18.2勾股定理的逆定理(2)
- 格式:ppt
- 大小:248.50 KB
- 文档页数:9
《勾股定理》同步作业及参考答案§18.1 勾股定理(一)1.在Rt △ABC ,∠C=90°:⑴已知a=b=5,求c ; ⑵已知a=1,c=2, 求b ;⑶已知c=17,b=8, 求a ; ⑷已知a :b=1:2,c=5, 求a ; ⑸已知b=15,∠A=30°,求a ,c .2. 已知:如图,等边△ABC 的边长是6cm :⑴求等边△ABC 的高;⑵求S △ABC .3.填空题:⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= ; ⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= ;⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= ; ⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 ; ⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 ; 4.已知:如图,在△ABC 中,∠C=60°,AB=34,AC=4,AD 是BC 边上的高,求BC 的长.5.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积.中考链接1.(2005 扬州)如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.2.(2006,娄底)如图,滑杆在机械槽内运动,ACB ∠为直角,已知滑杆AB 长2.5米,顶端A 在AC 上运动,量得滑杆下端B 距C 点的距离为1.5米,当端点B 向右移动0.5米时,求滑杆顶端A 下滑多少米? DBAAEC§18.1 勾股定理(二)1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是米.A2.已知:如图,四边形ABCD中,AD∥BC,AD⊥DC,AB⊥AC,∠B=60°,CD=1cm,求BC的长. ArrayB3.(2009年,北京市)如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N分别是AD、n ,且n为BC边的中点,则A′N= ; 若M、N分别是AD、BC边的上距DC最近的n等分点(2整数),则A′N=(用含有n的式子表示).4.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是多少?5.如图,欲测量松花江的宽度,沿江岸取B、C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为.BC6.一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RP⊥PQ,则RQ= 厘米.Q7.有一个边长为1米的正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为米. 8.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是米,水平距离是米.中考链接棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答.()A.一定不会B.可能会C.一定会D.以上答案都不对§18.1 勾股定理(三)1. 已知:在Rt △ABC 中,∠ACB=90°,CD ⊥BC 于D ,∠A=60°,CD=3,求线段AB 的长.2. 已知:如图,△ABC 中,AC=4,∠A =45°,∠B =60°,根据题设可知什么?3. 已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2,求四边形ABCD 的面积.4.(2010年,北京市燕山)已知等边△ABC 的边长为a ,则它的面积是( ).A .21a 2 B .23a 2 C .42a 2 D .43a 25.如图,将长方形ABCD 沿直线AE 折叠,点D 落在BC 边上的点D ′.若AB=8,AD=10,求CE 的长.6.已知:如图,在△ABC 中,∠B=30°,∠C=45°,AC=22, 求(1)AB 的长;(2)S △ABC .C中考链接1.(2006,河北课改)如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从→→所走的路程为m.(结果保留根号)A B C2.(2010年,北京市门头沟区)如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S n=________(n为正整数).§18.1 勾股定理(四)1. △ABC 中,∠C=90°,AB=4,BC=32,CD ⊥AB 于D ,则AC= ,CD= ,BD= ,AD= ,S △ABC = .2.已知:如图,△ABC 中,AB=26,BC=25,AC=17,求S △ABC .3.如图所示在平面直角坐标系中,第一象限的角平分线OM 与反比例函数的图象相交于点M ,已知OM①求点M 的坐标;②求此反比例函数的解析式.4.如图,甲、乙两船从港口A 同时出发,甲船以16海里/时速度向南偏东50°航行,乙船向北偏东40°航行,3小时后,甲船到达B 岛,乙船到达C 岛.若C 、B 两岛相距60海里,问乙船的航速是多少?5.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域. (1)A 城是否会受到这次台风的影响?为什么?(2)若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?C中考链接(2010年,北京市大兴区)如图,ABC 的三个顶点A 、B 、C 的坐标分别为(33),、(64)46,、(,),则B C 边上的高为 .1.在Rt △ABC 中,若AC BC AB =4,则下列结论中正确的是( ).A .∠C =90°B .∠B =90°C .△ABC 是锐角三角形D .△ABC 是钝角三角形2.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ). A. 仍是直角三角形 B. 不可能是直角三角形 C. 是锐角三角形 D. 是钝角三角形3.下列四条线段不能组成直角三角形的是( )A .a=8,b=15,c=17B .a=9,b=12,c=15C .a=5,b=3,c=2D .a :b :c=2:3:44.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?⑴ a=3,b=22,c=5; ⑵ a=5,b=7,c=9; ⑶ a=2,b=3,c=7; ⑷ a=5,b=62,c=1 .5.一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.6.如图所示,在△ABD 中,∠A 是直角,AB =3,AD =4,BC =12,DC =13,△DBC 是直角三角形吗?为什么?中考链接(2006,荆门大纲)园丁住宅小区有一块草坪如图所示,已知3AB =米,4BC =米,12CD =米,13DA =米,且AB BC ⊥,求这块草坪的面积.1.在△ABC 中,若a 2=b 2-c 2,则△ABC 是 三角形, 是直角; 2.△ABC 中∠A 、∠B 、∠C 的对边分别是a 、b 、c ,下列命题中的假命题是( )A .如果∠C -∠B=∠A ,则△ABC 是直角三角形;B .如果c 2= b 2—a 2,则△ABC 是直角三角形,且∠C=90°; C .如果(c +a )(c -a )=b 2,则△ABC 是直角三角形;D .如果∠A :∠B :∠C=5:2:3,则△ABC 是直角三角形. 3. 根据三角形的三边a ,b ,c 的长,判断三角形是不是直角三角形: (1)a =11,b =60,c =61 (2)a =32,b =1,c =45 4.如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A 、B 、C 三点能否构成直角三角形?为什么?CD5.如图,四边形ABCD 中,AD=4,CD=3,AB=13,BC=12, ∠ADC=90°,求四边形ABCD 的面积.6.在△ABC 中,AB=13,BC=10,BC 边上的中线AD=12,求AC 的长.C中考链接(2005年,呼和浩特课改)如图,在由单位正方形组成的网格图中标有AB CD EF GH ,,,四条线段,其中能构成一个直角三角形三边的线段是( ).A.CD EF GH ,, B.A BE F G H ,, C.AB CD GH ,, D.A BC D E F ,,1.