴42111m m =-而231m m =+代入得:()41131123310m m m =+-==+∴()()5423310331033311010933m m m m m m m m m m =⋅=+=+=++=+∴5331093333109109m m M m -+-===∵2310m m --=解得:32m ±=当3132M m +==时,1331313302222M +-=-=>∴2M >当32M m -==时,3302222M --=-=<∴2M <.27.【答案】(1)90︒(2)见解析(3)CE EB CB +=,理由见解析【小问1详解】解:∵AB 是O 的直径,点F 是O 上异于A ,B 的点∴90AFB ∠=︒【小问2详解】证明:∵AM BM AB MN⋅=⋅∴AM MN AB BM=又∵AMN ABM∠∠=∴ABM AMN∽∴AMB N ∠=∠,MAN MAB ∠=∠∵180MAN MAB ∠+∠=︒∴90MAN MAB ∠=∠=︒∴OA CA ⊥∵OA 是半径∴直线CM 与O 相切【小问3详解】我认为:CE EB CB +=正确,理由如下连接,,OA OD BD ,连接OC 交AD 于点G ,如图,则:OA OD =∴点O 在线段AD 的中垂线上∵CA CD=∴点C 在线段AD 的中垂线上∴OC AD ⊥∴90OGA ∠=︒∵AB 是O 的直径∴90ADB ∠=︒∴OGA ADB ∠=∠∴OG BD ∥∴AOC ABD ∠=∠∵90AHD ∠=︒∴90DHB ∠=︒∴tan DH HBD BH ∠=,tan EH HBE BH ∠=∵E 为DH 的中点∴11tan tan 22EH DH HBE HBD BH BH ∠==⋅=∠∵tan ,tan AC AC AOC ABC AO AB ∠=∠=,且12AO AB =∴11tan tan 22AC ABC AOC OA ∠=⋅=∠∵AOC ABD ∠=∠∴tan tan HBE ABC ∠=∠∴HBE ABC ∠=∠∴,,B E C 三点共线∴CE EB CB +=.。
最新中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.5B. √2C. 2/3D. 3.14答案:B2. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5和-5D. 以上都不是答案:C3. 一个等腰三角形的底边长为6,两腰长为5,那么这个三角形的周长是:A. 16B. 17C. 18D. 19答案:A4. 如果一个函数的图像是一条直线,那么这个函数是:A. 一次函数B. 二次函数C. 三次函数D. 无法确定答案:A5. 一个数的立方根是2,那么这个数是:A. 8B. 6C. 4D. 2答案:A6. 一个数的平方是25,那么这个数是:A. 5B. -5C. ±5D. 25答案:C7. 一个圆的半径是3,那么这个圆的面积是:A. 9πB. 18πC. 27πD. 36π答案:C8. 一个直角三角形的两直角边长分别为3和4,那么斜边长是:A. 5B. 6C. 7D. 8答案:A9. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A10. 下列哪个选项是二次根式?A. √3B. √(-1)C. √(2/3)D. √(2x)答案:D二、填空题(每题4分,共20分)1. 一个数的平方是16,那么这个数是______。
答案:±42. 一个数的绝对值是7,那么这个数是______。
答案:±73. 一个等腰三角形的底边长为8,两腰长为10,那么这个三角形的周长是______。
答案:284. 一个圆的半径是4,那么这个圆的面积是______。
答案:16π5. 一个直角三角形的两直角边长分别为6和8,那么斜边长是______。
答案:10三、解答题(每题10分,共50分)1. 已知一个直角三角形的两直角边长分别为3和4,求斜边长。
答案:根据勾股定理,斜边长为√(3²+4²)=√(9+16)=√25=5。
2024年吉林省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若()3-⨯ 的运算结果为正数,则W 内的数字可以为( )A .2B .1C .0D .1-【答案】D【分析】本题主要考查了有理数的乘法计算,根据有理数的乘法计算法则,分别计算出3-与四个选项中的数的乘积即可得到答案.【详解】解:()326-⨯=-,()313-⨯=-,()300-⨯=,()()313-⨯-=,四个算式的运算结果中,只有3是正数,故选:D .2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是( )A .主视图与左视图相同B .主视图与俯视图相同C .左视图与俯视图相同D .主视图、左视图与俯视图都相同【答案】A 【分析】本题主要考查了简单几何体的三视图,根据三视图的定义找到葫芦的三视图即可得到答案.【详解】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段,故选:A .4.下列方程中,有两个相等实数根的是( )A .()221x -=-B .()220x -=C .()221x -=D .()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A .()4,2--B .()4,2-C .()2,4D .()4,2【答案】C【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===︒,∠,由旋转的性质可得42OA OA A B AB '''====,,90OA B ''∠=︒,据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2,∴42OA OC ==,,∵四边形OABC 是矩形,∴290AB OC ABC ===︒,∠,∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',∴42OA OA A B AB '''====,,90OA B ''∠=︒,∴A B y ''⊥轴,∴点B '的坐标为()2,4,故选:C .6.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒【答案】C 【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解.【详解】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒-︒=︒,故选:C .二、填空题7.当分式11x +的值为正数时,写出一个满足条件的x 的值为 .8.因式分解:a 2﹣3a=.【答案】a (a ﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).9.不等式组2030x x ->⎧⎨-<⎩的解集为 .【答案】23x <</32x >>【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:2030x x ->⎧⎨-<⎩①②解不等式①得:2x >,解不等式②得:3x <,∴原不等式组的解集为23x <<,故答案为:23x <<.10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .【答案】两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.正六边形的每个内角等于°.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC 的值为 .13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为 .【答案】()22220.5x x +=+【分析】本题考查了勾股定理的实际应用,正确理解题意,运用勾股定理建立方程是解题的关键.设AC 的长度为x 尺,则0.5AB AB x '==+,在Rt AB C '△中,由勾股定理即可建立方程.【详解】解:设AC 的长度为x 尺,则0.5AB AB x '==+,∵AB B C '⊥,由勾股定理得:222AC B C AB ''+=,∴()22220.5x x +=+,故答案为:()22220.5x x +=+.14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为 2m (结果保留π).三、解答题15.先化简,再求值:()()2111a a a +-++,其中a =16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有∴幸运游客小明与小亮恰好抽中同一个项目的概率17.如图,在ABCD Y 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE BC =.【答案】证明见解析【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出OAE OBC OCB E ==∠∠,∠∠,再由线段中点的定义得到OA OB =,据此可证明()AAS AOE BOC △≌△,进而可证明AE BC =.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAE OBC OCB E ==∠∠,∠∠,∵点O 是AB 的中点,∴OA OB =,∴()AAS AOE BOC △≌△,∴AE BC =.18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.【答案】白色琴键52个,黑色琴键36个【分析】本题考查了列一元一次方程解应用题,正确理解题意是解题的关键.设黑色琴键x 个,则白色琴键()16x +个,可得方程()1688x x ++=,再解方程即可.【详解】解:设黑色琴键x 个,则白色琴键()16x +个,由题意得:()1688x x ++=,解得:36x =,∴黑色琴键由:361652+=(个),答:白色琴键52个,黑色琴键36个.19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.【答案】(1)见解析(2)见解析【分析】本题主要考查了正方形的性质与判定,矩形的性质与判定,切线的判定,画对称轴等等:(1)如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;(2)如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求.【详解】(1)解:如图所示,取格点E、F,作直线EF,则直线EF即为所求;,的中点;易证明四边形ABCD是矩形,且E、F分别为AB CD、,作直线GH,则直线GH即为所求;(2)解:如图所示,取格点G H⊥.易证明四边形OGTH是正方形,点E为正方形OGTH的中心,则OE GH20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21.中华人民共和国20192023根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少元?(1)20192023-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,②201920232020年全国居民人均可支配收入最低.【答案】(1)8485元(2)35128元(3)①【分析】本题主要考查了频数分布直方图,频数分布折线图,中位数:(1)用2023年的全国居民人均可支配收入减去2019年全国居民人均可支配收入即可得到答案;(2)根据中位数的定义求解即可;(3)根据统计图的数据即可得到答案.【详解】(1)解:39218307338485-=元,答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.(2)解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元,∴20192023-年全国居民人均可支配收入的中位数为35128元;(3)解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)在Rt GAD 中,45EAD ∠=∴873tan DG AG DG EAD===∠在Rt GAC △中,37EAC ∠=∴tan 873CG AG EAC =⋅∠=∴873654.75CD DG CG =-=-23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x ,凳面的宽度为mm y ,记录如下:以对称轴为基准向两边各取相同的长度/mm x 16.519.823.126.429.7凳面的宽度/mm y 115.5132148.5165181.5【分析数据】如图③,小组根据表中x ,y 的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度是多少?【答案】(1)在同一条直线上,函数解析式为:533y x =+(2)36mm【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.(1)用待定系数法求解即可;(2)将213y =代入函数解析式,解方程即可.【详解】(1),解:设函数解析式为:()0y kx b k =+≠,∵当16.5,115.5x y ==,23.1,148.5x y ==,∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩,解得:533k b =⎧⎨=⎩,∴函数解析式为:533y x =+,经检验其余点均在直线533y x =+上,∴函数解析式为533y x =+,这些点在同一条直线上;(2)解:把213y =代入533y x =+得:533213x +=,解得:36x =,∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S = ______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.25.