三角形
- 格式:doc
- 大小:2.32 MB
- 文档页数:88
三角形及其性质【知识要点】1.三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2.三角形的性质:(1)边:两边之和大于第三边,两边之差小于第三边;(2)角:①三角形内角和等于180;②三角形的外角等于和它不相邻的两个内角之和; 3.三角形的分类 (1)按边分类(2)按角分类 4.三角形中的特殊线(1)高(2)角平分线 (3)中线 (4)中位线5.内心:三条角平分线的交点. 外心:是垂直平分线的交点. 重心:三条中线的交点 垂心:三条高所在直线的交点 考点一:三角形的三边关系考题类型:1.判定三条线段能否构成三角形 2. 求三角形的边的取值范围考点三必知:已知两边长分别a ,b ,且a>b ,则第三边长x 的取值范围是a-b<x<a+b,即两边之和大于第三边,两边之差小于第三边.【例1】若某三角形的两边分别为3和4,则下列长度的线段能作为其第三边的是( ) A. 1 B.5 C.7 D.9【练习】:下列长度的三条线段,不能组成三角形的是( ) A. 3,8,4 B.4,9,6 C.15,20,8 D.9,15,8 考点二:三角形的角考题类型:1.三角形内角和定理的应用 2. 三角形外角的性质的应用⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底边和腰不相等的等腰三角形等腰三角形等边三角形⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形考点一必知:明确一副三角形的角度90°,45°,45°和90°,60°,30°以及外角的性质“三角形的一个外角等于与它不相邻的两个内角和”【例2】将一副三角板按如图1-3中的方式叠放,则∠а的读数是( ) A. 30° B.45° C.60° D.75°【练习】一副三角板,如图1-10所示叠放在一起,则图中∠а的度数是 .【例3】如图1.11,在ΔABC 中,∠B=46°,三角形的外角∠DAC 和∠ACF 的平分线交于点E , 则∠AEC= .【练习】在ΔABC 中,点P 是ΔABC 的内心,则∠PBC+∠PCA+∠PAB= 度考点三:等腰三角形考题类型:1.等腰三角形的性质 2.等腰三角形的判定 3.三线合一 4.等边三角形考点四必知:①“等边对等角”可以用来证明两个角相等;②“等角对等边”可以用来证明两条线段相等.【例3】如图1-4,一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的距离为( )A. 40海里B.60海里C.70海里D.80海里【练习】如图1-5,ΔABC 与ΔDEF 均为等腰三角形,O 为BC ,EF 的中点,则AD :BE 的值为 A. 3 B. 2 C. 35 D.不确定考点四:直角三角形 考题类型:1.勾股定理 2.勾股定理的逆定理 3.含30°角的直角三角形 4.等腰直角三角形解题技巧:在三角形的边的计算问题中,如果没有直角三角形,可以通过作垂线构造直角三角形来解决问题.【例6】如图1-6所示,在ΔABC 中,BC=3,AB=6,∠BCA=90°,在AC 取一点E ,以BE 为折痕,使 点A 和BC 延长线上的点D 重合,则DE 的长度为( )A. 6B. 3C. 23D. 3【例7】如图1.13知:△ABC中,AB=AC,∠B=30°,AD⊥AB,求证:2DC=BD【练习】如图1-7,ΔABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A. 2B. 23C.3D. 3考点五:三角形中特殊的线【例1】如图1-1,在ΔABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,则点D到AB的距离是 cm.【练习】1.三角形的下列线段中,能将三角形的面积分成相等两部分的是()A. 中线B. 角平分线C. 高D. 中位线2.如图1-2,在ΔABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于 .考点六等腰三角形的多解问题考题类型:1.对等腰三角形的腰分类讨论 2.对等腰三角形的底角分类讨论3.对等腰三角形的高分类讨论.解题技巧:当等腰三角形的腰或顶角不明确时,通常要根据题意进行分类讨论,将几种情况逐一进行研究,做到不重不漏.【例8】一个等腰三角形的两边长分别为5和6,则这个等腰三角形的周长是 .【练习】如图1-11,点A 的坐标是(2,2),若点P 在x 轴上,且ΔAPO 是等腰三角形,则点P 的坐标不可能是( ) A.(4,0) B.(1,0) C.(22,0) D.(2,0)南宁中考题1.(2010,3分)图1中,每个小正方形的边长为1,ABC 的三边a ,b ,c 的大小关系是:(A)a<c<b (B)a<b<c (C)c<a<b (D)c<b<a2.(2010,3分)如图2所示,在Rt ABC △中,90A ∠=°,BD 平分ABC ∠,交AC 于点D ,且4,5AB BD ==,则点D 到BC 的距离是:(A)3 (B)4 (C)5 (D)6 练习题:1.(2012,四川巴中)三角形的下列线段中,能将三角形的面积分成相等两部分的是( ) A. 中线 B. 角平分线 C. 高 D. 中位线2.(2012浙江嘉兴)已知ΔABC 中,∠B 是∠A 的2倍,∠C 比∠A 大20°,则∠A 等于( ) A. 40° B. 60° C. 80° D. 90°3.(2012义乌)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是( )A. 2B. 3C. 4D. 84.(2012湖南怀化)等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( )A. 7B. 6C. 5D. 45.如图1-8,在ΔABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 的长不可能是( ) A. 3.5 B. 4.2 C. 5.8 D. 76.(2012四川绵阳)如图1-9,将等腰直角三角形沿虚线裁去顶角后,∠1+∠2=( ) A. 225° B. 235° C. 270° D. 与虚线的位置有关7.如图1-12,在ΔABC 中,D 是BC 延长线上一点,∠B=40°,∠ACD=120°,则∠A 等于( )FED C B AFEDC B AA. 90°B. 80°C. 70°D. 60°8.(2012海安模考)在ΔABC 中,BC :AC :AB=1:1:2,则ΔABC 是( ) A. 等腰三角形 B. 钝角三角形 C. 直角三角形 D. 等腰直角三角形 9.(2011乐山)如图1-13,在直角ΔABC 中,∠C=90°,∠CAB 的平分线AD 交BC 于D ,若DE 垂直平分AB ,求∠B 的度数。
