2020届山东省潍坊市高三下学期高考模拟考试(一模)数学试题
- 格式:doc
- 大小:1.55 MB
- 文档页数:17
2020届山东省潍坊高密市2017级高三高考模拟考试数学试卷(二)★祝考试顺利★(解析版)第I 卷 选择题部分(共60分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集为R ,集合{}2|4M x x =<,{}0,1,2N =,则M N =( )A. {}0,1,2B. (0,2)C. (2,2)-D. {}0,1 【答案】D【解析】 可解出M ,然后进行交集的运算即可.【详解】解:M ={x |﹣2<x <2},N ={0,1,2};∴M ∩N ={0,1}.故选D .2.已知复数11i z =+,则z i ⋅在复平面内对应的点位于( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】A【解析】直接利用复数代数形式的除法运算化简,计算得到复数z i ⋅对应的点,则答案可求. 【详解】∵1112i z i -==+, ∴11=22i i z i i -+⋅=⋅. ∴z i ⋅在复平面内对应的点为11,22⎛⎫ ⎪⎝⎭,∴z i ⋅在复平面内对应的点位于第一象限.故选:A .3.近年来,随着“一带一路”倡议的推进,中国与沿线国家旅游合作越来越密切,中国到“一带一路”沿线国家的游客人也越来越多,如图是2013-2018年中国到“一带一路”沿线国家的游客人次情况,则下列说法正确的是( )①2013-2018年中国到“一带一路”沿线国家的游客人次逐年增加②2013-2018年这6年中,2014年中国到“一带一路”沿线国家的游客人次增幅最小 ③2016-2018年这3年中,中国到“一带一路”沿线国家的游客人次每年的增幅基本持平A. ①②③B. ②③C. ①②D. ③ 【答案】A【解析】根据折线图,分析图中的数据逐一判断即可.【详解】由图中折线逐渐上升,即每年游客人次逐渐增多,故①正确;由图在2014年中折线比较平缓,即2014年中游客人次增幅最小,故②正确;根据图像在2016-2018年这3年中,折线的斜率基本相同,故每年的增幅基本持平,故③正确;故选:A4.平面向量a 与b 的夹角为60︒,且3a =,b 为单位向量,则2a b +=( ) 3 19 C. 19 D. 3【答案】B 【解析】计算2219a b +=,得到答案.。
山东省菏泽市2020届高三一模数学(文)试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知正六边形ABCDEF 中,G 是线段AF 的中点,则CG =u u u r( )A .5384CE DA +u u ur u u u rB .3548CE DA +u u ur u u u rC .5263CE DA +u u u r u u u rD .2536CE DA+u u u r u u u r2.若直线1ax by +=与圆221x y +=有两个公共点,则点(),P a b 与圆221x y +=的位置关系是( )A .在圆上B .在圆外C .在圆内D .以上都有可能3.已知x ,y 满足约束条件0,2,0,x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z =ax +y 的最大值为4,则a = ( )A .3B .2C .-2D .-34.已知函数()2,021,0x e x f x x x x ⎧>=⎨-++≤⎩,若函数()()g x f x kx =-恰好有两个零点,则实数k 等于(e为自然对数的底数)( ) A .1B .2C .eD .2e5.已知双曲线:的焦距为,直线与双曲线的一条斜率为负值的渐近线垂直且在轴上的截距为,以双曲线的右焦点为圆心,半焦距为半径的圆与直线交于,两点,若,则双曲线的离心率为( ) A .B .C .D .36.我国古代数学著作(算法统宗》中有这样一个问题(意为):“有一个人要走378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.“那么,此人第4天和第5天共走路程是( )A .24里B .36里C .48里D .60里7.已知ABC V 中,2AB =,3AC =,60A ∠=︒,AD BC ⊥于D ,AD AB AC λμ=+u u u v u u u v u u u v,则λμ=( ) A .3B .6C .3.328.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为( )A .4B .642+C .442+D .29.甲、乙两个几何体的三视图如图所示(单位相同),记甲、乙两个几何体的体积分别为1V ,2V ,则( )A .122V V >B .222V V =C .12163V V -=D .12173V V -=10.若sin sin 0αβ>>,则下列不等式中一定成立的( ) A .sin2sin2αβ>B .sin2sin2αβ<C .cos2cos2αβ>D .cos2cos2αβ< 11.设22,,log 3-==a b e c π,则( ) A .b a c << B .a b c << C .b c a <<D .c b a <<12.执行如图的程序框图,则输出的S 值为( )A .1B .32 C .12-D .0二、填空题:本题共4小题,每小题5分,共20分。
学习界的专题13 利用导数解决函数的极值、最值【高考地位】导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大.类型一利用导数研究函数的极值例1 已知函数f (x) =+ ln x ,求函数f (x)的极值.x【变式演练1】(极值概念)【西藏日喀则市拉孜高级中学2020 届月考】下列说法正确的是()A.当f '(x0 ) = 0 时,则f (x0 ) 为f (x) 的极大值B.当f '(x0 ) = 0 时,则f (x0 ) 为f (x) 的极小值C.当f '(x0 ) = 0 时,则f (x0 ) 为f (x) 的极值D.当f (x0 ) 为f (x) 的极值且f '(x0 ) 存在时,则有f '(x0 ) = 0【变式演练2】(图像与极值)【百师联盟2020 届高三考前预测诊断联考全国卷1】如图为定义在R 上的函数f (x)=ax3 +bx2 +cx +d (a ≠ 0)的图象,则关于它的导函数y =f '(x)的说法错误的是()A.f '(x)存在对称轴B.f '(x)的单调递减区间为⎛-∞,1 ⎫2 ⎪ ⎝⎭C.f '(x)在(1, +∞)上单调递增D.f '(x)存在极大值【变式演练3】(解析式中不含参的极值)【江苏省南通市2020 届高三下学期高考考前模拟卷】已知函数f (x)=(ax2 +x +1)e x ,其中e是自然对数的底数,a ∈R .(1)当a = 2 时,求f (x )的极值;(2)写出函数f (x )的单调增区间;(3)当a = 0 时,在y 轴上是否存在点P,过点P 恰能作函数f (x)图象的两条切线?若存在,求出所有这样的点;若不存在,请说明理由.【变式演练4】(解析式中含参数的极值)【四川省德阳市2020 届高三高考数学(理科)三诊】已知函数f (x )=ax - 2 ln x - 2 ,g (x )=axe x - 4x .(1)求函数f (x )的极值;(2)当a > 0 时,证明:g (x )- 2 (ln x -x +1)≥ 2 (ln a - ln 2 ).【变式演练5】(由极值求参数范围)【黑龙江省哈尔滨一中2020 届高三高考数学(理科)一模】已知函数学习界的007f ( x ) = x ln x -1 (m + 1) x2 - x 有两个极值点,则实数m 的取值范围为()2A . ⎛ - 1 , 0⎫B . ⎛-1, 1 -1⎫C . ⎛ -∞, 1 -1⎫ )D . (-1, +∞)e ⎪ e⎪ e⎪ ⎝ ⎭ ⎝⎭⎝⎭【变式演练 6】(由极值求其他)【四川省江油中学 2020-2021 学年高三上学期开学考试】已知函数f ( x ) = 1x 3 + ax 2 + bx (a , b ∈ R ) 在 x = -3 处取得极大值为 9.3(1) 求 a , b 的值;(2) 求函数 f (x ) 在区间[-4, 4] 上的最大值与最小值.类型二 求函数在闭区间上的最值万能模板内 容使用场景 一般函数类型解题模板第一步 求出函数 f (x ) 在开区间(a , b ) 内所有极值点;第二步 计算函数 f (x ) 在极值点和端点的函数值;第三步 比较其大小关系,其中最大的一个为最大值,最小的一个为最小值.例 2 【河南省天一大联考 2020 届高三阶段性测试】已知函数 f ( x ) = ln x - x , g ( x ) = ax 2+ 2x (a < 0) .(1) 求函数 f( x ) 在⎡1 , e ⎤上的最值; ⎢⎣ e ⎥⎦(2) 求函数 h( x ) = f (x ) + g (x ) 的极值点.【变式演练 7】(极值与最值关系)【安徽省皖江联盟 2019-2020 学年高三上学期 12 月联考】已知函数 f ( x ) 在区间(a , b ) 上可导,则“函数 f ( x ) 在区间(a , b ) 上有最小值”是“存在 x 0 ∈(a ,b ) ,满足 f '(x 0 ) = 0 ”的⎨ 1 ()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【变式演练 8】(由最值求参数范围)【湖北省武汉市 2020 届高三下学期六月模拟】若函数⎧a ln x - x 2 - 2 (x > 0 )f ( x ) = ⎪x + + a (x < 0) 的最大值为 f (-1) ,则实数a 的取值范围为( )⎩⎪ xA . ⎡⎣0, 2e 2 ⎤⎦B . ⎡⎣0, 2e 3⎤⎦C . (0, 2e 2⎤⎦D . (0, 2e 3⎤⎦【变式演练 9】(不含参数最值)【安徽省江淮十校 2020-2021 学年高三上学期第一次联考】已知函数f (x ) = cos 2 x s in 2x ,若存在实数 M ,对任意 x 1 , x 2 ∈R 都有 f ( x 1 ) - f (x 2 ) ≤ M 成立.则 M 的最小值为()A.3 38B.32C.3 3 4D.2 3 3【变式演练 10】(含参最值)【重庆市经开礼嘉中学 2020 届高三下学期期中】已知函数f (x ) = (x - a - 1)e x -1 - 1x 2 + ax , x > 02(1) 若 f (x ) 为单调增函数,求实数 a 的值;(2) 若函数 f (x ) 无最小值,求整数 a 的最小值与最大值之和.【高考再现】1.【2018 年全国普通高等学校招生统一考试数学(江苏卷)】若函数 ƒ(x ) = 䂸x 3 — t x 䂸 + 1(t C R )在(t h + œ) 内有且只有一个零点,则 ƒ(x )在[ — 1h 1]上的最大值与最小值的和为.2【. 2018 年全国普通高等学校招生统一考试理科数学(新课标 I 卷)】已知函数 ƒ x = 䂸sinx + sin 䂸x ,则 ƒ x的最小值是 .3. 【2020 年高考全国Ⅱ卷理数 21】已知函数 f (x ) = sin 2x sin 2x .3 381 2 n (1) 讨论 f ( x ) 在区间(0,π) 的单调性;(2) 证明: f (x ) ≤ ;(3) 设 n ∈ N *,证明: sin 2x sin 22x sin 24x sin 22nx ≤ 3 . 