如图,在ABC 中,90C ∠=︒,30B ∠=︒,3cm AC =,AD 是ABC 的角平分线.动点P从点A /s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE V与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.∵90C ∠=︒,30B ∠=∴60BAC ∠=︒,∵AD 平分BAC ∠,∴30PAQ BAD ∠=∠=∵PQ AB ∥,∴30APQ BAD ∠=∠=∴PAQ APQ =∠∠,∵PQE V 为等边三角形,∴QE QP =,由(1)得QA QP =∴QE QA =,即22AE AQ t ==∵30PAQ ∠=︒,∴1322PG AP ==∵PQE V 是等边三角形,∴QE PQ AQ ===∴12S QE PG =⋅=∵PQE V 是等边三角形,∴60E ∠=︒,而CE AE AC =-∴tan CF CE =⋅∠∴1S CE CF =⋅∵30DAC ∠=︒DCA ∠=由上知3DC =,∴23AD =,∴此时323PD t =-26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.则10m -≤≤,综上:10m -≤≤或12m ≤≤.【详解】(1)解:∵20x =-<,∴将2x =-,1y =代入3y kx =+,得:231k -+=,解得:1k =,∵20,30x x =>=>,∴将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩,解得:12a b =⎧⎨=-⎩;(2)解:Ⅰ,∵1,1,2k a b ===-,∴一次函数解析式为:3y x =+,二次函数解析式为:223y x x =-+当0x >时,223y x x =-+,对称为直线1x =,开口向上,∴1x ≥时,y 随着x 的增大而增大;当0x ≤时,3y x =+,10k =>,∴0x ≤时,y 随着x 的增大而增大,综上,x 的取值范围:0x ≤或1x ≥;Ⅱ,∵230ax bx t ++-=,∴23ax bx t ++=,在04x <<时无解,∴问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,∵对于223y x x =-+,当1x =时,2y =∴顶点为()1,2,如图:∴当2t =时,抛物线223y x x =-+与直线y ∴当2t <时,抛物线223y x x =-+与直线y 当4x =,168311y =-+=,∴当11t =时,抛物线223y x x =-+与直线∴当11t ≥时,抛物线223y x x =-+与直线y ∴当2t <或11t ≥时,抛物线223y x x =-+与直线即:当2t <或11t ≥时,关于x 的方程2ax +Ⅲ:∵,1P Q x m x m ==-+,由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,∴12m ≤≤;②当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,∴10m -≤≤,综上:10m -≤≤或12m ≤≤.。
2024成都中考数学真题及答案第一部分:选择题1.若一条直线的斜率为1/2,该直线在坐标系中的斜率为() A. 1/2 B.-1/2 C. 2 D. -22.计算 3 - |-7| + 2×(-5) 的值是() A. -21 B. -13 C. -7 D. 13.已知若两个角互补,则其中一个角一定是() A. 锐角 B. 直角 C. 钝角D. 旋转角4.若一个正方形的边长为x,则其面积为() A. x^2 B. 2x C. x/2 D. 4x5.设直线L1和直线L2垂直,直线L1的斜率为3/4,则L2的斜率为() A. 4/3 B. 3/4 C. -3/4 D. -4/3第二部分:解答题问题1:三角形的内角和公式证明:一个三角形的三个内角之和等于180度。
解析:设三角形的三个内角分别为A、B、C度。
我们可以通过以下步骤来证明这个结论:1.假设线段AB、BC、AC分别构成三角形。
2.通过对角度度量的定义,我们知道直线AB与直线AC的夹角等于角A。
3.同样地,直线AB与直线BC的夹角等于角B,直线BC与直线AC的夹角等于角C。
4.根据直线上的任意两条线段之间的夹角恒等于两个夹角的和的性质,我们可以得出以下等式:角A + 角B = 直线AB与AC的夹角——(1)角B + 角C = 直线AB与BC的夹角——(2)5.根据直线上的任意两条线段之间的夹角恒等于两个夹角的和的性质,我们可以得出以下等式:角A + 角C = 直线AC与BC的夹角——(3)6.由于直线AC与BC的夹角等于180度(直线在平面上的性质),我们可以得出以下等式:角A + 角B + 角C = 180度——(4)7.因此,一个三角形的三个内角之和等于180度。
问题2:一元一次方程的解解:考虑以下一元一次方程:2x - 5 = 3x + 1。
我们需要找到满足这个方程的x的值。
首先,我们可以将方程转化为标准形式,即将未知数放在等号左边,常数放在右边:2x - 3x = 1 + 5。
一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 若方程2x-3=5的解为x,则x的值为()A. 2B. 4C. 7D. 8答案:B解析:将方程2x-3=5移项得2x=5+3,即2x=8,两边同时除以2得x=4。
2. 已知等腰三角形底边长为6cm,腰长为8cm,则该三角形的面积为()A. 24cm²B. 32cm²C. 36cm²D. 48cm²答案:C解析:等腰三角形的面积公式为S=1/2×底×高,由于是等腰三角形,底边上的高也是腰的中线,所以高为8cm的一半,即4cm。
代入公式得S=1/2×6×4=12cm²,再乘以2得36cm²。
3. 下列函数中,定义域为全体实数的是()A. y=√(x-1)B. y=1/xC. y=x²D. y=1/x²答案:C解析:A选项中,x-1≥0,即x≥1,所以定义域不是全体实数;B选项中,x≠0,所以定义域不是全体实数;D选项中,x≠0,所以定义域不是全体实数;C选项中,x²的定义域为全体实数。
4. 若a、b、c是等差数列,且a+c=10,b=5,则公差d为()A. 1B. 2C. 3D. 4答案:B解析:等差数列的性质是相邻两项之差相等,即d=a2-a1=b-a1。
由a+c=10,得c=a+9。
又因为b=5,所以d=5-a。
将a+c=10代入得5-a+a+9=10,解得a=2,所以d=5-2=3。
5. 下列命题中,正确的是()A. 平行四边形的对角线互相垂直B. 等腰三角形的底角相等C. 直角三角形的斜边最长D. 等边三角形的三个角都相等答案:B解析:A选项错误,平行四边形的对角线互相平分但不一定垂直;B选项正确,等腰三角形的两腰相等,所以底角也相等;C选项正确,直角三角形的斜边是直角边所对的边,所以斜边最长;D选项正确,等边三角形的定义就是三边都相等,所以三个角也都相等。
绝密★启用前2024年陕西省中考数学试卷(A卷)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−3的倒数为().A. −13B. 13C. 3D. −32.如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )A.B.C.D.3.如图,AB//DC,BC//DE,∠B=145°,则∠D的度数为( )A. 25°B. 35°C. 45°D. 55°4.不等式2(x−1)≥6的解集是( )A. x≤2B. x≥2C. x≤4D. x≥45.如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E是DC的中点,连接AE,则图中的直角三角形共有( )A. 2个B. 3个C. 4个D. 5个6.一个正比例函数的图象经过点A(2,m)和点B(n,−6).若点A与点B关于原点对称,则这个正比例函数的表达式为( )A. y=3xB. y=−3xC. y=13x D. y=−13x7.如图,正方形CEFG的顶点G在正方形ABCD的边CD上,AF与DC交于点H,若AB=6,CE=2,则DH的长为( )A. 2B. 3C. 52D. 838.已知一个二次函数y=ax2+bx+c的自变量x与函数y的几组对应值如下表:则下列关于这个二次函数的结论正确的是( )A. 图象的开口向上B. 当x>0时,y的值随x值的增大而减小C. 图象经过第二、三、四象限D. 图象的对称轴是直线x=1第II卷(非选择题)二、填空题:本题共5小题,每小题3分,共15分。
2024年江苏省苏州市中考数学试卷(附答案解析)一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.1.(3分)用数轴上的点表示下列各数,其中与原点距离最近的是()A.﹣3B.1C.2D.3【解答】解:∵|﹣3|=3,|1|=1,|2|=2,|3|=3,而3<2<1,∴1与原点距离最近,故选:B.2.(3分)下列图案中,是轴对称图形的是()A.B.C.D.【答案】A.3.(3分)苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.2.47×1010B.247×1010C.2.47×1012D.247×1012【答案】C.4.(3分)若a>b﹣1,则下列结论一定正确的是()A.a+1<b B.a﹣1<b C.a>b D.a+1>b【解答】解:若a>b﹣1,不等式两边加1可得a+1>b,故A不合题意,D符合题意,根据a>b﹣1,得不到a﹣1<b,a>b,故B、C不符合题意.故选:D.5.(3分)如图,AB∥CD,若∠1=65°,∠2=120°,则∠3的度数为()A.45B.55°C.60°D.65°【解答】解:∵AB∥CD,∠1=65°,∴∠ACD=∠1=65°,∵∠2=∠ACD+∠3,∠2=120°,∴∠3=55°,故选:B.6.(3分)某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择()A.甲、丁B.乙、戊C.丙、丁D.丙、戊【答案】C.7.(3分)如图,点A为反比例函数y=﹣(x<0)图象上的一点,连接AO,过点O作OA的垂线与反比例函数y=(x>0)的图象交于点B,则的值为()A.B.C.D.【分析】作AG⊥x轴,BH⊥x轴,可证明△AGO∽△OHB,利用面积比等于相似比的平方解答即可.【解答】解:作AG⊥x轴,垂足为G,BH⊥x轴,垂足为H,∵点A在函数y=﹣图象上,点B在反比例函数y=图象上,=,S△BOH=2,∴S△AGO∵∠AOB=90°,∴∠AOG=∠HBO,∠AGO=∠OHB,∴△AGO∽△OHB,∴,∴.故选:A.8.(3分)如图,矩形ABCD中,AB=,BC=1,动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿AB,CD向终点B,D运动,过点E,F作直线l,过点A作直线l的垂线,垂足为G,则AG的最大值为()A.B.C.2D.1【解答】解:连接AC,交EF于O,∵四边形ABCD是矩形,∴AB∥CD,∠B=90°,∵AB=,BC=1,∴AC===2,∵动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿AB,CD向终点B,D运动,∴CF=AE,∵AB∥CD,∴∠ACD=∠CAB,又∵∠COF=∠AOE,∴△COF≌△AOE(AAS),∴AO=CO=1,∵AG⊥EF,∴点G在以AO为直径的圆上运动,∴AG为直径时,AG有最大值为1,故选:D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.9.(3分)计算:x3•x2=.【解答】解:x3•x2=x5,故答案为:x5.10.(3分)若a=b+2,则(b﹣a)2=.【解答】解:∵a=b+2,∴b﹣a=﹣2,∴(b﹣a)2=(﹣2)2=4,故答案为:4.11.(3分)如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是.【解答】解:根据题意可知,正八边形转盘被分成八个面积相等的三角形,其中阴影部分的面积为3个面积相等的三角形,∴指针落在阴影部分的概率等于阴影部分的面积除以正八边形的面积,即,故答案为:.12.(3分)如图,△ABC是⊙O的内接三角形,若∠OBC=28°,则∠A=°.【解答】解:连接OC,∵OB=OC,∠OBC=28°,∴∠OCB=∠OBC=28°,∴∠BOC=180°﹣∠OCB﹣∠OBC=124°,∴,故答案为:62.13.(3分)直线l1:y=x﹣1与x轴交于点A,将直线l1绕点A逆时针旋转15°,得到直线l2,则直线l2对应的函数表达式是.【分析】根据题意画出示意图,结合特殊角的三角函数值即可解决问题.【解答】解:如图所示,将x=0代入y=x﹣1得,y=﹣1,所以点B坐标为(0,﹣1).将y=0代入y=x﹣1得,x=1,所以点A的坐标为(1,0),所以OA=OB=1,所以∠OBA=∠OAB=45°.由旋转可知,∠BAC=15°,∴∠OAC=45°+15°=60°.在Rt△AOC中,tan∠OAC=,所以OC=,则点C的坐标为(0,).令直线l2的函数表达式为y=kx+b,则,解得,所以直线l2的函数表达式为y=.故答案为:y=.14.(3分)铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O,所在圆的圆心C恰好是△ABO的内心,若AB=2,则花窗的周长(图中实线部分的长度)=.(结果保留π)【解答】解:如图,过点C作CM⊥AB于点M,则AM=BM=AB=,∵六条等弧所对应的弦构成一个正六边形,中心为点O,∴∠AOB==60°,∵OA=OB,∴△AOB是正三角形,∵点O是△AOB的内心,∴∠CAB=∠CBA=×60°=30°,∠ACB=2∠AOB=120°,在Rt△ACM中,AM=,∠CAM=30°,∴AC==2,∴的长为=π,∴花窗的周长为π×6=8π.