2020届中考数学十大题型专练卷08 与圆有关的证明与计算题(含答案)
- 格式:docx
- 大小:1.78 MB
- 文档页数:32
2020年中考数学培优专题 圆的计算及相关证明(含答案)一、单选题(共有10道小题)1.如图,的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP:AP=1:5,则CD的长为( ).A. 24B.28C. 52D. 542.下列命题中,正确的是( )A .函数3-=x y 的自变量x 的取值范围是x>3B .菱形是中心对称图形,但不是轴对称图形C .一组对边平行,另一组对边相等的四边形是平行四边形D .三角形的外心到三角形的三个顶点的距离相等3.如图,AC ,BE 是⊙O 的直径,弦AD 与BE 交于点F ,下列三角形中,外心不是点O 的是()A.△ABEB.△ACFC.△ABDD.△ADE4.如图,△ ABC 内接于⊙O ,D 为线段AB 的中点,延长OD 交⊙O 于点E ,连接AE ,BE ,则下列五个结论: ①AB ⊥DE, ②AE=BE,③OD=DE, ④∠AEO=∠C ,正确结论的个数是( )A .1个B .2个C .3个个5.下列说法正确的有( )①相等的圆心角所对的弧相等; ②平分弦的直径垂直于弦;③在同圆中,相等的弦所对的圆心角相等; ④经过圆心的每一条直线都是圆的对称轴AA.1个 B.2个 C.3个 D.4个6.⊙O的半径为10cm,两平行弦AC,BD的长分别为12cm,16cm,则两弦间的距离是()A. 2cmB. 14cmC. 6cm或8cmD. 2cm或14cm7.下列命题是真命题的有()①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。
A.1个B.2个C.3个D.4个8.下列说法正确的个数为()①垂直于弦的直径平分这条弦;②垂直平分弦的直线必过圆心;③平分一条弧的直径必平分这条弧所对的弦;④弦的垂直平分线必平分弦所对的两条弧。
A.1B.2C.3D.49.如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C、D两点,则弦CD的长所有可能的整数值有(A.1个 B.2个 C.3个 D.4个10.圆O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A. 3≤OM≤5B. 4≤OM≤5C. 3<OM<5D. 4<OM<5二、填空题(共有6道小题)11.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为cm.12.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为 cm.13.在两个同心圆中,小圆的切线倍大圆截得的弦长为6,改弦分大圆的周长为3:1的两部分,则大圆的半径是 ,小圆的半径是 。
2020年九年级数学典型中考压轴题:圆专项训练题1、如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.2、如图,在⊙O中,AB为直径,D、E为圆上两点,C为圆外一点,且∠E+∠C=90°.(1)求证:BC为⊙O的切线.(2)若sinA=,BC=6,求⊙O的半径.3、如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE•PO.(1)求证:PC是⊙O的切线.(2)若OE:EA=1:2,PA=6,求⊙O的半径.4、如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF•DB;(3)在(2)的条件下,延长ED、BA交于点P,若PA=AO,DE=2,求PD的长.5、如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD (1)求证:AC是⊙O的切线;(2)若⊙O的半径为2,求△ABC的面积.6、已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.7、如图,O是△AB C内一点,与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC。
连接DF、EG。
(1) 求证:AB=AC(2) 已知AB=10,BC=12,求四边形DFGE是矩形时的半径.8、如图,过⊙O上的两点A、B分别作切线,并交BO、AO的延长线于点C、D,连接CD,交⊙O于点E、F,过圆心O作OM⊥CD,垂足为M点.求证:(1)△ACO≌△BDO;(2)CE=DF.9、如图,AB是⊙O的直径,点C、D在圆上,且四边形AOCD是平行四边形,过点D作⊙O的切线,分别交OA延长线与OC延长线于点E、F,连接BF.(1)求证:BF是⊙O的切线;(2)已知圆的半径为1,求EF的长.10、如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB 为直径作⊙O交AC于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.11、在图“书香八桂,阅读圆梦”读数活动中,某中学设置了书法、国学、诵读、演讲、征文四个比赛项目如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.12、如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F 两点,且CD=,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.13、如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.(1)判断AB与⊙O的位置关系,并说明理由;(2)若PF:PC=1:2,AF=5,求CP的长.14、如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.15、如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊥CD于点E.(1)求证:∠BME=∠MAB;(2)求证:BM2=BE•AB;(3)若BE=,sin∠BAM=,求线段AM的长.16、如图,在Rt△ABC中,∠BAC=90°,O是AB边上的一点,以OA为半径的⊙O与边BC相切于点E.(1)若AC=5,BC=13,求⊙O的半径;(2)过点E作弦EF⊥AB于M,连接AF,若∠F=2∠B,求证:四边形ACEF是菱形.17、如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.18、如图,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.(1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.①试判断DF与DH的数量关系,并说明理由;②求⊙O的半径.参考答案:1、【解答】(1)证明:连接OC,如图所示:∵BD是⊙O的切线,∴∠CBE=∠A,∠ABD=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∠BCD=90°,∵E是BD中点,∴CE=BD=BE,∴∠BCE=∠CBE=∠A,∵OA=OC,∴∠ACO=∠A,∴∠ACO=∠BCE,∴∠BCE+∠BCO=90°,即∠OCE=90°,CE⊥OC,∴CE是⊙O的切线;(2)解:∵∠ACB=90°,∴AB===2,∵tanA====,∴BD=AB=,∴CE=BD=.2、【解答】(1)证明:∵∠A与∠E所对的弧都是,∴∠A=∠E,又∵∠E+∠C=90°,∴∠A+∠C=90°,在△ABC中,∠ABC=180°﹣90°=90°,∵AB为直径,∴BC为⊙O的切线;(2)解:∵sinA=,BC=6,∴=,即=,解得AC=10,由勾股定理得,AB===8,∵AB为直径,∴⊙O的半径是×8=4.3、【解答】(1)证明:连结OC,如图,∵CD⊥AB,∴∠PEC=90°,∵PC2=PE•PO,∴PC:PO=PE:PC,而∠CPE=∠OPC,∴△PCE∽△POC,∴∠PEC=∠PCO=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)解:设OE=x,则EA=2x,OA=OC=3x,∵∠COE=∠POC,∠OEC=∠OCP,∴△OCE∽△OPC,∴OC:OP=OE:OC,即3x:OP=x:3x,解得OP=9x,∴3x+6=9x,解得x=1,∴OC=3,即⊙O的半径为3.4、【解答】(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠ABE=90°,∵∠EAB=∠BDE,∠BDE=∠CBE,∴∠CBE+∠ABE=90°,即∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠1=∠2,而∠2=∠AED,∴∠AED=∠1,∵∠FDE=∠EDB,∴△DFE∽△DEB,∴DE:DF=DB:DE,∴DE2=DF•DB;(3)连结DE,如图,∵OD=OB,∴∠2=∠ODB,而∠1=∠2,∴∠ODB=∠1,∴OD∥BE,∴△POD∽△PBE,∴=,∵PA=AO,∴PA=AO=BO,∴=,即=,∴PD=4.5、【解答】解:(1)连接OC.∵AC=BC,AD=CD,OB=OC,∴∠A=∠B=∠1=∠2.∵∠ACO=∠DCO+∠2,∴∠ACO=∠DCO+∠1=∠BCD,又∵BD是直径,∴∠BCD=90°,∴∠ACO=90°,又C在⊙O上,∴AC是⊙O的切线;(2)由题意可得△DCO是等腰三角形,∵∠CDO=∠A+∠2,∠DOC=∠B+∠1,∴∠CDO=∠DOC,即△DCO是等边三角形.∴∠A=∠B=∠1=∠2=30°,CD=AD=2,在直角△BCD中,BC===2.又AC=BC,∴AC=2.作CE⊥AB于点E.在直角△BEC中,∠B=30°,∴CE=BC=,=AB•CE=×6×=3.∴S△ABC6、【解答】(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;(2)解:连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.7、解析:(1)证明:∵⊙O 与AB、AC 分别相切于点D、E,∴AD=AE.∴∠ADE=∠AED.∵DE∥BC,∴∠B=∠ADE,∠C=∠AED.∴∠B=∠C.∴AB=AC.(2)解:如图,连接AO,交DE 于点M,延长AO 交BC 于点N,连接OE、DG.设⊙O 的半径为r.∵四边形DFGE 是矩形,[来源:学科网]∴∠DFG=90°.∴DG 是⊙O 的直径.∵⊙O 与AB、AC 分别相切于点D、E,∴OD⊥AB,OE⊥AC.又OD=OE,∴AN 平分∠BAC.又AB=AC,∴AN⊥BC,BN=12BC=6.在Rt△ABN 中,AN==8.∵OD⊥AB,AN⊥BC,∴∠ADO=∠ANB=90°.又∠OAD=∠BAN,∴△AOD∽△ABN..∵OD⊥AB,∴∠GDB=∠ANB=90°.又∠B=∠B,∴△GBD∽△ABN.∴四边形DFGE 是矩形时⊙O 的半径为60 17·8、【解答】证明:(1)∵过⊙O上的两点A、B分别作切线,∴∠CAO=∠DBO=90°,在△ACO和△BDO中∵,∴△ACO≌△BDO(ASA);(2)∵△ACO≌△BDO,∴CO=DO,∵OM⊥CD,∴MC=DM,EM=MF,∴CE=DF.9、【解答】(1)证明:连结OD,如图,∵四边形AOCD是平行四边形,而OA=OC,∴四边形AOCD是菱形,∴△OAD和△OCD都是等边三角形,∴∠AOD=∠COD=60°,∴∠FOB=60°,∵EF为切线,∴OD⊥EF,∴∠FDO=90°,在△FDO和△FBO中,∴△FDO≌△FBO,∴∠ODF=∠OBF=90°,∴OB⊥BF,∴BF是⊙O的切线;(2)解:在Rt△OBF中,∵∠FOB=60°,而tan∠FOB=,∴BF=1×tan60°=.∵∠E=30°,∴EF=2BF=2.10、【解答】(1)证明:∵AE=AB,∴△ABE是等腰三角形,∴∠ABE=(180°﹣∠BAC=)=90°﹣∠BAC,∵∠BAC=2∠CBE,∴∠CBE=∠BAC,∴∠ABC=∠ABE+∠CBE=(90°﹣∠BAC)+∠BAC=90°,即AB⊥BC,∴BC是⊙O的切线;(2)解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABC=90°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABD∽△ACB,∴=,∵在Rt△ABC中,AB=8,BC=6,∴AC==10,∴,解得:AD=6.4,∴DE=AE﹣AD=8﹣6.4=1.6.11、【解答】(1)证明:连接OD,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为圆O的切线;(2)解:过O作OG⊥BC,∴四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,利用勾股定理得:BG=6,∴BC=BG+GC=6+10=16,∴△AOD∽△ABC,∴=,即=,解得:OA=,∴AB=+10=,连接EF,∵BF为圆的直径,∴∠BEF=90°,∴∠BEF=∠C=90°,∴EF∥AC,∴=,即=,解得:BE=12.12、【解答】解;(1)连接OD,∴∠AOB=90°,∵CD∥OB,∴∠OCD=90°,在RT△OCD中,∵C是AO中点,CD=,∴OD=2CO,设OC=x,∴x2+()2=(2x)2,∴x=1,∴OD=2,[来源:Z|xx|]∴⊙O的半径为2.