4n4. 【2020 年高考天津卷 20】已知函数 f (x ) = x3+ k ln x (k ∈ R ) , f ' (x ) 为 f ( x ) 的导函数.(Ⅰ)当 k = 6 时,(i ) 求曲线 y = f ( x ) 在点(1, f (1)) 处的切线方程;(ii )求函数 g (x ) = f (x ) - f '(x ) + 9的单调区间和极值;x(Ⅱ)当 k - 3 时,求证:对任意的 x , x ∈[1, +∞) ,且 x> x , 有 f '( x ) + f ' (x ) > f (x 1 )- f (x 2 ) . 1 2 1 2 2x - x 1 25. 【2018 年全国卷Ⅲ理数】已知函数 ƒ x = 䂸+ x + tx 䂸 ln 1 + x — 䂸x .(1) 若 t = t ,证明:当— 1 ǹ x ǹ t 时,ƒ x ǹ t ;当 x Σ t 时,ƒ x Σ t ;(2) 若 x = t 是 ƒ x 的极大值点,求 t .6. 【2018 年全国普通高等学校招生统一考试文科】设函数 ƒ(x ) = [tx 䂸 — (3t + 1)x + 3t + 䂸]e x .(Ⅰ)若曲线 y = ƒ(x )在点(䂸h ƒ(䂸))处的切线斜率为 0,求 a ;(Ⅱ)若 ƒ(x)在 x = 1 处取得极小值,求 a 的取值范围.7. 【2018 年全国普通高等学校招生统一考试文科数学(天津卷)】设函数 ƒ(x )=(x — t 1)(x — t 䂸)(x — t 3),其中t 1h t 䂸h t 3 C R ,且t 1h t 䂸h t 3是公差为 d 的等差数列.(I )若t 䂸 = t h d = 1h 求曲线 y = ƒ(x )在点(t h ƒ(t ))处的切线方程;(II ) 若 d = 3,求 ƒ(x)的极值;4 4 (III ) 若曲线 y = ƒ(x) 与直线 y =— (x — t 䂸) — 6 3有三个互异的公共点,求d 的取值范围.【反馈练习】1.【2020 届高三 6 月质量检测巩固卷数学(文科)】若函数 f ( x ) = e x (-x 2 + 2x + a )在区间(a , a +1) 上存在最大值,则实数a 的取值范围为()⎛ -1 A ., -1 + 5 ⎫ B . (-1, 2)2 2 ⎪ ⎝ ⎭⎛ -1 C . 2 ⎫ , 2⎪⎛ -1 D .2⎫, -1⎪ ⎝ ⎭⎝⎭2. 【黑龙江省大庆市第四中学 2020 届高三下学期第四次检测】若函数 f (x ) = ae x- 1在其定义域上只有 3x个极值点,则实数a 的取值范围()⎛ e 2 ⎫⎛ e 2 ⎫ A . -∞, - ⎪ (1, +∞)⎝⎭ B . -∞, - ⎪⎝⎭C . ⎛-e , -1 ⎫ (1, +∞)D . ⎛-∞, - 1 ⎫4e 2 ⎪ e ⎪ ⎝ ⎭⎝ ⎭xx2 x3. 【湖北省金字三角 2020 届高三下学期高考模拟】已知函数 f ( x ) = e + - ln x 的极值点为1 ,函数 2g ( x ) = e x + x - 2 的零点为 x ,函数 h ( x ) = ln x的最大值为x ,则( ) 2 2x 3A. x 1 > x 2 > x 3B. x 2 > x 1 > x 3C. x 3 > x 1 > x 2D. x 3 > x 2 > x 14. 【湖北省宜昌一中、龙泉中学 2020 届高三下学期 6 月联考】已知函数(ff (e ) = 1,当 x >0 时,下列说法正确的是()ex )满足 x 2 f '(x ) + 2xf (x ) = 1+ ln x ,① f (x ) 只有一个零点;② f (x ) 有两个零点;- 5 + 5 - 5③ f (x) 有一个极小值点;④ f (x) 有一个极大值点A.①③B.①④C.②③D.②④5.【山东省潍坊市2020届高三6月高考模拟】已知函数f(x)的导函数f'(x)=x4(x-1)3(x-2)2(x-3),则下列结论正确的是()A.f (x)在x = 0 处有极大值B.f (x )在x = 2 处有极小值C. f (x)在[1, 3]上单调递减D.f (x )至少有3 个零点6.【云南省曲靖市2020 届高三年级第二次教学质量监测】已知实数a, b 满足0 ≤a ≤1,0 ≤b ≤ 1 ,则函数f (x)=x3 -ax2 +b2 x +1 存在极值的概率为()A.1B.3C.16 6 3D.37.【云南省红河自治州2019-2020 学年高三第二次高中毕业生复习统一检测】下列关于三次函数f ( x) =ax3 +bx2 +cx +d (a ≠ 0) ( x ∈R) 叙述正确的是()①函数f (x) 的图象一定是中心对称图形;②函数f (x) 可能只有一个极值点;③当x ≠-b时,f (x) 在x =x 处的切线与函数y = f (x) 的图象有且仅有两个交点;0 3a 0④当x ≠-b时,则过点(x, f (x))的切线可能有一条或者三条.0 3a 0 0A.①③B.②③C.①④D.②④8.【2020 届江西省分宜中学高三上学期第一次段考】已知e 为自然对数的底数,设函数f (x)=1 x2 -ax +b ln x 存在极大值点x ,且对于a 的任意可能取值,恒有极大值f (x )< 0 ,则下列结论2 0 0bb ( ) 中正确的是()A. 存在 x 0= ,使得f (x 0 ) < - 12eB. 存在 x 0= ,使得f (x 0 ) > -e 2C.b 的最大值为e 3D.b 的最大值为 2e 2ax 2⎛ 1 , 3⎫9. 【四川省内江市 2020 届高三下学期第三次模拟考试】函数f (x )= 2+(1﹣2a )x ﹣2ln x 在区间 2 ⎪⎝ ⎭内有极小值,则 a 的取值范围是()A . ⎛ -2, -1 ⎫B . ⎛-2, -1 ⎫3 ⎪2 ⎪ ⎝ ⎭⎝ ⎭C . ⎛ -2, - 1 ⎫ ⋃⎛ - 1 , +∞⎫D . ⎛ -2, - 1 ⎫ ⋃ ⎛ - 1 , +∞ ⎫ 3 ⎪ 3 ⎪ 2 ⎪ 2 ⎪ ⎝ ⎭ ⎝ ⎭⎝ ⎭ ⎝ ⎭10.【河北省衡水中学 2019-2020 学年高三下学期期中】已知函数 f (x ) =(x2- a )2- 3 x 2 -1 - b ,当时(从①②③④中选出一个作为条件),函数有 .(从⑤⑥⑦⑧中选出相应的作为结论,只填出一.组.即可)1 3 5 9① a ≤ - ② < a < ③ a = 1 ,-2 < b < 0 ④ a = 1 ,- < b < -2 或b = 0 ⑤4 个极小值点⑥1 个极小值点2 2 2 4⑦6 个零点⑧4 个零点1. 【福建省漳州市 2020 届高三高考数学(文科)三模】已知函数 f (x ) = ( x + 3) e x- 2m , m ∈ R .(1)若 m = 3,求 f ( x ) 的最值;2(2)若当 x ≥ 0 时, f (x - 2) + 2m ≥ 1 mx 2+ 2x +1 ,求 m 的取值范围.e 212. 【安徽省合肥七中、三十二中、五中、肥西农兴中学 2020 届高三高考数学(文科)最后一卷】已知函数 f (x ) = 1 x 2- 2x + a ln x , a > 1 . 2e(1) 讨论 f( x ) 的单调性;(2)若f (x )存在两个极值点x1 、x2 ,求f (x1 )+f (x2 )的取值范围.13.【2020 届安徽省芜湖市高三下学期教育教学质量监测】已知函数f (x)=ae x + 2e -x+(a - 2 )x .(1)若y =f (x )存在极值,求实数 a 的取值范围;(2)设1 ≤a ≤ 2 ,设g (x)= f (x)-(a + 2)cos x 是定义在⎛-∞,π ⎤上的函数.2 ⎥⎝⎦(ⅰ)证明:y =g'(x )在⎛-∞,π ⎤上为单调递增函数( g'(x)是y =g (x )的导函数);2 ⎥⎝⎦ (ⅱ)讨论y =g (x )的零点个数.14.【广东省惠州市2021 届高三上学期第一次调研】已知函数f (x) =x- ln(ax) .a(1)若a > 0 ,求f (x) 的极值;(2)若e x ln x +mx 2 +(1 -e x )x +m ≤ 0 ,求正实数m 的取值范围.15.【北京五中2020 届高三(4 月份)高考数学模拟】设函数f(x)=me x﹣x2+3,其中m∈R.(1)如果f(x)同时满足下面三个条件中的两个:①f(x)是偶函数;②m=1;③f(x)在(0,1)单调递减.指出这两个条件,并求函数h(x)=xf(x)的极值;(2)若函数f(x)在区间[﹣2,4]上有三个零点,求m 的取值范围.16.【辽宁省锦州市渤大附中、育明高中2021 届高三上学期第一次联考】已知函数f (x) =ae x - cos x -x(a ∈R).(1)若 a = 1 ,证明:f (x) ≥ 0 ;(2)若f (x) 在(0,π) 上有两个极值点,求实数 a 的取值范围.17.【西南地区名师联盟2020 届高三入学调研考试】已知函数f (x)=1x3 +bx2 +cx ,b 、c 为常数,且3学习界的007- 1< b < 1, f '(1) = 0 . 2(1)证明: -3 < c < 0 ;(2)若 x 是函数 y = f (x ) - cx 的一个极值点,试比较 f ( x - 4) 与 f (-3) 的大小. 0218.【山东省威海荣成市 2020 届高三上学期期中】某水产养殖公司在一片海域上进行海洋牧场生态养殖, 如图所示,它的边界由圆O 的一段圆弧 PMQ ( M 为此圆弧的中点)和线段 PQ 构成.已知圆O 的半径为12 千米, M 到 PQ 的距离为16 千米.现规划在此海域内修建两个生态养殖区域,养殖区域 R 1 为矩形 ABCD ,养殖区域 R 2 为 A M B ,且 A , B 均在圆弧上,C ,D 均在线段 PQ 上,设∠AOM =α.(Ⅰ)用α分别表示矩形 ABCD 和 A M B 的面积,并确定cos α的范围;(Ⅱ)根据海域环境和养殖条件,养殖公司决定在 R 1 内养殖鱼类,在 R 2 内养殖贝类,且养殖鱼类与贝类单位面积的年产值比为3 : 2 .求当α为何值时,能使年总产值最大.19.【江苏省南通市 2020 届高三下学期高考考前模拟卷】已知函数 f (x ) = ( x - a ) e x + b (a , b ∈ R ) .(1) 讨论函数 f( x ) 的单调性;(2) 对给定的 a ,函数 f( x ) 有零点,求b 的取值范围;(3)当 a = 2 , b = 0 时, F (x ) = f ( x ) - x + ln x ,记 y = F ( x ) 在区间⎛ 1 ,1⎫上的最大值为 m ,且4 ⎪ ⎝ ⎭m ∈[n, n + 1), n ∈Z ,求n 的值.20.【陕西省西安中学2020-2021 学年高三上学期第一次月考】已知函数f ( x) =x -1 -a ln x .(1)当 a = 1 时,求f(x)的最小值;(2)设m 为整数,且对于任意正整数n ,(1+1)(1+1) ⋅⋅⋅ (1+1) <m ,求m 的最小值.2 22 2n。