故答案为:8π.15.(3分)二次函数y=ax2+bx+c(a≠0)的图象过点A(0,m),B(1,﹣m),C(2,n),D(3,﹣m),其中m,n为常数,则的值为.【解答】解:将A(0,m),B(1,﹣m),D(3,﹣m)代入y=ax2+bx+c(a≠0),得:,∴,把C(2,n)代入,∴,∴,故答案为:.16.(3分)如图,△ABC中,∠ACB=90°,CB=5,CA=10,点D,E分别在AC,AB边上,AE=AD,连接DE,将△ADE沿DE翻折,得到△FDE,连接CE,CF.若△CEF的面积是△BEC面积的2倍,则AD=.【解答】解:∵,∴设AD=x,,∵△ADE沿DE翻折,得到△FDE,∴DF=AD=x,∠ADE=∠FDE,过E作EH⊥AC于H,设EF与AC相交于M,则∠AHE=∠ACB=90°,又∵∠A=∠A,∴△AHE∽△ACB,∴,∵CB=5,CA=10,,∴,∴EH=x,,则DH=AH﹣AD=x=EH,∴Rt△EHD是等腰直角三角形,∴∠HDE=∠HED=45°,则∠ADE=∠EDF=135°,∴∠FDM=135°﹣45°=90°,在△FDM和△EHM中,,∴△FDM≌△EHM(AAS),∴,,∴,=25﹣5x,∵△CEF的面积是△BEC的面积的2倍,∴,则3x2﹣40x+100=0,解得,x2=10(舍去),则,故答案为:.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.17.(5分)计算:|﹣4|+(﹣2)0﹣.【分析】先化简,然后计算加减法即可.【解答】解:|﹣4|+(﹣2)0﹣=4+1﹣3=2.18.(5分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①﹣②得:4y=4,即y=1,将y=1代入①得:x=3,则方程组的解为.19.(6分)先化简,再求值:(+1)÷,其中x=﹣3.【解答】解:(+1)÷=•=•=,当x=﹣3时,原式==.【点评】本题考查分式的化简求值,熟练掌握运算法则是解答本题的关键.20.(6分)如图,△ABC中,AB=AC,分别以B,C为圆心,大于BC长为半径画弧,两弧交于点D,连接BD,CD,AD,AD与BC交于点E.(1)求证:△ABD≌△ACD;(2)若BD=2,∠BDC=120°,求BC的长.【解答】(1)证明:由作图知:BD=CD.在△ABD和△ACD中,,∴△ABD≌△ACD(SSS);(2)解:∵△ABD≌△ACD,∠BDC=120°,∴∠BDA=∠CDA=∠BDC=×120°=60°,又∵BD=CD,∴DA⊥BC,BE=CE.∵BD=2,∴BE=BD•sin∠BDA=2×=,∴.【点评】本题考查作图﹣基本作图,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.21.(6分)一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)【分析】(1)直接由概率公式求解即可;(2)画树状图,共有12种等可能的结果,其中抽取的书签恰好1张为“春”,1张为“秋”的结果有2种,再由概率公式求解即可.【解答】解:(1)∵一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,∴从盒子中任意抽取1张书签,恰好抽到“夏”的概率为,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中抽取的书签恰好1张为“春”,1张为“秋”的结果有2种,∴抽取的书签恰好1张为“春”,1张为“秋”的概率为=.22.(8分)某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B(乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年身全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【解答】解:(1)此次调查的总人数为9÷15%=60(人),D项目的人数有60﹣6﹣18﹣9﹣12=15(人),补全条形统计图如下:(2)图②中项目E对应的圆心角的度数为360°×=72°;故答案为:72;(3)800×=240(名),答:估计本校七年级800名学生中选择项目B(乒乓球)的人数为240名.23.(8分)图①是某种可调节支撑架,BC为水平固定杆,竖直固定杆AB⊥BC,活动杆AD可绕点A旋转,CD为液压可伸缩支撑杆,已知AB=10cm,BC=20cm,AD=50cm.(1)如图②,当活动杆AD处于水平状态时,求可伸缩支撑杆CD的长度(结果保留根号);(2)如图③,当活动杆AD绕点A由水平状态按逆时针方向旋转角度α,且tanα=(α为锐角),求此时可伸缩支撑杆CD的长度(结果保留根号).【解答】解:(1)过点C作CE⊥AD,垂足为E,由题意得:AB=CE=10cm,BC=AE=20cm,∵AD=50cm,∴ED=AD﹣AE=50﹣20=30(cm),在Rt△CED中,CD===10(cm),∴可伸缩支撑杆CD的长度为10cm;(2)过点D作DF⊥BC,交BC的延长线于点F,交AD′于点G,由题意得:AB=FG=10cm,AG=BF,∠AGD=90°,在Rt△ADG中,tanα==,∴设DG=3x cm,则AG=4x cm,∴AD===5x(cm),∵AD=50cm,∴5x=50,解得:x=10,∴AG=40cm,DG=30cm,∴DF=DG+FG=30+10=40(cm),∴BF=AG=40cm,∵BC=20cm,∴CF=BF﹣BC=40﹣20=20(cm),在Rt△CFD中,CD===20(cm),∴此时可伸缩支撑杆CD的长度为20cm.【点评】本题考查了解直角三角形的应用,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.24.(8分)如图,△ABC中,AC=BC,∠ACB=90°,A(﹣2,0),C(6,0),反比例函数y=(k ≠0,x>0)的图象与AB交于点D(m,4),与BC交于点E.(1)求m,k的值;(2)点P为反比例函数y=(k≠0,x>0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM∥AB,交y轴于点M,过点P作PN∥x轴,交BC于点N,连接MN,求△PMN面积的最大值,并求出此时点P的坐标.【分析】(1)根据条件先求出点B坐标,再利用待定系数法求出直线AB解析式,将D坐标代入两个函数解析式得到mk的值;(2)先求出PQ=MQ,再设点P的坐标为(t,),则PQ=t,PN=6﹣t,MQ=PQ=t,利用三角形==﹣,利用最值求出t和面积最大值及点P坐标即面积列出函数S△PMN可.【解答】解:(1)∵A(﹣2,0),C(6,0),∴AC=8.又∵AC=BC,∴BC=8.∠ACB=90°,∴点B(6,8).设直线AB的函数表达式为y=ax+b,将A(﹣2,0),B(6,8)代入y=ax+b得:,解得,∴直线AB的函数表达式为y=x+2.∴将点D(m,4)代入y=x+2,得m=2.∴D(2,4),将D(2,4)代入反比例函数解析式y=得:4=,解得k=8.(2)延长NP交y轴于点Q,交AB于点L.∵AC=BC,∠BCA=90°,∴∠BAC=45°,∵PN∥x轴,∴∠BLN=∠BAC=45°,∠NQM=90°,∵AB∥MP,∴∠MPL=∠BLP=45°,∠QMP=∠QPM=45°,∴QM=QP,设点P的坐标为(t,),则PQ=t,PN=6﹣t,MQ=PQ=t,===﹣,∴S△PMN有最大值,此时P(3,).∴当t=3时,S△PMN【点评】本题考查了反比例函数k值的几何意义、反比例函数图象上点的坐标特征、等腰直角三角形的性质,熟练掌握二次函数顶点式求最值是关键.25.(10分)如图,△ABC中,AB=4,D为AB中点,∠BAC=∠BCD,cos∠ADC=,⊙O是△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.【分析】(1)先证明△BAC∽△BCD,得到,即可解答;(2)过点A作AE⊥CD于点E,连接CO,并延长交⊙O于F,连接AF,在Rt△AED中,通过解直角三角形得到DE=1,,由△BAC∽△BCD得到,设CD=x,则,CE=x﹣1,在Rt△ACE中,根据勾股定理构造方程,求得CD=2,,由∠AFC=∠ADC得到sin∠AFC=sin∠ADC,根据正弦的定义即可求解.【解答】解:(1)∵∠BAC=∠BCD,∠B=∠B,∴△BAC∽△BCD,∴,∵,D为AB中点,∴,∴BC2=16,∴BC=4;(2)过点A作AE⊥CD于点E,连接CO,并延长交⊙O于F,连接AF,∵在Rt△AED中,,,∴DE=1,∴,∵△BAC∽△BCD,∴,设CD=x,则AC=x,CE=x﹣1,∵在Rt△ACE中,AC2=CE2+AE2,∴,即x2+2x﹣8=0,解得x=2,x=﹣4(舍去),∴CD=2,AC=,∵∠AFC与∠ADC都是所对的圆周角,∴∠AFC=∠ADC,∵CF为⊙O的直径,∴∠CAF=90°,∴,∴,即⊙O的半径为.【点评】本题考查相似三角形的判定及性质,解直角三角形,圆周角定理,掌握各种定理和判定方法是解题的关键.26.(10分)某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D1001次列车从A站始发,经停B站后到达C站,G1002次列车从A站始发,直达C站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表车次A站B站C站发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了分钟,从B站到C站行驶了分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2.①=.②从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t=75),已知v1=240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25≤t≤150),若|d1﹣d2|=60,求t的值.【分析】(1)直接根据表中数据解答即可;(2)①分别求出D1001次列车、G1002次列车从A站到C站的时间,然后根据路程等于速度乘以时间求解即可;②先求出v2,A与B站之间的路程,G1002次列车经过B站时,对应t的值,从而得出当90≤t≤110时,D1001次列车在B站停车,G1002次列车经过B站时,D1001次列车正在B站停车,然后分25≤t <90,90≤t≤100,100<t≤110,110<t≤150讨论,根据题意列出关于t的方程求解即可.【解答】解:(1)D1001次列车从A站到B站行驶了90分钟,从B站到C站行驶了60分钟,故答案为:90,60;(2)①根据题意得:D1001次列车从A站到C站共需90+60=150分钟,G1002次列车从A站到C站共需35+60+30=125分钟,∴150v1=125v2,∴,故答案为:;②∵v1=4(千米/分钟),,∴v2=4.8(千米/分钟),∵4×90=360(千米),∴A与B站之间的路程为360千米,∵360÷4.8=75(分钟),∴当t=100时,G1002次列车经过B站,由题意可知,当90≤t≤110时,D1001次列车在B站停车,∴G1002次列车经过B站时,D1001次列车正在B站停车,i.当25≤t<90时,d1>d2,∴|d1﹣d2|=d1﹣d2,∴4t﹣4.8(t﹣25)=60,t=75(分钟);ⅱ.当90≤t≤100时,d1≥d2,∴|d1﹣d2|=d1﹣d2,∴360﹣4.8(t﹣25)=60,t=87.5(分钟),不合题意,舍去;ⅱi.当100<t≤110时,d1<d2,∴|d1﹣d2|=d2﹣d1,∴4.8(t﹣25)﹣360=60,t=112.5(分钟),不合题意,舍去;iv.当110<t≤150时,d1<d2,∴|d1﹣d2|=d2﹣d1,∴4.8(t﹣25)﹣[360+4(t﹣110)]=60,t=125(分钟);综上所述,当t=75或125时,|d1﹣d2|=60.【点评】本题考查了一元一次方程的应用,速度、时间、路程的关系,明确题意,合理分类讨论是解题的关键.27.(10分)如图①,二次函数y=x2+bx+c的图象C1与开口向下的二次函数图象C2均过点A(﹣1,0),B(3,0).(1)求图象C1对应的函数表达式;(2)若图象C2过点C(0,6),点P位于第一象限,且在图象C2上,直线l过点P且与x轴平行,与图象C2的另一个交点为Q(Q在P左侧),直线l与图象C1的交点为M,N(N在M左侧).当PQ=MP+QN时,求点P的坐标;(3)如图②,D,E分别为二次函数图象C1,C2的顶点,连接AD,过点A作AF⊥AD,交图象C2于点F,连接EF,当EF∥AD时,求图象C2对应的函数表达式.【解答】解:(1)将A(1,0),B(3,0代入y=x2+bx+c得,解得,∴图象C1对应的函数表达式:y=x2﹣2x﹣3;(2)设C2对应的函数表达式为y=a(x+1)(x﹣3)(a<0),将点C(0,6)代入得,a=﹣2.∴C2对应的函数表达式为:y=﹣2(x+1)(x﹣3),其对称轴为直线x=1.又∵图象C1的对称轴也为直线x=1.作直线x=1,交直线l于点H(如答图①)由二次函数的对称性得,QH=PH,PM=NQ,又∵PQ=MP+QM,∴PH=PM.设PH=t(0<l<2),则点P的横坐标为t+1,点M的横坐标为2t+1,将x=t+1代入y=﹣2(x+1)(x﹣3),得y P=﹣2(t+2)(t﹣2),将x=2t+1代入y=(x+1)(x﹣3),得y M=(2t+2)(2t﹣2),∵y P=y M,∴﹣2(t+2)(t﹣2)=(2t+2)(2t﹣2),即6t2=12,解得,(舍去).∴点P的坐标为(+1,4);(3)连接DE,交x轴于点G,过点F作FI⊥ED于点I,过点F作FJ⊥x轴于点J,(如答图②),∵FI⊥ED,FJ⊥x轴,∴四边形IGJF为矩形,∴IF=GJ,IG=FJ,设C2对应的函数表达式为y=a(x+1)(x﹣3)(a<0),∵点D,E分别为二次函数图象C1,C2的顶点,∴D(1,﹣4),E(1,﹣4a).∴DG=4,AG=2,EG=﹣4a,在Rt△AGD中,,∵AF⊥AD,∴∠FAB+∠DAB=90°,又∵∠DAG+∠ADG=90°,∴∠ADG=∠FAB,∴tmn∠FAB=tm∠ADG=,设GJ=m(0<m<2),则AJ=2+m,∴FJ=,F(m+1,),∵EF∥AD,∴∠FEl=∠ADG,∴tan∠FEl=tan∠ADG==,∴EI=2m,∵EG=EI+IG,∴,∴①,∵点F在C2上,a(m+1+1)(m+1﹣3)=,即a(m+2)(m﹣2)=,∵m+2≠0,∴a(m﹣2)=②,由①,②可得,解得m1=0(舍去),m2=,∴a=﹣,∴图象C2对应的函数表达式为.。