(2)∵sin∠CDO==,∴∠CDO=30°,∵FD∥OB,∴∠DOB=∠ODC=30°,∴S圆=S△CDO+S扇形OBD﹣S扇形OCE=×+﹣=+.13、【解答】解:(1)AB是⊙O切线.理由:连接DE、CF.∵CD是直径,∴∠DEC=∠DFC=90°,∵∠ACB=90°,∴∠DEC+∠ACE=180°,∴DE∥AC,∴∠DEA=∠EAC=∠DCF,∵∠DFC=90°,∴∠FCD+∠CDF=90°,∵∠ADF=∠EAC=∠DCF,∴∠ADF+∠CDF=90°,∴∠ADC=90°,∴CD⊥AD,∴AB是⊙O切线.(2)∵∠CPF=∠CPA,PCF=∠PA C,∴△PCF∽△PAC,∴=,∴PC2=PF•PA,设PF=a.则PC=2a,∴4a2=a(a+5),∴a=,∴PC=2a=.14、【解答】解:(1)∵∠ACB=∠DCO=90°,∴∠ACB﹣∠ACO=∠DCO﹣∠ACO,即∠ACD=∠OCB,又∵点O是AB的中点,∴OC=OB,∴∠OCB=∠B,∴∠ACD=∠B,(2)(i)∵B C2=AB•BE,∴=,∵∠B=∠B,∴△ABC∽△CBE,∴∠ACB=∠CEB=90°,∵∠ACD=∠B,∴tan∠ACD=tan∠B=,设BE=4x,CE=3x,由勾股定理可知:BE2+CE2=BC2,∴(4x)2+(3x)2=100,∴解得x=2,∴CE=6;(ii)过点A作AF⊥CD于点F,∵∠CEB=90°,∴∠B+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠B=∠ACE,∵∠ACD=∠B,∴∠ACD=∠ACE,∴CA平分∠DCE,∵AF⊥CE,AE⊥CE,∴AF=AE,∴直线CD与⊙A相切.15、【解答】解:(1)如图,连接OM,∵直线CD切⊙O于点M,∴∠OMD=90°,∴∠BME+∠OMB=90°,∵AB为⊙O的直径,∴∠AMB=90°.∴∠AMO+∠OMB=90°,∴∠BME=∠AMO,∵OA=OM,∴∠MAB=∠AMO,∴∠BME=∠MAB;(2)由(1)有,∠BME=∠MAB,∵BE⊥CD,∴∠BEM=∠AMB=90°,∴△BME∽△BAM,∴,[来源:学科网]∴BM2=BE•AB;(3)由(1)有,∠BME=∠MAB,∵sin∠BAM=,∴sin∠BME=,在Rt△BEM中,BE=,∴sin∠BME==,∴BM=6,在Rt△ABM中,sin∠BAM=,∴sin∠BAM==,∴AB=BM=10,根据勾股定理得,AM=8.16、【解答】(1)解:连接OE,设圆O半径为人,在Rt△ABC中,BC=13,AC=5,根据勾股定理得:AB==12,∵BC与圆O相切,∴OE⊥BC,∴∠OEB=∠BAC=90°,∵∠B=∠B,∴△BOE∽△BCA,∴=,即=,解得:r=;(2)∵=,∠F=2∠B,∴∠AOE=2∠F=4∠B,∵∠AOE=∠OEB+∠B,∴∠B=30°,∠F=60°,∵EF⊥AD,∴∠EMB=∠CAB=90°,∴∠MEB=∠F=60°,CA∥EF,∴CB∥AF,∴四边形ACEF为平行四边形,∵∠CAB=90°,OA为半径,∴CA为圆O的切线,∵BC为圆O的切线,∴CA=CE,∴平行四边形ACEF为菱形.[来源:学|科|网]17、【解答】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD===4,∴S△OCD===8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.18、【解答】解:(1)如图,连接OD,∵⊙O与BC相切于点D,∴OD⊥BC,∵∠C=90°,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠BAD,∴AD平分∠CAB.(2)①DF=DH,理由如下:∵FH平分∠AFE,∴∠AFH=∠EFH,又∠DFG=∠EAD=∠HAF,∴∠DFG=∠EAD=∠HAF,∴∠DFG+∠GFH=∠HAF+∠HFA,即∠DFH=∠DHF,∴DF=DH.②设HG=x,则DH=DF=1+x,∵OH⊥AD,∴AD=2DH=2(1+x),∵∠DFG=∠DAF,∠FDG=∠FDG,∴△DFG∽△DAF,∴,∴,∴x=1,∵DF=2,AD=4,∵AF为直径,∴∠ADF=90°,∴AF=∴⊙O的半径为.。
2020中考数学 专题练习:圆的综合题(含答案) 类型一 与全等结合1. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合).(1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形;(3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.第1题图(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC ,∴△ACO 为等边三角形,∴∠AOC =∠ACO =∠OAC =60°,∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C ,∴OC ⊥DC ,∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;第1题解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°,∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°,∴△COP 和△BOP 都为等边三角形,∴OC =CP =OB =PB ,∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径,∴∠CAP =∠ACB =90°,在Rt △ABC 与Rt △CPA 中,⎩⎪⎨⎪⎧AB =CPAC =AC ,∴Rt △ABC ≌Rt △CPA (HL).2. 如图,AB 为⊙O 的直径,CA 、CD 分别切⊙O 于点A 、D ,CO的延长线交⊙O 于点M ,连接BD 、DM .(1)求证:AC =DC ;(2)求证:BD ∥CM ;(3)若sin B =45,求cos ∠BDM 的值.第2题图(1)证明:如解图,连接OD ,∵CA 、CD 分别与⊙O 相切于点A 、D ,∴OA ⊥AC ,OD ⊥CD ,在Rt △OAC 和Rt △ODC 中,⎩⎪⎨⎪⎧OA =OD OC =OC , ∴Rt △OAC ≌Rt △ODC (HL),∴AC =DC ;(2)证明:由(1)知, △OAC ≌△ODC ,∴∠AOC =∠DOC ,∴∠AOD =2∠AOC ,∵∠AOD =2∠OBD ,∴∠AOC =∠OBD ,∴BD ∥CM ;(3)解:∵BD ∥CM ,∴∠BDM =∠M ,∠DOC =∠ODB ,∠AOC =∠B ,∵OD =OB =OM ,∴∠ODM =∠OMD ,∠ODB =∠B =∠DOC ,∵∠DOC =2∠DMO ,∴∠DOC =2∠BDM ,∴∠B =2∠BDM ,如解图,作OE 平分∠AOC ,交AC 于点E ,作EF ⊥OC 于点F ,第2题解图∴EF =AE ,在Rt △EAO 和Rt △EFO 中,∵⎩⎪⎨⎪⎧OE =OEAE =EF ,∴Rt △EAO ≌Rt △EFO (HL),∴OA =OF ,∠AOE =12∠AOC ,∴点F 在⊙O 上,又∵∠AOC =∠B =2∠BDM ,∴∠AOE =∠BDM ,设AE =EF =y ,∵sin B =45, ∴在Rt △AOC 中,sin ∠AOC =AC OC =45, ∴设AC =4x ,OC =5x ,则OA =3x ,在Rt △EFC 中,EC 2=EF 2+CF 2,∵EC =4x -y ,CF =5x -3x =2x ,∴(4x -y )2=y 2+(2x )2,解得y =32x , ∴在Rt △OAE 中,OE =OA 2+AE 2 =(3x )2+(32x )2=352x , ∴cos ∠BDM =cos ∠AOE =OA OE =3x 352x =255. 3. 如图,⊙O 是△ABC 的外接圆,AC 为直径,AB ︵=BD ︵,BE ⊥DC 交DC的延长线于点E .(1)求证:∠1=∠BCE ;(2)求证:BE 是⊙O 的切线;(3)若EC =1,CD =3,求cos ∠DBA .第3题图(1)证明:如解图,过点B 作BF ⊥AC 于点F ,∵AB ︵=BD ︵,∴AB =BD在△ABF 与△DBE 中,⎩⎪⎨⎪⎧∠BAF =∠BDE ∠AFB =∠DEB AB =DB,∴△ABF ≌△DBE (AAS),∴BF =BE ,∵BE ⊥DC ,BF ⊥AC ,∴∠1=∠BCE ;(2)证明:如解图,连接OB ,∵AC 是⊙O 的直径,∴∠ABC =90°,即∠1+∠BAC =90°,∵∠BCE +∠EBC =90°,且∠1=∠BCE ,∴∠BAC =∠EBC ,∵OA =OB ,∴∠BAC =∠OBA ,∴∠EBC =∠OBA ,∴∠EBC +∠CBO =∠OBA +∠CBO =90°,∴∠EBO =90°,又∵OB 为⊙O 的半径,∴BE 是⊙O 的切线;第3题解图(3)解:在△EBC 与△FBC 中,⎩⎪⎨⎪⎧∠BEC =∠CFB ,∠ECB =∠FCB ,BC =BC ,∴△EBC ≌△FBC (AAS),∴CE =CF =1.由(1)可知:AF =DE =1+3=4,∴AC =CF +AF =1+4=5,∴cos ∠DBA =cos ∠DCA =CD CA =35. 类型二 与相似结合4. 如图,△ABC 内接于⊙O ,AB =AC ,∠BAC =36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数;(2)求证:AE 2=EF ·ED ;(3)求证:AD 是⊙O 的切线.第4题图(1)解:∵AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =12(180°-36°)=72°, ∴∠AFB =∠ACB =72°,∵BD 平分∠ABC ,∴∠DBC =36°,∵AD ∥BC ,∴∠D =∠DBC =36°,∴∠DAF =∠AFB -∠D =72°-36°=36°;(2)证明:∵∠EAF =∠FBC =∠D ,∠AEF =∠AED ,∴△EAF ∽△EDA ,∴AE DE =EF EA, ∴AE 2=EF ·ED ;(3)证明:如解图,过点A 作BC 的垂线,G 为垂足,∵AB =AC ,∴AG 垂直平分BC ,∴AG 过圆心O ,∵AD ∥BC ,∴AD ⊥AG ,∴AD 是⊙O 的切线.第4题解图5. 如图,AB 为半圆的直径,O 为圆心,OC ⊥AB ,D 为BC ︵的中点,连接DA 、DB 、DC ,过点C 作DC 的垂线交DA 于点E ,DA 交OC 于点F .(1)求证:∠CED =45°;(2)求证:AE =BD ;(3)求AO OF的值.第5题图(1)证明:∵∠CDA =12∠COA =12×90°=45°,又∵CE ⊥DC ,∴∠DCE =90°,∴∠CED =180°-90°-45°=45°;(2)解:如解图,连接AC ,∵D 为BC ︵的中点,∴∠BAD =∠CAD =12×45°=22.5°,而∠CED =∠CAE +∠ACE =45°,∴∠CAE =∠ACE =22.5°,∴AE =CE ,∵∠ECD =90°,∠CED =45°,∴CE =CD ,又∵CD ︵=BD ︵,∴CD =BD ,∴AE =CE =CD =BD ,∴AE =BD ;第5题解图(3)解:设BD =CD =x ,∴AE =CE =x ,由勾股定理得,DE =2x ,则AD =x +2x ,又∵AB 是直径,则∠ADB =90°,∴△AOF ∽△ADB ,∴AO OF =AD DB =x +2x x=1+ 2.6. 如图,AB 为⊙O 的直径,P 点为半径OA 上异于点O 和点A 的一个点,过P 点作与直径AB 垂直的弦CD ,连接AD ,作BE ⊥AB ,OE //AD 交BE 于E 点,连接AE 、DE ,AE 交CD 于点F .(1)求证:DE 为⊙O 的切线;(2)若⊙O 的半径为3,sin ∠ADP =13,求AD ; (3)请猜想PF 与FD 的数量关系,并加以证明.