潍坊市高考模拟考试文科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1<=x x A ,{}1<=x e x B ,则( ) A .{}1<=⋂x x B A B .{}e x x B A <=⋃ C .R B C A R =⋃ D .{}10<<=⋂x x B A C R2.如图,正方形ABCD 内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率( )A .41 B .21 C .8π D .4π 3.下面四个命题中,正确的是( )A .若复数21z z =,则R z z ∈•21B .若复数z 满足R z ∈2,则R z ∈C .若复数1z ,2z 满足21z z =,则21z z =或21z z -=D .若复数1z ,2z 满足R z z ∈+21,则R z ∈1,R z ∈24.已知双曲线1:2222=-b y a x C 的离心率为35,其左焦点为)05(1,-F ,则双曲线C 的方程为( ) A .13422=-y x B .14322=-y x C.191622=-y x D .116922=-y x 5.执行如图所示程序框图,则输出的结果为( )A .-4B .4 C.-6 D .66.已知),(ππα2∈,43-)tan(=-πα,则=-)4cos(πα( ) A .102 B .102- C.1027 D .1027-7.已知某个函数的部分图象如图所示,则这个函数解析式可能为( )A .x x x y cos += B .x x x y sin 2+= C. x x x y cos -= D .xxx y sin -= 8.若将函数)0(cos >=ωωx y 的图象向右平移3π个单位长度后与函数x y ωsin =的图象重合,则ω的最小值为( ) A .21 B .23 C.25 D .27 9.已知函数xxx f ln )(=,则( ) A .)(x f 在e x =处取得最小值e1B .)(x f 有两个零点 C.)(x f y =的图象关于点)(0,1对称 D .)3()()4(f f f <<π10.在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,且Ab Ba B B C cos cos sin sin sin 2=-,则A =( ) A .6π B .4π C.3π D .32π11.已知三棱柱111C B A ABC -,平面β截此三棱柱,分别与AC ,BC ,11C B ,11C A 交于点E ,F ,G ,H ,且直线//1CC 平面β.有下列三个命题:①四边形EFGH 是平行四边形;②平面//β平面11A ABB ;③若三棱柱111C B A ABC -是直棱柱,则平面⊥β平面111C B A .其中正确的命题为( ) A .①② B .①③ C.①②③ D.②③12.直线)0)(2(>+=k x k y 与抛物线x y C 8:2=交于A ,B 两点,F 为C 的焦点,若BAF ABF ∠=∠sin 2sin ,则k 的值是( )A.32 B .322 C.1 D .2 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.一个几何体的三视图如图所示,则该几何体外接球的体积为.14.在等腰ABC ∆中,AC AB =,6=BC ,点D 为边BC 的中心,则AB BD ⋅=u u u r u u u r.15.设x ,y 满足约束条件21021010x y x y x y +-≤⎧⎪++≥⎨⎪-+≥⎩,则23z x y =-的最大值为 .16.设函数()f x ()m R ∈满足()()sin f x f x x π-=-,当0x π-<≤时,则2018()3f π= . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等比数列{}n a 的前n 项和为n S ,12a =,0n a >*()n N ∈,66S a +是44S a +,55S a +的等差中项.(1)求数列{}n a 的通项公式; (2)设1212log n n b a -=,数列12{}n n b b +的前n 项和为n T ,求n T . 18.如图,在平行六面体1111D C B A ABCD -中,BC AB =,11AA DA =,ο120=∠ABC .(1)证明:1BA AD ⊥;(2)14AD DA ==,126BA =1111BCD AB C D -的体积 19.“微信运动”是手机APP 推出的多款健康运动软件中的一款,杨老师的微信朋友圈内有600位好友参与了“微信运动”.他随机选取了40位微信好友(女20人,男20人),统计其在某一天的走路步数.其中,女性好友的走路步数数据记录如下:5860 8520 7326 6798 7325 8430 3216 7453 11754 9860 8753 6450 7290 4850 102239763 7988 9176 6421 5980男性好友走路的步数情况可分为五个类别:20000(-A 步)(说明:“20000-”表示大于等于0,小于等于2000.下同),50002000(-B 步),80005001(-C 步),100008001(-C 步),10001(E 步及以E ),且E D B ,,三种类别人数比例为4:3:1,将统计结果绘制如图所示的柱形图.若某人一天的走路步数超过8000步被系统认定为“卫健型",否则被系统认定为“进步型”.(1)若以杨老师抽取的好友当天行走步数的频率分布来估计所有微信好友每日走路步数的概率分布,请估计杨老师的微信好友圈里参与“微信运动”的600名好友中,每天走路步数在10000~5001步的人数; (2)请根据选取的样本数据完成下面的22⨯列联表,并据此判断能否有95%以上的把握认定“认定类型”与“性别”有关?卫健型 进步型总计 男 20 女 20 总计40从这5位好友中选取2人进行访谈,求至少有一位女性好友的概率附:))()()(()(22d b c a d c b a bc ad n ++++-=κ,)(02k K P ≥0.10 0.05 0.025 0.010 0k2.7063.8415.0246.63520.已知平面上动点P 到点(3,0)F 的距离与直线433x =的距离之比为32,记动点P 的轨迹为曲线E . (1)求曲线E 的方程;(2)设(,)M m n 是曲线E 上的动点,直线l 的方程为1mx ny +=. ①设直线l 与圆221x y +=交于不同两点C ,D ,求CD 的取值范围;②求与动直线l 恒相切的定椭圆'E 的方程;并探究:若(,)M m n 是曲线Γ:221Ax By +=(0)A B ⋅≠上的动点,是否存在与直线l :1mx ny +=恒相切的定曲线'Γ?若存在,直接写出曲线'Γ的方程;若不存在,说明理由.21.已知函数()()xf x x a e =--21(1)2ax a a x +-.()x R ∈ (1)若曲线()y f x =在点(0,(0))f 处的切线为l ,l 与x 轴的交点坐标为(2,0),求a 的值; (2)讨论()f x 的单调性.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧=+=θθsin 2cos 22y x ,(θ为参数),M 为曲线1C 上的动点,动点P 满足OM a =(0>a 且1≠a ),P 点的轨迹为曲线2C . (1)求曲线2C 的方程,并说明2C 是什么曲线;(2)在以坐标原点为极点,以x 轴的正半轴为极轴的极坐标系中,A 点的极坐标为)3,2(π,射线αθ=与2C 的异于极点的交点为B ,已知AOB ∆面积的最大值为324+,求a 的值.23.选修4-5:不等式选讲 已知m x x x f -++=1)(.(1)若2)(≥x f ,求m 的取值范围;(2)已知1>m ,若)1,1(-∈∃x 使3)(2++≥mx x x f 成立,求m 的取值范围.高三文科数学参考答案及评分标准一、选择题1-5:CCADB 6-10:BABDC 11、12:BB 二、填空题 13.23π 14.9- 15.5 16.23 三、解答题17.解:(1)∵66a S +是44a S +,55a S +的等差中项, ∴554466)(2a S a S a S +++=+ ∴66554466a S a S a S a S --+=--+, 化简得,464a a =,设等比数列{}n a 的公比为q ,则41462==a a q , ∵)(0*N n a n ∈>,∴0>q ,∴21=q , ∴21)21()21(2--=⨯=n n n a .(2)由(1)得:3221log log 3-n 2211221-===-n a b n n )(,设,121321)12)(32(221---=--==+n n n n b b C n n n , ∴1221211)121321()5131()3111()1111(21--=---=---+⋅⋅⋅+-+-+--=+⋅⋅⋅++=n nn n n C C C T n n .18.(1)证明:取AD 中点O ,连接OB ,1OA , ∵11DA AA =,∴1OA AD ⊥,∵在ABCD Y 中,ο120=∠ABC ,∴ο60=∠BAD , 又∵BC AB =,则AD AB =,∴ABD ∆是正三角形, ∴OB AD ⊥∵⊂1OA 平面1OBA ,⊂OB 平面1OBA ,O OB OA =⋂1, ∴⊥AD 平面1OBA , ∴B A AD 1⊥.(2)由题设知AD A 1∆与BAD ∆都是边长为4的正三角形, ∴321==OB O A ,∵621=B A , ∴21221B A OB O A =+,∴OB O A ⊥1, ∵AD O A ⊥1, ∴⊥O A 1平面ABCD ,∴O A 1是平行六面体1111D C B A ABCD -的高, 又38324=⨯=⋅=OB AD S ABCD ,设48323811111=⨯=⋅==-D A S V V ABCD D C B A ABCD , 令832432213131111=⨯⨯⨯⨯=⋅==∆-O A S V V ABD ABD A , ∴4011111=-=-V V V D C B A BCD ,即几何体1111D C B A BCD -的体积为40.19.解:(1)在样本数据中,男性朋友B 类别设为x 人,则由题意可知204331=++++x x x ,可知2=x ,故B 类别有2人,类D 别有6人,E 类别有8人,走路步数在10000~5000步的包括C 、D 两类别共计9人;女性朋友走路步数在10000~5000步共有16人. 用样本数据估计所有微信好友每日走路步数的概率分布,则:37540169600=+⨯人.(2)根据题意在抽取的40个样本数据的22⨯列联表:得:841.3114018222020)861214(402<=⨯⨯⨯⨯-⨯⨯=χ, 故没有%95以上的把握认为认为“评定类型”与“性别”有关 (1)在步数大于10000的好友中分层选取5位好友,男性有:42885=+⨯人,记为A 、B 、C 、D ,女性1人记为e ;从这5人中选取2人,基本事件是AB ,AC ,AD ,Ae 、BC 、BD 、Be 、CD 、Ce 、De 共10种,这2人中至少有一位女性好友的事件是Ae ,Be ,Ce ,De 共4种,故所求概率52104==P . 20.(1)设),(y x P ,由题意,得23334)3(22=-+-x y x , 整理,得1422=+y x , 所以曲线E 的方程为1422=+y x . (2)①圆心)0,0(到直线l 的距离221nm d +=,∵直线于圆有两个不同交点C ,D ,∴)11(4222nm CD +-=,又)0(1422≠=+n n m , 故)4341(4222+-=m CD , 由10<<d ,得0>m ,又2≤m ,∴20≤<m . ∴43434102≤+-<m , 因此]3,0(2∈CD ,]3,0(∈CD , 即CD 的取值范围为]3,0(.