2024年北京市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【分析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的判断是解题的关键.【详解】解:A 、是中心对称图形,但不是轴对称图形,故不符合题意;B 、既是轴对称图形,也是中心对称图形,故符合题意;C 、不是轴对称图形,也不是中心对称图形,故不符合题意;D 、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B .2.如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒【答案】B【分析】本题考查了垂直的定义,平角的定义,熟练掌握知识点,是解题的关键.根据OE OC ⊥得到90COE ∠=︒,再由平角180AOB ∠=︒即可求解.【详解】解:∵OE OC ⊥,∴90COE ∠=︒,∵180AOC COE BOE ∠+∠+∠=︒,58AOC ∠=︒,∴180905832EOB ∠=︒-︒-=︒,故选:B .3.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .1b >-B .2b >C .0a b +>D .0ab >4.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .16【答案】C【分析】根据方程的根的判别式()22Δ44410b ac c =-=--⨯⨯=即可.本题考查了根的判别式,熟练掌握根的判别式是解题的关键.【详解】∵方程240x x c -+=,1,4,a b c c ==-=,∴()22Δ44410b ac c =-=--⨯⨯=,∴416c =,解得4c =.故选C .5.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( )A .34B .12C .13D .14共有4种等可能的结果,其中两次都取到白色小球的结果有∴两次都取到白色小球的概率为故选:D .6.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯【答案】D【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.【详解】17184105210m =⨯⨯=⨯,故选D .7.下面是“作一个角使其等于AOB ∠”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等【答案】A【分析】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,解答即可.本题考查了作一个角等于已知角的基本作图,熟练掌握作图的依据是边边边原理是解题的关键.【详解】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,故选A.8.如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。
2024年中考数学试卷(附答案)学校:___________班级:___________姓名:___________考号:___________数学试卷共7页,包括六道大题,共26道小题,全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内. 2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效. 一、单项选择题(每小题2分,共12分) 1.若()3-⨯的运算结果为正数,则内的数字可以为( )A .2B .1C .0D .1-2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是( )A .主视图与左视图相同B .主视图与俯视图相同C .左视图与俯视图相同D .主视图、左视图与俯视图都相同4.下列方程中,有两个相等实数根的是( ) A .()221x -=- B .()220x -= C .()221x -=D .()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A .()4,2--B .()4,2-C .()2,4D .()4,26.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒二、填空题:本题共4小题,每小题5分,共20分. 7.当分式11x +的值为正数时,写出一个满足条件的x 的值为 . 8.因式分解:a 2﹣3a= .9.不等式组2030x x ->⎧⎨-<⎩的解集为 .10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .11.正六边形的每个内角等于 °.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒则EFBC的值为 .13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为 .14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .OA=1m ,OB=10m ,40AOD ∠=︒则阴影部分的面积为 2m (结果保留π).三、解答题(每小题5分,共20分)15.先化简,再求值:()()2111a a a +-++,其中a =16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率. 17.如图,在ABCD 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE=BC .18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.四、解答题(每小题7分,共28分)19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A,B,C,D,E,O均在格点上.图①中已画出四边形ABCD,图②中已画出以OE为半径的O,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.(2)在图②中,画出经过点E的O的切线.20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21.中华人民共和国20192023根据以上信息回答下列问题:(1)20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少元? (2)直接写出20192023-年全国居民人均可支配收入的中位数. (3)下列判断合理的是______(填序号).①20192023-年全国居民人均可支配收入里逐年上升趋势.②20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,2020年全国居民人均可支配收入最低.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin370.60︒= cos370.80︒= tan370.75︒=)五、解答题(每小题8分,共16分) 23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题. 【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】y,小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x,凳面的宽度为mm记录如下:【分析数据】如图③,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度是多少? 24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB=BC ,BD AC ⊥垂足为点D .若CD=2,BD=1,则ABCS =______.(2)如图②,在菱形A B C D ''''中4''=A C ,2B D ''=则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,FH=3,则EFGH S =四边形______;若EG a =,FH=b ,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想. 【理解运用】(4)如图④,在MNK △中,MN=3,KN=4,MK=5,点P 为边MN 上一点. 小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ; (ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧; (ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ . 请你直接写出MPKQ S 四边形的值. 六、解答题(每小题10分,共20分)25.如图,在ABC 中,∠C=90°,∠B=30°,AC=3cm ,AD 是ABC 的角平分线.动点P 从点A 出发,以/s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE 与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2). Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.参考答案1.D【分析】本题主要考查了有理数的乘法计算,根据有理数的乘法计算法则,分别计算出3-与四个选项中的数的乘积即可得到答案.【详解】解:()326-⨯=- ()313-⨯=- ()300-⨯= ()()313-⨯-= 四个算式的运算结果中,只有3是正数 故选:D . 2.B【分析】本题主要考查了科学记数法,科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案. 【详解】解:92040000000 2.0410⨯= 故选B . 3.A【分析】本题主要考查了简单几何体的三视图,根据三视图的定义找到葫芦的三视图即可得到答案. 【详解】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段 故选:A . 4.B【分析】本题考查了一元二次方程的根,解一元二次方程,熟练掌握开平方法解方程是解题的关键. 分别对每一个选项运用直接开平方法进行解方程即可判断.【详解】解:A 、()2210x -=-<故该方程无实数解,故本选项不符合题意; B 、()220x -=解得:122x x ==,故本选项符合题意;C 、()221x -= 21x -=±解得123,1x x ==,故本选项不符合题意;D 、()222x -= 2x -=1222x x == 故选:B .5.C【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===︒,∠,由旋转的性质可得42OA OA A B AB '''====,90OA B ''∠=︒ 据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2 ∴42OA OC ==, ∵四边形OABC 是矩形 ∴290AB OC ABC ===︒,∠∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''' ∴42OA OA A B AB '''====, 90OA B ''∠=︒ ∴A B y ''⊥轴 ∴点B '的坐标为()2,4 故选:C . 6.C【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解. 【详解】解:∵BE AD ∥ 50BEC ∠=︒ ∴50D BEC ∠=∠=︒ ∵四边形ABCD 内接于O ∴180ABC D ∠+∠=︒ ∴18050130ABC ∠=︒-︒=︒ 故选:C .7.0(答案不唯一)【分析】本题主要考查了根据分式的值的情况求参数,根据题意可得10x +>,则1x >-,据此可得答案. 【详解】解:∵分式11x +的值为正数 ∴10x +> ∴1x >-∴满足题意的x 的值可以为0 故答案为:0(答案不唯一).8.a (a ﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).9.23x <<##32x >>【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可. 【详解】解:2030x x ->⎧⎨-<⎩①② 解不等式①得:2x >解不等式②得:3x <∴原不等式组的解集为23x <<故答案为:23x <<.10.两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.120【详解】解:六边形的内角和为:(6-2)×180°=720° ∴正六边形的每个内角为:7201206︒=︒ 故答案为:12012.12【分析】本题主要考查了相似三角形的性质与判定,正方形的性质,先由正方形的性质得到45OAD ∠=︒ AD BC = 再证明EF AD ∥,进而可证明OEF OAD △∽△,由相似三角形的性质可得12EF OE AD OA ==,即12EF BC =. 