第6题图(1)证明:如解图,连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵OE ∥AD ,∴∠OAD =∠BOE ,∠DOE =∠ODA ,∴∠BOE =∠DOE ,在△BOE 和△DOE 中,⎩⎪⎨⎪⎧OB =OD ∠BOE =∠DOE OE =OE,∴△BOE ≌△DOE (SAS),∴∠ODE =∠OBE ,∵BE ⊥AB ,∴∠OBE =90°,∴∠ODE =90°,∵OD 为⊙O 的半径,∴DE 为⊙O 的切线;(2)解:如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ABD +∠BAD =90°,∵AB ⊥CD ,∴∠ADP +∠BAD =90°,∴∠ABD =∠ADP ,∴sin ∠ABD =AD AB =sin ∠ADP =13, ∵⊙O 的半径为3,∴AB =6,∴AD =13AB =2;第6题解图(3)解:猜想PF =FD ,证明:∵CD ⊥AB ,BE ⊥AB ,∴CD ∥BE ,∴△APF ∽△ABE ,∴PF BE =AP AB, ∴PF =AP ·BE AB, 在△APD 和△OBE 中,⎩⎪⎨⎪⎧∠APD =∠OBE ∠PAD =∠BOE , ∴△APD ∽△OBE ,∴PD BE =AP OB, ∴PD =AP ·BE OB, ∵AB =2OB ,∴PF =12PD , ∴PF =FD .7. 如图①,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,OD ∥AC ,OD 交⊙O 于点E ,且∠CBD =∠COD .(1)求证:BD 是⊙O 的切线;(2)若点E 为线段OD 的中点,求证:四边形OACE 是菱形.(3)如图②,作CF ⊥AB 于点F ,连接AD 交CF 于点G ,求FG FC 的值.第7题图(1)证明:∵AB 是⊙O 的直径,∴∠BCA =90°,∴∠ABC +∠BAC =90°,∵OD ∥AC ,∴∠ACO =∠COD .∵OA =OC ,∴∠BAC =∠ACO ,又∵∠COD =∠CBD ,∴∠CBD =∠BAC ,∴∠ABC +∠CBD =90°,∴∠ABD =90°,即OB ⊥BD ,又∵OB 是⊙O 的半径,∴BD 是⊙O 的切线;(2)证明:如解图,连接CE、BE,∵OE=ED,∠OBD=90°,∴BE=OE=ED,∴△OBE为等边三角形,∴∠BOE=60°,又∵AC∥OD,∴∠OAC=60°,又∵OA=OC,∴△OAC为等边三角形,∴AC=OA=OE,∴AC∥OE且AC=OE,∴四边形OACE是平行四边形,而OA=OE,∴四边形OACE是菱形;第7题解图(3)解:∵CF⊥AB,∴∠AFC=∠OBD=90°,而AC∥OD,∴∠CAF=∠DOB,∴Rt△AFC∽Rt△OBD,∴FCBD=AFOB,即FC=BD·AFOB,又∵FG∥BD,∴△AFG∽△ABD,∴FGBD=AFAB,即FG=BD·AFAB,∴FCFG=ABOB=2,∴FGFC=12.8. 如图,AB是⊙O的直径,点E为线段OB上一点(不与O、B重合),作EC⊥OB交⊙O于点C,作直径CD过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠FAB;(2)求证:BC2=CE·CP;(3)当AB =43且CF CP =34时,求劣弧BD ︵的长度. 第8题图 (1)证明:∵PF 切⊙O 于点C ,CD 是⊙O 的直径,∴CD ⊥PF ,又∵AF ⊥PC ,∴AF ∥CD ,∴∠OCA =∠CAF ,∵OA =OC ,∴∠OAC =∠OCA ,∴∠CAF =∠OAC ,∴AC 平分∠FAB ;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵∠DCP=90°,∴∠ACB=∠DCP=90°,又∵∠BAC=∠D,∴△ACB∽△DCP,∴∠EBC=∠P,∵CE⊥AB,∴∠BEC=90°,∵CD是⊙O的直径,∴∠DBC=90°,∴∠CBP=90°,∴∠BEC=∠CBP,∴△CBE∽△CPB,∴BCPC=CECB,∴BC2=CE·CP;(3)解:∵AC 平分∠FAB ,CF ⊥AF ,CE ⊥AB ,∴CF =CE ,∵CF CP =34, ∴CE CP =34, 设CE =3k ,则CP =4k ,∴BC 2=3k ·4k =12k 2,∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k =32, ∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3. 类型三 与全等相似结合9. 如图,四边形ABCD 内接于圆O ,∠BAD =90°,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连接CG .(1)求证:AB =CD ;(2)求证:CD 2=BE ·BC ;(3)当CG =3,BE =92,求CD 的长.第9题图(1)证明:∵AC 为直径,∴∠ABC =∠ADC =90°,∴∠ABC =∠BAD =90°,∴BC ∥AD ,∴∠BCA =∠CAD ,又∵AC =CA ,∴△ABC ≌△CDA (AAS),∴AB =CD ;(2)证明:∵AE 为⊙O 的切线且O 为圆心,∴OA ⊥AE ,即CA ⊥AE ,∴∠EAB +∠BAC =90°,而∠BAC +∠BCA =90°,∴∠EAB =∠BCA ,而∠EBA =∠ABC ,∴△EBA ∽△ABC ,∴EB AB =BA BC, ∴AB 2=BE ·BC ,由(1)知AB =CD ,∴CD 2=BE ·BC ;(3)解:由(2)知CD 2=BE ·BC ,即CD 2=92BC ①, ∵FG ∥BC 且点F 为AC 的三等分点,∴G 为AB 的三等分点,即CD =AB =3BG ,在Rt △CBG 中,CG 2=BG 2+BC 2,即3=(13CD )2+BC 2②, 将①代入②,消去CD 得,BC 2+12BC -3=0, 即2BC 2+BC -6=0,解得BC =32或BC =-2(舍)③, 将③代入①得,CD =332. 10.如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F .(1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).第10题图(1)证明:∵BC 2=CD ·CA ,∴BC CA =CD BC, ∵∠C =∠C ,∴△CBD ∽△CAB ,∴∠CBD =∠BAC ,又∵AB 为⊙O 的直径,∴∠ADB =90°,即∠BAC +∠ABD =90°,∴∠ABD +∠CBD =90°,即AB ⊥BC ,又∵AB 为⊙O 的直径,∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形.证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC ,又∵△CBD ∽△CAB ,∴∠BAC =∠CBD ,∴∠CBD =∠DAE ,∵∠DAE =∠DBF ,∴∠DBF =∠CBD ,∵∠BDF =90°,∴∠BDC =∠BDF =90°,∵BD =BD ,∴△BDF ≌△BDC ,∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°, ∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.。
2020届中考数学 几何专题:与圆有关的性质(含答案)一、选择题1.如图,⊙O 是△ABC 的外接圆,已知∠B =60°,则∠CAO 的度数是( )A .15°B .30°C .45°D .60°2.如图,⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=,则弦AB 所对圆周角的度数为()A.30°B.60° C.30°或150° D.60°或120°3.如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且AB ∥OP .若阴影部分的面积为,则弦AB 的长为( )A .3B .4C .6D .94.如图,△ABC 内接于⊙O ,若∠OAB =28°,则∠C 的大小为( )A .28°B .56°C .60°D .62°5.如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD =BD ,则AB 的长为( ) A .2 B .3 C .4 D .53 96.如图,∠AOB 是⊙0的圆心角,∠AOB =80°,则弧AB 所对圆周角∠ACB 的度数是( )A .40°B .45°C .50°D .80°7.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A =70o ,∠C =50o,那么sin ∠AEB 的值为( )A. B. C. D.8.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米, 拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .5米9.如图,△ABC 内接于⊙O ,连结OA 、OB ,若∠ABO=25°,则∠C 的度数为( )A .55°B .60°C .65°D .70°10.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( ).213322233A .0.4米B .0.5米C .0.8米D .1米11.如图,AB 是半圆O 的直径,点P 从点O 出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是( )12.如图,AB 是⊙O 的弦,OD ⊥AB 于D 交⊙O 于E ,则下列说法错误..的是( )A .AD =BDB .∠ACB =∠AOEC .D .OD =DE13.如图,⊙O 的直径AB 垂直弦CD 于点P ,且P 是半径OB 的中点,CD =6cm ,则直径AB 的 长是( )A .B .C .D .14.如图,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( )A .5B .4C .3D .2OA AB BO --OP s t s t AE BE =O A . B .C .D .15.如图,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( )A .2B .3C .4D .516.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O的半径为,则弦CD 的长为( )A .B .C .D .二、填空题1.如图,AB 为半圆O 的直径,延长AB 到点P ,使BP =AB ,PC 切半圆O 于点C ,点D 是上和点C 不重合的一点,则的度数为 .2.如图,在⊙O 中,∠ACB =20°,则∠AOB =______度.3.如图所示,A 、B 、C 、D 是圆上的点,则 度. cm 33cm 23cm 9cm 12AC D ∠17040A ∠=∠=°,°,C ∠=4.在⊙O 中,已知⊙O 的直径AB 为2,弦AC 长为,弦AD 长为.则DC 2=______5.如图,AB 是⊙O 的直径,点C 在⊙O 上 ,OD∥AC ,若BD =1,则BC 的长为6.已知的直径为上的一点,,则= _ .7.如图,的半径弦点为弦上一动点,则点到圆心的最短距离是 cm .8.如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为上一点,若∠CEA =,则∠ABD =°.9.如图,AB 是⊙O 的直径,AC 是弦,若∠A CO =32°,则∠COB 的度数等于 . 32O ⊙8cm AB C =,O ⊙30BAC ∠=°BC cm O 5cm OA =,8cm AB =,P AB P O BC 28BABCD 1三、解答题1.如图,AB 是⊙O 的直径,C 是弧BD 的中点,CE⊥AB,垂足为E ,BD 交CE 于点F .(1)求证:CF =BF ;(2)若AD =2,⊙O 的半径为3,求BC 的长.2.已知:如图,⊙O 1与坐标轴交于A (1,0)、B (5,0)两点,点O 1的纵坐标为.求⊙O 1的半径.3.已知:如图,⊙O 的直径AD =2,,∠BAE =90°.(1)求△CAD 的面积;(2)如果在这个圆形区域中,随机确定一个点P ,那么点P 落在四边形ABCD 区域的概率是多少?5图2 BC CD DE ==4.如图,已知AB 是⊙O 的直径,点C 是⊙O 上一点,连结BC ,AC ,过点C 作直线CD⊥AB 于点D ,点E 是AB 上一点,直线CE 交⊙O 于点F ,连结BF ,与直线CD 交于点G .求证:.【参考答案】选择题1. B2.DBF BG BC ⋅=23. C4. D5. B6. A7. D8. B9. C10. D11. C12. D13. D14. A15. A16. B填空题1. 30°2. 403. 304.5. 26. 47. 38. 289. 64º解答题1. 证明:(1) 连结AC ,如图。