②当0=m ,1=n 时,直线l 的方程为1=y ;当2=m ,0=n 时,直线l 的方程为21=x ,根据椭圆对称性,猜想'E 的方程为1422=+y x .下证:直线)0(1≠=+n ny mx 与1422=+y x 相切,其中1422=+n m , 即4422=+n m ,由⎪⎩⎪⎨⎧-==+n mx y y x 11422消去y 得:012)4(2222=-+-+n mx x n m , 即012422=-+-n mx x ,∴0)44(4)1(1642222=-+=--=∆n m n m 恒成立,从而直线1=+ny mx 与椭圆'E :1422=+y x 恒相切.若点),(n m M 是曲线Γ:)0(122≠⋅=+B A By Ax 上的动点,则直线l :1=+ny mx 与定曲线'Γ:)0(122≠⋅=+B A By A x 恒相切. 21.解:(1))1()()('-+-+-=a a ax e e a x x f xx,∴2)1()0('-=a f ,又a f -=)0(, ∴切线方程为:)0()1(2--=+x a a y ,令0=y 得2)1(2=-=a ax , ∴02522=+-a a , ∴2=a 或21=a . (2))1()()('-+-+-=a a ax e e a x x f xx=))](1([a e a x x---, 当0≤a 时,0≥-a e x ,)1,(--∞∈a x ,0)0('<f ,)(x f 为减函数, ),1(+∞-∈a x ,0)('>x f ,)(x f 为增函数;当0>a 时,令0)('=x f ,得11-=a x ,a x ln 2=, 令a a a g ln 1)(--=, 则aa a a g 111)('-=-=, 当)1,0(∈a 时,0)('<a g ,)(a g 为减函数,当),1(+∞∈a 时,0)('>a g ,)(a g 为增函数, ∴0)1()(min =g a g ,∴a a ln 1≥-(当且仅当1=a 时取“=”), ∴当10<<a 或1>a 时,)(,0)('),ln ,(x f x f a x >-∞∈为增函数,)(,0)('),1,(ln x f x f a a x <-∈为减函数, )(,0)('),,1(x f x f a x >+∞-∈为减函数,1=a 时,)(,0)1()('x f e x x f x ≥-=在),(+∞-∞上为增函数.综上所述:0≤a 时,)(x f 在)1,(--∞a 上为减函数,在),1(+∞-a 上为增函数,10<<a 或1>a 时,)(x f 在)1,(ln -a a 上为减函数,在)ln ,(a -∞和),1(+∞-a 上为增函数;1=a 时,)(x f 在),(+∞-∞上为增函数.22.解:(1)设),(y x P ,),(00y x M ,由OM a =得⎩⎨⎧==00ay y ax x ,∴⎪⎪⎩⎪⎪⎨⎧==a y y ax x 00∵M 在1C 上,∴⎪⎪⎩⎪⎪⎨⎧=+=θθsin 2cos 22ay ax即⎩⎨⎧=+=θθsin 2cos 22a y a a x (θ为参数),消去参数θ得)1(4)2(222≠=+-a a y a x ,∴曲线2C 是以)0,2(a 为圆心,以a 2为半径的圆.(2)法1:A 点的直角坐标为)3,1(,∴直线OA 的普通方程为x y 3=,即03=-y x , 设B 点坐标为)sin 2,cos 22(ααa a a +,则B 点到直线03=-y x 的距离3)6cos(2232sin 2cos 32++=+-=παααa a d ,∴当6πα-=时,a d )23(max +=,∴AOB S ∆的最大值为324)23(221+=+⨯⨯a ,∴2=a . 法2:将θρcos =x ,θρsin =y 代入2224)2(a y a x =+-并整理得:θρcos 4a =, 令αθ=得αρcos 4a =,∴),cos 4(ααa B ,∴3)32sin(232cos 32sin cos 32cos sin 2)3sin(cos 4sin 212--=--=-=-=∠⋅⋅⋅=∆πααααααπααa a a a AOB OB OA S AOB , ∴当12πα-=时,AOB S ∆取得最大值a )32(+,依题意324)32(+=+a ,∴2=a .23.解:(1)∵11)(+≥-++=m m x x x f , ∴只需要21≥+m ,∴21≥+m 或21-≤+m ,∴m 的取值范围为是1≥m 或3-≤m .(2)∵1>m ,∴当()1,1-∈x 时,1)(+=m x f , ∴不等式3)(2++≥mx x x f 即22++≥mx x m , ∴2)1(2+≥-x x m ,x x m -+≥122, 令213)1(13)1(2)1(12)(22--+-=-+---=-+=x x x x x x x x g , ∵210<-<x , ∴3213)1(≥-+-xx (当31-=x 时取“=”),∴232)(min -=x g , ∴232-≥m .。
山东省高中名校2025届高三第三次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下: 小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的; 小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是( ) A .小王或小李B .小王C .小董D .小李2.已知函数()()614,7,7x a x x f x a x -⎧-+≤=⎨>⎩是R 上的减函数,当a 最小时,若函数()4y f x kx =--恰有两个零点,则实数k 的取值范围是( ) A .1(,0)2-B .1(2,)2- C .(1,1)-D .1(,1)23.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为()32222x y x y +=.给出下列四个结论:①曲线C 有四条对称轴;②曲线C 上的点到原点的最大距离为14; ③曲线C 第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为18; ④四叶草面积小于4π. 其中,所有正确结论的序号是( )A .①②B .①③C .①③④D .①②④4.已知向量(,1)a m =,(1,2)b =-,若(2)a b b -⊥,则a 与b 夹角的余弦值为( ) A .21313-B .21313C .61365-D .613655.若()()()20192019012019111x a a x a x -=+++++,x ∈R ,则22019122019333a a a ⋅+⋅++⋅的值为( )A .201912--B .201912-+C .201912-D .201912+6.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是18人,则该班的学生人数是( )A .45B .50C .55D .607.在260202x y x y x y --≤⎧⎪-+≥⎨⎪+≥⎩条件下,目标函数()0,0z ax by a b =+>>的最大值为40,则51a b +的最小值是( )A .74B .94C .52D .28.从抛物线24y x =上一点P (P 点在x 轴上方)引抛物线准线的垂线,垂足为M ,且||5PM =,设抛物线的焦点为F ,则直线MF 的斜率为( )A .2-B .2C .43-D .439.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为( )A .4πB .8πC .642+D .83π10.若202031i iz i+=+,则z 的虚部是( )A .iB .2iC .1-D .111.已知实数集R ,集合{|13}A x x =<<,集合|2B x y x ⎧==⎨-⎩,则()R A C B ⋂=( ) A .{|12}x x <≤ B .{|13}x x << C .{|23}x x ≤<D .{|12}x x <<12.已知函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫⎪⎝⎭⋅=,当01x <<时,()0f x <.若()42f =,则函数()f x 在[]1,16上的最大值为( ) A .4B .6C .3D .8二、填空题:本题共4小题,每小题5分,共20分。
试卷类型:A潍坊市高考模拟考试数学2024.4本试卷共4页.满分150分。
考试时间120分钟.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一、单项选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合1000x A x x ⎧-⎫=<⎨⎬⎩⎭,{}4B =>,则A B = ()A.()0,+∞ B.()2,100 C.()16,100 D.()2,+∞2.已知随机变量()2~3,X N σ,且()40.3P X ≥=,则()2P X >=()A.0.2B.0.3C.0.7D.0.83.将函数()cos f x x =的图象向右平移2π个单位长度,再将所得图象上的所有点,纵坐标不变,横坐标变为原来的2倍,得到()g x 的图象,则()g x =()A.sin 2xB.sin2x C.sin 2x - D.cos 2x4.已知1e a -=,lg b a =,0e c =,则()A.b a c <<B.b c a <<C.a b c<< D.c b a<<5.在平面直角坐标系xOy 内,将曲线1C :()2210x y x +=≥绕原点O 逆时针方向旋转角α得到曲线2C ,若2C 是一个函数的图象,则α可以为()A.30°B.60°C.90°D.180°6.如图,圆台的上、下底面半径分别为1r ,2r ,且12212r r +=,半径为4的球与圆台的上、下底面及每条母线均相切,则圆台的侧面积为()A.36πB.64πC.72πD.100π7.已知函数()21,0,22,0,xx f x x x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪-+<⎩则()f x 图象上关于原点对称的点有()A.1对B.2对C.3对D.4对8.已知P 为抛物线22y x =上的一动点,过P 作圆()22324x y -+=的切线,切点分别为A ,B ,则APB ∠的最大值为()A.6π B.3π C.2π D.23π二、多项选择题:本大题共3个小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分.9.已知椭圆C :22194x y +=的焦点分别为1F ,2F ,P 为C 上一点,则()A.C 的焦距为5B.C 的离心率为53C.12F PF △的周长为35D.12F PF △面积的最大值为510.定义域是复数集的子集的函数称为复变函数,()2f z z =就是一个多项式复变函数.给定多项式复变函数()f z 之后,对任意一个复数0z ,通过计算公式()1n n z f z +=,n ∈N 可以得到一列值012,,,,,n z z z z ⋅⋅⋅⋅⋅⋅.如果存在一个正数M ,使得n z M <对任意n ∈N 都成立,则称0z 为()f z 的收敛点;否则,称为()f z 的发散点.