【详解】解:∵正方形ABCD 的对角线AC BD ,相交于点O∴45OAD ∠=︒,AD=BC∵点E 是OA 的中点 ∴12OE OA = ∵45FEO ∠=︒∴EF AD ∥∴OEF OAD △∽△ ∴12EF OE AD OA ==,即12EF BC = 故答案为:12.13.()22220.5x x +=+【分析】本题考查了勾股定理的实际应用,正确理解题意,运用勾股定理建立方程是解题的关键. 设AC 的长度为x 尺,则0.5AB AB x '==+,在Rt AB C '△中,由勾股定理即可建立方程.【详解】解:设AC 的长度为x 尺,则0.5AB AB x '==+∵AB B C '⊥由勾股定理得:222AC B C AB ''+=∴()22220.5x x +=+故答案为:()22220.5x x +=+.14.11π【分析】本题考查了扇形面积公式,熟练掌握扇形面积公式是解题的关键.利用阴影部分面积等于大扇形减去小扇形面积,结合扇形面积公式即可求解.【详解】解:由题意得:()224010111360S ππ-==阴影故答案为:11π.15.22a 6【分析】本题考查了整式的化简求值,平方差公式,先利用平方差公式化简,再进行合并同类项,最后代入求值即可.【详解】解:原式2211a a =-++22a =当a =原式22=⨯ 6=.16.13【分析】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画出树状图,可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,再由概率公式求解即可.【详解】解:将“滑雪”“滑雪圈”“雪地摩托”三个项目分别记为事件A 、B 、C ,可画树状图为:由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种 ∴幸运游客小明与小亮恰好抽中同一个项目的概率3193P ==. 17.证明见解析【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出OAE OBC OCB E ==∠∠,∠∠,再由线段中点的定义得到OA OB =,据此可证明()AAS AOE BOC △≌△,进而可证明AE BC =.【详解】证明:∵四边形ABCD 是平行四边形∴AD BC ∥∴OAE OBC OCB E ==∠∠,∠∠∵点O 是AB 的中点∴OA OB =∴()AAS AOE BOC △≌△∴AE BC =.18.白色琴键52个,黑色琴键36个【分析】本题考查了列一元一次方程解应用题,正确理解题意是解题的关键.设黑色琴键x 个,则白色琴键()16x +个,可得方程()1688x x ++=,再解方程即可.【详解】解:设黑色琴键x 个,则白色琴键()16x +个由题意得:()1688x x ++=解得:36x =∴白色琴键:361652+=(个)答:白色琴键52个,黑色琴键36个.19.(1)见解析(2)见解析【分析】本题主要考查了正方形的性质与判定,矩形的性质与判定,切线的判定,画对称轴等等:(1)如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;(2)如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求.【详解】(1)解:如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;易证明四边形ABCD 是矩形,且E 、F 分别为AB CD ,的中点;(2)解:如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求;易证明四边形OGTH 是正方形,点E 为正方形OGTH 的中心,则OE GH ⊥.20.(1)36I R= (2)12A 【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当3R =Ω时I 的值即可得到答案.【详解】(1)解:设这个反比例函数的解析式为()0U I U R=≠ 把()94,代入()0U I U R=≠中得:()409U U =≠ 解得36U = ∴这个反比例函数的解析式为36I R =; (2)解:在36I R =中,当3R =Ω时 3612A 3I == ∴此时的电流I 为12A .21.(1)8485元 (2)35128元 (3)①【分析】本题主要考查了频数分布直方图,频数分布折线图,中位数:(1)用2023年的全国居民人均可支配收入减去2019年全国居民人均可支配收入即可得到答案;(2)根据中位数的定义求解即可;(3)根据统计图的数据即可得到答案.【详解】(1)解:39218307338485-=元答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.(2)解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元∴20192023-年全国居民人均可支配收入的中位数为35128元;(3)解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.218.3m【分析】本题考查了解直角三角形的应用,正确理解题意和添加辅助线是解题的关键.先解Rt GAD 得到873tan DG AG DG EAD===∠,再解Rt GAC △ tan 8730.75654.75CG AG EAC =⋅∠=⨯=,即可求解CD .【详解】解:延长DC 交AE 于点G ,由题意得873m AB DG == 90DGA ∠=︒在Rt GAD 中45EAD ∠=︒ ∴873tan DG AG DG EAD===∠ 在Rt GAC △中37EAC ∠=︒∴tan 8730.75654.75CG AG EAC =⋅∠=⨯=∴873654.75218.3m CD DG CG =-=-≈答:吉塔的高度CD 约为218.3m .23.(1)在同一条直线上,函数解析式为:533y x =+ (2)36mm【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.(1)用待定系数法求解即可;(2)将213y =代入函数解析式,解方程即可.【详解】(1)解:设函数解析式为:()0y kx b k =+≠∵当16.5,115.5x y == 23.1,148.5x y ==∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩解得:533k b =⎧⎨=⎩ ∴函数解析式为:533y x =+经检验其余点均在直线533y x =+上∴函数解析式为533y x =+,这些点在同一条直线上;(2)解:把213y =代入533y x =+得:533213x +=解得:36x =∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.(1)2,(2)4,(3)152 12EFGH ab S =四边形 证明见详解,(4)10 【分析】(1)根据三角形的面积公式计算即可;(2)根据菱形的面积公式计算即可;(3)结合图形有,EFG EHG EFGH S S S =+四边形,即可得()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,问题随之得解; (4)先证明MNK △是直角三角形,由作图可知:MKN MPQ ∠=∠,即可证明KM PQ ⊥,再结合(3)的结论直接计算即可.【详解】(1)∵在ABC 中,AB=BC BD AC ⊥ 2CD =∴2AD CD ==∴4AC = ∴122ABC S AC BD =⨯⨯= 故答案为:2;(2)∵在菱形A B C D ''''中4''=A C 2B D ''= ∴142A B C D S B D A C ''''''''=⨯⨯=菱形 故答案为:4;(3)∵EG FH ⊥ ∴12EFG S EG FO =⨯⨯ 12EHG S EG HO =⨯⨯ ∵EFG EHG EFGH S S S =+四边形 ∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ∵5EG = 3FH = ∴11522EFGH S EG FH =⨯⨯=四边形 故答案为:152猜想:12EFGH ab S =四边形 证明:∵EG FH ⊥ ∴12EFG S EG FO =⨯⨯ 12EHG S EG HO =⨯⨯ ∵EFG EHG EFGH S S S =+四边形 ∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ∵EG a = FH b = ∴12EFGH ab S =四边形; (4)根据尺规作图可知:QPM MKN ∠=∠∵在MNK △中3MN = 4KN = 5MK =∴222MK KN MN =+∴MNK △是直角三角形,且90MNK ∠=︒∴90NMK MKN ∠+∠=︒∵QPM MKN ∠=∠∴90NMK QPM ∠+∠=︒∴MK PQ ⊥∵4PQ KN == 5MK =∴根据(3)的结论有:1102MPKQ S MK PQ =⨯⨯=四边形. 【点睛】本题考查了等腰三角形的性质,菱形的性质,作一个角等于已知角的尺规作图,勾股定理的逆定理等知识,难度不大,掌握作一个角等于已知角的尺规作图方法,是解答本题的关键.25.(1)等腰三角形AQ t = (2)32t =(3))2223,023221,24S t S t S t t ⎧=<≤⎪⎪⎪⎪=+<<⎨⎪⎪=-≤<⎪⎪⎩【分析】(1)过点Q 作QH AD ⊥于点H ,根据“平行线+角平分线”即可得到QA QP =,由QH AP ⊥,得到12HA AP ==,解Rt AHQ △得到AQ t =; (2)由PQE 为等边三角形得到QE QP =,而QA QP =,则QE QA =,故223AE AQ t ===,解得32t =;(3)当点P 在AD 上,点E 在AC 上,重合部分为PQE ,过点P 作PG QE ⊥于点G 12PG AP == 则212S QE PG =⋅=,此时302t <≤;当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC ,此时)tan 23CF CE E t =⋅∠-,因此)21232FCE SCE CF t =⋅=-,故可得2PQE FCE S S S =-=+△△322t <<;当点P 在DB 上,重合部分为PQC △, 此时PD =-)1PC CD PD t =+- 解直角三角形得1tan PC QC t PQC ==-∠,故)2112S QC PC t =⋅=-,此时24t ≤<,再综上即可求解.【详解】(1)解:过点Q 作QH AD ⊥于点H ,由题意得:AP =∵90C ∠=︒ 30B ∠=︒∴60BAC ∠=︒∵AD 平分BAC ∠∴30PAQ BAD ∠=∠=︒∵PQ AB ∥∴30APQ BAD ∠=∠=︒∴PAQ APQ =∠∠∴QA QP =∴APQ △为等腰三角形 ∵QH AP ⊥∴12HA AP == ∴在Rt AHQ △中cos AH AQ t PAQ==∠; (2)解:如图∵PQE 为等边三角形 ∴QE QP =由(1)得QA QP = ∴QE QA =即223AE AQ t === ∴32t =;(3)解:当点P 在AD 上,点E 在AC 上,重合部分为PQE ,过点P 作PG QE ⊥于点G∵30PAQ ∠=︒∴12PG AP == ∵PQE 是等边三角形 ∴QE PQ AQ t ===∴212S QE PG =⋅= 由(2)知当点E 与点C 重合时32t =∴2302S t ⎛⎫<≤ ⎪⎝⎭; 当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC ,如图∵PQE 是等边三角形∴60E ∠=︒而23CE AE AC t =-=-∴)tan 23CF CE E t =⋅∠-∴()))21123232322FCE S CE CF t t t =⋅=--=-∴)2223234PQE FCE S S S t =-=-=+当点P 与点D 重合时,在Rt ADC 中cos AC AD AP DAC ===∠ ∴2t =∴2322S t ⎫=+<<⎪⎭; 当点P 在DB 上,重合部分为PQC △,如图∵30DAC ∠=︒90DCA ∠=︒由上知DC =∴AD =∴此时PD =-∴)1PC CD PD t =+=-∵PQE 是等边三角形∴60PQE ∠=︒∴1tan PC QC t PQC ===-∠∴)2112S QC PC t =⋅=- ∵30B BAD ∠=∠=︒∴DA DB ==∴当点P 与点BAD DB =+=解得:4t =∴)()2124S t t =-≤<综上所述:)2223,023221,24S t S t S t t ⎧=<≤⎪⎪⎪⎪=+<<⎨⎪⎪=-≤<⎪⎪⎩. 【点睛】本题考查了直角三角形的性质,解直角三角形的相关计算,等腰三角形的判定与性质,等边三角形的性质,平行线的性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.26.(1)1,1,2k a b ===-(2)Ⅰ:0x ≤或1x ≥;Ⅱ:2t <或11t ≥;Ⅲ:10m -≤≤或12m ≤≤【分析】本题考查了二次函数与一次函数的图像与性质,待定系数法求函数解析式,一元二次方程的解,正确理解题意,利用数形结合的思想是解决本题的额关键.