若三角形的三边是 ⑴1、3、2; ⑵51,41,31; ⑶32,42,52 ⑷9,40,41;⑸(m +n )2-1,2(m +n ),(m +n )2+1;则构成的是直角三角形的有( ).A .2个B .3个 C.4个 D.5个2.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?⑴a=9,b=41,c=40; ⑵a=15,b=16,c=6;⑶a=2,b=32,c=4; ⑷a=5k ,b=12k ,c=13k (k >0). 3.已知△ABC 的三边为a 、b 、c ,且a+b=4,ab=1,c=14,试判定△ABC 的形状.4.若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+50=6a+8b+10c ,求△ABC 的面积.5.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?N中考链接某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?参考答案及解析§18.1 勾股定理(一)1.(1)25; (2)3; (3)15; (4)5; (5)a=53, c=103.2. (1)33; (2)S △ABC =93.3.⑴17; ⑵7; ⑶a=6,b=8; ⑷6,8,10; ⑸4或34.4.8.5.48.中考链接1. 4.2.由勾股定理求得AC =2米,DC =2米,CE=1.5米,所以滑杆顶端A 下滑的长AE=0.5米.§18.1 勾股定理(二)1.2502米.2. 334.3.2,n (2n ≥,且n 为整数).4.18米.5. 503米.6.20厘米.7.22米.8.23米,6米.中考链接A.§18.1 勾股定理(三)1. 4.2. 根据题设可求得BC=634,AB=63222+.提示:作CD ⊥AB 于D.3. 63.提示:延长AD 、BC 交于点E ,则S 四边形ABCD =S △ABE - S △CDE .4. D .5.3.6.(1)AB=4; (2)S △ABC =2+23.中考链接 1.52 .2. 22-n .§18.1 勾股定理(四)1.AC=2,CD=3,BD=3,AD=1,S △ABC =23.2. S △ABC =204.提示:作BD ⊥AC 于D.设AD=x ,由勾股定理得方程:2222)17(2526x x --=-,解得x =10. 3.①点M 的坐标为(2,2); ②反比例函数的解析式为xy 4=. 4.12海里/时.5.(1)A 城会受到这次台风的影响.作AM ⊥BF 于M ,则AM=160km<200km .(2)以A 为圆心、以200km 为半径画圆,分别交BF 于C 、D 两点,求得MC=MD=120km ,即CD=240 km , A 城遭受这次台风影响的时间为240÷40=6小时.中考链接S △ABC =5,BC=22,则B C 边上的高为225.§18.2 勾股定理的逆定理(一)1.A .2.A.3.D .4.⑴是直角三角形,∠B 是直角; ⑵不是直角三角形;⑶是直角三角形,∠C 是直角; ⑷是直角三角形,∠A 是直角.5.设短边长x 米,则另外两边分别长7+x 、8+x 米,x +7+x +8+x =30,x =5,三边长分别为5、12、13,这个三角形是直角三角形.6.在R t △ABD 中,由勾股定理得BD=5;在△CBD 中,由勾股定理的逆定理得∠CBD=90º,△DBC 是直角三角形吗.中考链接连结AC .在R t △ABC 中,由勾股定理得AC=5;在△ACD 中,由勾股定理的逆定理得∠ACD=90º,则S=6,S△ACD=30, S四边形ABCD=36米2.△ABC§18.2 勾股定理的逆定理(二)1.直角,∠B.2.B.3.(1)是,(2)不是.4.BC=25,AC=5,AB=5,由勾股定理的逆定理得∠ACB=90º,即A、B、C三点能构成直角三角形.5. 连结AC.在R t△ADC中,由勾股定理得AC=5;在△ACB中,由勾股定理的逆定理得∠ACB=90º,则S△ADC=6,S△ACB=30, S四边形ABCD=24米.6. AC=13.中考链接B.§18.2 勾股定理的逆定理(三)1.B.分别是⑴、⑷、⑸.2.⑴是直角三角形,∠B是直角;⑵不是直角三角形;⑶是直角三角形,∠C是直角;⑷是直角三角形,∠C是直角.3.由a+b=4,ab=1,得a2+b2=(a+b)2-2ab=14= c2,所以∠C=90º,即△ABC是直角三角形.4.由a2+b2+c2+50=6a+8b+10c,得(a-3)2+(b-4)2+( c-5)2=0,则a=3,b=4,c=5,由勾股定理的逆定理得∠ACB=90º,则S△ABC=6.5.AC=12, BC=5, AB=13,∠ACB=90º,又∠ABC=50º,则∠CAB=40º,甲巡逻艇的航向为北偏东50°.中考链接“海天”号沿西北(或北偏西45º)方向.。
勾股定理的逆定理的证明方法勾股定理的逆定理是指:若在一个三角形中,边长满足a^2 + b^2 = c^2,则此三角形为直角三角形,其中c为斜边,a、b为两条其他边的长度。
这个定理的证明方法主要有几种,下面将分别进行介绍。
证明方法一:利用相似三角形的性质假设一个三角形ABC,其中∠C为直角,边长满足a^2 + b^2 = c^2。
我们需要证明∠A和∠B都为直角。
我们通过观察可以发现,三角形ABC和三角形ACB的三个角分别相等,即∠A = ∠ACB,∠B = ∠ABC。
由于∠C为直角,则∠A和∠B 的和必须为180°。
因此,若∠A或∠B不为直角,则另一个角必然为直角。
假设∠A不为直角,则∠B为直角。
根据正弦定理,我们可以得到以下等式:a/sinA = c/sinCb/sinB = c/sinC将等式两边进行平方,可以得到:(a/sinA)^2 = (c/sinC)^2(b/sinB)^2 = (c/sinC)^2由于a^2 + b^2 = c^2,我们可以将等式进行代入,得到:(sinB)^2 + (sinA)^2 = 1根据三角恒等式sin^2A + cos^2A = 1,我们可以得到:(sinB)^2 + (sinA)^2 = (cosA)^2 + (sinA)^2 = 1由此可见,当∠A不为直角时,∠B必然为直角。
同理,当∠B不为直角时,∠A必然为直角。
因此,根据勾股定理的逆定理,我们可以得出结论:若在一个三角形中,边长满足a^2 + b^2 = c^2,则此三角形为直角三角形。
证明方法二:利用三角函数的性质假设一个三角形ABC,其中∠C为直角,边长满足a^2 + b^2 = c^2。
我们需要证明∠A和∠B都为直角。
根据正弦定理,我们可以得到以下等式:a/sinA = c/sinCb/sinB = c/sinC将等式两边进行平方,可以得到:(a/sinA)^2 = (c/sinC)^2(b/sinB)^2 = (c/sinC)^2由于a^2 + b^2 = c^2,我们可以将等式进行代入,得到:(sinB)^2 + (sinA)^2 = 1根据三角恒等式sin^2A + cos^2A = 1,我们可以得到:(sinB)^2 + (sinA)^2 = (cosA)^2 + (sinA)^2 = 1由此可见,当∠A不为直角时,∠B必然为直角。
17.2 勾股定理的逆定理(第二课时)一、教学目标1.核心素养:通过运用勾股定理的逆定理,提高运算能力、逻辑推理能力和应用意识.2.学习目标(1)理解勾股数的含义.(2)能运用勾股定理的逆定理解决实际问题.3.学习重点勾股定理的逆定理的应用.4.学习难点二、教学设计(一)课前设计1.预习任务请写出几组能作为直角三角形边长的正整数.2.预习自测1.由7、24、25组成的三角形是直角三角形吗?2.我们知道以3、4、5为边长能构成直角三角形,那6、8、10呢?9、12、15呢?你发现了什么?(二)课堂设计1.知识回顾勾股定理的逆定理是什么?2.问题探究问题探究一勾股数●活动一理解定义像3、4、5这样,能够成为直角三角形三边长的三个正整数成为勾股数. 即满足的三个正整数就称为勾股数.再如:…●活动二推理论证我们知道3、4、5是一组勾股数,那么3k 、4k 、5k (k 是正整数)也是一组勾股数吗? 因为,,所以且3k 、4k 、5k 均为正整数,所以3k 、4k 、5k 也是一组勾股数.●活动三 推广提升一般地,如果a 、b 、c 是一组勾股数,那么ak 、bk 、ck (k 是正整数)也是一组勾股数吗? 因为,,而,∴∴,则ak 、bk 、ck (k 是正整数)也是一组勾股数.请你再写几组勾股数.