则下列选项中是()2f z z =的收敛点的是()2B.i- C.1i- D.13i 22-11.已知向量a ,b ,c 为平面向量,1a = ,2b = ,0a b ⋅= ,12c a -= ,则()A.312c ≤≤B.()()c a c b -⋅- 的最大值为1254+C.11b c -≤⋅≤ D.若c a b λμ=+ ,则λμ+的最小值为514-三、填空题:本大题共3个小题,每小题5分,共15分.12.已知命题p :[]1,1x ∃∈-,2x a >,则p ⌝为___________.13.请写出同时满足下面三个条件的一个函数解析式()f x =__________.①()()11f x f x -=+;②()f x 至少有两个零点;③()f x 有最小值.14.在ABC △中,角A ,B ,C 所对边分别为a ,b ,c ,其外接圆半径为1,sin 2sin 2sin 21A B C ++=,则ABC △的面积为_______;当A 取得最大值时,则48a a -=________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数()()21e xf x x ax b =--+,曲线()y f x =在点()()1,1f 处的切线方程为()e 23e y x =-+-.(1)求实数a ,b 的值;(2)求()f x 的单调区间和极值.16.(15分)某市2017年至2023年城镇居民人均可支配收入如下表,将其绘制成散点图(如下图),发现城镇居民人均可支配收入y (单位:万元)与年份代号x 具有线性相关关系.年份2017201820192020202120222023年份代号x 1234567人均可支配收入y3.653.894.084.304.654.905.12(1)求y 关于x 的线性回归方程ˆˆybx a =+,并根据所求回归方程,预测2024年该市城镇居民人均可支配收入;(2)某分析员从2017年至2023年人均可支配收入中,任取3年的数据进行分析,记其中人均可支配收入超过4.5万的年份个数为随机变量X ,求X 的分布列与数学期望.参考数据及公式:7130.59ii y==∑,71129.36i i i x y ==∑,()121ni ii ni i x ynxybx x ==-=-∑∑ , ay bx =- .17.(15分)如图1,在平行四边形ABCD 中,24AB BC ==,60ABC ∠=︒,E 为CD 的中点,将ADE △沿AE 折起,连结BD ,CD ,且4BD =,如图2.(1)求证:图2中的平面ADE ⊥平面ABCE ;(2)在图2中,若点F 在BD 上,直线AF 与平面ABCE 所成的角的正弦值为3010,求点F 到平面DEC 的距离.18.(17分)已知双曲线C :()222210,0x y a b a b-=>>的实轴长为2F 到一条渐近线的距离为1.(1)求C 的方程;(2)过C 上一点(1P 作C 的切线1l ,1l 与C 的两条渐近线分别交于R ,S 两点,2P 为点1P 关于坐标原点的对称点,过2P C 的切线2l ,2l 与C 的两条渐近线分别交于M ,N 两点,求四边形RSMN 的面积.(3)过C 上一点Q 向C 的两条渐近线作垂线,垂足分别为1H ,2H ,是否存在点Q ,满足122QH QH +=,若存在,求出点Q 坐标;若不存在,请说明理由.19.(17分)数列{}n a 中,从第二项起,每一项与其前一项的差组成的数列{}1n n a a +-称为{}n a 的一阶差数列,记为(){}1na ,依此类推,(){}1n a 的一阶差数列称为{}n a 的二阶差数列,记为(){}2n a ,….如果一个数列{}n a 的p 阶差数列(){}pna 是等比数列,则称数列{}na 为p 阶等比数列()*p ∈N .(1)已知数列{}n a 满足11a =,121n n a a +=+.(ⅰ)求()11a ,()12a ,()13a ;(ⅱ)证明:{}n a 是一阶等比数列;(2)已知数列{}n b 为二阶等比数列,其前5项分别为2037782151,,,,9999,求n b 及满足n b 为整数的所有n 值.。
2021届山东省潍坊市高三一模考试数学试题一、单选题1.已知集合{}{}22,0,20A B x x x =-=-=,则以下结论正确的是( )A .AB = B .{}0A B ⋂=C .A B A ⋃=D .A B ⊆【答案】B【分析】由题得{0,2}B =, 再判断得解.【详解】由题得{0,2}B =, 所以A B ≠,{}0A B ⋂=,A B A ≠,A 不是B 的子集, 故选:B2.已知复数cos sin z i θθ=+(i 为虚部单位),则1z -的最大值为( )A .1BC .2D .4【答案】C【分析】由复数模的几何含义,知1z -=,即可求其最大值.【详解】由题意知:1|cos 1sin |z i θθ-=-+== ∴当cos 1θ=-时,1z -的最大值为2. 故选:C3.在一次数学实验中,某同学运用图形计算器采集到如下一组数据:在以下四个函数模型(,a b 为待定系数)中,最能反映,x y 函数关系的是( ) A .y a bx =+ B .by a x=+C .log b y a x =+D .x y a b =+【答案】D【分析】在坐标系中画出点,根据点的特征进行判断即可.【详解】根据点在坐标系中的特征可以知道,当自变量每增加1时,y 的增加是不相同的,所以不是线性增加,排除A ; 由图象不具有反比例函数特征,排除B ; 因为自变量有负值,排除C ;当自变量增加到3时,y 增加的很多,所以符合指数的增加特征,D 正确, 故选:D.4.在空间中,下列命题是真命题的是( ) A .经过三个点有且只有一个平面 B .平行于同一平面的两直线相互平行C .如果两个角的两条边分别对应平行,那么这两个角相等D .如果两个相交平面垂直于同一个平面,那么它们的交线也垂直于这个平面 【答案】D【分析】由三点共线判断A ;由线面、线线位置关系判断B ;根据等角定理判断C ;由线面平行和垂直的判定以及性质判断D.【详解】当三点在一条直线上时,可以确定无数个平面,故A 错误; 平行于同一平面的两直线可能相交,故B 错误;由等角定理可知,如果两个角的两条边分别对应平行,那么这两个角相等或互补,故C 错误;如果两个相交平面,αβ垂直于同一个平面γ,且l αβ=,则在平面α、β内分别存在直线,m n 垂直于平面γ,由线面垂直的性质可知//n m ,再由线面平行的判定定理得//m β,由线面平行的性质得出//m l ,则l γ⊥,故D 正确; 故选:D5.接种疫苗是预防和控制传染病最经济、有效的公共卫生干预措施.根据实验数据,人在接种某种病毒疫苗后,有80%不会感染这种病毒,若有4人接种了这种疫苗,则最多1人被感染的概率为( )A .512625B .256625C .113625D .1625【答案】A【分析】最多1人被感染即4人没有人感染和4人中恰好有1人被感染,利用独立重复试验的概率和互斥事件的概率求解.【详解】由题得最多1人被感染的概率为041344414256256512()()()555625625C C ++==. 故选:A【点睛】方法点睛:求概率常用的方法:先定性(确定所求的概率是六种概率(古典概型的概率、几何概型的概率、互斥事件的概率、独立事件的概率、独立重复试验的概率、条件概率)的哪一种),再定量.6.多项式()()())2112(3x x x x ++++展开式中 3x 的系数为A .6B .8C .12D .13【答案】C【分析】首先原式()()()()()()2123123x x x x x x x =+++++++,分两部分求3x的系数.【详解】原式()()()()()()2123123xx x x x x x =+++++++,所以展开式中含3x的项包含()()()123x x x +++中x 项为12231311x x x x ⋅⋅+⋅⋅+⋅⋅= ,和()()()123x x x +++中3x的项为3x ,这两项的系数和为11112+=.故选:C7.已知20202021,20212020,ln 2a b c ===,则( ) A .log log a b c c > B .log log c c a b >C .c c a b <D .a b c c <【答案】D【分析】由题意知01,01b a c <<<<<,根据各选项并结合对应函数的区间单调性,即可判断指对数式的大小关系.【详解】由题意知:20202021log 20211log 20200a b =>>=>,而 0ln21c <=<, ∴log c y x =在定义域内单调减,故log 0log c c a b <<,则B 错误;11log 0log log log a b c c c c a b=<<=,故A 错误; c y x =在第一象限的单调递增知c c a b >,故C 错误;x y c =定义域内单调递减,即a b c c <,故D 正确;故选:D8.某中学开展劳动实习,学习加工制作食品包装盒.现有一张边长为6的正六边形硬纸片,如图所示,裁掉阴影部分,然后按虚线处折成高为3的正六棱柱无盖包装盒,则此包装盒的体积为( )A .144B .72C .36D .24【答案】B【分析】利用正六边形的性质求出正六棱柱的底边周长,再根据棱柱的体积:V S h =⋅底即可求解.【详解】如图:由正六边形的每个内角为23π, 33BF = 所以1tan 60BFBE ==可得正六棱柱底边边长6214AB =-⨯=, 所以正六棱柱体积:1364437222V =⨯⨯⨯⨯. 故选:B二、多选题9.已知双曲线()222:109x y C a a -=>的左,右焦点分别为12,F F ,一条渐近线方程为34y x =,P 为C 上一点,则以下说法正确的是( ) A .C 的实轴长为8 B .C 的离心率为53C .218PF PF -=D .C 的焦距为10【答案】AD【分析】根据双曲线方程及一条渐近线求出4a =,写出双曲线方程,根据双曲线的定义、性质即可判断各项的正误.【详解】由双曲线方程知:渐近线方程为3y x a=±,而一条渐近线方程为34y x =,∴4a =,故22:1169x y C -=,∴双曲线:实轴长28a =,离心率为544c e a ===,由于P 可能在C 不同分支上则有21||8PF PF -=,焦距为210c ==.∴A 、D 正确,B 、C 错误. 故选:AD10.已知函数21,0()cos ,0x x f x x x ⎧+=⎨<⎩,,则下列结论正确的是( )A .()f x 是偶函数B .312f f π⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭ C .()f x 是增函数 D .()f x 的值域为[1,)-+∞【答案】BD【分析】利用反例可判断AC 错误,结合函数的解析式可判断BD 为正确,从而可得正确的选项.【详解】()12f =,而()()1cos11f f -=<,故()f x 不是偶函数,故A 错误. 因为77cos cos 3333f f ππππ⎛⎫⎛⎫⎛⎫⎛⎫-=-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故()f x 不是增函数,故C 错误.()3012f f f π⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,故B 正确.