(1)先确定输入x 值的范围,确定好之后将x ,y 的值代入所给的y 关于x 的函数解析式种解方程或方程组即可;(2)Ⅰ:可知一次函数解析式为:3y x ,二次函数解析式为:223y x x =-+,当0x >时223y x x =-+对称为直线1x =,开口向上,故1x ≥时,y 随着x 的增大而增大;当0x ≤时3y x ,10k =>故0x ≤时,y 随着x 的增大而增大;Ⅱ:问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,考虑两个临界状态,当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点,因此当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点;当4x =,11y =故当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点,因此当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,即方程230ax bx t ++-=无解; Ⅲ: 可求点P 、Q 关于直线12x =对称,当1x =,2y =最小值当0x =时3y =最大值 当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,y=3,x=-1时,y=2,故①当12m >,由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,则12m ≤≤;②当12m <,由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,则10m -≤≤,综上:10m -≤≤或12m ≤≤. 【详解】(1)解:∵20x =-<∴将2x =-,1y =代入3y kx =+得:231k -+=解得:1k =∵20,30x x =>=>∴将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩ 解得:12a b =⎧⎨=-⎩; (2)解:Ⅰ,∵1,1,2k a b ===-∴一次函数解析式为:3y x ,二次函数解析式为:223y x x =-+当0x >时223y x x =-+,对称为直线1x =,开口向上∴1x ≥时,y 随着x 的增大而增大;当0x ≤时3y x 10k =>∴0x ≤时,y 随着x 的增大而增大综上,x 的取值范围:0x ≤或1x ≥;Ⅱ,∵230ax bx t ++-=∴23ax bx t ++=,在04x <<时无解∴问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点 ∵对于223y x x =-+,当1x =时2y =∴顶点为()1,2,如图:∴当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点 ∴当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点; 当4x = 168311y =-+=∴当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点 ∴当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点 ∴当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点 即:当2t <或11t ≥时,关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解; Ⅲ:∵,1P Q x m x m ==-+∴()1122m m +-+= ∴点P 、Q 关于直线12x =对称 当1x =,1232y =-+=最小值当0x =时3y =最大值∵当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时3y =,=1x -时2y = ∴①当12m >,如图:由题意得:11012m m -≤-+≤⎧⎨≤≤⎩∴12m ≤≤; ②当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩ ∴10m -≤≤综上:10m -≤≤或12m ≤≤.。
2024年江西省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.实数5-的相反数是( )A .5B .5-C .15D .15-【答案】A【分析】本题主要考查了相反数的判断,根据相反数的定义解答即可.【详解】5-的相反数是5.故选:A .2.“长征是宣言书,长征是宣传队,长征是播种机”,二万五千里长征是中国历史上的伟大壮举,也是人类史上的奇迹,将25000用科学记数法可表示为( )A .60.2510⨯B .52.510⨯C .42.510⨯D .32510⨯3.如图所示的几何体,其主视图为( )A .B .C .D .【答案】B 【分析】根据从正面看得到的图形是主视图,可得答案.本题主要考查常见几何体的三视图,解题的关键是熟练掌握主视图是从物体正面看到的图形.【详解】解:从正面看到的是两个长方形,上面一个小的,下面一个大的,4.将常温中的温度计插入一杯60℃的热水(恒温)中,温度计的读数()y ℃与时间()min x 的关系用图象可近似表示为( )A .B .C .D .【答案】C【分析】本题考查了函数图象,根据温度计上升到一定的温度后不变,可得答案;注意温度计的温度升高到60℃时温度不变.【详解】解:将常温中的温度计插入一杯60℃(恒温)的热水中,注意温度计的温度升高到60℃时温度不变,故C 选项图象符合条件,故选:C .5.如图是某地去年一至六月每月空气质量为优的天数的折线统计图,关于各月空气质量为优的天数,下列结论错误的是( )A .五月份空气质量为优的天数是16天B .这组数据的众数是15天C .这组数据的中位数是15天D .这组数据的平均数是15天【点睛】本题考查了折线统计图、一组数据的中位数、众数、平均数等知识,掌握以上基础知识是解本题的关键.6.如图是43⨯的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A .1种B .2种C .3种D .4种【答案】B 【分析】此题主要考查了几何体的展开图,关键是掌握正方体展开图的特点.依据正方体的展开图的结构特征进行判断,即可得出结论.【详解】解:如图所示:共有2种方法,故选:B .二、填空题7.计算:()21-= .【答案】1【分析】根据乘方运算法则进行计算即可.【详解】解:()()()21111-=-⨯-=.故答案为:1.【点睛】本题主要考查了有理数的乘方运算,熟练掌握乘方运算法则,是解题的关键.8.因式分解:22a a +=.【答案】(2)a a +【详解】根据分解因式提取公因式法,将方程a 2+2a 提取公因式为a (a+2).故a 2+2a=a (a+2).故答案是a (a+2).9.在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为 .【答案】()3,4【分析】本题考查了坐标与图形变化-平移.利用点平移的坐标规律,把A 点的横坐标加2,纵坐标加3即可得到点B 的坐标.【详解】解:∵点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,∴点B 的坐标为()12,13++,即()3,4.故答案为:()3,4.10.观察a ,2a ,3a ,4a ,…,根据这些式子的变化规律,可得第100个式子为 .【答案】100a 【分析】此题考查了单项式规律探究.分别找出系数和次数的规律,据此判断出第n 个式子是多少即可.【详解】解:∵a ,2a ,3a ,4a ,…,∴第n 个单项式的系数是1;∵第1个、第2个、第3个、第4个单项式的次数分别是1、2、3、4,…,∴第n 个式子是n a .∴第100个式子是100a .故答案为:100a .11.将图1所示的七巧板,拼成图2所示的四边形ABCD ,连接AC ,则tan CAB ∠= .12.如图,AB 是O 的直径,2AB =,点C 在线段AB 上运动,过点C 的弦DE AB ⊥,将 DBE沿DE 翻折交直线AB 于点F ,当DE 的长为正整数时,线段FB 的长为 .∵1122DC DE ∴==, 2232OC OD DC ∴=-=,232BC OB OC -∴=-=,223BF BC ∴==-;同理可得232BC+=,223BF BC∴==+,综上,可得线段FB的长为23-或23+三、解答题13.(1)计算:0π5+-;(2)化简:888xx x---.14.如图,AC为菱形ABCD的对角线,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹)(1)如图1,过点B 作AC 的垂线;(2)如图2,点E 为线段AB 的中点,过点B 作AC 的平行线.【答案】(1)作图见解析;(2)作图见解析.【分析】(1)作直线BD ,由菱形的性质可得BD AC ⊥,即BD 为AC 的垂线;(2)连接CE 并延长,与DA 的延长线相交于点M ,作直线BM ,因为点E 为线段AB 的中点,所以AE BE =,因为AM BC ∥,所以EAM EBC ∠=∠,EMA ECB ∠=∠,故可得AEM BEC ≌△△,得到ME CE =,所以四边形ACBM 为平行四边形,即BM AC ∥;本题考查了菱形的性质,平行四边形的判定,掌握菱形的性质及平行四边形的判定方法是解题的关键.【详解】(1)解:如图,BD 即为AC 所求;(2)解:如图,BM 即为所求.15.某校一年级开设人数相同的A ,B ,C 三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.(1)“学生甲分到A 班”的概率是______;(2)请用画树状图法或列表法,求甲、乙两位新生分到同一个班的概率.共有9个等可能的结果,甲、乙两位新生分到同一个班的有∴甲、乙两位新生分到同一个班的概率为16.如图,AOB 是等腰直角三角形,90∠=︒ABO ,双曲线()0,0k y k x x=>>经过点B ,过点()4,0A 作x 轴的垂线交双曲线于点C ,连接BC .(1)点B 的坐标为______;(2)求BC 所在直线的解析式.∵AOB 是等腰直角三角形,∠ABO ∴4OA =,∴2BD OD AD ===,∴()2,2B ,故答案为:()2,2;17.如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC ∠=∠=︒.(1)求证:BD 是半圆O 的切线;(2)当3BC =时,求 AC 的长.【答案】(1)见解析(2)2π【分析】本题考查了直径所对的圆周角为直角,等边三角形的判定和性质,弧长公式,熟知相关性质和计算公式是解题的关键.(1)根据直径所对的圆周角为直角结合已知条件,可得30CAB ∠=︒,即可得90ABD Ð=°,进而可证得结论;(2)连接OC ,证明OBC △为等边三角形,求得120AOC ∠=︒,利用弧长公式即可解答.【详解】(1)证明: AB 是半圆O 的直径,90ACB ∴∠=︒,60D ABC ∠=∠=︒ ,9030CAB ABC ∴∠=︒-∠=︒,18090ABD CAB D ∴∠=︒-∠-∠=︒,BD ∴是半圆O 的切线;(2)解:如图,连接OC ,,60OC OB CBA =∠=︒ ,OCB ∴ 为等边三角形,60COB ∴∠=︒,3OC CB ==,180120AOC COB ∴∠=︒-∠=︒,18.如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?【答案】(1)书架上有数学书60本,语文书30本.(2)数学书最多还可以摆90本【分析】本题主要考查了一元一次方程及不等式的应用,解题的关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.(1)首先设这层书架上数学书有x 本,则语文书有(90)x -本,根据题意可得等量关系:x 本数学书的厚度(90)x +-本语文书的厚度84=,根据等量关系列出方程求解即可;(2)设数学书还可以摆m 本,根据题意列出不等式求解即可.【详解】(1)解:设书架上数学书有x 本,由题意得:0.8 1.2(90)84x x +-=,解得:60x =,9030x -=.∴书架上有数学书60本,语文书30本.(2)设数学书还可以摆m 本,根据题意得:1.2100.884m ⨯+≤,解得:90m ≤,∴数学书最多还可以摆90本.19.图1是世界第一“大碗”——景德镇昌南里文化艺术中心主体建筑,其造型灵感来自于宋代湖田窑影青斗笠碗,寓意“万瓷之母”,如图2,“大碗”的主视图由“大碗”主体ABCD 和矩形碗底BEFC 组成,已知AD EF ∥,AM ,DN 是太阳光线,AM MN ⊥,DN MN ⊥,点M ,E ,F ,N 在同一条直线上,经测量20.0m ME FN ==,40.0m EF =, 2.4m BE =,152ABE ∠=︒.(结果精确到0.1m )(1)求“大碗”的口径AD 的长;(2)求“大碗”的高度AM 的长.(参考数据:sin620.88︒≈,cos620.47︒≈,tan62 1.88︒≈)∵矩形碗底BEFC ,∴EH AD ⊥,∴四边形AMEH 是矩形,∵152ABE ∠=︒,∴180ABH ABE ∠=︒-∠20.追本溯源:题(1)来自于课本中的习题,请你完成解答,提炼方法并完成题(2).(1)如图1,在ABC 中,BD 平分ABC ∠,交AC 于点D ,过点D 作BC 的平行线,交AB 于点E ,请判断BDE 的形状,并说明理由.方法应用:(2)如图2,在ABCD Y 中,BE 平分ABC ∠,交边AD 于点E ,过点A 作AF BE ⊥交DC 的延长线于点F ,交BC 于点G .①图中一定是等腰三角形的有( )A .3个B .4个C .5个D .6个②已知3AB =,5BC =,求CF 的长.【答案】(1)BDE 是等腰三角形;理由见解析;(2)①B ;②2CF =.【分析】本题考查了平行四边形的性质和等腰三角形的判定和性质等知识,熟练掌握平行四边形的性质和等腰三角形的判定是解题的关键;(1)利用角平分线的定义得到ABD CBD ∠=∠,利用平行线的性质得到BDE CBD ∠=∠,推出BDE ABD ∠=∠,再等角对等边即可证明BDE 是等腰三角形;(2)①同(1)利用等腰三角形的判定和性质可以得到四个等腰三角形;②由①得DA DF =,利用平行四边形的性质即可求解.