问题探究二 利用勾股定理的逆定理解决生活中的问题 重点知识★ ●活动一 初步应用 例1 如图,某港口P 位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16nmile ,“海天”号每小时航行12nmile, 它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?E NRP Q【知识点:勾股定理的逆定理;】详解:根据题意PQ=16×1.5=24,PR=12×1.5=18, QR=30,因为,即,所以QPR=90o .由“远航”号沿东北方向航行可知,“海天”号沿西北方向航行. 点拨:由已知条件易想到求出两轮船航行的路程,即为三角形的边长,从而已知C A 三角形的三边长,再利用勾股定理的逆定理判断该三角形为直角三角形而解决问题 .●活动二 拓展提升例2 如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B.已知A 、艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇B 测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海?【知识点:勾股定理的逆定理;】详解:设MN 交AC 于E ,则∠BEC=90°.又AB 2+BC 2=52+122=169=132∴△ABC 是直角三角形,∠ABC=90°.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE ,则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE=288,∴CE=13144. 13144÷169144≈0.85(小时),0.85×60=51(分).9时50分+51分=10时41分.答:走私艇最早在10时41分进入我国领海.点拨:由题意可得△ABC 的三边长分别为5、12、13,根据勾股定理的逆定理判断∠ABC=90°,由题可知走私艇C 进入我领海的最近距离是CE ,再利用勾股定理建方程求出CE 的长,从而解决问题.问题探究三 勾股定理及逆定理的综合运用例3. 某中学有一块四边形的空地ABCD ,如下图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m ,BC=12m ,CD=13m ,DA=4m ,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【知识点:勾股定理,勾股定理的逆定理;】详解:连接BD. 在Rt△ADB中∠BAD=90o,BD==5,在△DBC中,则∴∠DBC=90o,∴S四边ADBC=S△ADB+ S△DBC=5×12=36∴36×200=7200(元).答:学校需投入7200元买草皮.点拨:根据条件易想到链接BD,将四边形的面积转化为两个三角形的面积之和,由AB=3,AD==4,易求BD=5,而△CBD中已知三边的长,可根据勾股定理的逆定理判断该三角形为直角三角形,再根据面积计算公式求出答案.3.课堂总结【知识梳理】1. 一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数.2.利用勾股定理的逆定理解决生活中的问题.【重难点突破】1.三个数是勾股数,则必须满足两个条件:(1)较小的两个数的平方和等于较大数的平方.(2)三个数必须是正整数.2.已知一个三角形的三边长时,首先应想到利用勾股定理的逆定理来判断这个三角形是否为直角三角形.3.在勾股定理及其逆定理的综合运用时需注意正确区分:勾股定理是在直角三角形中运用,而其逆定理是判断一个三角形是否为直角三角形.4.随堂检测1. 在△ABC中,三边长a、b、c满足 = 0,则此三角形为()A . 钝角三角形 B. 等腰三角形C. 等腰直角三角形D. 直角三角形【知识点:勾股定理的逆定理】【答案】D2. 将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出两组基本勾股数:, .【知识点:勾股数】【答案】5,12,13;9,40,41.3.如图,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东50°航行,乙船以12海里/时向南偏东方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船出发后的航向是南偏东多少度?东【知识点:勾股定理的逆定理;数学思想:模型思想】【答案】∵AC=16×3=48,AB=12×3=36,∴222222+=-==,BC AC AB604836∴△ABC为直角三角形且∠CAB=90°,∴乙船出发后的航向是南偏东40o.4. 一个零件的形状如图,按规定这个零件中∠A与∠DBC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=13 , BC=12,这个零件符合要求吗?【知识点:勾股定理的逆定理;数学思想:模型思想】【答案】这个零件符合要求.在△ADB中,,则,∴∠DAB=90o,同理,在△DBC中,则∴∠DBC=90o,∴这个零件符合要求.。
八数教学案一、课时学习目标1.灵活应用勾股定理及逆定理解决实际问题。
2.进一步加深性质定理与判定定理之间关系的认识。
重点、难点1.重点:灵活应用勾股定理及逆定理解决实际问题。
2.难点:灵活应用勾股定理及逆定理解决实际问题。
二、课前预习导学1.填空题。
⑴任何一个命题都有 ,但任何一个定理未必都有 。
⑵“两直线平行,内错角相等。
”的逆定理是 。
⑶在△ABC 中,若a 2=b 2-c 2,则△ABC 是 三角形, 是直角; 若a 2<b 2-c 2,则∠B 是 。
⑷若在△ABC 中,a=m 2-n 2,b=2mn ,c= m 2+n 2,则△ABC 是 三角形。
2.下列四条线段不能组成直角三角形的是( )A .a=8,b=15,c=17B .a=9,b=12,c=15C .a=5,b=3,c=2D .a :b :c=2:3:43.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?⑴a=3,b=22,c=5; ⑵a=5,b=7,c=9;⑶a=2,b=3,c=7; ⑷a=5,b=62,c=1。
4.若三角形的三边是 ⑴1、3、2; ⑵51,41,31; ⑶32,42,52⑷9,40,41; ⑸(m +n )2-1,2(m +n ),(m +n )2+1;则构成的是直角三角形的有( ) A .2个 B .3个 C.4个 D.5个 5.叙述下列命题的逆命题,并判断逆命题是否正确。
⑴如果a 3>0,那么a 2>0;⑵如果三角形有一个角小于90°,那么这个三角形是锐角三角形; ⑶如果两个三角形全等,那么它们的对应角相等; ⑷关于某条直线对称的两条线段一定相等。
三、课堂学习研讨例1(P75例2)在军事和航海上经常要确定方向和位置, 从而使用一些数学知识和数学方法。
分析:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可得PR= ,PQ= ,QR= ;小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。
勾股定理的逆定理————————————————————————————————作者: ————————————————————————————————日期:ﻩ勾股定理的逆定理(学习目标)1. 掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.2. 能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.3. 能够理解勾股定理及逆定理的区别与联系,掌握它们的应用范围.(要点梳理)(高清课堂 勾股定理逆定理 知识要点)要点一、勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C=90°的直角三角形;若222c a b ≠+,则△AB C不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点三、互逆命题如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.要点四、勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形. 