人教a版数学【选修1-1】作业:第二章《圆锥曲线与方程》章末总结(含答案)
- 格式:pdf
- 大小:793.03 KB
- 文档页数:5
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们的横坐标之和等于5,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在【解析】 由定义,知|AB |=5+2=7,因为|AB |min =4,所以这样的直线有且仅有两条.【答案】 B2.过点(1,0)作斜率为-2的直线,与抛物线y 2=8x 交于A ,B 两点,则弦AB 的长为( )A .213B .215C .217D .219【解析】 设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2),由直线AB 斜率为-2,且过点(1,0)得直线AB 的方程为y =-2(x -1),代入抛物线方程y 2=8x 得4(x -1)2=8x ,整理得x 2-4x +1=0,则x 1+x 2=4,x 1x 2=1,|AB |=5(x 1+x 2)2-4x 1x 2=516-4=215.故选B.【答案】 B3.(2014·全国卷Ⅰ)已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .1B .2C .4D .8 【解析】 由y 2=x 得2p =1,即p =12,因此焦点F ⎝ ⎛⎭⎪⎫14,0,准线方程为l :x =-14,设A 点到准线的距离为d ,由抛物线的定义可知d=|AF |,从而x 0+14=54x 0,解得x 0=1,故选A.【答案】 A4.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2【解析】 设A (x 1,y 1),B (x 2,y 2),由A ,B 两点在抛物线上,得y 21=2px 1,①y 22=2px 2,②由①-②,得(y 1-y 2)(y 1+y 2)=2p (x 1-x 2).又线段AB 的中点的纵坐标为2,即y 1+y 2=4,直线AB 的斜率为1,故2p =4,p =2,因此抛物线的准线方程为x =-p 2=-1.【答案】 B5.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若O A →·A F →=-4,则点A 的坐标为( ) 【导学号:26160061】A .(2,±22)B .(1,±2)C .(1,2)D .(2,22)【解析】 设A (x ,y ),则y 2=4x ,①O A →=(x ,y ),A F →=(1-x ,-y ),O A →·A F →=x -x 2-y 2=-4,② 由①②可解得x =1,y =±2.【答案】 B二、填空题6.抛物线y 2=4x 上的点到直线x -y +4=0的最小距离为________.【解析】 可判断直线y =x +4与抛物线y 2=4x 相离,设y =x +m 与抛物线y 2=4x 相切,则由⎩⎪⎨⎪⎧y =x +m ,y 2=4x ,消去x 得y 2-4y +4m =0. ∴Δ=16-16m =0,m =1.又y =x +4与y =x +1的距离d =|4-1|2=322, 则所求的最小距离为322. 【答案】 3227.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 21的最小值是________.【解析】 设AB 的方程为x =my +4,代入y 2=4x 得y 2-4my -16=0,则y 1+y 2=4m ,y 1y 2=-16,∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16m 2+32,当m =0时,y 21+y 22最小为32.【答案】 328.过抛物线y 2=2x 的焦点F 作直线交抛物线于A ,B 两点,若|AB |=2512,|AF |<|BF |,则|AF |=________.【解析】 设过抛物线焦点的直线为y =k ⎝⎛⎭⎪⎫x -12,联立得⎩⎨⎧ y 2=2x ,y =k ⎝ ⎛⎭⎪⎫x -12, 整理得k 2x 2-(k 2+2)x +14k 2=0,x 1+x 2=k 2+2k 2,x 1x 2=14.