圆的证明与计算1.如图,已知八ABC内接于AO, P是圆外一点,PA为40的切线, = PB,连接0P ,线段AB与线段0P相交于点D.(1)求证:PB为40的切线;- 4⑵ 若PA=4P0, z\0的半径为10,求线段PD的长.5(1)证明:△△△△△0Az\0Bz\ZSPA/SPBA0AA0BA0PA0PA△ 3APz\8BP(SSS) △A210APA210BPA/SPAA210AAAAA210APA90 △A210BPA90 △A0BA210AAAA/SPBA210AAAA_ _ 4_ _ ............(2)解:APA/VP0A210AAAA 10A PA第1题图第1题解图△ △ Rt AOP A Z1OA A A J P O22\21|P O^ A10A人人八人50人A/POA V A3AO OD△ cos AOP/^O P A A O AAODA6A人_ _____ 32APD APOAODA-y.32.AAAAABCA/iAB^CA/lDABCAAAAADADCA/lAAB/SDAAAzOA AEA21OAAAAADE.A 1AAAACA/1OAAAAA2AA C OSA32^C A 24 A A A AE A A.第2题图(1)证明:AABAACAAD ADC △Az^CAz^BAz^DACA^CA△RAC△2△AAZEA21BA△RAC△任△Z^EA/IOAAAAA21ADEA90 △△任△21EAD"0° △A/DACA21EADA90 △△任AC490° △AOAA21OAAAAAACAODAAAA(2)解:AAAAADA DF 丛C△任△第2题解图DAADCCA…1… 人△CF A2ACA12ACF 3ARtzCDFAAA G(C/\C D A5A△DC A 20 △AAD A 20 △ARtzCDFAAAAAAA DF ,CD2-CF216 △A21ADEA21DFCA90 AEA21CAA21ADEA21DFCA噬噜△AE 20A— A20 AA Z^EA25A20 16A21OAA/AEA 25.3.如图,在AABC中,AB=BC,以AB为直径作AO,交BC于点D,交AC 于点E,过点E作AO的切线EF,交BC于点F.(1)求证:EFABC;(2)若 CD=2, tan C=2,求 AO 的半径.第3题图(1)证明:如解图,连接BE, OE.第3题解图AAB为AO的直径,△MEB=90 .AAB=BC,△点E是AC的中点,△点O是AB的中点,AOEABC,△EF是AO的切线,△EF4E.△EFABC;(2)解:如解图,连接AD,八AB为AO的直径,△ AADB=90 ,△CD=2, tan C=AD 2CDAAD=4.设 AB=x,贝U BD=x-2.在 RtAABD 中, 由勾股定理得AB2=AD2+BD2,即 x2=42+ (x— 2) 2, 解得x=5,即AB=5,△ 8的半径为5 .24.AAAAZOWZ1ABAAAAABCAAADA21BCAAAAAE.A 1AAA/SDACA21DCEA..................1人人人人A2A ABA 2A siD △不△ AAE4/X.第4题图(1)证明:Z^DA/IOAAAA△PAB A90 .Z^BA/IOAAAAA21ACBA90 .A/DACA21CABA90 2ICABA/^ABCA 90 △A/DACA/^BC.AOCAOBAA.BCBCOCOCBAAAZDCEAz^OCBAA21DACA21DCEA(2)解:AABA2 △AAOA1.△sinD A ODAODA3ZDC A2 △ARtzDAOAA△△△△△AD △ OD2AOA2A2 2 △A21DACA21DCEA21DA/1DAA21DECA21DCAA A DC A DE A DA A DC 人2人DEA2 ,2 A2△RE △ ,2 △AAEAAD ADE △ 2.5.AAABA21OAAZDAA/DAAAAAADACDAOAA21ABA21EAA/OA1AAACEACBAA2AAAFABFAA/ABFAAAA人人-人人人 DE人5人人…人人人A3A/CDA 15ABE4 1OZ A E A13AAZ O AA A-(:第5题图(1)证明:△△△△△OB4A第5题解图BBCAOJAAAAAOBABCA AzOBCA 90 △A21OBAA21CBEA90 △AOAAOBAA21OABA21OBAAA21OAB+ACBEA 90 △A21CDAOAAA21OABA21DEAA90 △AA/CEBA21DEAAA21CBEA21CEBAACEACBA(2)解:△△△△△/△ADA ADO ACD AOAA AAF AOF △Az^OAAOFAA21AOFAAAAAAA/AOF=60O△」_1 _____ ____ _A21ABFA2^AOFA30 △(3)解:△△△△△C\CG》B△工△△CD AOAAA21ADEA21CGEA900△AA/AEDA21CEGAA21ADEA21CGEA人DE人EG人5人A AE A CE A13AACEABCAACEA13A人 (26)△DE -旌.-------- 24△ △•■△△△△△△" ..AE DE△石△486.AAAA/lABCDAAAzO^BA/lOAAAADADCAAAABAACDAAA EA/®FAECA21ECAAAAA/W\AZBD.△ 1 △△△ ABFC△2DAAA2AAE/^OAA cosADEAA3AAA 2AAAA/BCA6AzBFAA.第6题图(1)证明:Z^BA/IOAAAAA21BDAA90 .ABF /SECAA21BFCA90 △AAAABCDA/1OAAAAAAAA21BCFA21BADAA21BFCA21BDAA(2)解:△△△△△OD3C4A21BFCA21BDAABF BC△BD'^A B'AODA/lOAAAzADACDA AODAAAACAZ^BA/IOAAAA△ AACB=90 △AODABCA △任OD△心X OE ODA BE A BC AZ^E^OA21OEA2OB/SBEA3OBAOD OE 2△■占M—— -ABC BE 3ABC Z^ODA3瑞瑞舄△:△△ 21ADB A 90 △A21ADEA21BDFA90 △A21BDFA21DBFA90 △A21ADEA21DBFAR第6题解图/SRt/SBDFAA cosDBF 混率△ cos ADE2^A4(3)解:ABCz^ODABCA6AAODA4A /^EA4ZBEA12 △ △任OD△心CA 人DE人OD人A CE A BC A…人3 人ACEA2DEA △ △/EDA△八EBC△任△小£△A21AEDA21CEBA 人AE人DE人A C E A BE AADE CEAAE BEAADE 3D E A4X 12 △ /SDEA4V2( AAAA )△ACDA2V2A/^DA2V2AA21BFCA21BDAA 人CF 人AD 人A CF A2_J A△BC△母△造△ 8 △… 3 2ACF A^AARtzBCFAAAAAAAAAABFA . BC2A CF2Z^3~214.7.AAABAA OAAA/ICD^BAAAzHAAAAC△△知作EG3C交CD的延长线于点 G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:z\ECF△&CE;(2)求证:EG是AO的切线;(3)延长AB交GE的延长线于点 M ,若tan工=3 ,AH=3,4求EM的值.第7题图(1)证明:3cAEG,△8=3CG,「AB是AO的直径,ABACD,△A D = A C ,△3EF=AACD,△8=MEF,△任CF=4ECG,△任CF△&CE;(2)证明:如解图,连接OE,第7题解图△GF=GE,△&FE=^GEF=AAFH,△OA=OE,△3AE=4OEA,△AAFH+^FAH=90 ,△&EF+AAEO=90 ,△&EO=90 ,AGEAOE,VOEMAO的半径,△EG是AO的切线;(3)解:如解图,连接OC,设AO的半径为r.在 Rt「AHC 中,一一AH 3tan zACH=tan 应=空=± , HC 4AAH=3,AHC=4.在 Rt^HOC 中,△OC=r, OH=r—3, HC=4, △ (r —3) 2+42=r2,解得r= 25 ,6△GM AAC,△ 3AH=2\M,△ 3EM=AAHC=90 △ AAHC/XNEO,AH HCEM OE ,即高8.如图,AB 为AO 的直径,C 、G 是AO 上两点,过点 C 的直线CD^BG 交BG 的延长线于点D,交BA 的延长线于点E,连接BC,交OD 于点F, 且BC 平分4ABD.(1)求证:CD 是AO 的切线;⑵若OF 2,求4E 的度数; FD 3⑶连接AD,在(2)的条件下,若CD=2V3,求AD 的长.H第8题图(1)证明:如解图,连接OC,△ EM 25 8△OC=OB, BC 平分 AABD, △3CB=z\OBC, AOBC=ADBC,AzX)BC=AOCB,AOC ABD,Az^BDC=AECO,△CD ABD,△ z!BDC=90 ,△任CO=90 ,△OC 是AO 的半径,△CD 是AO 的切线;(2)解:由(1)知,OC^BD, △8CF=4DBF, △COFMBDF,A21OCFA21DBF, △.史FD△器AOC ABD, △任OC △任BD,△如 FD3,设 OE=2a,则 EB=3a,△OB=a,△OC=a,△3CE=90 , OC=1OE, 2△任=30 ;(3)解:△任=30 , ABDE=90 ,△任BD=60 ,VBC 平分 ADBE,/. AOBC=ADBC=1 EBD=30 , 2△CD=2 .3 ,ABC=4 3, BD=6,△空2 , DB 3△OC=4,如解图,过点D作DM3B于点M ,△RMB=90 ,ABD=6, ADBM=60 ,ABM=3, DM=3 3 ,△OC=4,△AB=8,AAM=AB—BM=5,△ RMA=90 , DM=3J3,AAD= VDM 2 AM 2 2V13 .9.如图,在3BC中,八ACB=90°,。
2020中考数学 专题复习:圆的综合(含答案)类型一 与基本性质有关的证明与计算1. 如图,AB 是⊙O 的直径,点D 是AE ︵上的一点,且∠BDE =∠CBE ,BD 与AE 交于点F . (1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:DE 2=DF ·DB ;(3)在(2)的条件下,延长ED ,BA 交于点P ,若P A =AO ,DE =2,求PD 的长.第1题图(1)证明:∵AB 是⊙O 的直径, ∴∠AEB =90°, ∴∠EAB +∠ABE =90°,∵∠BDE =∠EAB ,∠BDE =∠CBE , ∴∠EAB =∠CBE ,∴∠ABE +∠CBE =∠ABE +∠EAB =90°,即CB ⊥AB . 又∵AB 是⊙O 的直径, ∴BC 是⊙O 的切线; (2)证明:∵BD 平分∠ABE , ∴∠ABD =∠DBE ,AD ︵=DE ︵, ∴∠ABD = ∠DEA , ∴∠DEA = ∠DBE , ∵∠EDB =∠BDE , ∴△DEF ∽△DBE ,∴DE DB =DF DE, ∴DE 2= DF ·DB ;(3)解:如解图,连接OD ,延长ED 交BA 的延长线于点P ,第1题解图∵OD =OB , ∴∠ODB =∠OBD , ∵BD 平分∠ABE , ∴∠OBD = ∠EBD , ∴∠EBD =∠ODB , ∴OD ∥BE , ∴△PDO ∽△PEB , ∴PD PE =POPB, ∵P A =AO , ∴P A =AO =OB , ∴PO PB =PD PE =23, ∵PD PE =PD PD +DE =23,DE =2, ∴PD =4.2. 如图,AB 是⊙O 的直径,C 是BD ︵的中点,CE ⊥AB ,垂足为E ,BD 交CE 于点F . (1)求证:CF =BF ;(2)若BE =4,EF = 3,求⊙O 的半径.第2题图(1)证明:连接AC ,如解图,∵点C 是BD ︵的中点,∴∠DBC =∠BAC , 在△ABC 中,∠ACB =90°,CE ⊥AB ,第2题解图∴∠BCE +∠ECA =∠BAC +∠ECA =90°, ∴∠BCE =∠BAC , 又∵C 是BD ︵的中点, ∴∠DBC =∠CDB , ∴∠BCE =∠DBC , ∴CF = BF ;(2)解:∵BE = 4,EF = 3, ∴BF =32+42= 5,∴CF = 5,∴CE = 5+3= 8, ∵AB 是⊙O 的直径, ∴∠ACB = 90°, ∴CE 2=BE ·AB , ∴AB =CE 2BE = 644= 16,∴AO = 8,∴⊙O 的半径为8.3. 如图,⊙O 中,直径CD ⊥弦AB 于E ,AM ⊥BC 于M ,交CD 于N ,连接AD . (1)求证:AD =AN;(2)若AB =8,ON = 1,求⊙O 的半径.