【详解】解:(1)BDE 是等腰三角形;理由如下:∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ∥,∴BDE CBD ∠=∠,∴BDE ABD ∠=∠,∴EB ED =,∴BDE 是等腰三角形;(2)①∵ABCD Y 中,∴AE BC ∥,AB CD ∥,同(1)ABE CBE AEB ∠=∠=∠,∴AB AE =,∵AF BE ⊥,∴BAF EAF ∠=∠,∵AE BC ∥,AB CD ∥,∴BGA EAF ∠=∠,BAF F ∠=∠,∵BGA CGF ∠=∠,∴BGA BAG ∠=∠,DAF F ∠=∠,CGF F ∠=∠,∴AB AG =,DA DF =,CG CF =,即ABE 、ABG 、ADF △、CGF △是等腰三角形;共有四个,故选:B .②∵ABCD Y 中,3AB =,5BC =,∴3AB CD ==,5BC AD ==,由①得DA DF =,∴532CF DF CD =-=-=.21.近年来,我国肥胖人群的规模快速增长,目前,国际上常用身体质量指数(Body Mass Index ,缩写BMI )来衡量人体胖瘦程度,其计算公式是22)kg (()m BMI =体重单位:身高单位:.中国人的BMI 数值标准为:18.5BMI <为偏瘦;18.524BMI ≤<为正常;2428BMI ≤<为偏胖;28BMI ≥为肥胖.某数学兴趣小组对本校七年级学生的胖瘦程度进行统计调查,从该校所有七年级学生中随机抽出10名男生、10名女生,测得他们的身高和体重值,并计算出相应的BMI 数值,再参照BMI 数值标准分成四组:A .1620BMI ≤<;B .2024BMI ≤<;C .2428BMI ≤<;D .2832BMI ≤<.将所得数据进行收集、整理、描述.收集数据七年级10名男生数据统计表编号12345678910身高(m ) 1.56 1.50 1.66 1.58 1.50 1.70 1.51 1.42 1.59 1.72体重(kg )52.549.545.640.355.256.148.542.867.290.5BMI 21.6s 16.516.124.519.421.321.226.630.6七年级10名女生数据统计表编号12345678910身高(m ) 1.46 1.62 1.55 1.65 1.58 1.67 1.55 1.46 1.53 1.62体重(kg )46.449.061.556.552.975.550.347.652.446.8BMI 21.818.725.620.821.227.120.922.322.417.8整理、描述数据七年级20名学生BMI 频数分布表组别BMI 男生频数女生频数A 1620BMI ≤<32B 2024BMI ≤<46C 2428BMI ≤<t 2D 2832BMI ≤<10应用数据(1)s=______,t=______α=______;(2)已知该校七年级有男生260人,女生240人.①估计该校七年级男生偏胖的人数;②估计该校七年级学生24BMI≥的人数(3)根据以上统计数据,针对该校七年级学生的胖瘦程度,请你提出一条合理化建议.22.如图,一小球从斜坡O点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x012m 4567…y 07261528152n 72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.23.综合与实践如图,在Rt ABC △中,点D 是斜边AB 上的动点(点D 与点A 不重合),连接CD ,以CD 为直角边在CD 的右侧构造Rt CDE △,90DCE ∠=︒,连接BE ,CE CB m CD CA==.特例感知m=时,BE与AD之间的位置关系是______,数量关系是______;(1)如图1,当1类比迁移m≠时,猜想BE与AD之间的位置关系和数量关系,并证明猜想.(2)如图2,当1拓展应用(3)在(1)的条件下,点F与点C关于DE对称,连接DF,EF,BF,如图3.已知=,四边形CDFE的面积为y.6AC=,设AD x①求y与x的函数表达式,并求出y的最小值;②当2BF=时,请直接写出AD的长度.此时32DH x =-,同理可得:2y CD =∴y 与x 的函数表达式为当32x =时,y 的最小值为②如图,∵AD BE ⊥,正方形∴DBE DFE ∠=∠=∠∴,,,,D C E B F 在O 上,且∴90CBF ∠=︒,综上:当2BF=时,AD为2【点睛】本题考查的是全等三角形的判定与性质,正方形的判定与性质,勾股定理的应用,相似三角形的判定与性质,直角三角形斜边上的中线的性质,圆周角定理的应用,本题难度大,作出合适的辅助线是解本题的关键。
2008年北京市高级中等学校招生考试数学试卷考生须知:1.本试卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷共2页,第Ⅱ卷共8页.全卷共九道大题,25道小题.2.本试卷满分120分,考试时间120分钟.3.在试卷(包括第Ⅰ卷和第Ⅱ卷)密封线内准确填写区(县)名称、毕业学校、姓名、报名号和准考证号.4.考试结束后,将试卷和答题卡一并交回.第Ⅰ卷(机读卷共32分)考生须知:1.第Ⅰ卷从第1页到第2页,共2页,共一道大题,8道小题.2.考生须将所选选项按要求填涂在答题卡上,在试卷上作答无效.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.6-的绝对值等于()A .6B .16C .16-D .6-2.截止到2008年5月19日,已有21600名中外记者成为北京奥运会的注册记者,创历届奥运会之最.将21600用科学记数法表示应为()A .50.21610⨯B .321.610⨯C .32.1610⨯D .42.1610⨯3.若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是()A .内切B .相交C .外切D .外离4.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是()A .50,20B .50,30C .50,50D .135,505.若一个多边形的内角和等于720,则这个多边形的边数是()A .5B .6C .7D .86.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是()A .15B .25C .12D .357.若20x ++=,则xy 的值为()A .8-B .6-C .5D .68.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如右图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是()2008年北京市高级中等学校招生考试数学试卷第Ⅱ卷(非机读卷共88分)考生须知:1.第Ⅱ卷从第1页到第8页,共8页,共八道大题,17道小题.2.除画图可以用铅笔外,答题必须用黑色或蓝色钢笔、圆珠笔或签字笔.二、填空题(共4道小题,每小题4分,共16分)9.在函数121y x =-中,自变量x 的取值范围是.10.分解因式:32a ab -=.11.如图,在ABC △中,D E ,分别是AB AC ,的中点,若2cm DE =,则BC =cm .12.一组按规律排列的式子:2b a -,53b a ,83b a -,114b a,…(0ab≠),其中第7个式子是,第n 个式子是(n 为正整数).三、解答题(共5道小题,共25分)13.(本小题满分5分)1012sin 45(2)3-⎛⎫+-π- ⎪⎝⎭.解:CA E DBO P MOM 'M PA .OM 'MPB .OM 'MPC .OM 'MPD .14.(本小题满分5分)解不等式5122(43)x x --≤,并把它的解集在数轴上表示出来.解:15.(本小题满分5分)已知:如图,C 为BE 上一点,点A D ,分别在BE 两侧.AB ED ∥,AB CE =,BC ED =.求证:AC CD =.证明:16.(本小题满分5分)如图,已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标.解:17.(本小题满分5分)已知30x y -=,求222()2x yx y x xy y +--+的值.解:四、解答题(共2道小题,共10分)18.(本小题满分5分)如图,在梯形ABCD 中,AD BC ∥,AB AC ⊥,45B ∠=,AD =,BC =求DC 的长.解:AC E DB12301-2-3-3y kx =-yxOM112-ABCD19.(本小题满分5分)已知:如图,在Rt ABC △中,90C ∠= ,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠.(1)判断直线BD 与O 的位置关系,并证明你的结论;(2)若:8:5AD AO =,2BC =,求BD 的长.解:(1)(2)五、解答题(本题满分6分)20.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:“限塑令”实施后,塑料购物袋使用后的处理方式统计表处理方式直接丢弃直接做垃圾袋再次购物使用其它选该项的人数占总人数的百分比5%35%49%11%请你根据以上信息解答下列问题:D COABE4035302520151050图11234567431126379塑料袋数/个人数/位“限塑令”实施前,平均一次购物使用不同数量塑料购物袋的人数统计图“限塑令”实施后,使用各种购物袋的人数分布统计图其它5%收费塑料购物袋_______%自备袋46%押金式环保袋24%图2(1)补全图1,“限塑令”实施前,如果每天约有2000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图2,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.解:(1)(2)六、解答题(共2道小题,共9分)21.(本小题满分5分)列方程或方程组解应用题:京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?解:22.(本小题满分4分)已知等边三角形纸片ABC 的边长为8,D 为AB 边上的点,过点D 作DG BC ∥交AC 于点G .DE BC ⊥于点E ,过点G 作GF BC ⊥于点F ,把三角形纸片ABC 分别沿DG DE GF ,,按图1所示方式折叠,点A B C ,,分别落在点A ',B ',C '处.若点A ',B ',C '在矩形DEFG 内或其边上,且互不重合,此时我们称A B C '''△(即图中阴影部分)为“重叠三角形”.(1)若把三角形纸片ABC 放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点A B C D ,,,恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形A B C '''的面积;(2)实验探究:设AD 的长为m ,若重叠三角形A B C '''存在.试用含m 的代数式表示重叠三角形A B C '''的面积,并写出m 的取值范围(直接写出结果,备用图供实验,探究使用).A G CF B 'C 'E BDA '图1AGCF B 'C 'E BDA '图2AC B备用图ACB备用图解:(1)重叠三角形A B C '''的面积为;(2)用含m 的代数式表示重叠三角形A B C '''的面积为;m 的取值范围为.七、解答题(本题满分7分)23.已知:关于x 的一元二次方程2(32)220(0)mx m x m m -+++=>.(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量m 的取值范围满足什么条件时,2y m ≤.(1)证明:(2)解:(3)解:八、解答题(本题满分7分)24.在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A B ,两点(点A 在点B 的左侧),与y 轴交于点C ,点B 的坐标为(30),,将直线y kx =沿y 轴向上平移3个单位长度后恰好经过B C ,两点.(1)求直线BC 及抛物线的解析式;12344321xyO -1-2-3-4-4-3-2-1(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标;(3)连结CD ,求OCA ∠与OCD ∠两角和的度数.解:(1)(2)(3)九、解答题(本题满分8分)25.请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠= ,探究PG 与PC 的位置关系及PGPC的值.小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG 与PC 的位置关系及PGPC的值;(2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.1O y x 2344321-1-2-2-1DAB EF C PG 图1DCG P AB E F图2(3)若图1中2(090)ABC BEFαα∠=∠=<<,将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).解:(1)线段PG与PC的位置关系是;PGPC=.(2)2008年北京市高级中等学校招生考试数学试卷答案及评分参考阅卷须知:1.一律用红钢笔或红圆珠笔批阅,按要求签名.2.第Ⅰ卷是选择题,机读阅卷.3.第Ⅱ卷包括填空题和解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.第Ⅰ卷(机读卷共32分)一、选择题(共8道小题,每小题4分,共32分)题号12345678答案A D C C B B B D第Ⅱ卷(非机读卷共88分)二、填空题(共4道小题,每小题4分,共16分)题号9101112答案12x≠()()a ab a b+-4207ba-31(1)nnnba--三、解答题(共5道小题,共25分)13.