要点诠释:(1)22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长;(2)2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长;(3)2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长;(典型例题)类型一、原命题与逆命题1、写出下列命题的逆命题,并判断其真假:(1)同位角相等,两直角平行; (2)如果2x =,那么24x =;(3)等腰三角形两底角相等; (4)全等三角形的对应角相等. (5)对顶角相等.(6)线段垂直平分线上的点到线段的两个端点的距离相等.(思路点拨)写一个命题的逆命题的关键是分清它的题设和结论,然后将其交换位置,判断一个命题为真命题要经过证明,是假命题只需举出反例说明即可.(答案与解析)解:(1)逆命题是:两直线平行,同位角相等,它是真命题.(2)逆命题是:如果24x =,那么2x =,它是假命题.(3)逆命题是:有两个角相等的三角形是等腰三角形,它是真命题.(4)逆命题是:对应角相等的两个三角形全等,它是假命题.(5)逆命题是:如果两个角相等,那么这两个角是对顶角,它是假命题.(6)逆命题是:到线段两个端点距离相等的点一定在线段的垂直平分线上,它是真命题.(总结升华)写一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换位置,写出它的逆命题,可以借助“如果……那么”分清题设和结论.每一个命题都有逆命题,其中有真命题,也有假命题.举一反三:(变式)下列定理中,有逆定理的个数是( )①有两边相等的三角形是等腰三角形;②若三角形三边a b c ,,满足222a b c +=,则该三角形是直角三角形;③全等三角形对应角相等;④若a b =,则22a b =.A.1个B.2个 C .3个 D .4个(答案)B;提示:①的逆命题是:等腰三角形有两边相等,是真命题;②的逆命题是:若三角形是直角三角形,则三边满足222a b c +=(c 为斜边);③但对应角相等的两个三角形不一定全等;④若22a b =,a 与b 不一定相等,所以③、④的逆命题是假命题,不可能是定理.类型二、勾股定理逆定理的应用2、如图所示,四边形ABCD 中,A B⊥AD,AB =2,A D=23,CD=3,B C=5,求∠ADC 的度数. (答案与解析)解:∵ AB ⊥AD ,∴ ∠A =90°,在Rt △ABD 中,222222(23)16BD AB AD =+=+=.∴ B D=4,∴ 12AB BD =,可知∠AD B=30°, 在△BDC 中,22216325BD CD +=+=,22525BC ==,∴ 222BD CD BC +=,∴ ∠BD C=90°,∴ ∠ADC=∠ADB +∠B DC =30°+90°=120°.(总结升华)利用勾股定理的逆定理时,条件是三角形的三边长,结论是直角三角形,即由边的条件得到角的结论,所以在几何题中需要进行边角的转换时要联想勾股定理的逆定理. 举一反三:(变式1)△ABC 三边a b c ,,满足222338102426a b c a b c +++=++,则△ABC 是( )A.锐角三角形 B.钝角三角形 C.等腰三角形 D.直角三角形(答案)D ;提示:由题意()()()222512130a b c -+-+-=,51213a b c ===,,,因为222a b c +=,所以△ABC 为直角三角形.(变式2)如图所示,在△AB C中,已知∠ACB=90°,AC =B C,P是△A BC 内一点,且P A=3,PB=1,P C=C D=2,CD ⊥CP ,求∠BPC 的度数.(答案)解:连接BD .∵ CD ⊥CP,且CD =C P=2,∴ △CPD 为等腰直角三角形,即∠CPD=45°. ∵ ∠AC P+∠BCP =∠B CP+∠BCD=90°, ∴ ∠ACP=∠B CD . ∵ CA=C B,∴ △C AP ≌△C BD(SA S), ∴ DB=P A=3.在Rt △CPD 中,22222228DP CP CD =+=+=.又∵ PB=1,则21PB =.∵ 29DB =,∴ 22819DB DP PB =+=+=,∴ △D PB 为直角三角形,且∠DPB =90°,∴ ∠CPB=∠CPD+∠DPB =45°+90°=135°.3、如图所示,在平面直角坐标系中,直线33y x =+与x 轴交于点B,与y 轴交于点A,直线133y x =-+与x 轴交于点C ,同时也过点A .请判断两直线有怎样的位置关系,并说明理由.(思路点拨)判断两直线的位置关系,可转化为判断△ABC 的形状.要判断△ABC 的形状,需先求出其三边的长,而由直线的解析式易求出线段AO ,BO ,C O的长,再根据勾股定理可求得A B,A C的长. (答案与解析)解:∵ 直线33y x =+与x 轴交于点B, ∴ 当0y =时,1x =-, ∴ 点B的坐标为(-1,0).∵ 直线33y x =+与y 轴交于点A ,,∴ 当0x =时,3y =,∴ 点A 的坐标为(0,3).∴ AO =3,B O=1.在Rt △ABO 中,由勾股定理,得222223110AB AO BO =+=+=.∵ 直线133y x =-+与x 轴交于点C,∴ 当y =0时,x =9,∴ 点C 的坐标为(9,0). 在R t△ACO 中,由勾股定理,得222223990AC AO CO =+=+=.又∵ BC =BO+CO=10,∴ 221090100AB AC +=+=,2210100BC ==.∴ 222AB AC BC +=.∴ △ABC 为直角三角形,∴ AB ⊥AC.(总结升华)在平面直角坐标系内判断一个三角形的形状,可考虑勾股定理的逆定理.另外,在平面直角坐标系中,只要知道两点的坐标,便可求出线段的长度.类型三、勾股定理逆定理的实际应用4、如图所示,MN 以左为我国领海,以右为公海,上午9时50分我国缉私艇A发现在其正东方向有一走私艇C 并以每小时13海里的速度偷偷向我国领海开来,便立即通知距其5海里,并在M N线上巡逻的缉私艇B 密切注意,并告知A 和C 两艇的距离是13海里,缉私艇B 测得C 与其距离为12海里,若走私艇C 的速度不变,最早在什么时间进入我国海域?(答案与解析)解:∵ 22222251216913AB BC AC +=+===,∴ △ABC 为直角三角形.∴ ∠ABC =90°.又B D⊥A C,可设CD =x ,∴ 22222212,(13)5,x BD x BD ⎧+=⎪⎨-+=⎪⎩①②①-②得2216926119x x x -+-=, 解得14413x =.∴ 1441441313169÷=≈0.85(h)=51(分). 所以走私艇最早在10时41分进入我国领海.(总结升华)(1)本题用勾股定理作相等关系列方程解决问题,(2)用勾股定理的逆定理判定直角三角形,为勾股定理的运用提供了条件.(巩固练习)一.选择题1.(2012•广西)已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有( )A.② B .①② C.①③ D.②③2. 下列三角形中,不是直角三角形的是( )A.三个内角之比为5∶6∶1 B . 一边上的中线等于这一边的一半C.三边之长为20、21、29 D. 三边之比为1.5 : 2 : 33.列命题中,不正确的是( )A . 三个角的度数之比为1:3:4的三角形是直角三角形;B. 三边之比为1: 3:2的三角形是直角三角形;C. 三个角的度数之比为1:2:2的三角形是直角三角形;D. 三边之比为2:2:2的三角形是直角三角形.4. 如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是( )A.CD 、EF 、GH B.AB 、EF 、G H C.AB 、CF 、EF D .G H、AB 、C D5.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )6. c b a ,,为直角三角形的三边,且c 为斜边,h 为斜边上的高,下列说法:①222,,c b a 能组成一个三角形 ②c b a ,,能组成三角形③h b a h c ,,++能组成直角三角形 ④h b a 1,1,1能组成直角三角形 其中正确结论的个数是( )A.1 B .2 C .3 D.4二.填空题7.若△AB C中,()()2b a b a c -+=,则∠B =____________.8.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形.9.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以2a -、a 、2a +为边的三角形的面积为______.10.