当0x <时,()[]1,1f x ∈-,当0x ≥时,()[)1,f x ∈+∞, 故()f x 的值域为[1,)-+∞,故D 正确. 故选:BD.11.南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,…,设各层球数构成一个数列{}n a ,则( )A .412a =B .11n n a a n +=++C .1005050a =D .122n n n a a a ++=⋅【答案】BC【分析】根据示意图,结合题意找到各层球的数量与层数的关系,可得1(1)2n n n n a a n -+=+=,即可判断各项的正误. 【详解】由题意知:12311,3,6,...,n n a a a a a n -====+,故(1)2n n n a +=, ∴44(41)102a ⨯+==,故A 错误; 11n n a a n +=++,故B 正确;100100(1001)50502a ⨯+==,故C 正确;12(1)n a n n +=+,2(1)(2)(3)4n n n n n n a a ++++=⋅,显然122n n n a a a ++≠⋅,故D 错误;故选:BC12.已知实数,,x y z 满足1x y z ++=,且2221x y z ++=,则下列结论正确的是( )A .0xy yz xz ++=B .z 的最大值为12C .z 的最小值为13- D .xyz 的最小值为427-【答案】ACD【分析】将1x y z ++=两边平方后结合2221x y z ++=可得A 正确,利用基本不等式可判断BC 的正误,利用导数求出xyz 的最小值后可判断D 的正误. 【详解】因为1x y z ++=,故()21x y z ++=,所以2222221x y z xy yz xz +++++=,因为2221x y z ++=,故0xy yz xz ++=,故A 正确.又2221x y z ++=可化为()2221x y xy z +-+=即()22121z xy z --+=,所以2xy z z =-,而22x y xy +⎛⎫≤ ⎪⎝⎭,故2212z z z -⎛⎫-≤ ⎪⎝⎭,整理得到23210z z --≤,故113z -≤≤, 当且仅当23x y ==时13z =-;当且仅当0x y ==时1z =;故z 的最小值为13-,z 的最大值为1,故B 错误,C 正确.又()232xyz z z z z z =-=-,其中113z -≤≤.令()32f z z z =-,113z -≤≤,故()()23232f z z z z z '=-=-,当103z -<<时,()0f z '>,当203z <<时,()0f z '<, 当213z <<时,()0f z '>, 故()f z 在1,03⎡⎤-⎢⎥⎣⎦为增函数,在20,3⎛⎫ ⎪⎝⎭为减函数,2,13⎡⎤⎢⎥⎣⎦为增函数,故()min 124min ,3327f z f f ⎧⎫⎛⎫⎛⎫=-=-⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭,故D 正确. 故选:ACD.【点睛】方法点睛:多元不等式的最值的问题,可利用基本不等式构建目标变量的不等式,从而可求目标变量的取值范围或最值(注意检验),也可以利用消元法结合导数求最值.三、填空题13.已知正方形ABCD 的边长为1,AB a =,BC b =,AC c =,则a b c ++=________.【答案】【分析】由向量的加法可得AB BC AC +=,再求解正方形的对角线即可. 【详解】由题意可得,AC 是正方形的对角线长,故2AC =又AB BC AC +=所以222a b c AC ++==故答案为:【点睛】本题考查向量的加法,以及模长的求解,属向量基础题. 14.写出一个存在极值的奇函数()f x =_______________________. 【答案】sin x (不唯一) 【分析】举出正弦函数即可.【详解】由于正弦函数()sin f x x =为奇函数,且存在极值 故答案为:sin x15.已知抛物线2:4C y x =的焦点为F ,准线为l ,点P 在抛物线C 上,PQ 垂直l 于点Q ,QF 与y 轴交于点,T O 为坐标原点,且2OT =,则PF =_______________________.【答案】5【分析】依题意TMQ TOF ≌,即可得到T 为OM 的中点,从而求出P 的纵坐标,再代入抛物线方程求出P 的横坐标,最后根据焦半径公式计算可得;【详解】解:依题意可得()1,0F ,:1l x =-,根据抛物线的定义可知PQ PF =,设PQ 与y 轴相交于点M ,因为2OT =,又OF QM =,所以TMQ TOF ≌,所以T 为OM 的中点,所以4OM =即P 的纵坐标为4,在24y x =中令4y =,得4x =,所以4152pPQ x =+=+=,所以5PF =故答案为:516.某市为表彰在脱贫攻坚工作中做出突出贡献的先进单位,制作了一批奖杯,奖杯的剖面图形如图所示,其中扇形OAB 的半径为10,60,PBA QAB AQ QP PB ∠=∠===,若按此方案设计,工艺制造厂发现,当OP 最长时,该奖杯比较美观,此时AOB ∠=_______________________.【答案】2π【分析】作OM QP ⊥交QP 于M ,交AB 于C ,且OC AB ⊥,设AOC θ∠=,求出AB 、OC ,设AQ QP BP x ===,作⊥QE AB 交AB 于E ,PF AB ⊥交AB 于F ,可得出10sin x θ=,10cos 53OM OC CM θθ=+=+,由勾股定理可得()()2222210cos 535sin OP OM MP θθθ=+=++然后求最值可得答案.【详解】作OM QP ⊥交QP 于M ,交AB 于C ,且OC AB ⊥,设AOC θ∠=, 则20sin θ=AB ,10cos OC θ=,设AQ QP BP x ===,作⊥QE AB 交AB 于E ,PF AB ⊥交AB 于F , 因为60PBA QAB ∠=∠=,所以12AE BF x ==,3CM PF x ==, EF QP x ==,所以2AB x =,所以20sin 2AB x θ==,即10sin x θ=,310cos 10cos 53OM OC CM x θθθ=+=+=+, 所以()()2222210cos 35sin OP OM MP θθθ=+=++222100cos 75sin 1003cos 25sin 1005032θθθθθθ=+++=+,因为[]sin 21,1θ∈-,所以当sin 21θ=即4πθ=时2OP 最大,也就是OP 最长时2AOB π∠=.故答案为:2π. 【点睛】本题考查了用三角函数解决几何问题,关键点是作出辅助线利用勾股定理求出2OP ,考查了学生分析问题、解决问题的能力.四、解答题17.在①函数()y f x =的图象关于直线3x π=对称,②函数()y f x =的图象关于点,06P π⎛⎫ ⎪⎝⎭对称,③函数()y f x =的图象经过点2,13Q π⎛⎫- ⎪⎝⎭这三个条件中任选一个,补充在下面问题中并解答.问题:已知函数()sin cos cos sin 0,||2f x x x πωϕωϕωϕ⎛⎫=+><⎪⎝⎭最小正周期为π,且 ,判断函数()f x 在,62ππ⎛⎫⎪⎝⎭上是否存在最大值?若存在,求出最大值及此时的x 值;若不存在,说明理由. 注:如果选择多个条件分别解答,按第一个解答计分. 【答案】答案不唯一,具体见解析【分析】先对函数化简得()sin()f x x ωϕ=+,由函数的最小正周期为π,可得2ω=,则()sin(2)f x x ϕ=+,若选①,则有2()32k k ππϕπ⨯+=+∈Z ,从而可求出ϕ的值,进而可求出函数的解析式,再利用换元法可求得最值;若选②,则有2()6k k πϕπ⨯+=∈Z ,从而可求出ϕ的值,然后利用换元法可求得最值;若选③,则有222()32k k ππϕπ⨯+=-∈Z ,从而可求出ϕ的值,再利用换元法可求最值即可 【详解】解:()sin cos cos sin sin()f x x x x ωϕωϕωϕ=+=+, 由已知函数()f x 的周期2T ππω==,求得2ω=,所以()sin(2)f x x ϕ=+, 若选①,则有2()32k k ππϕπ⨯+=+∈Z ,解得()6k k πϕπ=-∈Z ,又因为2πϕ<,所以,0,6k πϕ==-,所以()sin 26f x x π⎛⎫=-⎪⎝⎭, 当,62x ππ⎛⎫∈⎪⎝⎭时,52,666t x πππ⎛⎫=-∈ ⎪⎝⎭, 所以当2t π=,即3x π=时,函数()f x 取得最大值,最大值为1.若选②,则有2()6k k πϕπ⨯+=∈Z ,解得()3k k πϕπ=-∈Z ,又因为2πϕ<,所以0,3k πϕ==-,所以()sin 23f x x π⎛⎫=-⎪⎝⎭,当,62x ππ⎛⎫∈ ⎪⎝⎭时,220,33t x ππ⎛⎫=-∈ ⎪⎝⎭, 所以当2t π=,即512x π=时,函数()f x 取得最大值,最大值为1.若选③,则有222()32k k ππϕπ⨯+=-∈Z ,解得112()6k k πϕπ=-∈Z , 又因为2πϕ<,所以1,6k πϕ==,所以()sin 26f x x π⎛⎫=+⎪⎝⎭, 当,62x ππ⎛⎫∈⎪⎝⎭时,72,626t x πππ⎛⎫=+∈ ⎪⎝⎭, 显然,函数()f x 在该区间上没有最大值.【点睛】关键点点睛:此题考查利用三角函数的性质求函数解析式,考查求三角函数的最值,考查计算能力,解题的关键是根据题意正确的求出函数的解析式,再利用换元法求函数的最值,属于中档题18.已知数列{}n a 的前n 项和为211,6,12n n n S a S a +==+. (1)证明:数列1n S 为等比数列,并求出n S .(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)证明见解析;31nn S =+;(2)111243n n T -=-⨯. 【分析】(1)根据递推关系及等比数列的定义证明;(2)由(1)可得31nn S =+,根据,n n S a 关系求解通项,根据等比数列求和公式计算即可.【详解】(1)由已知()1112n n n S S S +=-+, 整理得132n n S S +=-, 所以()1131n n S S +-=-, 令1n =,得121142S a =+=,所以113S -=, 所以1n S 是以3为首项,3为公比的等比数列, 所以()111133n n n S S --=-⨯=,所以31nn S =+;(2)由(1)知,31nn S =+,当2n 时,()111313123nn n n n n a S S ---=-=+-+=⨯,当1n =时,114a S ==, 所以14,1,23,2,n n n a n -=⎧=⎨⨯⎩ 所以11,1,4111,2,23n n n a n -⎧=⎪⎪=⎨⎛⎫⎪⨯ ⎪⎪⎝⎭⎩ 所以1112111111111631424313n n n n T a a a --⎛⎫- ⎪⎝⎭=+++=+=-⨯-. 19.如图,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,//AD BC ,AB AD ⊥, 24AB BC ==,E 是棱PD 上的动点(除端点外),F ,M分别为AB ,CE 的中点.(1)求证://FM 平面PAD ;(2)若直线EF 与平面PAD 所成的最大角为30,求平面CEF 与平面PAD 所成锐二面角的余弦值.【答案】(1)证明见解析;(2)9331. 