第3题图(1)证明:∵CD ⊥AB , ∴∠CEB = 90°, ∴∠C +∠B = 90°, 同理∠C +∠CNM = 90°, ∴∠CNM =∠B , ∵∠CNM = ∠AND , ∴∠AND = ∠B , ∵AC ︵=AC ︵, ∴∠ADN = ∠B , ∴∠AND = ∠ADN , ∴AN =AD ;第3题解图(2)解:设OE 的长为x ,连接OA , ∵AN =AD ,CD ⊥AB , ∴DE = NE =x +1,∴OD =OE +ED =x +x +1=2x +1, ∴OA = OD = 2x +1,∴在Rt △OAE 中,OE 2+AE 2= OA 2, ∴x 2+42=(2x +1)2,解得x =53或x =-3(不合题意,舍去),∴OA = 2x +1= 2×53+1= 133,即⊙O 的半径为133.4. 如图,A 、B 、C 为⊙O 上的点,PC 过O 点,交⊙O 于D 点,PD = OD ,若OB ⊥AC 于E 点.第4题图(1)判断A 是否是PB 的中点,并说明理由; (2)若⊙O 半径为8,试求BC 的长. 解:(1)A 是PB 的中点, 理由:连接AD ,如解图,第4题解图∵CD 是⊙O 的直径, ∴AD ⊥AC , ∵OB ⊥AC , ∴AD ∥OB , ∵PD = OD ,∴AD 是△PBO 的中位线, ∴P A =AB , ∴A 是PB 的中点; (2)∵AD ∥OB , ∴△APD ∽△BPO , ∴AD BO =PD PO = 12, ∵⊙O 半径为8, ∴OB = 8, ∴AD =4, ∴AC =CD 2-AD 2= 415,∵OB ⊥AC , ∴AE =CE = 215, ∴OE =12AD = 2,∴BE =6, ∴BC =BE 2+CE 2=4 6.5. 如图,AB 是⊙O 的直径,点C 、E 是⊙O 上的点,且AC ︵=EC ︵,连接AC 、BE ,并延长交于点D ,已知AB =2AC =6.第5题图(1)求DC 的长; (2)求EC ︵的长.解:(1)如解图,连接BC ,第5题解图∵ AB 是⊙O 的直径, ∴∠ACB =90°,CB ⊥AD , ∵AC ︵=EC ︵, ∴∠ABC =∠DBC , ∴△ABD 为等腰三角形, ∵AB =2AC =6, ∴DC =AC =3;(2)如解图,连接OC 、OE , ∵AB =2AC =6,∠ACB =90°, ∴∠ABC =30°,OC =OE =3, ∴∠DBC =∠ABC =30°∴∠COE =2∠DBC =60°,∴l EC ︵=60×π×3180=π.6. 如图,AB 为圆O 的直径,CD ⊥AB 于点E ,交圆O 于点D ,OF ⊥AC 于点F .第6题图(1)求证:OF =12BD ;(2)当∠D =30°,BC =1时,求圆中阴影部分的面积. (1)证明:如解图,连接OC ,第6题解图∵OF ⊥AC ,OA =OC , ∴AF =FC ,∵OA =OB ,∴OF 是△ABC 的中位线,∴OF =12BC ,∵AB ⊥CD ,∴BC ︵=BD ︵, ∴BC =BD , ∴OF =12BD ;(2)解:∵∠D =30°, ∴∠A =∠D =30°, ∴∠COB =2∠A =60°, ∴∠AOC =120°,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,BC=1,∴AB=2,AC=3,由(1)可知OF=12BC=1 2,∵∠COB=60°,OB=OC,∴△BOC是等边三角形,∴OA=OB=BC=1,∴S△AOC=12AC ·OF=12×3×12=34,S扇形AOC=120πOA2360=π3,∴S阴影=S扇形AOC-S△AOC=π3-34.7. 如图,△ABC内接于⊙O,AB为⊙O的直径,OD⊥AB交⊙O于点D,AC、OD的延长线交于点E,连接CD.(1)求证:∠ECD=∠BCD;(2)当AC=CD时,求证:CE=CB.第20题图证明:(1)∵AB是⊙O的直径,∴∠ACB=∠ECB=90°,∵OD⊥AB,∴∠DOB=90°,∴∠BCD=12∠DOB=45°,∴∠ECD=∠ECB-∠BCD=90°-45°=45°,∴∠ECD =∠BCD ;(2)如解图,连接OC 、BD ,第7题解图∵AC =CD ,∴∠AOC =∠DOC ,∠ABC =∠DBC , 又∵∠E +∠A =∠ABC +∠A =90°, ∴∠E =∠ABC =∠DBC , 在△ECD 和△BCD 中⎩⎨⎧∠E =∠DBC∠ECD =∠BCD CD =CD, ∴△ECD ≌△BCD (AAS), ∴CE = CB .8. 如图,四边形ABCD 内接于⊙O ,且BD 为直径,∠ACB = 45°,过A 点的AC 的垂线交BC 的延长线于点E . (1)求证:BE = DC ; (2)如果AD =2,求图中阴影的面积.第8题图解:(1)∵BD 是⊙O 的直径, ∴∠BAD =90°,∵∠ACB =45°,∴∠ADB =∠ACB = 45°, ∵AE ⊥AC ,∴△ACE 与△ABD 是等腰直角三角形,∴AE = AC ,AB = AD ,∠EAC = ∠BAD = 90°, ∴∠EAB = ∠CAD , 在△ABE 与△ADC 中,⎩⎨⎧AE =AC∠EAB = ∠CAD AB =AD, ∴△ABE ≌△ADC , ∴BE =DC ;第8题解图(2)如解图,连接AO ,则∠AOD = ∠ABD =90°, ∵AD = 2, ∴AO = OD = 1, ∴S 阴影= S 扇形-S △AOD =90 ·π×12360-12×1×1= π4-12. 9. 如图,在△ABC 中,以AC 为直径的⊙O 分别交AB ,BC 于点D ,E ,连接DE ,AD =BD ,∠ADE =120°. (1)证明:△ABC 是等边三角形; (2)若AC =2,求图中阴影部分的面积.第9题图(1)证明:如解图,连接CD , ∵AC 为⊙O 的直径, ∴CD ⊥AB , ∵AD =BD , ∴AC =BC ,∵∠ADE =120°,∴∠ACE =60°, 又∵AC =BC ,∴△ABC 是等边三角形;第9题解图(2)解:∵△ABC 是等边三角形, ∴∠CAB =∠ACB =∠B =60°,∵∠ADE =120°,∴∠BED =∠BDE =∠B =60°, ∴△BDE 是等边三角形, ∴BD =ED , ∵AD =BD ,∴DE =AD = BE =12AB = 12BC ,∴DE ︵=AD ︵,DE 为△ABC 的中位线,E 为BC 的中点, ∴S 弓形DE =S 弓形AD ,∴S 阴影=S △DEB = 12S △BDC ,∵AC =2,∴AD =BD =1,∴DC =3,∴S 阴影=12×12×1×3= 34.10. 如图,在△ABC 中,AB = AC ,以AB 为直径的半圆分别交AC ,BC 边于点D ,E ,连接BD .第10题图(1)求证:点E 是BD ︵的中点;(2)当BC = 12,且AD ∶CD =1∶2,求⊙O 的半径. (1)证明:如解图,连接AE ,DE ,第10题解图∵AB 是直径, ∴AE ⊥BC , ∵AB = AC , ∴BE = EC ,∵∠CDB =90°,DE 是斜边BC 的中线, ∴DE = EB , ∴ED ︵= EB ︵,即点E 是BD ︵的中点; (2)设AD =x ,则CD = 2x , ∴AB =AC =3x ,∵AB 为直径, ∴∠ADB =90°, ∴BD 2= (3x )2-x 2=8x 2, 在Rt △CDB 中, (2x )2+8x 2=122, ∴x =23, ∴OA = 32x =33,即⊙O 的半径是3 3.类型二 与切线有关的证明与计算1. 如图,AB 是⊙O 的切线,B 为切点,圆心O 在AC 上,∠A = 30°,D 为BC ︵的中点.第1题图(1)求证:AB =BC ;(2)试判断四边形BOCD 的形状,并说明理由. 解:(1)∵AB 是⊙O 的切线,∴∠OBA = 90°,∠AOB = 90°-30°= 60°. ∵OB =OC ,∴∠OBC =∠OCB ,∠OCB = ∠A = 30°, ∴AB = BC ;(2)四边形BOCD 为菱形,理由如下:连接OD 交BC 于点M , ∵D 是BC ︵的中点,第1题解图∴OD 垂直平分BC , 在Rt △OMC 中, ∵∠OCM = 30°, ∴OC =2OM =OD , ∴OM =MD ,∴四边形BOCD 为菱形.2. 如图,AB 为⊙O 的直径,C ,D 为⊙O 上两点,∠BAC =∠DAC ,过点C 作直线EF ⊥AD ,交AD 的延长线于点E ,连接BC .(1)求证:EF 是⊙O 的切线;(2)若DE =1,BC =2,求劣弧BC ︵的长l .第2题图(1)证明:如解图,连接OC , ∵OA =OC , ∴∠OAC =∠OCA , ∵∠BAC =∠DAC , ∴∠DAC =∠OCA , ∴AD ∥OC , ∵EF ⊥AD , ∴∠AEC =90°,∴∠OCF =∠AEC =90°, ∴EF 是⊙O 的切线;(2)解:如解图,连接OD ,DC .第2题解图∵∠DAC =12∠DOC ,∠OAC =12∠BOC ,∠DAC =∠OAC , ∴∠DOC =∠BOC , ∴DC =BC =2, 在Rt △EDC 中, ∵ED =1,DC =2, ∴sin ∠ECD =DE DC =12, ∴∠ECD =30°,∴∠OCD =90°-30°=60°, 又∵OC =OD ,∴△DOC 为等边三角形,∴∠BOC =∠COD =60°,OC =2, ∴l =60π×2180=23π. 3. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E 两点,过点D 作DF ⊥AC ,垂足为点F .第3题图(1)求证:DF 是⊙O 的切线; (2)若AE =4,cos A =25,求DF 的长.(1)证明:如解图,连接OD ,第3题解图∵OB =OD , ∴∠ODB =∠B . 又∵AB =AC , ∴∠C =∠B . ∴∠ODB =∠C . ∴OD ∥AC , ∵DF ⊥AC , ∴∠DFC =90°.∴∠ODF =∠DFC =90°, ∵OD 是⊙O 的半径, ∴DF 是⊙O 的切线;(2)解:如解图,过点O 作OG ⊥AC ,垂足为点G . ∴AG =12AE =2.∵cos A =AG OA =25,∴OA =225=5.∴OG =OA 2-AG 2=21.∵∠ODF =∠DFG =∠OGF =90°. ∴四边形OGFD 为矩形, ∴DF =OG =21.4. 如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙O的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=34,求⊙O的半径.第4题图(1)证明:如解图,连接OD,第4题解图∵BC是⊙O的切线,∴OD⊥BC,∴∠ODB=90°,又∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠CAD=∠OAD,∴AD平分∠BAC;(2)解:∵AC=8,tan∠P AC=CDAC=34,∴CD=6,在Rt△ACD中,AD=AC2+CD2=10,如解图,连接DE ,∵AE 为⊙O 的直径, ∴∠ADE = 90°, ∴∠ADE = ∠C , ∵∠CAD =∠OAD , ∴△ACD ∽△ADE , ∴AD AC = AE AD ,即108= AE10, ∴AE =252,∴⊙O 的半径是254.5. 如图,AB 为⊙O 的直径,CB ,CD 分别切⊙O 于点B ,D ,CD 交BA 的延长线于点E ,CO 的延长线交⊙O 于点G ,EF ⊥OG 于点F .(1)求证:∠FEB =∠ECF ; (2)若BC =6,DE =4,求EF 的长.第5题图(1)证明:∵EF ⊥OG ,BC 是⊙O 的切线, ∴∠CBA = ∠EFC =90°,∴∠EOF +∠FEB = 90°,∠BOC +∠BCO =90°, ∵∠EOF = ∠COB , ∴∠FEB = ∠BCO , ∵CB ,CD 是⊙O 的切线, ∴∠ECF = ∠BCO , ∴∠FEB = ∠ECF ;(2)解:如解图,连接OD ,则OD ⊥CE ,第5题解图∵CB,CD为⊙O的切线,BC=6,DE=4,∴CD=BC=6,∴CE=CD+DE=6+4=10,在Rt△CBE中,根据勾股定理得BE=CE2-BC2=102-62=8,设OD=x,则OE=8-x,在Rt△ODE中,根据勾股定理得OE2=OD2+ED2,即(8-x)2=x2+42,解得x=3,则OE=5.在Rt△ODC中,根据勾股定理得OC=CD2+OD2=62+32=35,∵∠EOF=∠COB,∠EFO=∠CBO,∴△EFO∽△CBO,∴EFCB=OEOC,即EF6=535,解得EF=2 5.6. 如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.第6题图 (1)证明:如解图,连接OB,第6题解图∵OB =OC ,∠ACB =30°,∴∠OBC =∠OCB =30°,∵DE ⊥AC ,∴∠DEC =90°,∴∠D =60°,∵CB =BD ,∴BE =BD ,∴△BDE 为等边三角形,∴∠DBE =60°,∴∠EBO =180°-∠DBE -∠OBC =180°-60°-30°=90°,即OB ⊥BE ,又∵OB 为⊙O 的半径,∴BE 是⊙O 的切线;(2)解:∵AC 为⊙O 的直径,∴∠ABC =90°,在Rt △ABC 中,BC =BD =BE =3,∠ACB =30°,∴AB =BC ·tan30°= 3,AC = 2AB =23,∴OA =12AC =3,∴S △ABC =12AB ·BC = 12×3×3=332, ∴S 阴影= S 半圆-S △ABC = 12π×(3)2-332=3π-332. 