认识三角形
1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。
3、三角形的特性:
物理特性:稳定性。
如:自行车的三角架,电线杆上的三角架。
4、边的特性:任意两边之和大于第三边。
5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
三角形的分类
1、按照角大小来分:锐角三角形、直角三角形、钝角三角形。
①三个角都是锐角的三角形叫做锐角三角形
②有一个角是直角的三角形叫做直角三角形
③有一个角是钝角的三角形叫做钝角三角形
2、按照边长短来分:等边三角形、等腰三角形、三条边都不相等的三角形。
①两条边相等的三角形叫做等腰三角形(等腰三角形的特点:两腰相等,两个底角相等)
②三条边都相等的三角形叫等边三角形(等边△的三边相等,每个角是60度)
图形的拼组
1、用任意2个完全一样的三角形一定能拼成一个平行四边形。
2、用2个相同的直角三角形可以拼成一个长方形、一个平行四边形、一个大等腰三角形。
3、用2个相同的等腰直角的三角形可以拼成一个正方形、一个平行四边形、一个大的等腰的直角的三角形。
三角形及特殊三角形知识点(经典完整版)
三角形及特殊三角形知识点(经典完整版)
三角形定义
三角形是一个由三条边和三个内角组成的图形。
根据边长关系,三角形可以分为以下三种情况:
1. 等边三角形:三条边的长度都相等。
2. 等腰三角形:两条边的长度相等。
3. 普通三角形:三条边的长度都不相等。
三角形内角和
三角形的三个内角之和始终为180度。
根据角度大小,三角形
可以进一步分类:
1. 直角三角形:一个内角为90度。
2. 钝角三角形:一个内角大于90度。
3. 锐角三角形:三个内角都小于90度。
三角形特性
三角形还有一些重要属性和特性:
1. 垂心:垂心是三角形三条高的交点,即垂直于三边的线段的交点。
2. 重心:重心是三角形三条中线的交点,即三角形三个顶点与对边中点的连线的交点。
3. 外心:外心是三角形外接圆的圆心,即可以过三角形三个顶点的圆的圆心。
4. 内心:内心是三角形内切圆的圆心,即可以切三角形三个边的圆的圆心。
特殊三角形
除了普通的三角形外,还有一些特殊的三角形:
1. 等边三角形:三条边的长度都相等,内角均为60度。
2. 等腰直角三角形:一个内角为90度,且两条直角边的长度相等。
3. 等腰钝角三角形:一个内角大于90度,且两条等腰边的长度相等。
4. 等腰锐角三角形:三个内角都小于90度,且两条等腰边的长度相等。
以上是关于三角形及特殊三角形的一些知识点。
掌握这些概念可以帮助我们更好地理解三角形的性质和特点。
三角形概念大全三角形是几何学中最基本的形状之一,由三条边和三个顶点组成。
在这篇文章中,我们将详细介绍三角形的概念、性质、分类以及一些与三角形相关的重要定理和公式。
1. 三角形的基本概念三角形是由三条线段(边)和三个点(顶点)组成的多边形。
其中,边是连接两个顶点的线段,而顶点是多边形的拐角处。
三角形中的三个顶点用大写字母A、B、C表示,对应的边用小写字母a、b、c表示。
2. 三角形的性质(1)内角和定理:三角形的三个内角之和等于180度。
即∠A +∠B + ∠C = 180°。
(2)外角和定理:三角形的一个内角和其相邻的两个外角之和等于360度。
即∠A + ∠D + ∠E = 360°。
(3)角平分线定理:三角形的内角平分线相交于三角形的内心,且内心到三角形的各边的距离相等。
(4)中线定理:三角形的三条中线交于一点,这个点被称为三角形的重心,重心到三角形的各顶点的距离相等。
3. 三角形的分类根据边长和角度的不同,三角形可以分为以下几种类型:(1)按边长分类:a. 等边三角形:三条边的长度都相等。
b. 等腰三角形:至少有两条边的长度相等。
c. 普通三角形:三条边的长度都不相等。
(2)按角度分类:a. 锐角三角形:三个内角都小于90度。
b. 直角三角形:一个内角为90度。
c. 钝角三角形:其中一个内角大于90度。
(3)综合分类:a. 等腰直角三角形:一条等边与一个直角。
b. 等边锐角三角形:三个等边均为锐角。
c. 正三角形:既是等边三角形又是等腰三角形同时也是锐角三角形。
4. 三角形的重要定理和公式(1)勾股定理:直角三角形中,两直角边的平方和等于斜边的平方。
a² + b² = c²(c为斜边)(2)正弦定理:三角形中,边与其对应的正弦值成比例。
a/sinA = b/sinB = c/sinC(3)余弦定理:三角形中,边与其余弦值成反比。
a² = b² + c² - 2bc*cosA (a为边A对应的边长,A为角A对应的内角,b和c同理)(4)海伦公式:已知三角形的三边长度,可以求出三角形的面积。
三角形(新课标)新课标中对三角形的定义和性质进行了详细的说明。
下面将通过几个方面的讨论来介绍三角形的定义、分类以及相关的性质。
一、三角形的定义三角形是由三条线段组成的图形,其中每两条线段之间连接而成的角称为三角形的内角。
三角形有三个顶点、三条边和三个内角。
二、三角形的分类根据三角形的边长和角度大小,可以将三角形分为以下几种类型:1. 根据边长分类:(1) 等边三角形:三条边的长度相等。
(2) 等腰三角形:两条边的长度相等。
(3) 普通三角形:三条边的长度各不相等。
2. 根据角度大小分类:(1) 钝角三角形:一个内角大于90度。