△ABC 的两边a b ,分别为5,12,另一边c 为奇数,且a b c ++是3的倍数,则c 应为______,此三角形为______.11.有两根木条,长分别为60cm 和80cm ,现再截一根木条做一个钝角三角形,则第三根木条x (钝角所对的边)长度的取值范围_________.12. 如果线段a b c ,,能组成一个直角三角形,那么2,2,2c b a ________组成直角三角形.(“能”或“不能”).三.解答题13.已知a b c 、、是△AB C的三边,且222244a c b c a b -=-,试判断三角形的形状.14.观察下列各式:322345+=,2228610+=,22215817+=,222241026+=,…,你有没有发现其中的规律?请用含n 的代数式表示此规律并证明,再根据规律写出接下来的式子.15.在等边△ABC 内有一点P,已知PA=3,PB=4,PC=5.现将△APB 绕A点逆时针旋转60°,使P点到达Q 点,连P Q,猜想△PQC 的形状,并论证你的猜想.(答案与解析)一.选择题1.(答案)D;(解析)根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.只要判断两个较小的数的平方和是否等于最大数的平方即可判断.2.(答案)D ;(解析)D 选项不满足勾股定理的逆定理.3.(答案)C;(解析)度数之比为1:2:2,则三角形内角分别为36°:72°:72°4.(答案)B ;(解析)22222228,20,5,13,AB CD EF GH AB EF GH ====+=,所以这三条线段能构成直角三角形.5.(答案)C;(解析)22222272425152025+=+=,.6.(答案)C ;(解析)因为222a b c +=,两边之和等于第三边,故222,,c b a 不能组成一个三角形,①错误;因为a b c +>,所以c b a ,,能组成三角形,②正确;因为ab ch =,所以2222222a ab b h c ch h+++=++,即()()222a b h c h ++=+,③正确;因为2222222222222111a b c c a b a b a b c h h +⎛⎫⎛⎫⎛⎫+==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以④正确.二.填空题7.(答案)90°;(解析)由题意222b a c =+,所以∠B=90°.8.(答案)直角;(解析)2AB =13,2BC =52,2AC =65,所以222AB BC AC +=.9.(答案)24;(解析)∵7<a <9,∴a =8.10.(答案)13;直角三角形;(解析)7<c <17.11.(答案)100cm <x <140cm ;(解析)因为60,80,100构成直角三角形,则钝角三角形的最长边应该大于100cm ,再根据两边之和大于第三边,所以x <60cm +80cm =140cm .12.(答案)能;(解析)设c 为斜边,则222c b a =+,两边同乘以41,得222414141c b a =+,即222)2()2()2(c b a =+ . 三.解答题13.(解析)解:因为222244a c b c a b -=-,所以()()()2222222c a b a b a b -=+-()()222220a b a b c -+-=所以22a b =或222a b c +=,此三角形为等腰三角形或直角三角形.14.(解析)解:222351237+=,()()()22222112111n n n ⎡⎤⎡⎤+-++=++⎡⎤⎣⎦⎣⎦⎣⎦.(n ≥1且n 为整数) 15.(解析)解:因为△APB 绕A 点逆时针旋转60°得到△AQC,所以△APB≌△AQC,∠PAQ=60°, 所以AP=A Q=P Q=3,BP =CQ=4,又因为PC =5,222PQ CQ PC +=所以△PQC 是直角三角形.。
18.2 勾股定理的逆定理知识点1 互逆命题在两个命题中,如果一个命题的题设和结论分别是另一个命题的结论和题设,那么这两个命题称为互逆命题,如果把其中一个叫做原命题,那么另一个叫做它的逆命题.每个命题都有逆命题,但原命题是真命题,它的逆命题不一定是真命题.原命题和逆命题的真假性一般有四种情况:真、假;真、真;假、假;假、真.知识点2 互逆定理如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.每个命题都有逆命题,但不是所有的定理都有逆定理.知识点3 勾股定理的逆定理——直角三角形的判别条件定理:如果三角形的边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.解读:(1)作用:可用边的关系来判断一个三角形是否是直角三角形.(2)用较短两边的平方和与最大边的平方进行比较.(3)条件中没有涉及直角三角形,结论是直角三角形.(4)勾股定理与勾股定理的逆定理的联系与区别:联系:①两者都与三角形的三边关系a2+b2=c2有关;②两者都与直角三角形有关.区别:①勾股定理是以“一个三角形是直角三角形”为条件,进而得到这个直角三角形的三边的数量关系,即a2+b2=c2.②勾股定理的逆定理是以“一个三角形的三边满足a2+b2=c2”为条件,进而得到这个三角形是直角三角形,是判断一个三角形是否是直角三角形的一个有效的方法.(5)应用:①现实生活中,在没有测量角的仪器的情况下,常利用勾股定理的逆定理来确定直角(或垂线).②勾股定理与勾股定理的逆定理的综合运用.知识点4 勾股数概念:满足a2+b2=c2的三个正整数,称为勾股数.解读:(1)勾股数满足两个条件:①正整数;②满足a2+b2=c2.(2)常见的勾股数:3,4,5;6,8,10;5,12,13;8,15,17;9,40,41;…(3)小窍门:记住常见的勾股数可以提高做题速度.(4)一组勾股数中各数扩大相同的整数倍能得到一组新的勾股数,如当k=1,2,3,…,n时,下列各组数还是勾股数,{3k,4k,5k},{l5k,l2k,l3k},…延伸:(1)几个求勾股数的常见公式:①n2-1,2n,n2+1(n≥2,n.为正整数);②2n+1,2n2+2n,2n2+2n+1(n是正整数);③m2-n2,2mn,m2+n2(m>n,m、n都是正整数).(2)小窍门:①有最小的勾股数(3,4,5),没有最大的勾股数.②勾股数不能全是奇数,但可以全是偶数.③勾股数中不可能只有两个偶数.一、选择题1.以下面各组数为边长的三角形,能组成直角三角形的个数是( )①6,7,8;②8,15,17;③7,24,25;④12,35,37.A.1B.2C.3D.42.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,在满足下列条件下,不是直角三角形的是( )A.a :b :c =3:4:5B.a :b :c =9:12:15C.∠A :∠B :∠C =3:4:5D.∠A :∠B :∠C =1:2:33.在△ABC 中,∠A :∠B :∠C =2:1:3, a 、b 、c 分别为∠A 、∠B 、∠C 的对边,则有( )A.b 2+a 2=c 2B.c 2=3b 2C.3a 2=2c 2D.c 2=2b 24.等腰三角形底边上的高为1cm,周长为4cm,则三角形的面积是( )A.14cm 2B.10cm 2C.1cm 2D.23cm 45.如图所示,已知AB ⊥CD , △ABD 、△BCE 都为等腰三角形,如果CD =7,BE =3,那么AC 的长为( )A.8B.5C.3D.46.下列说法中,正确的是( )A.三角形两条边的平方和等于第三条边的平方B.如果一个三角形两条边的平方差等于第三条边的平方,那么这个三角形是直角三角形C.在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c , 若a 2+b 2=c 2,则∠A =90°D.在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,若c 2-a 2=b 2,则∠B=90°7.把直角三角形的三边都扩大n 倍( n >0),得到的三角形是( )A.等腰三角形B.锐角三角形C.直角三角形D.不能确定8.小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先回家拿了钱去图书馆,小芳到家用了6分钟,从家到图书馆用了8分钟.小芳从公园到图书馆拐的角是( )A.锐角B.直角C.钝角D.不能确定9.如图所示,我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积是13, 小正方形的面积是1,直角三角形较短的直角边为a ,较长的直角边为b ,那么(a +b )2的值为( )A.13B.19C.25D.16910.