7. 如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于C ,BE ∥CO .(1)求证:BC 是∠ABE 的平分线;(2)若DC = 8,⊙O 的半径OA =6,求CE 的长.第7题图(1)证明:∵BE ∥CO ,∴∠OCB =∠EBC ,∵OC =OB ,∴∠OCB =∠OBC ,∴∠OBC =∠EBC ,∴BC 是∠ABE 的平分线;(2)解:∵CD 是⊙O 的切线,∴CD ⊥CO ,∴∠DCO =90°,在Rt △DCO 中,有DC 2+CO 2=DO 2,即82+62=DO 2,∴DO =10,∵CO ∥BE ,∴CE DC =BO DO ,即CE 8=610, ∴CE =4.8.8. 如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,BD 是⊙O 的弦,点E 是BC 的中点,连接DE .第8题图(1)求证:DE 是⊙O 的切线;(2)若CD ∶AD =1∶3,BC =2,求线段BD 的长. (1)证明:如解图,连接OD .第8题解图∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠CDB =90°,在Rt △CDB 中,∵点E 是BC 的中点,∴DE 是Rt △CDB 斜边BC 上的中线,∴ED =12BC ,EB =12BC , ∴ED =EB ,∴∠EDB =∠EBD ,∵OD =OB ,∴∠ODB =∠OBD ,∠OBD +∠EBD =∠ODB +∠EDB =∠ABC =90°,∴∠ODE =90°,∴OD ⊥DE ,又∵OD 是⊙O 的半径,∴DE 是⊙O 的切线.(2)解:在Rt △CDB 和在Rt △CBA ,∵∠C=∠C ,∠CDB=∠ABC=90°,∴Rt △CDB ≌Rt △CBA.∴CD :BC= BC :AC ,∵CD :AD=1:3,∴设CD 为x ,则AD =3x ,AC=4x ,∴x :2=2:4x ,解得x 1=1, x 2=-1(舍),∴CD =1,∴BD=222221 3.BC CD -=-=9. 如图,在⊙O 中,AB 为直径,C 为圆上一点且∠P +12∠AOC =90°. (1)求证:P A 是⊙O 的切线;(2)cos B =45,P A =8,求⊙O 的半径.第9题图(1)证明:∵∠B 与∠AOC 所对的弧都为弧AC ,∴∠B =12∠AOC , 又∵∠P +12∠AOC =90°, ∴∠P +∠B =90°.在△ABP 中,∠BAP =180°-90°=90°,∴P A ⊥AB .又∵AB 为⊙O 的直径,∴P A 是⊙O 的切线;(2)解:在Rt △ABP 中,∵cos B =45,P A =8,∴AB PB =45. ∴设AB =4x ,则PB =5x ,根据勾股定理得P A 2+AB 2=PB 2,∴82+(4x )2=(5x )2,化简得:9x 2=64,解得x =83. ∴AB =4×83=323, ∴AO =12AB =12×323=163. ∴⊙O 的半径为163.10. 如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC = BC = DC .(1)若∠CDB =39°,求∠BAD 的度数;(2)求证:∠1=∠2.第10题图(1)解:∵BC =DC ,∴∠CBD =∠CDB = 39°,∵∠BAC =∠CDB = 39°,∠CAD = ∠CBD = 39°,∴∠BAD =∠BAC +∠CAD = 39°+39°= 78°;(2)证明:∵BC = EC ,∴∠CBE =∠CEB ,∵∠CEB =∠2+∠BAE ,∠CBE =∠1+∠CBD ,∴∠2+∠BAE = ∠1+∠CBD ,∵∠BAE =∠CBD ,∴∠1= ∠2.。
2020中考数学 几何综合训练-圆(含答案)一、单选题(共有10道小题)1.在一个圆中,给出下列命题,其中正确的是( )A. 若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B. 若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C. 若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D. 若两条弦平行,则这两条弦之间的距离一定小于圆的半径参考答案:C .2. 如图所示是某公园为迎接“中国——南亚博览会”设置的一休闲区.∠AOB =90°,»AB 的半径OA 长是6米,C 是OA 的中点,点D 在»AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是( )平方米 A.10π⎛⎝ B.π⎛ ⎝C.6π⎛-⎝D.(6π-参考答案:C3.已知⊙O 的半径是6cm ,点O 到同一平面内直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是( )A.相交B.相切C.相离D.无法判断参考答案:A4. 如图,AB 是⊙O 的弦,半径OA=2,∠AOB =120°,则弦AB 的长是( )A. 22B. 32C. 5D. 23参考答案:B5.如图,圆锥体的高h =r =2cm ,则圆锥体的全面积为( )cm 2草坪休闲区DCA OA .43πB .8πC .12πD .(43+4)π参考答案:D6.一个正多边形的每个外角都等于36°,那么它是( )A .正六边形B .正八边形C .正十边形D .正十二边形参考答案:C7.如图,半圆O 的直径AB =10cm ,弦AC =6cm ,AD 平分∠BAC ,则AD 的长为( )A.45cmB.35cmC.55cmD.4cm参考答案连接OD ,OC ,作DE ⊥AB 于E ,OF ⊥AC 于F , ∵∠CAD=∠BAD (角平分线的性质),∴。
∴∠DOB=∠OAC=2∠BAD 。
又∵AO=DO ,∴△AOF ≌△OED (AAS )。
2020中考数学压轴冲刺专题圆的几何证明与计算(含答案)1.如图,已知AB为⊙O的直径,F为⊙O上一点,AC平分∠BAF且交⊙O于点C,过点C作CD⊥AF于点D,延长AB、DC交于点E,连接BC、CF.(1)求证:CD是⊙O的切线;(2)若AD=6,DE=8,求BE的长;(3)求证:AF+2DF=AB.第1题图(1)证明:如解图,连接OC.第1题解图∵AC平分∠BAD,∴∠OAC=∠CAD,又∠OAC=∠OCA,∴∠OCA=∠CAD,∴CO∥AD.又CD⊥AD,∴CD⊥OC,又∵OC是⊙O的半径,∴CD 是⊙O 的切线;(2)解:在Rt △ADE 中,∵AD =6,DE =8,根据勾股定理得:AE =10,∵CO ∥AD ,∴△EOC ∽△EAD ,∴ADOC EA EO =. 设⊙O 的半径为r ,∴OE =10-r . ∴61010r r -=, ∴r =415, ∴BE =10-2r =25; (3)证明:如解图,过点C 作CG ⊥AB 于点G .∵∠OAC =∠CAD ,AD ⊥CD ,∴CG =CD ,在Rt △AGC 和Rt △ADC 中,∵CG =CD ,AC =AC ,∴Rt △AGC ≌Rt △ADC (HL ),∴AG =AD .又∵∠BAC =∠CAD ,∴BC =CF ,在Rt △CGB 和Rt △CDF 中,∵BC =FC ,CG =CD ,∴Rt △CGB ≌Rt △CDF (HL ),∴GB =DF .∵AG +GB =AB ,∴AD +DF =AB ,即AF +2DF =AB .2. 如图,在Rt △ABC 中,∠ACB =90°,以BC 为直径的⊙O 交AB 于点D ,E 是AC 的中点,OE 交CD 于点F .(1)若∠BCD =36°,BC =10,求BD ︵的长;(2)判断直线DE 与⊙O 的位置关系,并说明理由;(3)求证:2CE 2=AB ·EF .第2题图 (1)解:如解图,连接OD ,第2题解图 ∵∠BCD =36°,∴∠BOD =2∠BCD =2×36°=72°,∵BC 是⊙O 的直径,BC =10,∴OB =5,∴l BD ︵=72π×5180=2π;(2)解:DE 是⊙O 的切线;理由如下:∵BC 是⊙O 的直径,∴∠ADC =180°-∠BDC =90°,又∵点E 是线段AC 中点,∴DE =12AC =EC ,在△DOE 与△COE 中,⎩⎪⎨⎪⎧OD =OCOE =OE DE =CE,∴△DOE ≌△COE (SSS).∵∠ACB =90°,∴∠ODE =∠OCE =90°,∵OD 是⊙O 的半径,∴DE 是⊙O 的切线;(3)证明:由(2)知,△DOE ≌△COE ,∴OE 是线段CD 的垂直平分线,∴点F 是线段CD 中点,∵点E 是线段AC 中点,则EF =12AD , ∵∠BAC =∠CAD ,∠ADC =∠ACB ,∴△ACD ∽△ABC ,则AC AB =AD AC ,即AC 2=AB ·AD , 而AC =2CE ,AD =2EF ,∴(2CE )2=AB ·2EF ,即4CE 2=AB ·2EF ,∴2CE 2=AB ·EF .3. 如图,PB 为⊙O 的切线,B 为切点,直线PO 交⊙O 于点E 、F ,过点B 作PO 的垂线BA ,垂足为点D ,交⊙O 于点A ,延长AO 与⊙O 交于点C ,连接BC ,AF .(1)求证:直线P A 为⊙O 的切线;(2)求证:EF 2=4OD ·OP ;(3)若BC =6,tan F =12,求AC 的长.第3题图(1)证明:如解图,连接OB ,第3题解图∵PB 是⊙O 的切线,∴∠PBO =90°,∵OA =OB ,BA ⊥PO 于点D ,∴AD =BD ,∴点D 为AB 的中点,即OP 垂直平分AB ,∴∠APO =∠BPO ,∵∠ADP =∠BDP =90°,∴△APD ≌△BPD ,∴AP =BP ,在△P AO 和△PBO 中,⎩⎪⎨⎪⎧P A =PB ∠APO =∠BPO OP =OP,∴△P AO ≌△PBO (SAS ),∴∠P AO =∠PBO =90°,∵OA 为⊙O 的半径,∴直线P A 为⊙O 的切线;(2)证明:∵∠P AO =∠PDA =90°,∴∠OAD +∠AOD =90°,∠OP A +∠AOP =90°,∴∠OAD =∠OP A ,∴△OAD ∽△OP A ,∴OA OP =OD OA,即OA 2=OD ·OP , 又∵EF =2OA ,∴EF 2=4OD ·OP ;(3)解:∵OA =OC ,AD =BD ,BC =6,∴OD =12BC =3, 设AD =x ,∴tan F =AD DF =x DF =12, ∴DF =2x ,∴OA =OF =2x -3,在Rt △AOD 中,由勾股定理得(2x-3)2=x2+32,解得x1=4或x2=0(不合题意,舍去),∴OA=2x-3=5,∵AC为⊙O的直径,∴AC=2OA=10.4.如图,AB是⊙O的直径,点C是⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交直径AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠PCB=34,BE=52,求PF的长.第4题图(1)证明:如解图,连接OC,第4题解图∵OA=OC,∴∠OAC=∠OCA,∵PC是⊙O的切线,且AD⊥CD,∴∠OCP=∠D=90°,∴OC∥AD,∴∠CAD=∠OCA=∠OAC,即AC平分∠DAB;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠PCB+∠ACD=90°,又∵∠CAD+∠ACD=90°,∴∠CAB=∠CAD=∠PCB.∵CE 平分∠ACB ,∴∠ACE =∠BCE ,∵∠PFC =∠CAB +∠ACE ,∠PCF =∠PCB +∠BCE , ∴∠PFC =∠PCF ,∴PC =PF ;(3)解:如解图,连接AE ,∵∠ACE =∠BCE ,∴AE ︵=BE ︵,∴AE =BE , 又∵AB 是直径,∴∠AEB =90°,AB =2BE =10,∴OB =OC =5,∵∠PCB =∠P AC ,∠P =∠P ,∴△PCB ∽△P AC ,∴PB PC =BC CA , ∵tan ∠PCB =tan ∠CAB =34,∴PB PC =BC CA =34, 设PB =3x ,则PC =4x ,在Rt △POC 中,根据勾股定理得,(3x +5)2=(4x )2+52,解得x 1=0,x 2=307. ∵x >0,∴x =307,∴PF =PC =1207. 5. 如图,AB 是⊙O 的直径,C 、G 是⊙O 上两点,且点C 是劣弧»AG 的中点,过点C 的直线CD ⊥BG 的延长线于点D ,交BA 的延长线于点E ,连接BC ,交OD 于点F .(1)求证:CD 是⊙O 的切线;(2)若ED =3DB ,求证:3OF =2DF ;(3)在(2)的条件下,连接AD ,若CD =3,求AD 的长.