(2) 直角三角形:一个内角等于90度。
(3) 锐角三角形:三个内角均小于90度。
三、三角形的重要性质三角形有许多重要的性质,下面将介绍其中几个主要的性质:1. 三角形的内角和定理:三角形的三个内角的和等于180度。
即:∠A + ∠B + ∠C = 180度。
2. 三角形的外角和定理:三角形的一个内角的外角等于其他两个内角的和。
即:∠A' =∠B + ∠C。
3. 三角形的边长关系:(1) 三角形的任意两边之和大于第三边。
(2) 三角形的任意两边之差小于第三边。
4. 三角形的角度关系:(1) 三角形的三个内角的关系:锐角三角形的三个内角之和小于180度,直角三角形的两个锐角之和等于90度,钝角三角形的三个内角之和大于180度。
(2) 三角形内角的大小关系:在三角形中,较长的边所对的角较大,较短的边所对的角较小。
五、特殊的三角形除了根据边长和角度分类外,还有一些特殊的三角形值得关注:1. 等腰直角三角形:一个内角为90度,两条直角边长度相等的三角形。
2. 等边直角三角形:一个内角为90度,三条边的长度都相等的三角形。
3. 等腰钝角三角形:一个内角大于90度,两条边的长度相等的三角形。
以上是对新课标中三角形的定义、分类和性质的介绍。
了解三角形的特点和性质对于几何学的学习非常重要。
三角形知识点归纳三角形是平面几何中最基本的图形之一、在学习和理解三角形的性质和定理时,需要掌握一些基本的知识点。
下面是对三角形知识点进行归纳的一些重要内容:一、三角形的定义和性质:1.三角形是由三条线段组成的封闭图形,其中每条线段都是由两个顶点连接而成。
2.三角形的内角和定理:三角形的内角和等于180度,即∠A+∠B+∠C=180°。
3.三角形的外角和定理:任意三角形的一个外角等于其不相邻的两个内角之和。
4.三角形的外接圆和内切圆:外接圆是与三角形的三条边都相切的圆,内切圆是与三角形的三条边都相切的圆。
二、三角形分类:1.根据边长分类:等边三角形的三条边都相等;等腰三角形的两条边相等;普通三角形的三条边都不相等。
2.根据角度分类:锐角三角形的所有内角都小于90度;直角三角形的一个内角为90度;钝角三角形的一个内角大于90度。
3.根据角度关系分类:顶角相等的三角形是全等三角形;底角相等的三角形是相似三角形。
三、三角形的重要定理:1.三角形的角平分线定理:三角形中,角的平分线上的点到三角形的两边距离相等。
2.三角形的角平分线定理的逆定理:如果一个点在一条线段的线上到该线段两个端点的距离相等,那么这个点在线段的平分线上。
3.三角形的中线定理:三角形中,三条中线交于一点,并且这个点到三角形的顶点的距离是到余弦的倒数。
4.三角形的角平分线分割线段定理:在一个三角形中,如果一条线段被分割为两段,那么分割线段的两段长度的比等于这两段分割对应顶点所在边长的比。
四、三角形的面积计算:1.三角形面积公式:已知三角形的底和高,可以通过公式S=1/2×b×h计算出三角形的面积。
2.海伦公式:已知三角形的三个边长a、b、c,可以通过公式S=√(p(p-a)(p-b)(p-c))计算出三角形的面积。
其中,p=(a+b+c)/2称为半周长。
3.角平分线分割面积定理:在一个三角形中,如果角的平分线将三角形分割成两个小三角形,那么这两个小三角形的面积之比等于这两个小三角形的底对边长之比。
一、三角形相关概念1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.二.三角形的高、中线及角平分线1.下列四个图形中,线段BE是△ABC的高的图形是()A.B.C.D.2.如果线段AM和线段AN分别是△ABC边BC上的中线和高,那么下列判断正确的是()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN3.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线 B.高线 C.中线 D.无法确定4.下列说法错误的是()A.三角形的高、中线、角平分线都是线段B.三角形的三条中线都在三角形内部C.锐角三角形的三条高一定交于同一点D.三角形的三条高、三条中线、三条角平分线都交于同一点5.若一个三角形的三条高所在直线的交点在三角形外部,此三角形是三角形.6.如图,点D在线段BC上,AC⊥BC,AB=8cm,AD=6cm,AC=4cm,则在△ABD 中,BD边上的高是cm.7.如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.(二)三角形三边关系定理①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可1.若三角形的两边a、b的长分别为3和5,则其第三边c的取值范围是()A.2<c<5 B.3<c<8 C.2<c<8 D.2≤c≤82.三角形的两边长为6cm和3cm,则第三边长可以为()A.2 B.3 C.4 D.103.以下各组线段长能组成三角形的是()A.1,5,6 B.4,3,5 C.2,5,8 D.5,5,12 4.已知三角形的两边长分别是2cm和7cm,其周长的数值为偶数,则此三角形的周长为.5.若a,b,c是△ABC三边的长,化简:|a+b﹣c|+|b﹣a﹣c|﹣|c﹣a﹣b|.6.已知三角形的两边长为4和6,第三条边长x最小.(1)求x的取值范围;(2)当x为何值时,组成三角形周长最大?最大值是多少?(三)三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.1.下列图形中不具有稳定性是()A.B.C.D.2.下列物品不是利用三角形稳定性的是()A.自行车的三角形车架B.三角形房架C.照相机的三脚架D.放缩尺3.如图所示,一扇窗户打开后,用窗钩AB即可固定,这里所用的几何原理是()A.两点之间线段最短B.垂线段最短C.两定确定一条直线D.三角形的稳定性4.如图(1)扭动三角形木架,它的形状会改变吗?如图(2)扭动四边形木架,它的形状会改变吗?如图(3)斜钉一根木条的四边形木架的形状形状会改变吗?为什么?归纳:①三角形木架的形状,说明三角形具有②四边形木架的形状说明四边形没有.