(本小题满分5分)112sin45(2π)3-⎛⎫+-- ⎪⎝⎭22132=-⨯+-·········································································4分2 =.······················································································5分14.(本小题满分5分)解:去括号,得51286x x--≤.························································1分移项,得58612x x--+≤.································································2分合并,得36x-≤.···········································································3分系数化为1,得2x-≥.····································································4分不等式的解集在数轴上表示如下:·····································································································5分15.(本小题满分5分)证明:AB ED∥,B E∴∠=∠.···················································································2分在ABC△和CED△中,AB CEB EBC ED=⎧⎪∠=∠⎨⎪=⎩,,,ABC CED∴△≌△.·········································································4分AC CD∴=.···················································································5分16.(本小题满分5分)解:由图象可知,点(21)M-,在直线3y kx=-上,··································1分231k∴--=.解得2k=-.···················································································2分∴直线的解析式为23y x=--.········································································3分令0y=,可得32x=-.∴直线与x轴的交点坐标为302⎛⎫- ⎪⎝⎭,.···················································4分令0x=,可得3y=-.∴直线与y轴的交点坐标为(03)-,.····················································5分17.(本小题满分5分)解:222()2x y x yx xy y+--+22()()x y x yx y+=--··············································································2分1231-2-3-2x yx y+=-.······················································································3分当30x y -=时,3x y =.···································································4分原式677322y y y y y y +===-.····································································5分四、解答题(共2道小题,共10分)18.(本小题满分5分)解法一:如图1,分别过点A D ,作AE BC ⊥于点E ,DF BC ⊥于点F .································1分∴AE DF ∥.又AD BC ∥,∴四边形AEFD是矩形.EF AD ∴==································2分AB AC ⊥ ,45B ∠=,BC =AB AC ∴=.12AE EC BC ∴===DF AE ∴==CF EC EF =-=分在Rt DFC △中,90DFC ∠=,DC ∴==······································5分解法二:如图2,过点D 作DF AB ∥,分别交AC BC ,于点E F ,.···········1分AB AC ⊥ ,90AED BAC ∴∠=∠= .AD BC ∥,18045DAE B BAC ∴∠=-∠-∠= .在Rt ABC △中,90BAC ∠=,45B ∠=,BC =2sin 4542AC BC ∴=== ·························································2分在Rt ADE △中,90AED ∠= ,45DAE ∠=,AD =,ABCDF E图2A BCDF E 图11DE AE ∴==.3CE AC AE ∴=-=.········································································4分在Rt DEC △中,90CED ∠=,DC ∴=.··················································5分19.(本小题满分5分)解:(1)直线BD 与O 相切.··························································1分证明:如图1,连结OD .OA OD = ,A ADO ∴∠=∠.90C ∠= ,90CBD CDB ∴∠+∠= .又CBD A ∠=∠ ,90ADO CDB ∴∠+∠= .90ODB ∴∠= .∴直线BD 与O 相切.·····································································2分(2)解法一:如图1,连结DE .AE 是O 的直径,90ADE ∴∠= .:8:5AD AO = ,4cos 5AD A AE ∴==.···········································································3分90C ∠= ,CBD A ∠=∠,4cos 5BC CBD BD ∴∠==.····································································4分2BC = ,52BD ∴=.···························································5分解法二:如图2,过点O 作OH AD ⊥于点H .12AH DH AD ∴==.:8:5AD AO = ,4cos 5AH A AO ∴==.·················3分90C ∠= ,CBD A ∠=∠,4cos 5BC CBD BD ∴∠==.····························4分2BC = ,DCOABE 图1D C O A BH 图252BD ∴=.·····················································································5分五、解答题(本题满分6分)解:(1)补全图1见下图.·······························································1分9137226311410546373003100100⨯+⨯+⨯+⨯+⨯+⨯+⨯==(个).这100位顾客平均一次购物使用塑料购物袋的平均数为3个.··················3分200036000⨯=.估计这个超市每天需要为顾客提供6000个塑料购物袋.··························4分(2)图2中,使用收费塑料购物袋的人数所占百分比为25%.·················5分根据图表回答正确给1分,例如:由图2和统计表可知,购物时应尽量使用自备袋和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为环保做贡献.····················································6分六、解答题(共2道小题,共9分)21.解:设这次试车时,由北京到天津的平均速度是每小时x 千米,则由天津返回北京的平均速度是每小时(40)x +千米.·············································1分依题意,得3061(40)602x x +=+.·························································3分解得200x =.·················································································4分答:这次试车时,由北京到天津的平均速度是每小时200千米.···············5分22.解:(1)重叠三角形A B C '''·····································1分(2)用含m 的代数式表示重叠三角形A B C '''2)m -;············2分m 的取值范围为843m <≤.·······························································4分七、解答题(本题满分7分)23.(1)证明:2(32)220mx m x m -+++= 是关于x 的一元二次方程,222[(32)]4(22)44(2)m m m m m m ∴∆=-+-+=++=+. 当0m >时,2(2)0m +>,即0∆>.∴方程有两个不相等的实数根.··························································2分4035302520151050图11234567431126379塑料袋数/个人数/位“限塑令”实施前,平均一次购物使用不同数量塑料购物袋的人数统计图10(2)解:由求根公式,得(32)(2)2m m x m+±+=.22m x m+∴=或1x =.·······································································3分0m > ,222(1)1m m m m ++∴=>.12x x < ,11x ∴=,222m x m +=.······································································4分21222221m y x x m m+∴=-=-⨯=.即2(0)y m m =>为所求.···················5分(3)解:在同一平面直角坐标系中分别画出2(0)y m m=>与2(0)y m m =>的图象.·····················································6分由图象可得,当1m ≥时,2y m ≤.······7分八、解答题(本题满分7分)24.解:(1)y kx = 沿y 轴向上平移3个单位长度后经过y 轴上的点C ,(03)C ∴,.设直线BC 的解析式为3y kx =+.(30)B ,在直线BC 上,330k ∴+=.解得1k =-.∴直线BC 的解析式为3y x =-+.·······················································1分 抛物线2y x bx c =++过点B C ,,9303b c c ++=⎧∴⎨=⎩,.解得43b c =-⎧⎨=⎩,.∴抛物线的解析式为243y x x =-+.····················································2分0)(2)由243y x x =-+.可得(21)(10)D A -,,,.3OB ∴=,3OC =,1OA =,2AB =.可得OBC △是等腰直角三角形.45OBC ∴∠=,CB =.如图1,设抛物线对称轴与x 轴交于点F ,112AF AB ∴==.过点A 作AE BC ⊥于点E .90AEB ∴∠= .可得BE AE ==,CE =.在AEC △与AFP △中,90AEC AFP ∠=∠= ,ACE APF ∠=∠,AEC AFP ∴△∽△.AE CEAF PF ∴=,2221PF=.解得2PF =.点P 在抛物线的对称轴上,∴点P 的坐标为(22),或(22)-,.·························································5分(3)解法一:如图2,作点(10)A ,关于y 轴的对称点A ',则(10)A '-,.连结A C A D '',,可得A C AC '==OCA OCA '∠=∠.由勾股定理可得220CD =,210A D '=.又210A C '=,222A D A C CD ''∴+=.A DC '∴△是等腰直角三角形,90CA D '∠= ,45DCA '∴∠= .45OCA OCD '∴∠+∠= .45OCA OCD ∴∠+∠= .1O yx2344321-1-2-2-1P E BD P 'A CF 图11O yx2344321-1-2-1B D A C F 图2A '。