|AB |=x 1+x 2+1=k 2+2k 2+1=2512,得k 2=24,代入k 2x 2-(k 2+2)x +14k 2=0得12x 2-13x +3=0,解之得x 1=13,x 2=34,又|AF |<|BF |,故|AF |=x 1+12=56.【答案】 56三、解答题9.求过定点P (0,1),且与抛物线y 2=2x 只有一个公共点的直线方程.【解】 如图所示,若直线的斜率不存在,则过点P (0,1)的直线方程为x =0,由⎩⎪⎨⎪⎧ x =0,y 2=2x ,得⎩⎪⎨⎪⎧x =0,y =0, 即直线x =0与抛物线只有一个公共点.若直线的斜率存在,则设直线为y =kx +1,代入y 2=2x 得:k 2x 2+(2k -2)x +1=0,当k =0时,直线方程为y =1,与抛物线只有一个交点.当k ≠0时,Δ=(2k -2)2-4k 2=0⇒k =12.此时,直线方程为y =12x +1.可知,y =1或y =12x +1为所求的直线方程.故所求的直线方程为x =0或y =1或y =12x +1.10.已知抛物线的焦点F 在x 轴上,直线l 过F 且垂直于x 轴,l 与抛物线交于A ,B 两点,O 为坐标原点,若△OAB 的面积等于4,求此抛物线的标准方程.【解】 由题意,抛物线方程为y 2=2px (p ≠0),焦点F ⎝ ⎛⎭⎪⎫p 2,0,直线l :x =p 2, ∴A ,B 两点坐标为⎝ ⎛⎭⎪⎫p 2,p ,⎝ ⎛⎭⎪⎫p 2,-p , ∴|AB |=2|p |.∵△OAB 的面积为4,∴12·⎪⎪⎪⎪⎪⎪p 2·2|p |=4,∴p =±2 2. ∴抛物线方程为y 2=±42x .[能力提升]1.(2014·全国卷Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( )A.303B .6C .12D .7 3【解析】 ∵F 为抛物线C :y 2=3x 的焦点,∴F ⎝ ⎛⎭⎪⎫34,0, ∴AB 的方程为y -0=tan 30°⎝⎛⎭⎪⎫x -34, 即y =33x -34.联立⎩⎨⎧ y 2=3x ,y =33x -34,得13x 2-72x +316=0.∴x 1+x 2=--7213=212,即x A +x B =212.由于|AB |=x A +x B +p ,所以|AB |=212+32=12.【答案】 C2.已知AB 是抛物线y 2=2px (p >0)上的两点,O 为原点,若|OA→|=|OB→|,且抛物线的焦点恰好为△AOB 的垂心,则直线AB 的方程是( )A .x =pB .x =32pC .x =52pD .x =3p【解析】 ∵|OA →|=|O B →|,∴A ,B 关于x 轴对称.设A (x 0,2px 0),B (x 0,-2px 0).∵AF ⊥OB ,F ⎝ ⎛⎭⎪⎫p 2,0, ∴2px 0x 0-p 2·⎝ ⎛⎭⎪⎫-2px 0x 0=-1, ∴x 0=52p .【答案】 C3.(2014·湖南高考)平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________.【解析】 由题意知机器人行进轨迹为以F (1,0)为焦点,x =-1为准线的抛物线,其方程为y 2=4x .设过点(-1,0)且斜率为k 的直线方程为y =k (x +1).代入y 2=4x ,得k 2x 2+(2k 2-4)x +k 2=0.∵机器人接触不到该直线,∴Δ=(2k 2-4)2-4k 4<0,∴k 2>1.∴k >1或k <-1.【答案】 (-∞,-1)∪(1,+∞)4.已知直线l :y =12x +54,抛物线C :y 2=2px (p >0)的顶点关于直线l 的对称点在该抛物线的准线上.(1)求抛物线C 的方程;(2)设A ,B 是抛物线C 上两个动点,过A 作平行于x 轴的直线m ,直线OB 与直线m 交于点N ,若O A →·O B →=0(O 为原点,A ,B 异于原点),试求点N 的轨迹方程. 【导学号:26160062】 【解】 (1)直线l :y =12x +54.①过原点且垂直于l 的直线方程为y =-2x .②由①②,得x =-12.∵抛物线的顶点关于直线l 的对称点在该抛物线的准线上,∴-p 2=-12×2,∴p =2.∴抛物线C 的方程为y 2=4x .(2)设A (x 1,y 1),B (x 2,y 2),N (x ,y ).由O A →·O B →=0,得x 1x 2+y 1y 2=0.又y 21=4x 1,y 22=4x 2,解得y 1y 2=-16.③直线ON :y =y 2x 2x ,即y =4y 2x .④ 由③④及y =y 1,得点N 的轨迹方程为x =-4(y ≠0)......................................使用本文档删除后面的即可致力于打造全网一站式文档服务需求,为大家节约时间文档来源网络仅供参考欢迎您下载可以编辑的word文档谢谢你的下载本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。