(四)三角形的内角结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180°(1)构造平角①可过A点作MN∥BC(如图)②可过一边上任一点,作另两边的平行线(如图)(2)构造邻补角,可延长任一边得邻补角(如图)构造同旁内角,过任一顶点作射线平行于对边(如图)结论2:在直角三角形中,两个锐角互余.表示:如图,在直角三角形ABC中,∠C=90°,那么∠A+∠B=90°(因为∠A+∠B+∠C=180°)注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ABC中,∠C=180°-(∠A+∠B)②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.1.在△ABC中,∠A=∠B=∠C,则△ABC是()三角形.A.锐角B.直角C.钝角D.等腰直角2.如图,在△ABC中,∠B=60°,∠C=50°,如果AD平分∠BAC,那么∠ADB 的度数是()A.35°B.70°C.85°D.95°3.如图,已知CD和BE是△ABC的角平分线,∠A=60°,则∠BOC=()A.60°B.100°C.120°D.150°4.如图,AE是△ABC的角平分线,AD⊥BC,垂足为D.若∠ABC=66°,∠C=34°,则∠DAE=°.5.在△ABC中,如果∠A:∠B:∠C=1:2:3,根据三角形按角进行分类,这个三角形是三角形.∠A=度.6.如图,将一张三角形纸片折叠,使得点A、点C都与点B重合,折痕分别为DE、FG,此时测得∠EBG=36°,则∠ABC=°.7.如图,已知∠1=20°,∠2=25°,∠A=50°,求∠BDC的度数.(五)三角形的外角1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD为△ABC的一个外角,∠BCE也是△ABC的一个外角,这两个角为对顶角,大小相等.2.性质:①三角形的一个外角等于与它不相邻的两个内角的和.②三角形的一个外角大于与它不相邻的任何一个内角.如图中,∠ACD=∠A+∠B , ∠ACD>∠A , ∠ACD>∠B.③三角形的一个外角与与之相邻的内角互补3.外角个数过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.1.如图,已知∠ACD=130°,∠B=20°,则∠A的度数是()A.110°B.30°C.150°D.90°2.如图,△ABC中,点D在BC延长线上,则下列结论一定成立的是()A.∠1=∠A+∠B B.∠1=∠2+∠AB.C.∠1=∠2+∠B D.∠2=∠A+∠B3.将一副直角三角板如图放置,使两直角边重合,则∠α的度数为()A.75°B.105°C.135°D.165°4.如图,BC⊥ED于点O,∠A=50°,∠D=20°,则∠B=度.5.如图,求x的值.6.如图,△ABC中,∠ABC=∠C=70°,BD平分∠ABC,求∠ADB的度数.7.如图,已知BD是△ABC的角平分线,CD是△ABC的外角∠ACE的外角平分线,CD与BD交于点D.(1)若∠A=50°,则∠D=;(2)若∠A=80°,则∠D=;(3)若∠A=130°,则∠D=;(4)若∠D=36°,则∠A=;(5)综上所述,你会得到什么结论?证明你的结论的准确性.(六)多边形①多边形的对角线2)3(nn条对角线②n边形的内角和为(n-2)×180°③多边形的外角和为360°1.内角和为720°的多边形是()A.B.C.D.2.正十二边形的一个内角的度数为()A.30°B.150°C.360°D.1800°3.若正多边形的一个外角是60°,则这个正多边形的边数是()A.4 B.5 C.6 D.74.将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形5.一个多边形的每一个内角都等于150°,这个多边形共有条边.6.若一个多边形的外角和比它的内角和的少90°,求多边形的边数.。
什么是三角形?在几何学中,三角形是最基本的多边形之一,由三条线段组成的闭合图形。
三角形是研究几何学和三角学的重要对象,具有丰富的性质和应用。
1. 三角形的定义:三角形是由三条线段组成的闭合图形,每条线段称为三角形的边。
三角形的边可以用小写字母a、b、c 表示,而对应的顶点可以用大写字母A、B、C 表示。
三角形的内部是由三个顶点和三条边所围成的区域。
2. 三角形的分类:三角形可以按照边长、角度和形状进行分类。
-按照边长分类:-等边三角形:三条边的长度相等。
-等腰三角形:两条边的长度相等。
-普通三角形:三条边的长度都不相等。
-按照角度分类:-直角三角形:一个角为直角(90度)。
-钝角三角形:一个角大于90度。
-锐角三角形:三个角都小于90度。
-按照形状分类:-锐角三角形:三个角都是锐角。
-钝角三角形:至少有一个角是钝角。
-直角三角形:有一个角是直角。
3. 三角形的性质:三角形具有许多重要的性质,包括角度和边长的关系。
-角度性质:-三角形的内角和等于180度。
-直角三角形的两个锐角的和等于90度。
-锐角三角形的三个角都小于90度,钝角三角形的至少有一个角大于90度。
-边长性质:-三角形的任意两边之和大于第三边。
-等边三角形的三边长度相等,等腰三角形的两边长度相等。
4. 三角形的应用:三角形是几何学和三角学的基础,具有广泛的应用。
-测量:三角形的性质被广泛应用于测量和测绘领域,如三角测量和三角形的相似性。
-三角函数:三角形的角度和边长的关系是三角函数的基础,如正弦、余弦和正切等。
-几何建模:三角形的形状和性质在计算机图形学和几何建模中起着重要作用,如三角网格和三角形剖分。
-物理学:三角形的概念在物理学中有广泛的应用,如力的分解和矢量运算等。
通过学习三角形的概念和性质,我们可以更好地理解和应用数学中的几何知识。
三角形作为几何学中最基本的多边形,帮助我们研究和分析图形的形状、角度和边长,为解决实际问题提供了重要的工具和方法。
三角形的概念三角形是几何学中的基本概念之一,它是由三条线段组成的图形。
本文将介绍三角形的定义、性质以及一些常见的特殊三角形。
1. 三角形的定义三角形是由三条线段组成的图形,这三条线段称为三角形的边。