第5题图(1)证明:如解图①,连接OC 、AC 、CG ,∵AC ︵=CG ︵,∴AC =CG , ∴∠ABC =∠CBG ,∵OC =OB ,∴∠OCB =∠OBC , ∴∠OCB =∠CBG ,∴OC ∥BG ,∵CD ⊥BG ,∴OC ⊥CD ,∵OC是⊙O的半径,∴CD是⊙O的切线;第5题解图○1(2)证明:∵O C∥BD,∠CFO=∠DFB,∴∠OCB=∠CBD,∠EOC=∠EBD,∴△OCF ∽△DBF,△EOC ∽△EBD,∴OCBD=OFDF,OCBD=OEBE,∴OFDF=OEBE,∵ED=3DB,∠EDB=90°,∴∠E=30°,∴OC=12OE,∵OA=OC,∴AE=OA=OC=OB,∴OFDF=OEBE=2OA3OA=23,即3OF=2DF;(3)解:如解图②,过A作AH⊥DE,交DE于点H,∵∠E =30°,∴∠EBD =60°,∵∠ABC =∠CBD ,∴∠CBD =12∠EBD =30°, ∵CD=3,∴BD =CD tan30°=33, ∴BE =33sin30°=63,DE =3BD =9, ∵AE =13BE ,AH ∥BD , ∴AH =13BD =3,DH =23DE =6, ∴AD =(3)2+62=39.第5题解图○26. 如图,在Rt △ABC 中,∠ACB =90°,AO 是△ABC 的角平分线.以O 为圆心,OC 长为半径作⊙O ,连接AO 交⊙O 于点E ,延长AO 交⊙O 于点D.(1)求证:AB 是⊙O 的切线;(2)若tan D =12,求AE AC的值; (3)设⊙O 的半径为3,求AB 的长.第6题图(1)证明:如解图,过O作OF⊥AB交AB于F,∵∠ACB=90°,∴AC⊥BC,∵AO是△ABC的角平分线,OF⊥AB,∴CO=FO,∴FO为⊙O的半径,∴AB是⊙O的切线;第6题解图(2)解:如解图,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∴∠ACE=∠OCD,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴AEAC=CEDC,∵tan D=CECD=12,∴AEAC=12;(3)解:由(2)知AEAC=12,设AE=c,则AC=2c,在Rt△ACO中,∴(2c)2+32=(c+3)2,解得c=2或c=0(舍去),∴AF=AC=2c=4,∵在△BFO和△BCA中,∠B=∠B,∠BFO=∠BCA=90°,∴△BFO∽△BCA,∴BFBC=FOCA=BOAB,设BF=x,BO=y,∴x3+y=34=y4+x,解得x=727,y=757,∴AB=AF+BF=4+727=1007.7.如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD,CD.过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.第7题图(1)证明:∵圆心O在BC上,∴BC是⊙O的直径,∴∠BAC=90°.如解图,连接OD.第7题解图∵AD平分∠BAC,∴∠BAC=2∠DAC.∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°.即OD⊥BC.∵PD∥BC,∴OD⊥PD.又OD是⊙O的半径,∴PD是⊙O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC.又∠ABC=∠ADC,∴∠P=∠ADC.∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD.∴△PBD∽△DCA;(3)解:∵△ABC是直角三角形,∴BC2=AB2+AC2=62+82=100.∴BC=10.∵OD垂直平分BC,∴DB=DC.∵BC是⊙O的直径,∴∠BDC=90°.在等腰直角三角形BDC中.DC=DB=5 2.∵△PBD∽△DCA,∴PBDC=BDCA,即PB=DC·BDCA=52×528=254.8.如图,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点D,连接OE,AC,且∠P=∠E,∠POE=2∠CAB.(1)求证:CE⊥AB;(2)求证:PC是⊙O的切线;(3)若BD=2OD,且PB=9,求tan P的值.第8题图(1)证明:如解图,连接OC,第8题解图∴∠COB=2∠CAB,又∵∠POE=2∠CAB,∴∠COD=∠EOD,又∵OC=OE,∴CE⊥AB;(2)证明:∵CE⊥AB,∠P=∠E,∴∠P+∠PCD=∠E+∠PCD=90°,又∠OCD=∠E,∴∠OCD+∠PCD=∠PCO=90°,∵OC是⊙O的半径,∴PC是⊙O的切线;(3)解:设⊙O的半径为r,OD=x,则BD=2x,r=3x,∵CD⊥OP,OC⊥PC,∴Rt△OCD∽Rt△OPC,∴OC2=OD·OP,即(3x)2=x(3x+9),解得x=32或x=0(舍去),∴⊙O的半径r为9 2,同理可得PC2=PD·PO=(PB+BD) ·(PB+OB)=162,∴PC=92,在Rt△OCP中,tan P=OCPC=24.9.如图,AC是⊙O的直径,弦BE⊥AC于H,F为⊙O上的一点,过点F的直线与AC的延长线交于点D,与BE的延长线交于点M,连接AF交BM于G,且MF=MG.(1)求证:MD为⊙O的切线;(2)求证:当MD∥AB时,FG2=MF·EG;(3)在(2)的条件下,若cos M=45,FD=6,求AG的长.第9题图(1)证明:∵MF=MG,∴∠MFG=∠MGF=∠AGB,如解图,连接FO,∵OF=AO,∴∠OF A=∠OAF,∵BE⊥AC,∴∠AGH+∠OAF=∠MFG+∠OF A=90°,即∠MFO=90°,∵OF为⊙O的半径,∴MD为⊙O的切线;(2) 证明:∵MD∥AB,∴∠M=∠ABM,如解图,连接EF,∵∠EFG=∠ABM,∴∠M=∠EFG,∵∠MGF=∠FGE,∴△MGF∽△FGE,∴FGMG=EGFG,又∵MG=MF,∴FG2=MF·EG;第9题解图(3)∵∠M=∠ABM,cos M=45,∴设AH=3k,AB=5k,HB=4k,如解图,连接OB,∵∠FOD=∠M,FD=6,∴FO=8=OB=OA,∴OH=8-3k,∴OH 2+HB 2=OB2,∴(4k)2+(8-3k)2=82,解得k=4825或k=0(舍去),∵MD∥AB,∴∠MFG=∠BAF,∴∠BGA=∠BAG,∴AB=GB=5k,∴GH=k,∴AG=10k,∴AG=48 2510.10.如图①,AB是⊙O的直径,C是圆上一点,∠BAC的平分线交⊙O于点D,过D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=10,AC=6,求BD的长;(3)如图②,若F是OA的中点,FG⊥OA交直线DE于点G,若FG=194,tan∠BAD=34,求⊙O的半径.图①图②第10题图(1)证明:如解图①,连接OD,第10题解图①∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAE,∴∠ODA=∠DAE,∴OD∥AE,∴∠ODE+∠AED=180°,∵∠AED=90°,∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如解图①,连接BC,交OD于点N,∵AB是⊙O的直径,∴∠BCA=90°,∵OD∥AE,O是AB的中点,∴ON∥AC,且ON=12AC,∴∠ONB=90°,且ON=3,OB=5,则BN=4,ND=2,∴BD=42+22=25;(3)解:如解图②,设FG与AD交于点H,第10题解图②根据题意,设AB=5x,AD=4x,则AF=54x,FH=AF·tan∠BAD=54x·34=1516x,AH=AFcos∠BAD=54x45=2516x,HD=AD-AH=4x-2516x=3916x,由(1)可知,∠HDG+∠ODA=90°,在Rt△HF A中,∠F AH+∠FHA=90°,∵∠OAD=∠ODA,∠FHA=∠DHG,∴∠DHG=∠HDG,∴GH=GD,过点G作GM⊥HD,交HD于点M,∴MH=MD,∴HM=12HD=12×3916x=3932x,∵∠F AH+∠AHF=90°,∠MHG+∠HGM=90°,∴∠F AH=∠HGM,在Rt △HGM 中,HG =HM sin ∠HGM =3932x 35=6532x , ∵FH +GH =194, ∴1516x +6532x =194, 解得x =85, ∴此⊙O 的半径为52×85=4.。
2020中考数学临考大专题复习:圆(含答案)一、选择题(本大题共8道小题)1. 如图,AB为☉O的切线.切点为A,连接AO,BO,BO与☉O交于点C,延长BO与☉O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°2. 如图,AB,AC分别是☉O的直径和弦,OD⊥AC于点D,连接BD,BC,若AB=10,AC=8,则BD的长为()A.2√5B.4C.2√13D.4.83. 下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为 ()A.1B.2C.3D.4⏜=CB⏜.若∠C=110°,4. 如图,四边形ABCD是半圆的内接四边形,AB是直径,DC则∠ABC的度数等于()A.55°B.60°C.65°D.70°5. 如图,☉O的直径AB垂直于弦CD.垂足是点E,∠CAO=22.5°,OC=6,则CD的长为()A.6√2B.3√2C.6D.126. 如图,已知AB是☉O的直径,点P在BA的延长线上,PD与☉O相切于点D,过点B作PD的垂线交PD的延长线于点C.若☉O的半径为4,BC=6,则P A的长为()A.4B.2√3C.3D.2.57. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是()A.AB,AC边上的中线的交点B.AB,AC边上的垂直平分线的交点C.AB,AC边上的高所在直线的交点D.∠BAC与∠ABC的角平分线的交点8. 如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=22,BD=3,则AB的长为()A. 2B. 3C. 4D. 5二、填空题(本大题共5道小题)9. 如图所示,AB是☉O的直径,弦CD⊥AB于H,∠A=30°,CD=2√3,则☉O的半径是.10. 如图所示,AB为☉O的直径,点C在☉O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.11. 如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧,交AB于点A,C,交OB于点D,若OA=3,则阴影部分的面积为.12. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE,若∠ABC=64°,则∠BAE的度数为.⏜上.若13. 如图,☉O分别切∠BAC的两边AB,AC于点E,F,点P在优弧EDF∠BAC=66°,则∠EPF等于度.三、解答题(本大题共4道小题)14. 如图,四边形ABCD是正方形,以边AB为直径作☉O,点E在BC边上,连接AE交☉O于点F,连接BF并延长交CD于点G.(1)求证:△ABE≌△BCG.⏜的长.(结果保留π)(2)若∠AEB=55°,OA=3,求BF15. 如图,AB是☉O的直径,点C,D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.(1)求证:CE为☉O的切线.(2)判断四边形AOCD是否为菱形?并说明理由.16. 如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中两对相似三角形,并证明其中的一对;(2)请连接FG,如果α=45°,AB=42,AF=3,求FG的长.17. 如图,过☉O外一点P作☉O的切线P A,切☉O于点A,连接PO并延长,与☉O交于C,D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC,CM.(1)求证:CM2=MN·MA;(2)若∠P=30°,PC=2,求CM的长.2020中考数学 临考大专题复习:圆-答案一、选择题(本大题共8道小题)1. 【答案】D [解析]∵AB 为☉O 的切线,∴∠OAB=90°. ∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°.∵OA=OD ,∴∠ADC=∠OAD ,∵∠AOB=∠ADC +∠OAD ,∴∠ADC=12∠AOB=27°,故选D .2. 【答案】C[解析]∵AB 是直径,∴∠C=90°,∴BC=√AB 2-AC 2=6.∵OD ⊥AC ,∴CD=AD=12AC=4, ∴BD=√BC 2+CD 2=2√13,故选C .3. 【答案】C4. 【答案】A[解析]连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∠DAB=180°-∠C=70°.∵DC ⏜=CB ⏜,∴∠CAB=12∠DAB=35°.