【分析】(1)取CD 的中点N ,连结FN ,MN ,证明平面//MFN 平面PAD ,再用面面平行的性质定理证明即可;(2)作出直线EF 与平面PAD 所成角的平面角,通过最大角为30,确定AD 长度,建立空间直角坐标系,用向量法计算二面角余弦值. 【详解】(1)证明:取CD 的中点N ,连结FN ,MN , 因为F ,N 分别为AB ,CD 的中点, 所以//FN AD ,又因为FN ⊄平面PAD ,AD ⊂平面PAD , 所以//FN 平面PAD , 同理,//MN 平面PAD , 又因为FN MN N ⋂=, 所以平面//MFN 平面PAD , 又因为FM ⊂平面MFN , 所以//FM 平面PAD .(2)因为平面PAD ⊥平面ABCD ,AB AD ⊥, 所以AB ⊥平面PAD ,所以AEF ∠即为直线EF 与平面PAD 所成的角, 且2tan AF AEF AE AE∠==, 当AE 最小,即E 为PD 中点时,AE PD ⊥, 此时AEF ∠最大为30, 又因为2AF =,所以23AE =4=AD . 取AD 的中点O ,连结PO ,OC , 易知PO ⊥平面ABCD , 因为//AO BC 且AO BC =, 所以四边形ABCO 为平行四边形,所以AO OC ⊥,以O 为坐标原点,OC 的方向为x 轴正方向,建立如图所示的空间直角坐标系O xyz -. 则(0,0,0)O ,(4,0,0)C ,(0,2,0)D ,(0,0,23)P ,(0,1,3)E ,(2,2,0)F -,(4,1,3)CE =-,(2,2,0)FC =,设1(,,)n x y z =为平面CEF 的法向量,则1100C FC n E n ⎧⋅=⎪⎨⋅=⎪⎩, 即220,430,x y x y z +=⎧⎪⎨-++=⎪⎩可取1(3,3,5)n =-.设平面PAD 的法向量为()21,0,0n =, 所以121212393cos ,3131n n n n n n ⋅===⋅,所以平面CEF 与平面PAD 所成锐二面角的余弦值为9331.【点睛】求直线与平面所成的角的一般步骤:①找直线与平面所成的角,即通过找直线在平面上的射影来完成; ②计算,要把直线与平面所成的角转化到一个三角形中求解.20.在对人体的脂肪含量和年龄之间的关系的研究中,科研人员获得了一些年龄和脂肪含量的简单随机样本数据()(),1,2,,20,2565i i i x y i x =<<,其中i x 表示年龄,i y 表示脂肪含量,并计算得到202148280ii x==∑,202021115480,27220,48,27 4.7ii i i i yx y x y ======≈∑∑.(1)请用相关系数说明该组数据中y 与x 之间的关系可用线性回归模型进行拟合,并求y 关于x 的线性回归方程y a bx =+(,a b 的计算结果保留两位小数);(2)科学健身能降低人体脂肪含量,下表是甲,乙两款健身器材的使用年限(整年)统计表:某健身机构准备购进其中--款健身器材,以使用年限的频率估计概率,请根据以上数据估计,该机构选择购买哪一款健身器材,才能使用更长久?参考公式:相关系数()()nniii ix x y y x y nxyr ---==∑∑对于一组具有线性相关关系的数据()(),1,2,...,i i x y i n =,其回归直线y bx a =+的斜率和截距的最小二乘估计分别为:()()()121ˆˆˆ,niii nii x x y y bay bx x x ==--==--∑∑. 【答案】(1)答案见解析;ˆ0.59 1.37y x =-;(2)该机构购买甲款健身器材更划算.【分析】(1)根据提供数据,计算相关系数,确定相关性,求线性回归方程即可; (2)以频率估计概率,列出甲、乙款的分布列,计算期望,比较大小即可. 【详解】(1)222304,729x y ==,201201300i ii x yxy =-=∑,20221202200ii xx =-=∑,22120900ni i y y =-=∑,2020 0.92i ix y x yr -=≈∑,因为y 与x 的相关系数接近1,所以y 与x 之间具有较强的线性相关关系,可用线性回归模型进行拟合;由题可得,()()()20201120202221120 130.5912220iii ii i iii i x x y y x y x yb x x xx ====---===≈--∑∑∑∑, ˆˆ270.59148 1.37ay bx =-=-⨯≈-, 所以ˆ0.59 1.37yx =-, (2)以频率估计概率,设甲款健身器使用年限为X (单位:年)()50.160.470.380.2 6.6E X =⨯+⨯+⨯+⨯=,设乙款健身器使用年限为Y (单位:年)()50.360.470.280.1 6.1E Y =⨯+⨯+⨯+⨯=,因为()()E X E Y >,所以该机构购买甲款健身器材更划算.21.已知函数()()22sin x af x a x-=-∈R .(1)若曲线()y f x =在点,22f ππ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭处的切线经过坐标原点,求实数a ;(2)当0a >时,判断函数()f x 在(0,)x π∈上的零点个数,并说明理由.【答案】(1)224a π=--;(2)答案不唯一,具体见解析. 【分析】(1)求出函数的导数,根据导数几何意义求斜率,由切线方程求a ;(2)原问题转化为2()2sin g x x a x =--的零点问题,求导,利用导数可得()g x 单调性,结合零点存在性即可求解. 【详解】(1)()222sin cos (),sin 2x x x a xf x f xππ--⎛⎫'== ⎪⎝⎭, 所以()f x 在点,22f ππ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭处的切线方程为y x π=, 所以222f ππ⎛⎫= ⎪⎝⎭,即2222,2424a a πππ--==--;(2)因为()0,x π∈, 所以sin 0x >,所以220sin x ax--=可转化为22sin 0x a x --=,设2()2sin g x x a x =--, 则()22cos g x x x '=- 当,2x ππ⎡⎫∈⎪⎢⎣⎭时,()0g x '>, 所以()g x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递增. 当0,2x π⎛⎫∈ ⎪⎝⎭时,设()()22cos h x g x x x '==-, 此时()22sin 0h x x '=+>,所以()'g x 在0,2x π⎛⎫∈ ⎪⎝⎭时单调递增,又(0)20g '=-<,02g ππ⎛⎫'=>⎪⎝⎭,所以存在00,2x π⎛⎫∈ ⎪⎝⎭使得()0g x '=且()00,x x ∈时()g x 单调递减,0,2x x π⎡⎫∈⎪⎢⎣⎭时()g x 单调递增.综上,对于连续函数()g x ,在()00,x x ∈时,()g x 单调递减, 在()0,x x π∈时,()g x 单调递增. 又因为(0)0g a =-<,所以当20()g a ππ=->,即2a π<时,函数()g x 有唯一零点在区间0(,)x π上,当20()g a ππ=-≤,即2a π≥时,函数()g x 在区间(0,)π上无零点,综上可知,当20a π<<时,函数()f x 在(0,)π上有1个零点; 当2a π≥时,函数()f x 在(0,)π上没有零点.【点睛】关键点点睛:由题意可转化为2()2sin g x x a x =--在区间(0,)π上的零点个数问题,求导,利用导数可得函数单调性,在()00,x x ∈时,()g x 单调递减,在()0,x x π∈时,()g x 单调递增,分类讨论(0)g a =-的正负即可.22.在平面直角坐标系中,12,A A 两点的坐标分别为()()2,0,2,0-,直线12,A M A M 相交于点M 且它们的斜率之积是34-,记动点M 的轨迹为曲线E . (1)求曲线E 的方程;(2)过点()1,0F 作直线l 交曲线E 于,P Q 两点,且点P 位于x 轴上方,记直线12,AQ A P 的斜率分别为12,k k .①证明:12k k 为定值; ②设点Q 关于x 轴的对称点为1Q ,求1PFQ △面积的最大值.【答案】(1)221(2)43x y x +=≠±;(2)①证明见解析;②4. 【分析】(1)根据条件列出方程化简即可求出曲线方程;(2)设直线l 的方程为()()()1122121,,,,0,0x my P x y Q x y y y =+><,直接表示出斜率12,k k ,消元为关于12,y y 的式子,再根据直线与椭圆联立可得12,y y 的和、积,代入化简即可求证12k k 为定值;由题意1Q 坐标为()22,x y -,可得直线1PQ 恒过点D (4,0),11PFQ PFD Q FD S S S =-△△△,化简后利用均值不等式求最值. 【详解】(1)设点M 坐标为(),x y , 则直线12,A M A M 的斜率分别为,,222y yx x x ≠±+-, 依题意知3224y y x x ⋅=-+-, 化简得221(2)43x y x +=≠±;(2)①设直线l 的方程为()()()1122121,,,,0,0x my P x y Q x y y y =+><,则()()()()()212121212111222122121121121121223332y x y my y my y y y y k my y y x y k x y my y my y y my y y x ---++-+=====++++-,又221143x my x y =+⎧⎪⎨+=⎪⎩,消x 得()2234690m y my ++-=,得122122634934m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩,, 因此112221211229631343434993333434m m my y k m m m m m k y y m m -++-++++===-+-+++, 故12k k 为定值13; ②1Q 坐标为()22,x y -,则直线1PQ 方程为()121112y y y y x x x x +-=--,令0y =解得()()()21121122112121121212121121x x y my y my y x y x y my y x xy y y y y y y y -++++=+===+++++第 21 页 共 21 页 22923414634m m m m ⎛⎫- ⎪+⎝⎭=+=-+, 即直线1PQ 恒过()4,0D 点, 故11PFQ PFD Q FD S S S =-△△△12113322y y =⨯-⨯ 123||||||2y y =- 1232y y =+ 236||234m m =⨯+ 943||||m m =+94212=, 当243m =,即3m =±时,等号成立, 此时1PFQ△. 【点睛】关键点点睛:求1PFQ △面积的最大值,首先要表示出三角形面积,根据本题条件,转化为11PFQ PFD Q FD S S S =-△△△是解题的关键,表示出三角形面积236||234m S m =⨯+后,选择合适的方法求最大值,是解题的一个难点,本题可采用分子分母同除以||m 后,利用均值不等式求解.。