边的起点和终点称为边的顶点。
三角形的三个顶点连接起来的线段称为三角形的边。
三角形的内部区域称为三角形的内部。
2. 三角形的分类根据三边的长度和角的大小,三角形可以分为以下三种分类:- 等边三角形:三条边的长度相等,三个角的大小也相等。
- 等腰三角形:至少有两条边的长度相等,至少有两个角的大小相等。
- 普通三角形:三条边的长度都不相等,三个角的大小也不相等。
3. 三角形的性质三角形具有很多独特的性质,下面介绍几个常见的性质:- 三角形的内角和为180度:三角形的三个内角之和等于180度。
- 三角形的外角和为360度:三角形的三个外角之和等于360度。
- 三角形两边之和大于第三边:三角形的任意两边之和大于第三边。
- 等边三角形的内角都是60度:等边三角形的三个内角都是60度。
- 等腰三角形的底角相等:等腰三角形的两个底角(底边上的角)大小相等。
- 等腰三角形的高线对称:等腰三角形的高线对称,即等腰三角形的高线经过底边中点。
4. 特殊三角形除了等边三角形和等腰三角形之外,还有一些特殊的三角形,下面简要介绍一下:- 直角三角形:有一个角是90度的三角形,直角三角形的特点是有一个角是直角(90度)。
- 钝角三角形:三角形中最大的角大于90度的三角形。
- 锐角三角形:三角形中所有的角都小于90度的三角形。
- 等腰直角三角形:既是直角三角形又是等腰三角形的三角形,即有一个角是90度且有两条边的长度相等。
5. 三角形的应用三角形在日常生活中有许多实际应用,下面列举几个例子:- 三角形的形状可以用于设计建筑物、桥梁和通信塔等工程项目。
- 在地理学中,通过三角法可以测算地球上不同地点之间的距离和角度。
- 在导航和航海中,三角形被广泛用于测量和计算位置、速度和方向。
21D CB AD CBA三角形有关概念及性质⒈ 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接; (2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义. ⒉ 三角形的分类:(1)按边分类: (2)按角分类:⒊ 三角形的主要线段的定义: (1)三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:1.AD 是△ABC 的BC 上的中线.2.BD=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:1.AD 是△ABC 的∠BAC 的平分线.2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点; ④用量角器画三角形的角平分线.三角形 等腰三角形 不等边三角形 底边和腰不相等的等腰三角形等边三角形 三角形直角三象形 斜三角形 锐角三角形 钝角三角形 _C _B _AD CB A(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法:1.AD 是△ABC 的BC 上的高线.2.AD ⊥BC 于D.3.∠ADB=∠ADC=90°. 注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外; ③三角形三条高所在直线交于一点.⒋ 三角形的主要线段的表示法: 三角形的角平分线的表示法:如图1,根据具体情况使用以下任意一种方式表示:① AD 是∆ABC 的角平分线; ② AD 平分∠BAC ,交BC 于D ;③ 如果AD 是∆ABC 的角平分线,那么∠BAD=∠DAC=21∠BAC.(2)三角形的中线表示法:如图1,根据具体情况使用以下任意一种方式表示: ①AE 是∆ABC 的中线;②AE 是∆ABC 中BC 边上的中线;③如果AE 是∆ABC 的中线,那么BE=EC=21BC. (3)三角线的高的表示法:如图2,根据具体情况,使用以下任意一种方式表示: ① AM 是∆ABC 的高;② AM 是∆ABC 中BC 边上的高;③ 如果AM 是∆ABC 中BC 边上高,那么AM ⊥BC ,垂足是E ; ④ 如果AM 是∆ABC 中BC 边上的高,那么∠AMB=∠AMC=90︒.⒌ 在画三角形的三条角平分线,三条中线,三条高时应注意:(1)如图3,三角形三条角平分线交于一点,交点都在三角形内部. (2)如图4,三角形的三条中线交点一点,交点都在三角形内部.图3图4ABCD E 图1图2如图5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形直角顶上.图5图6图7⒍三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.⒎三角形的角与角之间的关系:(1)三角形三个内角的和等于180 ;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.三角形的内角和定理定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。
第三章三角形一、认识三角形1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形。
2、三角形三边的关系:两边之和大于第三边;两边之差小于第三边。
(已知三条线段确定能否组成三角形,已知两边求第三边的取值范围)3、三角形的内角和是180°;直角三角形的两锐角互余。
4、三角形按角分类直角三角形(有一个角是直角)钝角三角形(有一个角是钝角)5、三角形的特殊线段:a)三角形的中线:连结顶点与对边中点的线段。
(分成的两个三角形面积相等)b)三角形的角平分线:内角平分线与对边的交点到内角所在的顶点的线段。
c)三角形的高:顶点到对边的垂线段。