选修1-1 第二章《圆锥曲线与方程》§2.1.1 椭圆及其标准方程【知识要点】● 椭圆的定义:到两个定点 F 1、F 2的距离之和等于定长(12FF >)的点的轨迹.● 标准方程:(1)()222210x y a b a b+=>>,22c a b =-,焦点是 F 1(-c ,0),F 2(c ,0);(2)()222210y x a b a b+=>>,22c a b =-,焦点是 F 1(0,-c ),F 2(0,c ).【例题精讲】【例 1】两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点 P 到两焦点的距离之和等于 10,写出椭圆的标准方程.【例 2】已知椭圆的两个焦点坐标分别是(0,-2)和(0,2)且过35,22⎛⎫- ⎪⎝⎭,求椭圆的标准方程.点评:题(1)根据定义求.若将焦点改为(0,-4)、(0,4)其结果如何;题(2)由学生的思考与练习,总结有两种求法:其一由定义求出长轴与短轴长,根据条件写出方程;其二是由已知焦距,求出长轴与短轴的关系,设出椭圆方程,由点在椭圆上的条件,用待定系数的办法得出方程.【例 3】判断下列方程是否表示椭圆,若是,求出 a ,b ,c 的值.【例4】已知ΔABC 的一边BC 的长为6,周长为16,求顶点A 的轨迹方程.【基础达标】1.椭圆221259x y +=上一点 P 到一个焦点的距离为 5,则 P 到另一个焦点的距离为( ) A .5 B .6 C .4 D .102.椭圆2211312x y +=上任一点 P 到两个焦点的距离的和为( ) A .26 B .24 C .2 D .2133.已知 F 1,F 2是椭圆221259x y +=的两个焦点,过 F 1的直线交椭圆于 M ,N 两点,则△MNF 2周长为( )A .10B .16C .20D .324.椭圆的两个焦点分别是F 1(-8,0)和F 2(8,0),且椭圆上一点到两个焦点距离之和为 20,则此椭圆的 标准方程为( )A .2212012x y += B .22140036x y += C .22110036x y += D .22136100x y +=5.椭圆2214x y m +=的焦距是 2,则 m 的值为( ) A .5或 3 B .8 C .5 D .166.椭圆221169x y +=的焦距是 ,焦点坐标为 . 7.焦点为(0,4)和(0,-4),且过点()533,-的椭圆方程是 .1~5 ADCCA【能力提高】8.如果方程 x 2+ky 2=2表示焦点在 y 轴上的椭圆,求实数 k 的取值范围.9.写出适合下列条件的椭圆的标准方程:(1)a=4,b =3,焦点在x 轴; (2)a =5,c =2,焦点在y 轴上.10.求到定点(2,0)与到定直线x =8的距离之比为22的动点的轨迹方程.§2.1.2 椭圆的简单几何性质(一)【知识要点】● 熟练掌握椭圆的范围,对称性,顶点,离心率等简单几何性质. ● 掌握标准方程中a ,b ,c 的几何意义,以及a ,b ,c ,e 的相互关系. ● 理解、掌握坐标法中根据曲线的方程研究曲线的几何性质的一般方法.【例题精讲】【例 1】已知椭圆的中心在坐标原点 O ,焦点在 x 轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,且离心率为22,求椭圆的方程.【例 2】已知 x 轴上的一定点 A (1,0),Q 为椭圆2214x y +=上的动点,求 A Q 中点 M 的轨迹方程.【例 3】椭圆22110036x y +=上有一点 P ,它到椭圆的左焦点 F 1的距离为 8,求△PF 1F 2的面积.【例 4】设P 是椭圆()22211x y a a+=>短轴的一个端点,Q 为椭圆上的一个动点,求PQ 的最大值.【基础达标】1.