长度分别为9cm、12cm、15cm、36cm、39cm的五根木棍,选出三根首尾连接,最多可搭成的直角三角形的个数为( )A.1B.2C.3D.411.在下列长度的各组线段中,能组成直角三角形的是( )A.12,15,27B.32,42,52C.5a, l2a, l3a(a>0)D.1,2,312.满足下列条件的△ABC,不是直角三角形的是( )A.∠A=∠B-∠CB.∠A:∠B:∠C=1:1:2C.a:b:c=1:1:2D.b2=a2-c213.已知在△ABC中,AB=8,BC=15,AC=17,则下列结论无法判断的是( )A.△ABC是直角三角形,且AC为斜边B.△ABC是直角三角形,且∠ABC=90°C.△ABC的面积为60D.△ABC是直角三角形,且∠A=60°14.在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是( )A.∠C=90°B.a2=b2-c2C.c2=2a2D.a=b15.若△ABC的三边分别为m2-1,2m,m2+1(m>1),则下列结论正确的是( )A.△ABC是直角三角形,且斜边的长为m2+ 1B.△ABC是直角三角形,且斜边的长为2mC.△ABC是直角三角形,但斜边的长需由m的大小确定D.△ABC无法判定是否是直角三角形二、填空题1.若△ABC三边长为a、b、c,且满足(a-b)(a2+b2-c2)=0,则△ABC的形状为_______三角形.2.若三角形三边之比为3:4:5,则该三角形为________三角形;若三角形三角之比为1:2:3,则该三角形为__________三角形.3.三角形三边分别为6、8、10,则最长边上的高为__________.4.三边长为a=m2-n2,b=2mn,c=m2+n2(其中m>n>0)的三角形为_______三角形.5.请任意写出三组勾股数_______,________,_________.6.一直角三角形的两直角边分别为9、12,该三角形的周长为_________.7.在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,则斜边上的高是__________cm.8.如图所示,在△ABC中,AB=AC,D是BC上一点,AD⊥AB,AD=9cm,BD=15cm,则AC=-_________cm.9.一个直角三角形的三边长是不大于10的三个连续偶数,则它的周长是_________.10.传说,古埃及人曾用“拉绳”的方法画直角,现有一根长24厘米的绳子,请你利用它拉出一个周长为24厘米的直角三角形,那么你拉出的直角三角形三边的长度分别是______厘米,_________厘米,_________厘米,其中的道理是________.11.一条对角线长39cm,一条边长是36cm的矩形的周长为________cm.12.三角形三边长为a+1,a+2,a+3,当a=_________时,此三角形为直角三角形.13.在△ABC中,三边为a、b、c,且满足a2+b2+c2=ab+ac+bc,则△ABC的形状为________.14.在△ABC中,AB=13cm,BC=10cm,BC边上的中线AD=l2cm,则△ABC的面积为_______.15.如图所示,在Rt△ABC中,∠C=90°,∠1=∠2, CD=1.5,BD=2.5,则AC等于___________.16.将一根长24cm的筷子,置于直径为5cm、高为12cm的圆柱形水杯中(如图所示).设筷子露在杯子外面的长为h cm,则h的取值范围是__________.17.直角三角形的三边长分别是a-b,a,a+b,其周长为24cm,则面积为________cm2.三、解答题1.试判断三边长分别为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是否是直角三角形.2.已知△ABC的三边的长分别为a、b、c,且满足关系式a2+b2+c2+50=6a+8b+10c,试判断△ABC的形状.3.在△ABC中,∠BAC=90°,AB=AC,P为BC上一点,求证:PB2+PC2=2P A2.4.如图所示,CD是△ABC的边AB上的高,且CD2=AD·DB.求证:∠ACB=90°.5.求证a=m2-n2, b=m2+n2,c=2mn(m>n>0)是一个直角三角形的三边.6.如图所示,如果只给你一把带刻度的直尺,你是否能检验∠MPN是不是直角,简述你的作法.7.如图所示,在四边形ABCD中,AB⊥BC,且AB=9,BC=12,CD=17,AD=8,求四边形ABCD的面积.8.如图所示,学校B前面有一条笔直的公路,学生放学后走AB、BC两条路可到达公路,经测量BC=6km,BA=8km,AC=10km.现需修建一条公路使学校B到公路的距离最短,请你帮助学校B设计一种方案,并求出公路的长.9.如图所示,一个池塘呈三角形形状,三角形的边长分别为6m、8m、10m,距池塘边缘5m 内的土地上栽着树,问池塘连同树木共占土地多少m2?(结果精确到1m2,π=3.14)10.如图所示,在正方形ABCD中,F为DC的中点,E为BC上一点,且1,4EC BC试判断AF与EF的位置关系,并说明理由.11.3,4 ,5 32+42=525, 12 , 13 52+122=327,24 ,25 72+242=2529,40 ,41 92+402=412……21, b ,c212+b2=c2(1)试找出它们的共同点,并说明你的结论;(2)当a=21时,求b、c的值.a b c第一组3=2×1+1 4=2×l×(1+1) 5=2×1×(1+1)+1第二组 5=2×2+1 12=2×2×(2+1) 13=2×2×(2+1)+1 第三组7=2×3+1 24=2×3×(3+1) 25=2×3×(3+1)+1 第四组9=2×4+1 40=2×4×(4+1) 41=2×4×(4+1)+1 … … … …根据以上勾股数组的组成傅点,你能求,出第七组勾股数的a 、b 、c 各是多少吗?第n 组呢?13.如图是一个零件的形状,校规这个零件中必须有AC ⊥BC ,工人师傅量得B 、C 两点距离为36,AD =12,CD =9,AB =39,∠ADC =90°.问:这个零件符合要求吗?并说明理由.14.如图所示,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,并且AB =4,1,4CE BC =F 为CD 的中点,连接AF 、AE 、EF ,△AEF 是什么三角形?请说明理由.15.甲、乙两船从港口A 同时出发,甲船以16海里/时的速度向北偏东35°航行,乙船沿南偏东一角度航行,船速为12海里/时,2小时后,甲、乙两船相距40海里,问乙船的航行方向.16.如图所示,在△ABC 中,AB =40,BC =100,且BC 边上的中线长AD =30.(1)试说明2;ABC ABD S S ∆∆=(2)求△ADC 的面积.17.同学们在数学老师的带领下来到平坦的草原上游玩,他们发现前面有两棵大树,当地的牧'民告诉他们,这是两棵古老而特别的树,两楝树之间的距离为750 m,一部分同学以45 m/min 的速度向一棵大树走去,伺时,剩下的一部分同学以60m/min 的速度向另一棵大树走去,10min 后,两组同学同时到达目的地.问:(1)两组同学行走的方向是否成直角?(2)如果他们仍以原速度行走,至少还需要几分钟才能相遇?18.Tom 和Jerry 去野外宿营,在某地要确定两条互相垂直的路,而身边又没带直角尺,可利用的只有背包带,你能帮他们想一个简单可行的办法吗?19.已知某开发区有一块四边形的空地ABCD ,如图所示,现计划在该空地上种上草皮,经测量,∠A =90°,AB =3m,BC =12m,CD =13m,DA =4m.若每平方米草皮需要200元,问需要投人多少元.20.阅读下列解题过程:已知a 、b 、c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.解:∵222244a c b c a b -=-① ∴2222222()()()c a b a b a b -=+- ②∴222c a b =+③ ∴△ABC 是直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:________;(2)错误的原因为___________;(3)本题正确的结论是_____________;21.观察下列两组勾股数:(1)3,4,5;5,12,13;7,24,25;…(2)6,8,10;10,24,26;14,48,50;…你发现上述两组勾股数各有什么特征?请用含有字母m 、n 的式子表示出来,你还能发现勾股数有什么特征?与同学交流.22.已知,如图△ABC 的周长是24,M 是AB 的中点,MC =MA =5,求△ABC 的面积.。