(每一种三角形的作图)例题:下列长度的三条线段能否围成三角形?为什么?⑴ 2,4,7 ⑵ 6,12,6 ⑶ 7,8,134、现有两根木棒,它们的长分别为40cm和50cm,若要钉成一个三角形木架(•不计接头),则在下列四根木棒中应选取()A.10cm长的木棒 B.40cm长的木棒 C.90cm长的木棒 D.100cm 长的木棒5.已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围是____.•若x是奇数,则x的值是______;这样的三角形有______个;•若x•是偶数,•则x•的值是______;这样的三角形又有________个.1、已知一个等腰三角形两边长是4cm和9cm,求它的周长?2、已知一个等腰三角形两边长是5cm和9cm,求它的周长?已知a、b、c为△ABC的三边长,b、c满足(b-2)2+│c-3│=0,且a为方程│x-4│=2的解,求△ABC的周长,判断△ABC的形状2.下列说法:(1)等边三角形是等腰三角形;(2)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形的两边之差大于第三边;(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有()A.1个 B.2个 C.3个 D.4个3.下列长度的各组线段中,能组成三角形的是()A.3cm,12cm,8cm B.6cm,8cm,15cmC.2.5cm,3cm,5cm D.6.3cm,6.3cm,12.6cm4、已知等腰三角形的两边长分别是3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或185、已知等腰三角形的一边长等于5,周长为16,求另一边长.2、已知:D是AB上一点,E是AC上一点,BE、CD相交于F,∠A=62°,∠ACD=35°,∠ABE=20°求:(1)∠BDC度数.(2)∠BFD度数.三角形的外角1. 三角形的外角与它相邻的内角互补。
三角形的知识三角形是几何学中最基本的图形之一,它具有许多重要的性质和定理。
本文将介绍三角形的基本定义、分类、性质以及一些重要的定理,以帮助读者更好地理解和掌握三角形的知识。
一、三角形的定义和分类三角形是由三条线段组成的闭合图形,其中每条线段称为三角形的边,而连接边的端点称为三角形的顶点。
根据三角形的边长关系,可以将三角形分为三类:1. 等边三角形:三条边的长度相等。
2. 等腰三角形:两条边的长度相等。
3. 普通三角形:三条边的长度各不相等。
二、三角形的性质三角形具有许多重要的性质,包括角度性质和边长性质。
1. 角度性质:(1)三角形的内角和等于180度。
即三个内角的度数之和为180度。
(2)等腰三角形的两个底角(两边相等的角)相等。
(3)直角三角形的两个锐角(小于90度的角)互补,即它们的和等于90度。
2. 边长性质:(1)任意两边之和大于第三边。
即对于三角形的任意两边,其长度之和大于第三边的长度。
(2)等边三角形的三条边长相等。
(3)等腰三角形的两条腰长相等。
三、三角形的重要定理三角形的知识中涉及一些重要的定理,它们对于解决与三角形相关的问题非常有用。
下面介绍其中几个常见的定理:1. 角平分线定理:三角形内一条角的平分线将对边分成两个比例相等的线段。
2. 直角三角形定理:(1)勾股定理:直角三角形斜边的平方等于两个直角边的平方和。
(2)正弦定理:三角形中,任意一条边的长度与它对应的角的正弦比例相等。
(3)余弦定理:三角形中,任意一条边的平方等于另外两条边的平方和减去这两条边之间夹角的正弦的两倍乘积。
以上只是三角形知识中的一部分,还有许多其他定理和性质,它们在不同的几何问题中起到重要的作用。
掌握三角形的知识,可以帮助我们解决很多与三角形相关的几何问题,例如计算三角形的面积、判断三角形的形状等。
总结:三角形是几何学中最基本的图形之一,它具有许多重要的性质和定理。
本文介绍了三角形的基本定义、分类、性质以及一些重要的定理。
三角形由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。
平面上三条直线或球面上三条弧线所围成的图形。
三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。
目录展开由三条边首尾相接组成的内角和为180°的封闭图形叫做三角形例题:已知有一△ABC,求证∠ABC+∠BAC+∠BCA=180°证明:做BC的延长线至点D,过点C作AB的平行线至点E∵AB∥CE(已知)∴∠ABC=∠ECD(两直线平行,同位角相等),∠BAC=∠ACE(两直线平行,内错角相等)∵∠BCD=180°∴∠ACB+∠ACE+∠ECD=∠BCD=180°(等式的性质)∴∠ABC+∠BAC+∠BCA=180°(等量代换)三角形是几何图案的基本图形,几边形都是由三角形组成的。
两直线平行,同旁内角互补。
三角形的内角和三角形的内角和为180度;三角形的一个外角等于另外两个内角的和;三角形的一个外角大于其他两内角的任一个角。
证明:根据三角形的外角和等于内角可以证明,详细参见《优因培:走进三角形》(1)如何证明三角形的内角和方法1:将三角形的三个角撕下来拼在一起,求出内角和为180°方法2:在三角形任意一个顶点处做辅助线,可求出内角和为180° 编辑本段三角形分类(1)按角度分a.锐角三角形:三个角都小于90度。
并不是有一个锐角的三角形,而是三个角都为锐角,比如等边三角形也是锐角三角形。
b.直角三角形(简称Rt 三角形):⑴直角三角形两个锐角互余;⑵直角三角形斜边上的中线等于斜边的一半;⑶在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半.;⑷在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°(和⑶相反);c.钝角三角形:有一个角大于90度(锐角三角形,钝角三角形统称斜三角形)。
三角形的概念三角形是几何学中最基本的形状之一,它由三条线段组成,形成一个封闭的图形。
本文将介绍三角形的定义、性质和常见分类。
一、三角形的定义三角形是由三条线段组成的几何图形,其中每两条线段之间所夹的角称为三角形的内角。
三角形的内角和为180度。
二、三角形的性质1. 三边关系三角形的三条边可以有不同的关系。
若三边都相等,则该三角形为等边三角形;若只有两边相等,则称为等腰三角形;若三边都不相等,则为一般三角形。
2. 角关系三角形的三个内角也可以有不同的关系。