已知P 是椭圆22110036x y +=上的一点,若P 到椭圆右焦点的距离是345,则P 点到椭圆左焦点的距离是( ) A .165 B .665 C .758D .778 2.若焦点在 x 轴上的椭圆2212x y m+=的离心率为12,则 m =( )A .3B .32 C .83 D .233.已知椭圆的中心在原点,焦点在 x 轴上,且长轴长为 12,离心率为13,则椭圆的方程是( )A .221144128x y += B .2213620x y += C .2213236x y += D .2213632x y += 4.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件()1290PF PF a a a+=+>,则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段 5.若椭圆短轴长等于焦距的3倍,则这个椭圆的离心率为( )A .14 B .22 C .24D .12 6.已知椭圆C 的短轴长为6,焦点F 到长轴的一个端点的距离等于9,则椭圆C 的离心率等于 . 7.离心率12e =,一个焦点是 F (0,-3)的椭圆标准方程为 .1~5 BBDDD【能力提高】8.求过点A(-1,-2)且与椭圆22169x y+=的两个焦点相同的椭圆标准方程.9.已知椭圆的对称轴为坐标轴,离心率23e=,短轴长为85,求椭圆的方程.10.设有一颗卫星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此卫星离地球相距m万千米和43m万千米时,经过地球和卫星的直线与椭圆的长轴夹角分别为2π和3π,求该卫星与地球的最近距离.§2.1.2 椭圆的简单几何性质(二)【知识要点】●掌握椭圆范围、对称性、顶点、离心率、准线方程等几何性质.●能利用椭圆的有关知识解决实际问题,及综合问题.【例题精讲】【例 1】已知椭圆C 的焦点F 1()22,0-和F 2()22,0,长轴长6,设直线y =x +2交椭圆C 于A 、B 两点,求线段AB 的中点坐标.【例 2】椭圆的中心为点E (-1,0),它的一个焦点为F (-3,0),且椭圆的离心率255e =,求这个椭圆的方程.【例 3】已知椭圆2212x y +=的左焦点为F ,O 为坐标原点,求过点O 、F ,并且与直线l :x =-2相切的圆的方程.【例 4】如图,把椭圆2212516x y +=的长轴 AB 分成 8等份,过每个分点作 x 轴的垂线交椭圆的上半部分于 P 1,P 2,P 3,P 4,P 5,P 6,P 7七个点,F 是椭圆的一个焦点,则123++PF P F PF +45++P F P F67+P F P F = .【基础达标】1.椭圆22110036x y +=上的点 P 到它的左焦点的距离是 12,那么点 P 到它的右焦点的距离是( ) A .15 B .12 C .10 D .82.已知椭圆()2221525x y a a +=>的两个焦点为F 1、 F 2,且|F 1F 2|=8,弦 A B 过点 F 1,则△ A BF 2的周长为( )A .10B .20C .241D .4413.椭圆221259x y +=的焦点 F 1、F 2,P 为椭圆上的一点,已知 P F 1⊥PF 2,则△ F 1PF 2的 面积为( ) A .9 B .12 C .10 D .84.椭圆221164x y +=上的点到直线 x +2y 2-=0 的最大距离是( ) A .3 B .11 C .22 D .105.如果椭圆221369x y +=的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A . x -2 y =0 B . x +2 y -4=0 C . 2x +3y -12=0 D . x +2 y -8=06.与椭圆22143x y +=具有相同的离心率且过点(2,3-)的椭圆的标准方程是 . 7.离心率53e =,一个焦点的坐标为5,03⎛⎫- ⎪⎝⎭的椭圆的标准方程是 . F1~5 DDBAD 【能力提高】8.已知椭圆22194x y+=上的点P到其右焦点的距离是长轴两端点到右焦点的距离的等差中项,求P点坐标.9.过椭圆22194x y+=内一点D(1,0)引动弦A B,求弦A B的中点M的轨迹方程.10.椭圆221164x y+=上有两点P、Q,O是原点,若O P、OQ斜率之积为14-.求证22OP OQ+为定值.