教学目标教学重点教学难点学情分析学法指导教学内容自学互帮导学法”课堂教学设计勾股定理逆定理(二)课时修改意见知识与能力:1 •掌握互逆命题的意义,会写一个命题的逆命题,并判断是否成立;理及逆定理解决实际问题。
过程与方法:进一步加深性质定理与判定定理之间关系的认识。
情感态度与价值观:通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.勾股定理的逆定理及其应用.建立实际问题转化成用勾股定理的逆定理的数学模型,解决数■学问题。
2、灵活应用勾股定八年级学生认知结构、心理特征趋于逐渐成熟时期,是学生由试验几何,向推理几何过渡的重要阶段。
这个时期的学生对所学知识有一种急于尝试和运用的冲动,若不能正确引导,则必将对其学习数学的积极性造成伤害。
通过对勾股定理逆定理的再探究,有利于更好的培养学生的分析思维能力,发展推理能力。
引导、尝试、发现、探究、合作交流。
效果预测教师活动学生活动(可能出现补救措施修改意见的问题)启动课堂 (知 识再现)[活动1]知识回顾:一、勾股定理及其逆定理的文字和几何语言的叙述:1、勾股定理(“形”到“数”的结合):文字表达:直角三角形两直角边和平方和等于斜边的平方 几何语言表达:•••/C=902 . 2 2…a +b=c2、文字表达:如果三角形一边的平方等于其他两边的平方和,那 么这个三角形是直角三角形。
几何语言表述:a+b=C•••/ C=903、点评学生汇报。
独自写出 两个定理的两 种表达方式, 并作好汇报准 备。
学生汇报。
前因后果 可能混淆“数”与“形”的完美结 合,才产生勾股 定理及其逆定 理,怎样结合, 其结果可以让 学生讨论后加 深印象,并将定 理和逆定理区 别开来。
二、复习训练:1、如图,两个正方形的面积分别为64和49,则AC=2、由五根木棍,长度分别为3、4、5、12、13,若取其中三根木棍,组成三角形,有_______________________ 种取法;构成直角三角形的有. 种取法。
1/8八年级(一)勾股定理练习题及答案1. 在直角三角形ABC 中,斜边AB=1,则AB 222AC BC ++的值是( )A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是______ cm (结果不取近似值).3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m ,旗杆在断裂之前高多少m ?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6. 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7. 如图所示,无盖玻璃容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm 的F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度.8. 一个零件的形状如图所示,已知AC=3cm ,AB=4cm ,BD=12cm 。
求CD 的长.9. 如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB 的长.10. 如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少? 11如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗? 第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC,所以AB 222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4.解:依题意,AB=16m ,AC=12m , 在直角三角形ABC 中,由勾股定理,222222201216=+=+=AC AB BC ,所以BC=20m ,20+12=32(m ), 故旗杆在断裂之前有32m 高. 5.86.解:如图,由题意得,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时)7. 解:将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E.在R90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ),“路”4m3m第2题图第5题图 第7题图 第9题图 第8题5m 13m第11题2/8CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得254322222=+=+=AB AC BC在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13. 9.解:延长BC 、AD 交于点E.(如图所示)∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8,设AB=x ,则AE=2x ,由勾股定理。
18.2 勾股定理的逆定理(一)教学目标知识与技能:1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
2.了解勾股定理的逆定理的证明方法和证明过程。
过程与方法通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用。
情感态度与价值观1、通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的关系。
2、通过“创设情景—建立模型—实验探究—理论释意—拓展应用”的勾股定理的逆定理的探索过程,经历知识的发生、发展、形成和应用的过程;重点掌握勾股定理的逆定理及证明。
难点勾股定理的逆定理的证明。
教学过程教学设计第一步:复习巩固:创设情境:⑴怎样判定一个三角形是等腰三角形?⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。
第二步:应用提高:例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?⑴同旁内角互补,两条直线平行。
⑵如果两个实数的平方相等,那么两个实数平方相等。
⑶线段垂直平分线上的点到线段两端点的距离相等。
⑷直角三角形中30°角所对的直角边等于斜边的一半。
分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。
⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。
解略。
例2(P82探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。
分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。
⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。
⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。
⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。
18.2勾股定理的逆定理说课稿一、教材分析 :(一)、本节课在教材中的地位作用“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算渗透与他人交流、合作的意识和探究精神(三)、学情分析:尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。
重点:勾股定理逆定理的应用难点:勾股定理逆定理的证明关键:辅助线的添法探索二、教学过程:本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。
(一)、复习回顾: 复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。
直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。
接下来就是利用这个数学模型,从理论上证明这个定理。
从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。
使学生确实在学习过程中享受到自我创造的快乐。