若有一个内角为直角(90度),则该三角形为直角三角形;若有一个内角大于90度,则为钝角三角形;若三个内角都小于90度,则为锐角三角形。
3. 角和边关系三角形的角和边之间有一定的关系。
根据三角形的正弦定理和余弦定理,可以计算出未知角度和边长。
这些定理在解决三角形问题时经常被使用。
三、三角形的分类根据边长和角度关系,三角形可以进一步分类。
1. 根据边长- 等边三角形:三条边都相等的三角形,每个内角均为60度。
- 等腰三角形:只有两条边相等的三角形,两个底角相等。
- 一般三角形:三条边都不相等的三角形。
2. 根据角度- 直角三角形:有一个角度为90度的三角形。
- 钝角三角形:有一个角度大于90度的三角形。
- 锐角三角形:三个内角都小于90度的三角形。
四、总结通过本文的介绍,我们了解了三角形的定义、性质和分类。
三角形作为几何学中最基本的形状之一,在实际生活和数学问题中都有广泛应用。
搞清楚三角形的概念和基本性质,有助于我们更好地理解和解决与三角形相关的问题。
第一学时:11.1.1三角形的边一、学习目标1.认识三角形,•能用符号语言表示三角形,并把三角形分类.2.知道三角形三边不等的关系.3.懂得判断三条线段能否构成一个三角形的方法,•并能用于解决有关的问题二、重点:知道三角形三边不等关系.难点:判断三条线段能否构成一个三角形的方法.三、合作探究知识点一:三角形概念及分类1、学生自学教科书内容,并完成下列问题:(1)三角形概念:由不在同一直线上的三条线段___________________所组成的图形叫做三角形。
如图,线段____、______、______是三角形的边;点A 、B 、C 是三角形的______; _____、 ______、_______是相邻两边组成的角,叫做三角形的内角,简称三角形的角。
图中三角形记作__________。
(2)三角形按角分类可分为_____________、______________、_________________。
(3)三角形按边分类可分为 _____________三角形 _____________——————— _____________(4)如图1,等腰三角形ABC 中,AB=AC,腰是__________,底是_________,顶角指_______,底角指_____________.等边三角形DEF 是特殊的_______三角形,DE=____=_____.图1四、练习一:1、如图.下列图形中是三角形的有_______________?2、图3中有几个三角形?用符号表示这些三角形.A B C D E F A B C知识点二:知道三角形三边的不等关系,并判断三条线段能否构成三角形1、探究:请同学们画一个△ABC,分别量出AB,BC,AC的长,并比较下列各式的大小:AB+BC_____AC AB+ AC _____ BC AC +BC _____ AB从中你可以得出结论:三角形任意两边的...........................和大于第三边,任意两边的差小于第三边。
练习二:1、下列长度的三条线段能否组成三角形?为什么?(1)3,4,8;(2)5,6,11;(3)5,6,102、有四根木条,长度分别是12cm、10cm、8cm、4cm,选其中三根组成三角形,能组成三角形的个数是_______个。
3、如果三角形的两边长分别是3和5,那么第三边长可能是()A、1B、9C、3D、104、阅读教科书例题,仿照例题解法完成下面这个问题:一个三角形有两条边相等,周长为20cm,三角形的一边长6cm,求其他两边长。
拓展部分1、一个等腰三角形的两边长分别是2和5,则它的周长是()A、7B、9C、12D、9或122、若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为___________.3、(选做)若△ABC的三边长都是整数,周长为11,且有一边长为4,则这个三角形可能的最大边长是___________.提高部分已知线段3cm,5cm,xcm,x为偶数,以3,5,x为边能组成______个三角形。
第二学时:11.1.2三角形的高,中线,角平分线一、学习目标1.认识并会画出三角形的高线,利用其解决相关问题;2.认识并会画出三角形的中线,利用其解决相关问题;3.认识并会画出三角形的角平分线,利用其解决相关问题;二、重点:认识三角形的高线、中线与角平分线,并会画出图形难点:画出三角形的高线、中线与角平分线.三、合作探究知识点一:认识并会画三角形的高线,利用其解决相关问题自学教科书:三角形的高并完成下列各题:1、作出下列三角形三边上的高:2、上面第1图中,AD 是△ABC 的边BC 上的高,则∠ADC=∠ = °3、由作图可得出如下结论:(1)三角形的三条高线所在的直线相交于 一. 点;(2)锐角三角形的三条高相交于三角形的 内部 ;(3)钝角三角形的三条高所在直线相交于三角形的 ;(4)直角三角形的三条高相交三角形的 ;三角形三条高所在直线的交点叫做三角形的垂心.....................四、练习一:如图所示,画△ABC 的一边上的高,下列画法正确的是( ).知识点二:认识并会画三角形的中线,利用其解决相关问题自学教科书 三角形的中线并完成下列各题:1、 作出下列三角形三边上的中线2、AD 是△ABC 的边BC 上的中线,则有BD = =21 , 3、由作图可得出如下结论:(1)三角形的三条中线相交于 点;(2)锐角三角形的三条中线相交于三角形的 ;(3)钝角三角形的三条中线相交于三角形的 ;(4)直角三角形的三条中线相交于三角形的 ;A C BAC B A C B AC B三角形三条中线的交点叫做三角形的重心。
...................练习二:如图,D 、E 是边AC 的三等分点,图中有 个三角形,BD 是三角形 中 边上的中线,BE 是三角形 中________上的中线;知识点三:认识并会画三角形的角平分线,利用其解决相关问题自学教科书: 三角形的角平分线并完成下列各题:1、作出下列三角形三角的角平分线:2、AD 是△ABC 中∠BAC 的角平分线,则∠BAD=∠ =3、由作图可得出如下结论:(1)三角形的三条角平分线相交于 点;(2)锐角三角形的三条角平分线相交三角形的 ;(3)钝角三角形的三条角平分线相交三角形的 ;(4)直角三角形的三条角平分线相交三角形的 ;三角形角平分线的交点叫做三角形的内心。