∵AB 是直径,∴∠ACB=90°, ∴∠ABC=90°-∠CAB=55°,故选A .5. 【答案】A[解析]∵∠A=22.5°,∴∠COE=45°,∵☉O 的直径AB 垂直于弦CD , ∴∠CEO=90°,CE=DE. ∵∠COE=45°, ∴CE=OE=√22OC=3√2, ∴CD=2CE=6√2,故选A .6. 【答案】A[解析]如图,连接OD.∵PC切☉O于点D,∴OD⊥PC.∵☉O的半径为4,∴PO=P A+4,PB=P A+8.∵OD⊥PC,BC⊥PD,∴OD∥BC,∴△POD∽△PBC,∴ODBC =POPB,即46=PA+4PA+8,解得P A=4.故选A.7. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B.8. 【答案】B【解析】由垂径定理可得DH=2,所以BH=BD2-DH2=1,又可得△DHB∽△ADB,所以有BD2=BH·BA,(3)2=1×BA,AB=3.二、填空题(本大题共5道小题)9. 【答案】2[解析]连接OC,则OA=OC,∴∠A=∠ACO=30°,∴∠COH=60°.∵OB⊥CD,CD=2√3,∴CH=√3,∴OH=1,∴OC=2.10. 【答案】20[解析]如图,连接DO,∵CO⊥AB,∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB,∴∠BAD=20°.11. 【答案】34π[解析]连接OC,过点C作CN⊥AO于点N,CM⊥OB于点M,∵∠AOB=90°,∠B=30°,∴∠A=60°,∵OA=OC,∴△AOC为等边三角形,∵OA=3,∴CN=32√3,CM=ON=32,∴S扇形AOC =32π,S△AOC=94√3,在Rt △AOB 中,OB=√3OA=3√3,S △OCB =94√3,∠COD=30°,S 扇形COD =34π,∴S 阴影=S 扇形AOC -S △AOC +S △OCB -S 扇形COD =34π.12. 【答案】52°[解析]∵圆内接四边形对角互补,∴∠B +∠D=180°,∵∠B=64°,∴∠D=116°.∵点D 关于AC 的对称点是点E ,∴∠D=∠AEC=116°. ∵∠AEC=∠B +∠BAE ,∴∠BAE=52°.13. 【答案】57[解析]连接OE ,OF .∵☉O 分别切∠BAC 的两边AB ,AC 于点E ,F ,∴OF ⊥AC ,OE ⊥AB ,∴∠BAC +∠EOF=180°,∵∠BAC=66°, ∴∠EOF=114°.∵点P 在优弧EDF ⏜上, ∴∠EPF=12∠EOF=57°.故填:57.三、解答题(本大题共4道小题)14. 【答案】解:(1)证明:∵四边形ABCD 是正方形,AB 为☉O 的直径, ∴∠ABE=∠BCG=∠AFB=90°,AB=BC , ∴∠BAF +∠ABF=90°,∠ABF +∠EBF=90°, ∴∠EBF=∠BAF , 在△ABE 与△BCG 中,{∠BAF =∠EBF ,AB =BC ,∠ABE =∠BCG ,∴△ABE ≌△BCG (ASA). (2)连接OF ,∵∠ABE=∠AFB=90°,∠AEB=55°, ∴∠BAE=90°-55°=35°, ∴∠BOF=2∠BAE=70°. ∵OA=3, ∴BF⏜的长=70×π×3180=7π6.15. 【答案】解:(1)证明:如图,连接OD ,∵点C ,D 为半圆O 的三等分点, ∴∠AOD=∠COD=∠COB=60°. ∵OA=OD ,∴△AOD 为等边三角形, ∴∠DAO=60°, ∴AE ∥OC. ∵CE ⊥AD , ∴CE ⊥OC , ∴CE 为☉O 的切线. (2)四边形AOCD 为菱形. 理由:∵OD=OC ,∠COD=60°, ∴△OCD 为等边三角形, ∴CD=CO. 同理:AD=AO. ∵AO=CO ,∴AD=AO=CO=DC , ∴四边形AOCD 为菱形.16. 【答案】解:(1)△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM 等.(写出两对即可)以下证明△AMF ∽△BGM.由题知∠A =∠B =∠DME =α,而∠AFM =∠DME +∠E ,∠BMG =∠A +∠E ,∴∠AFM =∠BMG ,∴△AMF ∽△BGM. (2)当α=45°时,可得AC ⊥BC 且AC =BC ,∵M 为AB 中点, ∴AM =BM =2 2.由△AMF ∽△BGM 得,AF·BG =AM·BM ,∴BG =83.又AC =BC =42cos 45°=4,∴CG =4-83=43,CF =4-3=1,∴FG =(43)2+12=53.17. 【答案】解:(1)证明:∵在☉O 中,点M 是半圆CD 的中点,∴∠CAM=∠DCM , 又∵∠CMA 是△CMN 和△AMC 的公共角, ∴△CMN ∽△AMC ,∴CM AM =MNMC ,∴CM 2=MN ·M A . (2)连接OA ,DM ,∵P A 是☉O 的切线,∴∠P AO=90°, 又∵∠P=30°, ∴OA=12PO=12(PC +CO ). 设☉O 的半径为r ,∵PC=2,∴r=12(2+r ),解得r=2. 又∵CD 是直径,∴∠CMD=90°, ∵点M 是半圆CD 的中点,∴CM=DM , ∴△CMD 是等腰直角三角形, ∴在Rt △CMD 中,由勾股定理得CM 2+DM 2=CD 2,∴2CM 2=(2r )2=16,∴CM 2=8,∴CM=2√2.。
2020届中考数学十大题型专练卷 题型08 与圆有关的证明与计算题 一、单选题 1.如图,AB是Oe的弦,OCAB交Oe于点C,点D是Oe上一点,30ADC,则BOC的度
数为( ).
A.30° B.40° C.50° D.60° 【答案】D 【分析】由垂径定理、等腰三角形的性质和平行线的性质证出∠OAC=∠OCA=∠AOC,得出△OAC是等腰三角形,得出∠BOC=∠AOC=60°即可. 【详解】解:如图,∵30ADC, ∴260AOCADC. ∵AB是Oe的弦,OCAB交Oe于点C, ∴»»ACBC. ∴60AOCBOC. 故选:D.
【点睛】本题考查垂径定理,解题关键证明»»ACBC.
2.如图,AB为Oe的切线,切点为A,连接AOBO、,BO与Oe交于点C,延长BO与Oe交于点D,
连接AD,若36ABOo,则ADC的度数为( )
A.
54
o B.36o C.32o D.27o 【答案】D 【分析】由切线性质得到AOB,再由等腰三角形性质得到OADODA,然后用三角形外角性质得出ADC
【详解】切线性质得到90BAO
o
903654AOBooo ODOAQ OADODA∴ AOBOADODAQ 27ADCADOo 故选D 【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键 3.如图,ABC是Oe的内接三角形,119A,过点C的圆的切线交BO于点P,则P的度数为( )
A.32° B.31° C.29° D.61° 【答案】A 【分析】根据题意连接OC,COP为直角三角形,再根据BC的优弧所对的圆心角等于圆周角的2倍,可计算的COP的度,再根据直角三角形可得P的度数. 【详解】根据题意连接OC.因为119A
所以可得BC所对的大圆心角为2119238BOC 因为BD为直径,所以可得23818058COD 由于COP为直角三角形 所以可得905832P 故选A. 【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍. 4.如图,一条公路的转弯处是一段圆弧,点O是这段弧所在圆的圆心,40ABm,点C是
¶
AB的中点,
且10CDm,则这段弯路所在圆的半径为( )
A.25m B.24m C.30m D.60m 【答案】A 【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值. 【详解】解:OCABQ, 20ADDBm,
在RtAOD中,222OAODAD, 设半径为r得:2221020rr, 解得:25rm, 这段弯路的半径为25m
故选:A. 【点睛】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OB的长度. 5.如图,点C为扇形OAB的半径OB上一点,将OAC沿AC折叠,点O恰好落在
»
AB上的点D处,且
¼¼:1:3BDAD(¼BD表示»BD的长),若将此扇形OAB围成一个圆锥,则圆锥的底面半径与母线长的比
为( )
A.1:3 B.1: C.1:4 D.2:9 【答案】D 【分析】连接OD,求出∠AOB,利用弧长公式和圆的周长公式求解即可. 【详解】解:连接OD交AC于M. 由折叠的知识可得:12OMOA,90OMA, 30OAM,
60AOM,
Q且¼¼:1:3BDAD,
80AOB 设圆锥的底面半径为r,母线长为l, 802180lr,
:2:9rl.
故选:D. 【点睛】本题考查的是扇形,熟练掌握圆锥的弧长公式和圆的周长公式是解题的关键. 6.如图,边长为23的等边ABC的内切圆的半径为( )
A.1 B.3
C.2 D.23
【答案】A 【分析】连接AO、CO,CO的延长线交AB于H,如图,利用内心的性质得CH平分∠BCA,AO平分∠BAC,
再根据等边三角形的性质得∠CAB=60°,CH⊥AB,则∠OAH=30°,AH=BH=1 2 AB=3,然后利用正切的定
义计算出OH即可. 【详解】设ABC的内心为O,连接AO、BO,CO的延长线交AB于H,如图, ∵ABC为等边三角形, ∴CH平分BCA,AO平分BAC,∵ABC为等边三角形, ∴60CAB,CHAB,
∴30OAH,132AHBHAB, 在RtAOH中,∵OHtantan30AHOAH, ∴3313OH, 即ABC内切圆的半径为1. 故选A.
【点睛】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等边三角形的性质. 7.如图,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,以AB的中点为圆心,OA的长为半径作半圆交
AC于点D,则图中阴影部分的面积为( )
A.
5342 B.53
42
C.23 D.432
【答案】A 【分析】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,利用∠A的正切值求出∠A=30°,继而可求得OH、AH长,根据圆周角定理可求得∠BOC =60°,然后根据S阴影
=S△ABC-S△AOD-S
扇形BOD进行计算即可.
【详解】连接OD,过点O作OH⊥AC,垂足为 H, 则有AD=2AH,∠AHO=90°,
在Rt△ABC中,∠ABC=90°,AB=23,BC=2,tan∠A=23323BCAB, ∴∠A=30°, ∴OH=12OA=32,AH=AO•cos∠A=33322,∠BOC=2∠A=60°, ∴AD=2AH=3, ∴S阴影=S△ABC-S△AOD-S扇形BOD=26031132323222360=5342, 故选A.
【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键. 8.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则
阴影部分(即四边形AEOF)的面积是( )
A.4 B.6.25 C.7.5 D.9 【答案】A 【分析】先利用勾股定理判断△ABC为直角三角形,且∠BAC=90°,继而证明四边形AEOF为正方形,设⊙O的半径为r,利用面积法求出r的值即可求得答案. 【详解】∵AB=5,BC=13,CA=12, ∴AB2+AC2=BC2, ∴△ABC为直角三角形,且∠BAC=90°, ∵⊙O为△ABC内切圆, ∴∠AFO=∠AEO=90°,且AE=AF, ∴四边形AEOF为正方形, 设⊙O的半径为r, ∴OE=OF=r, ∴S四边形AEOF=r², 连接AO,BO,CO, ∴S△ABC=S△AOB+S△AOC+S△BOC,
∴11()22ABACBCrABAC, ∴r=2, ∴S四边形AEOF=r²=4, 故选A. 【点睛】本题考查了三角形的内切圆,勾股定理的逆定理,正方形判定与性质,面积法等,正确把握相关知识是解题的关键. 9.如图,AB是Oe的直径,C,D是Oe上的两点,且BC平分ABD,AD分别与BC,OC相交
于点E,F,则下列结论不一定成立的是( )
A.
OCBDP
B.ADOC C.CEFBED D.AFFD
【答案】C 【分析】由圆周角定理和角平分线得出90ADB,OBCDBC,由等腰三角形的性质得出OCBOBC,得出DBCOCB,证出OCBDP,选项A成立;由平行线的性质得出ADOC,
选项B成立;由垂径定理得出AFFD,选项D成立;CEF和BED中,没有相等的边,CEF与BED不全等,选项C不成立,即可得出答案. 【详解】∵AB是Oe的直径,BC平分ABD, ∴90ADB,OBCDBC, ∴ADBD, ∵OBOC, ∴OCBOBC, ∴DBCOCB, ∴OCBDP,选项A成立; ∴ADOC,选项B成立; ∴AFFD,选项D成立; ∵CEF和BED中,没有相等的边, ∴CEF与BED不全等,选项C不成立, 故选C.