§2.2.1双曲线及其标准方程【知识要点】●掌握双曲线的定义,熟记双曲线的标准方程;●掌握双曲线标准方程的推导,会求动点轨迹方程;● 会按y 2特定条件求双曲线的标准方程; ● 理解双曲线与椭圆的联系与区别.【例题精讲】【例 1】判断下列方程是否表示双曲线,若是,求出三量 a ,b ,c 的值.【例 2】已知双曲线的焦点在y 轴上,中心在原点,且点()13,42P -、29,54P ⎛⎫⎪⎝⎭在此双曲线上,求双曲线的标准方程.【例 3】点 A 位于双曲线()222210,0x y a b a b-=>>上, F 1,F 2是它的两个焦点,求△AF 1F 2的重心G 的轨迹方程.【例 4】已知三点 P (5,2)、 F 1(-6,0)、 F 2(6,0).(1)求以F 1、F 2为焦点且过点 P 的椭圆的标准方程;(2)设点 P 、F 1、F 2关于直线 y =x 的对称点分别为 P '、F 1'、F 2',求以F 1'、F 2'为焦点且过点P '的双曲线的标准方程.【基础达标】1.双曲线22221124x y m m-=+-的焦距是( ) A .4 B .22 C .8 D .与 m 有关2.椭圆222+134x y n =和双曲线222116x y n -=有相同的焦点,则实数 n 的值是( ) A .±5 B .±3 C .5 D .93.若0k a <<,双曲线22221x y a k b k -=-+与双曲线22221x y a b-=有( ) A .相同的虚轴 B .相同的实轴 C .相同的渐近线 D .相同的焦点4.过双曲线221169x y -=左焦点 F 1的弦 A B 长为 6,则 △ABF 2(F 2为右焦点)的周长是( ) A .28 B .22 C .14 D .125.设F 1,F 2是双曲线2214x y -=的焦点,点 P 在双曲线上,且 ∠F 1PF 2=90°,则点 P 到x 轴的距离为( )A .1B .55C .2D .5 6.到两定点F 1(-3,0)、F 2(3,0)的距离之差的绝对值等于 6的点 M 的轨迹是 .7.方程22+111x y k k=+-表示双曲线,则 k 的取值范围是 .1~5 CBDAB【能力提高】8.求与双曲线221164x y -=有公共焦点,且过点(32,2)的双曲线方程.9.如图,某农场在 P 处有一堆肥,今要把这堆肥料沿道路 P A 或 P B 送到庄稼地 A BCD 中去,已知 P A =100 m ,PB =150m ,∠APB =60°.能否在田地 A BCD 中确定一条界线,使位于界线一侧的点,沿道路 P A 送肥较近;而另一侧的点,沿道路 P B 送肥较近? 如果能,请说出这条界线是一条什么曲线,并求出其方程.10.已知点()3,0A -和()3,0B,动点C 到A 、B 两点的距离之差的绝对值为 2,点 C 的轨迹与直线 y =x -2 交于 D 、E 两点,求线段 D E 的长.§2.2.2 双曲线的简单几何性质(一)【知识要点】● 掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质. ● 掌握等轴双曲线,共轭双曲线等概念.【例题精讲】【例 1】求双曲线2214y x -=的顶点坐标、焦点坐标,实半轴长、虚半轴长和渐近线方程.【例 2】求一条渐近线方程是 3x +4y =0,一个焦点是(4,0)的双曲线标准方程,并求此双曲线的离心率.【例 3】求与双曲线221169x y -=共渐近线且过 A (33,-3)的双曲线的方程.【例 4】已知△ABC 的底边 B C 长为 12,且底边固定,顶点 A 是动点,使sin B -sin C =12sin A ,求点 A 的轨迹.【基础达标】1.下列方程中,以x ±2y =0为渐近线的双曲线方程是( )A .221164x y -= B .221416x y -= C .2212x y -= D .2212y x -= 2.已知双曲线的离心率为 2,焦点是(-4,0),(4,0),则双曲线方程为( )A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -= 3.过点(3,0)的直线 l 与双曲线 4x 2-9y 2=36只有一个公共点,则直线 l 共有( ) A .1条 B .2条 C .3条 D .4条4.方程mx 2+ny 2+mn =0(m <n <0)所表示的曲线的焦点坐标是( )A .()0m n ±-,B .