...................练习三:如图,已知∠1=21∠BAC ,∠2 =∠3,则∠BAC 的平分线为 ,∠ABC 的平分线为 .总结:三角形的高、中线、角平分线都是一条线段。
....................拓展部分1.三角形的角平分线是( ).A .直线B .射线C .线段D .以上都不对2.下列说法:①三角形的角平分线、中线、高线都是线段;•②直角三角形只有一条高线;③三角形的中线可能在三角形的外部;④三角形的高线都在三角形的内部,并且相交于一点,其中说法正确的有( ).A .1个B .2个C .3个D .4个3、如图,AD 是△ABC 的高,AE 是△ABC 的角平分线,AF 是△ABC 的中线,写出图中所有相等的角和相等的线段。
提高部分1.在△ABC 中,AB=AC ,AC 边上的中线BD 把三角形的周长分为12cm 和15cm 两部分,求三角形各边的长.AC B A C B A C BDE F第三学时:11.1.3三角形的稳定性一、学习目标1.认识三角形的稳定性,并会用其解决一些实际问题;2、通过练习进一步巩固三角形的边和相关线段。
二、重点:三角形的稳定性难点:三角形的稳定性的理解三、合作探究知识点一:三角形的稳定性自学教科书内容,回答下列问题:通过观察,你发现生活中哪些物体的结构是三角形?二、做一做1、用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?2、用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?4、如图4所示,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?6、想一想:在实际生活中还有哪些地方利用了“三角形的稳定性”来为我们服务?“四边形易变形”是优点还是缺点?生活中又有哪些应用(推拉式的门……)三角形具有稳定性,四边形具有不稳定性。
...................四、练习1. 如图,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条,这样做的数学道理是 ;2.⑴ 下列图中哪些具有稳定性? 。
⑵ 对不具稳定性的图形,请适当地添加线段,使之具有稳定性。
3、造房子的屋顶常用三角结构,从数学角度来看,是应用了______________,而活动接架则应用了四边形的_______________。
知识点二:通过练习进一步巩固三角形的边和相关线段拓展部分1.如图:(1)在△ABC 中,BC 边上的高是________(2)在△AEC 中,AE 边上的高是________(3)在△FEC 中,EC 边上的高是_________(4)若AB=CD=2cm,AE=3cm,则 S △AEC =_______,CE=_______。
2.以下列各组线段长为边,能组成三角形的是 ( )A.1cm,2cm,4cm;B.8cm,6cm,4cmC.12cm,5cm,6cm;D.2cm,3cm,6cm3.已知等腰三角形的两边长分别为6cm 和3cm,则该等腰三角形的周长是( )A.9cmB. 12cmC. 12cm 或15cm D. 15cm提高部分1.如图,为估计池塘岸边A 、B 的距离,小方在池塘的一侧选取一点O ,测得OA=15米,OB=10米,A 、B 间的距离不可能是( )A.20米B.15米C.10米D.5米2、如图,点D 是BC 边上的中点,如果AB=3厘米,AC=4厘米,则△ABD 和△ACD 的周长之差为________,面积之差为__________。
第四学时 :与三角形有关的线段练习_ F _ A _ D _ C _ B _ E 1 2 3 4 5 6A OB A B D C一、学习目标:通过练习进一步巩固三角形的边和相关线段。
二、重点:巩固三角形的边和相关线段;难点、三角形三边不等关系的运用学前准备1、什么叫做三角形?2、三角形按边可分为什么?按角可分为什么?3、三角形三边不等关系是什么?4、三角形的高、中线、角平分线各有什么特征?5、三角形具有_______性,四边形具有_________性。
达标检测:1.如图1,图中所有三角形的个数为 ,在△ABE 中,AE 所对的角是 ,∠ABC 所对的边是 ,在△ADE 中,AD 是∠ 的对边,在△ADC 中,AD 是∠ 的对边;2.如图2,已知∠1=21∠BAC ,∠2 =∠3,则∠BAC 的平分线为 ,∠ABC 的平分线为 ;3.如图3,D 、E 是边AC 的三等分点,图中有 个三角形,BD 是三角形 中 边上的中线,BE 是三角形 中 边上的中线;图1 图2 图34.若等腰三角形的两边长分别为7和8,则其周长为 ;若两边长分别为4和8,则其周长为_____.5. 如右图,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条(图中的AB 、CD ),这样做的数学道理是 ;6. 一个三角形的三边之比为2∶3∶4,周长为36cm ,则此三角形三边的长分别为_____________.7.已知△ABC 中,AD 为BC 边上的中线,AB=10cm ,AC=6cm ,则△ABD 与△ACD 的周长之差为________.7.如右图,图中共有三角形 ( )A 、4个B 、5个C 、6个D 、8个8.下列长度的三条线段中,能组成三角形的是 ( )A 、 3cm ,5cm ,8cmB 、8cm ,8cm ,18cmC 、0.1cm ,0.1cm ,0.1cmD 、3cm ,40cm ,8cm9.如果线段a ,b ,c 能组成三角形,那么,它们的长度比可能是 ( )A 、1∶2∶4B 、1∶3∶4C 、3∶4∶7D 、2∶3∶410.如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为 ( )A 、5B 、6C 、7D 、811.如图,分别画出三角形过顶点A 的中线、角平分线和高。