绝密★启用前山东省济南市普通高中2020届高三毕业班下学期针对性训练(高考三模)数学试题(解析版)2020年6月本试卷共4页,22题,全卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名,考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 参考公式:锥体的体积公式:13V Sh =(其中S 为锥体的底面积,h 为锥体的高)―、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}12M x x =-<<,{N x y ==,则MN =( ) A. {}1x x >- B. {}02x x ≤< C. {}02x x << D. {}12x x ≤< 【答案】D【解析】【分析】先求出集合N ,然后进行交集的运算即可.【详解】由{{}|1N x y x x ===≥,{}12M x x =-<<所以[)1,2MN =故选:D 【点睛】考查描述法的定义,以及交集的运算,是基础题.2.函数()34f x x x =+-的零点所在的区间为( )A. 1,0B. 0,1C. 1,2D. ()2,3【答案】C【解析】【分析】直接利用零点存在定理计算得到答案.【详解】3()4f x x x =+-,易知函数单调递增,(0)40f =-<,(1)20f =-<,(2)20f =>,故函数在(1,2)上有唯一零点. 故选:C.【点睛】本题考查了零点存在定理的应用,意在考查学生的计算能力和应用能力.3.已知命题p ,x ∀∈R ,12x x e e +≥,则p ⌝为( ) A. x ∃∈R ,12x xe e +≥ B. x ∃∈R ,12x x e e +< C. x ∃∈R ,12x x e e +≤ D. x ∀∈R ,12x x e e +≤ 【答案】B【解析】【分析】全称命题:x A ∀∈,()P x 否定,是特称命题:x A ∃∈,()P x ⌝,结合已知中原命题x ∀∈R ,12x x e e+≥,可得到答案. 【详解】 原命题x R ∀∈,12xx e e +≥ ,∴ 命题x ∀∈R ,12x x e e+≥的否定是:x ∃∈R ,12x xe e +<. 故选:B .。
试卷类型:A潍坊市高考模拟考试数学2020.4一、单项选择题:本大题共8小题,每小题5分共40分。
在每小题给出的四个选项中,只有 有一项是符合题目要求的。
1.设集合{}{}24|30A B x N x ∈-≤=,,=,则A B =U A . {}1,2,3,4 B .{}0,1,2,3,4 C . {}2 D .{}|4x x ≤2.甲、乙、丙、四位同学各自对x y ,两变量的线性相关性作试验,并用回归分析方法分别求得相关系数r ,如下表: 相关系数甲 乙 丙 丁 r-0.820.780.690.87则哪位同学的试验结果体现两变量有更强的线性相关性? A . 甲 B . 乙 C . 丙 D .丁3.在平面直角坐标系xOy 中,点31P (,),将向量OP uuu r 绕点O 按逆时针方向旋转2π后得到向量OQ uuu r ,则点Q 的坐标是A . ()2,1-B . ()1,2-C . ()3,1-D .()1,3-4.“1a <是“210x x a x∀≥+>,”的 A. 充分不必要条件 B .必要不充分条件 C . 充要条件 D .既不充分也不必要条件 5.函数sin ()x xx xf x e e--=+在[],ππ-上的图象大致为6.玉琮是中国古代玉器中重要的礼器,神人纹玉琮王是新石器时代良渚文化的典型玉器,1986年出土于浙江省余杭市反山文化遗址.玉琮王通高8.8cm ,孔径4.9cm 、外径17.6cm.琮体四面各琢刻一完整的兽面神人图像,兽面的两侧各浅浮雕鸟纹,器形呈扁矮的方柱体,内圆外方,上下端为圆面的射,中心有一上下垂直相透的圆孔。
试估计该神人纹玉琮王的体积约为(单位:cm )A . 6250B . 3050C . 2850D .23507.定义在R 上的偶函数2x mf x -()=-1记1n 3,log 5,(2)m a f b f c f -=()=()=则A . a b c <<B . a c b <<C . c a b <<D .c b a <<8.如图,已知抛物线C:220y px p =(>)的焦点为F ,点00,23)()2pP x x >(是抛物线C 上一点.以P 为圆心的圆与线段PF 相交于点Q ,与过焦点F 且垂直于对称轴的直线交于点A ,B ,AB PQ =,直线PF 与抛物线C 的另一交点为M ,若3PF PQ =则PQFM=A . 1B .3 C . 2 D 5二、多项选择题:本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中, 只有多项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分9.已知双曲线222sin Z 42x y k k θθπ≠∈-=(,)则不因θ改变而变化的是 A . 焦距 B . 离心率 C . 顶点坐标 D .渐近线方程 10.下图是(2018年全国教育事业发展统计公报》中1949-2018年我国高中阶段在校生 数条形图和毛入学率的折线图,根据下图可知在1949-2018年A.1978年我国高中阶段的在校生数和毛入学率比建国初期大幅度提高B.从1990年开始,我国高中阶段的在校生数和毛入学率在逐年增高C.2010年我国高中阶段在校生数和毛入学率均达到了最高峰D.2018年高中阶段在校生数比2017年下降了约0.9%而毛入学率提高了0.5个百分点11.已知函数f x ()对x R ∀∈,满足611f x x f x f x ---()=(),(+)=(+),若20205,9f a f a ∈()=(),[]且f (x )在59[,]上为单调函数,则下列结论正确的是 A .3f ()=0 B . 8a = C .f x ()是周期为4的周期函数 D .y f x =()的图象关于点(1,0)对称12.如图,点O 是正四面体P ABC -底面ABC 的中心,过点O 的直线交AC ,BC 于点M ,N ,S 是棱PC 上的点,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,则A.若MN PAB AB RQ P P 平面,则B.存在点S 与直线MN ,使PC SRQ ⊥平面C.存在点S 与直线M ,使0PS PQ PR u u u r u u u r u u u rg (+)= D.111PQ PR PS++u u u r u u u r u u u r 是常数三、填空题:本大题共4小题,每小题5分,共20分. 13.已知复数i2ia -+是纯虚数(i 是虚数单位),则实数a 的值为____________14.82x ⎫⎪⎭的展开式中2x 项的系数是__________(用数字作答)15.已知函数sin 0,0,0f x A x A ωϕωϕπ()=(+)(>><<)是偶函数,将y f x =()的图象沿x 轴向左平移6π个单位,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为y g x =().已知y g x =()的图象相邻对称中心之间的距离为2π,则_____ω=若y g x =()的图象在其某对称轴处对应的函数值为2-,则g x ()在0π[,]上的最大值为________(本题第一空3分,第二空2分) 16.定义函数f x x x ()=[[]],其中x []表示不超过x 的最大整数,例如2-[1.3]=1,[-1.5]=,[2]=2,当*[0,)(x n n N ∈∈当)时,f x ()的值域为n A .记集合n A 中元素的个数为n a ,则2020211i ia =-∑值为________ 四、解答题:本大题共6小题,共70分,答应写出文字说明证明过程或演算步骤. 17、(10分)△ABC 的内角A ,B 、C 的对边分别为a b c ,,,已知向量,sin ,sin sin m c a B n b a A C --=(),=(+) (1)求C;(233b a +=,求sin A 18.(12分)在221212421,,,n n b b a b b b b b ①=+②=+,③成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列n a {}中113.n n a a a +1=,=公差不等于0的等差数列{}n b 满足_________,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n S .注:如果给出多种选择的解答,按符合题意的第一种选择计分 19.(12分)如图,在等腰直角三角形ADP 中,903AAD ∠o=,=,B ,C 分别是AP ,DP 上的点,且BC ADP,E,F分别是AB,PC的中点,现将△PBC沿BC折起,得到四棱锥P ABCD-,连接EF. (1)证明:EF PADP平面;(2)是否存在点B,当将△PBC沿BC折起到PA AB⊥时,三面角P CD E--的余弦值等于155?若存在,求出AB的长;若不存在,请说明理由20.(12分)研究表明,肥胖人群有很大的心血管安全隐患.目前,国际上常用身体质量指数(缩写为BMI)来衡量人体胖瘦程度,其计算公式是22::kgBMIm体重(单位)=身高(单位)中国成人的BM数值标准为:BM<18.5为偏瘦;18.524BMI≤<为正常;24BMI≥为偏胖,为了解某社区成年人的身体肥胖情况研究人员从该社区成年人中,采用分层随机抽样方法抽取了老年人、中年人、青年人三类人中的45名男性、45名女性为样本,测量了他们的身高和体重数据,计算得到他们的BM值后数据分布如下表所示BMI标准老年人中年青年人男女男女男女BMI<18.5 3 3 1 2 4 518.5≤BMI<24 5 7 5 7 8 10BM≥24 5 4 10 5 4 2(1)从样本中的老年人中年人青年人中各任取一人,求至少有1人偏胖的概率;(2)从该社区所有的成年人中,随机选取3人,其中偏胖的人数为X ,根据样本数据,以频率作为概率,求X 的分布列和数学期望;(3)经过调查研究,导致人体肥胖的原因主要取决于遗传因素、饮食习惯体育锻炼或其他因素四类情况中的一种或多种情况,调查该样本中偏胖的成年人导致偏胖的原因, 整理数据得到如下表: 分类遗传因素饮食习惯欠佳缺乏体育锻炼其他因素人次812164请根据以上数据说明我们学生应如何减少肥胖,防止心血管安全隐患的发生,请至少说明2条措施 21.(12分)直角坐标系xOy 中,12F F ,分别为椭圆C:222210x y a b a b+=(>>)的左右焦点,A 为椭圆的右顶点,点P为椭圆C 上的动点(点P 与C 的左右顶点不重合),当12PF F V 为等边三角形时,123PF F S V =(1)求椭圆C 的方程;(2)如图,M 为AP 的中点,直线MO 交直线4x -=于点D ,过点O 作OE AP P 交直线4x -=于点E ,证明11OEF ODF ∠∠= 22.(12分)已知函数2()2ln ,()a f x x x g x x x=-=+(1)设函数f x g x ()与()有相同的极值点。
(1)求实数a 的值;(ii )若对1213x x e ⎡⎤∀∈⎢⎥⎣⎦,,,不等式12()()11f xg x k -≤-恒成立,求实数k 的取值范围(2)0a =时,设函数()sin 1.g x h x e g x --()=(())试判断h x ()在0π-(,)上零点的个数。