()0n m ±-,C .()0m n ±-,D .()0n m ±-,5.与双曲线221916x y -=有共同的渐近线,且经过点A (-3,23)的双曲线的一个焦点到一条渐近线的距离是( )A.8 B.4 C.2 D.16.双曲线9y2-4x2=36的渐近线方程是.7.经过点M(3,-1),且对称轴在坐标轴上的等轴双曲线的标准方程是.1~5 AACBC【能力提高】8.求一条渐近线方程是3x+4y=0,一个焦点是(5,0)的双曲线标准方程,并求此双曲线的离心率.9.求以椭圆22+16416x y=的顶点为焦点,且一条渐近线的倾斜角为56π的双曲线方程.10.已知双曲线的方程是16x2-9y2=144.(1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设F1和F2是双曲线的左、右焦点,点P在双曲线上,且|PF1|·|PF2|=32,求∠F1PF2的大小.§2.2.2 双曲线的简单几何性质(二)【例题精讲】【例 1】如果双曲线的两个焦点分别为F 1(-3,0)、F 2 (3,0),一条渐近线方程为2y x =,那么它的离心率是( )A .63B .4C .2D .3【例 2】过双曲线221916x y -=的左焦点F 1,作倾斜角为=4πα的直线与双曲线交于两点A 、B ,求AB的长.【例 3】已知动点 P 与双曲线 x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且 c os ∠F 1PF 2的最小值为13-.求动点P 的轨迹方程.【例 4】已知不论 b 取何实数,直线 y =kx +b 与双曲线 x 2-2y 2=1总有公共点,试求实数 k 的取值范围.【基础达标】1.到两定点F 1(-3,0)、F 2 (3,0) 的距离之差的绝对值等于 6的点 M 的轨迹( ) A .椭圆 B .线段 C .双曲线 D .两条射线 4.双曲线的两个顶点将焦距三等分,则它的离心率为( ) A .32 B .3 C .43D .3 5.已知 m ,n 为两个不相等的非零实数,则方程mx -y +n =0与 n x 2+my 2=mn 所表示的曲线可能是( )A B C D6.双曲线22197x y -=的右焦点到右顶点的距离为 . 7.与椭圆22+11625x y =有相同的焦点,且离心率为355的双曲线方程为 . 1~5 DDCBC【能力提高】8.设双曲线()222210x y a b a b-=<<的半焦距为c ,直线l 过(a ,0),(0,b )两点,已知原点到直线lyox yox yox yox的距离为34c ,求此双曲线的离心率.9.求过点M (3,-1)且被点M 平分的双曲线2214x y -=的弦所在直线方程.10.设双曲线 C 1的方程为()222210,0x y a b a b-=>>,A 、B 为其左、右两个顶点,P 是双曲线 C 1上的任意一点,引 Q B ⊥PB ,QA ⊥PA ,AQ 与 B Q 交于点 Q ,求 Q 点的轨迹方程.§2.3.1 抛物线及其标准方程【知识要点】● 掌握抛物线的定义.● 标准方程的不同形式及其推导过程.● 熟练画出抛物线的草图,求出抛物线的标准方程、焦点、准线方程.【例题精讲】【例 1】已知抛物线的标准方程是:(1)y 2=12x ,(2)y =12x 2,求它的焦点坐标和准线方程.【例2】求满足下列条件的抛物线的标准方程:(1)焦点坐标是F(-5,0);(2)经过点A(2,-3)【例3】直线y=x-3与抛物线y2=4x交于A,B两点,过A,B两点向抛物线的准线作垂线,垂足分别为P,Q,则梯形A PQB的面积为()A.48 B.56 C.64 D.72【例4】斜率为1的直线经过抛物线y2=4x的焦点,与抛物线相交于两点A、B,求线段A B 的长.【基础达标】1.抛物线y 2=ax (a ≠0)的准线方程是 ( ) A .4a x =-B .4ax = C .4a x =- D .4a x = 2.抛物线的顶点在原点,对称轴为 x 轴,焦点在直线 3x -4y -12=0上,此抛物线的方程是( ) A .y 2=16x B .y 2=12x C .y 2=-16x D .y 2=-12x 3.焦点在直线 3x -4y -12=0上的抛物线标准方程是( ) A .y 2=16x 或 x 2=16y B .y 2=16x 或 x 2=12y C .x 2=-12y 或 y 2=16x D .x 2=16y 或 y 2=-12x4.