勾股定理的逆定理(1)知识领航1.勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形. 2. 满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用的勾股数有3、4、5、;6、8、10;5、12、13等.3. 应用勾股定理的逆定理时,先计算较小两边的平方和再把它和最大边的平方比较.4. 判定一个直角三角形,除了可根据定义去证明它有一个直角外,还可以采用勾股定理的逆定理,即去证明三角形两条较短边的平方和等于较长边的平方,这是代数方法在几何中的应用.e 线聚焦【例】如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD的面积.分析:根据题目所给数据特征,联想勾股数,连接AC ,可实现四边形向三角形转化,并运用勾股定理的逆定理可判定△ACD 是直角三角形.解:连接AC ,在Rt △ABC 中,AC 2=AB 2+BC 2=32+42=25, ∴ AC =5. 在△ACD 中,∵ AC 2+CD 2=25+122=169, 而 AB 2=132=169,∴ AC 2+CD 2=AB 2,∴ ∠ACD =90°.故S 四边形ABCD =S △ABC +S △ACD =21AB ·BC +21AC ·CD =21×3×4+21×5×12=6+30=36.双基淘宝仔细读题,一定要选择最佳答案哟!1. 分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能构成直角三角形的有( )A .4组B .3组C .2组D .1组2. 三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2(a 、b 都是正整数),则这个三角形是()A .直角三角形B .钝角三角形C .锐角三角形D .不能确定3.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍B . 2倍C . 3倍D . 4倍 4. 下列各命题的逆命题不成立的是( )A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a =b ,那么a 2=b 2 5.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)A B C D综合运用认真解答,一定要细心哟!6. 如图所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.7. 一个零件的形状如左图所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?ABCDA B CD5312138. 如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且AB =4,CE =41BC ,F 为CD 的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.AA D C B拓广创新试一试,你一定能成功哟!9. 勾股数又称商高数,它有无数组,是有一定规律的.比如有一组求勾股数的式子:a =m 2-n 2,b =2mn ,c =m 2+n 2(其中m ,n 为正整数,且m >n ).你能验证它吗?利用这组式子,完成下.123456 (2)3 4 5 6 …… … … … … ……勾股定理的逆定理(2)知识领航1.应用勾股定理及其逆定理解决简单的实际问题,建立数学模型.2.体会从“形”到“数”和从“数”到“形”的转化,培养转化、推理的能力.e 线聚焦【例】如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B .已知A 、C 两艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海?分析:为减小思考问题的“跨度”,可将原问题分解成下述“子问题”:(1)△ABC 是什么类型的三角形?(2)走私艇C 进入我领海的最近距离是多少?(3)走私艇C 最早会在什么时间进入?这样问题就可迎刃而解.解:设MN 交AC 于E ,则∠BEC =900.又AB 2+BC 2=52+122=169=132=AC 2, ∴△ABC 是直角三角形,∠ABC =900.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE , 则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE =288, ∴CE =13144. 13144÷169144≈0.85(小时), 0.85×60=51(分). 勾股 数n m A ME NB9时50分+51分=10时41分.答:走私艇最早在10时41分进入我国领海.双基淘宝◆ 仔细读题,一定要选择最佳答案哟!1. 如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .321,421,521 C .3,4,5 D .4,721,821 2.在下列说法中是错误的( )A .在△ABC 中,∠C =∠A 一∠B ,则△ABC 为直角三角形.B .在△ABC 中,若∠A :∠B :∠C =5:2:3,则△ABC 为直角三角形.C .在△ABC 中,若a =53c ,b =54c ,则△ABC 为直角三角形. D .在△ABC 中,若a :b :c =2:2:4,则△ABC 为直角三角形.3. 有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为( )A .2,4,8B .4,8,10C .6,8,10D .8,10,124.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数 , , .5.若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为 . 6.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为 .综合运用◆ 认真解答,一定要细心哟!7.如图,已知等腰△ABC 的底边BC =20cm ,D 是腰AB 上一点,且CD =16cm ,BD =12cm ,求△ABC 的周长.8.如图,三个村庄A 、B 、C 之间的距离分别为AB =5km ,BC =12km ,AC =13km .要从B 修一条公路BD 直达AC .已知公路的造价为26000元/km ,求修这条公路的最低造价是多少?D B C AB12 59.如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处上爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D 处滑到地面B,再由B跑到C,已知两猴子所经路程都是15m,求树高AB.拓广创新试一试,你一定能成功哟!10.如图,在△ABC中,∠ACB=90º,AC=BC,P是△ABC内的一点,且PB=1,PC=2,P A=3,求∠BPC的度数.BACD.ACPB18.2 勾股定理的逆定理(1)参考答案1.B2.A3.B4.C5.C6.24m 27.符合 8.由勾股定理得AE 2=25,EF 2=5,AF 2=20,∵AE 2= EF 2 +AF 2,∴△AEF 是直角三角形 . 9.略18.2 勾股定理的逆定理(2)参考答案1.B2.D3.C4.5,12,13; 8,15,17; 11,60,61(此题答案不唯一)5.3或416.120cm 27.由BD 2+DC 2=122+162=202=BC 2得CD ⊥AB 又AC =AB =BD +AD =12+AD ,在Rt△ADC 中,AC 2=AD 2+DC 2,即(12+AD )2=AD 2+162,解得AD =314,故 △ABC 的周长为2AB +BC =3153cm 8.由勾股定理的逆定理可判定△ABC 是直角三角形,由面积关系可求出公路的最短距离BD =1360km , ∴最低造价为120000元 9.设AD =x 米,则AB 为(10+x )米,AC 为(15-x )米,BC 为5米,∴(x +10)2+52=(15-x )2,解得x =2,∴10+x =12(米) 10.如图,将△APC 绕点C 旋转,使CA 与CB 重合,即△APC ≌△BEC ,∴△PCE 为等腰Rt △,∴∠CPE =45°,PE 2=PC 2+CE 2=8. 又∵PB 2=1,BE 2=9,∴PE 2+ PB 2= BE 2,则∠BPE =90°,∴∠BPC =135°.第10题图。