已知 M (m ,4)是抛物线 x 2=ay 上的点,F 是抛物线的焦点,若|MF |=5,则此抛物线的焦点坐标是( )A .(0,-1)B .(0,1)C .(0,-2)D .(0,2) 5.过抛物线 y 2=4x 的焦点 F 作倾斜角为34π的直线交抛物线于 A 、B 两点,则 A B 的长是( ) A .42 B .4 C .8 D .26.顶点在原点,焦点在 y 轴上,且过点 P (4,2)的抛物线方程是 . 7.平面上的动点P 到点 A (0,-2)的距离比到直线 l :y =4的距离小 2,则动点P 的轨迹方程 是 .1~5 AACBC【能力提高】8.点M 到点(0,8)的距离比它到直线 y =-7的距离大 1,求 M 点的轨迹方程.9.抛物线 y 2=16x 上的一点 P 到 x 轴的距离为 12,焦点为 F ,求|PF |的值.10.抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上有一4米宽6米高的大木箱,问此木排能否安全通过此桥?§2.3.2 抛物线的简单几何性质(一)【知识要点】● 抛物线的范围、对称性、顶点、离心率等几何性质;● 能根据抛物线的几何性质对抛物线方程进行讨论;注意数与形的结合.【例题精讲】【例 1】已知抛物线关于x 轴为对称轴,它的顶点在坐标原点,并且经过点()2,22M -,求它的标准方程.xy O【例2】过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A、B两点,求证:以A B为直径的圆和这抛物线的准线相切.【例3】正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px()0p>上,求这个正三角形的边长.【例4】抛物线x2=4y的焦点为F,过点(0,-1)作直线L交抛物线A、B两点,再以A F、BF为邻边作平行四边形F ARB,试求动点R的轨迹方程.【基础达标】1.过抛物线 y 2=4x 的焦点作直线交抛物线于()11,A x y ,()22,B x y 两点,如果126x x +=,那么|AB | =( )A .10B .8C .6D .42.顶点在原点,焦点在 y 轴上,且过点 P (4,2)的抛物线方程是( ) A .x 2=8y B .x 2=4y C .x 2=2y D .x 2=12y 3.已知 M 为抛物线y 2=4x 上一动点,F 为抛物线的焦点,定点 P (3,1),则MP MF +的最小值为( )A .3B .4C .5D .64.已知抛物线 y 2=-12x 上一点 P (x 0,y 0)到焦点的距离为 8,则 x 0的值为( ) A .-5 B .5 C .-4 D .45.抛物线 y 2=8x 上一点 P 到顶点的距离等于它们到准线的距离,这点坐标是( ) A .()2,4 B .()2,4± C .()1,22 D .()1,22± 6.抛物线 2y 2+5x =0 的准线方程是 .7.过抛物线焦点 F 的直线与抛物线交于 A 、B 两点,若 A 、B 在准线上的射影是 A 2,B 2,则∠A 2FB 2等于 .1~5 BABAD【能力提高】8.抛物线顶点在原点,它的准线经过双曲线22221x y a b-=的一个焦点,并且这条准线与双曲线的实轴垂直,又抛物线与双曲线交于点362⎛⎫ ⎪⎝⎭,,求二者的方程.9.顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为15,求抛物线的方程.p>的焦点F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准10.设抛物线y2=2px()0线上,且B C∥轴.证明:直线AC经过原点O.§2.3.2 抛物线的简单几何性质(二)【例题精讲】【例1】过抛物线y2=2x的顶点作互相垂直的二弦O A、OB.(1)求A B中点的轨迹方程.(2)证明:AB与x轴的交点为定点.【例2】已知点 A (2,8),B (x 1,y 1),C (x 2,y 2)在抛物线 y 2=2px 上,△ABC 的重心与此抛 物线的焦点 F 重合.(1)写出该抛物线的方程和焦点F 的坐标; (2)求线段BC 中点 M 的坐标; (3)求 B C 所在直线的方程.【例 3】抛物线 y =-x 2上的点到直线 4x +3y -8=0距离的最小值是( )A .43 B .75 C .85D .3【基础达标】1.已知抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线 3x -4y -12=0时,则此抛物线的方 程是( )A .y 2=16xB .x 2=-12yC .y 2=8x 或x 2=-6yD . y 2=16x 或x 2=-12y 2.抛物线的顶点在原点,对称轴是x 轴,点()5,25-到焦点距离是6,则抛物线的方程为( ) A .y 2=-4x B 、y 2=-2x C 、 y 2=2x D 、 y 2=-4x 或x 2=-36y 3.在抛物线 y =x 2上有三点 A 、B 、C ,其横坐标分别为-1,2,3,在y 轴上有一点D 的纵坐标为 6,那么以 A 、B 、C 、D 为顶点的四边形是( )A .正方形B .平行四边形C .菱形D .任意四边形4.抛物线 y 2=4x 的焦点F ,准线为l ,交 x 轴于 R ,过抛物线上一点 P (4,4)作 P Q ⊥ l 于Q ,则梯形 PFRQ 的面积是( )A .12B .14C .16D .18 5.抛物线 y 2=-4x 关于直线 x +y =2对称的曲线的顶点坐标为( )A .(2,2)B .(0,0)C .(-2,-2)D .(2,0) 6.若动点M (x ,y )到点F (4,0)的距离比它到直线x +5=0的距离小1,则M 点的轨迹方程 是 .7.抛物线y 2=4x 的弦AB 垂直于x 轴,若AB 的长为43,则焦点到AB 的距离为 .1~5 DABBA【能力提高】8.经过抛物线 y 2=-8x 的焦点且和抛物线的对称轴成 60°角的直线与抛物线交 A 、B 两点,求|AB |.9.求过A(-1,1),且与抛物线y=x2+2有一个公共点的直线方程.10.已知抛物线C:y=x2+4x+72,过C上一点M,且与M处的切线垂直的直线称为C在点M的法线.若C在点M的法线的斜率为12-,求点M的坐标(x0,y0).第二章圆锥曲线复习(一)【知识要点】●椭圆定义,椭圆的标准方程,椭圆的性质.●双曲线的定义,双曲线的标准方程及特点,双曲线的几何性质.●抛物线定义,抛物线的几何性质.【例题精讲】【例1】椭圆的中心在原点,焦点在x轴上,一个焦点与短轴两端点的连线互相垂直,且这个焦点到长轴上较近顶点的距离是105-,求椭圆方程.【例 2】已知双曲线2214x y -=和定点12,2P ⎛⎫ ⎪⎝⎭. (Ⅰ)过 P 点可以做几条直线与双曲线 C 只有一个公共点;(Ⅱ)双曲线C 的弦中,以 P 点为中点的弦 P 1P 2是否存在? 并说明理由.【例 3】已知点 A (0,2)及椭圆22+14x y =,在椭圆上求一点 P 使PA 的值最大.【例 4】己知点P 在抛物线 x 2=y 上运动,Q 点的坐标是(-1,2),O 是原点,OPQR (O 、P 、Q 、R顺序按逆时针)是平行四边形,求 R 点的轨迹方程.【基础达标】1.平面上到定点 A (1,1)和到定直线 l :x +2 y =5距离相等的点的轨迹为( )A.直线B.抛物线C.双曲线D.椭圆2.若椭圆2kx2+ky2=1 的一个焦点坐标是(0,4),则k的值为()A.18B.132C.2D.3163.椭圆22+1259x y=上的点M到焦点F1的距离是2,N是M F1的中点,则ON为()A.4 B.2 C.8 D.3 24.如果双曲线的实半轴长为2,焦距为6,那么该双曲线的离心率为()A.32B.62C.32D.25.椭圆22+1259x y=的两焦点F1,F2,过F2引直线L交椭圆于A、B两点,则△ABF1的周长为()A.5 B.15 C.10 D.206.在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则p的值为.7.若椭圆的两个焦点为F1(-4,0)、F2(4,0),椭圆的弦A B过点F1,且△ABF2的周长为20,那么该椭圆的方程为.1~5 BBACD【能力提高】8.若双曲线的两条渐进线的夹角为60°,求该双曲线的离心率.9.正方形的一条边A B在直线y=x+4上,顶点C、D在抛物线y2=x上,求正方形的边长.10.若椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,求实数a的取值范围.第二章 圆锥曲线复习(二)【例题精讲】【例 1】已知直线 l 交椭圆22+12016x y =于 M 、N 两点,B (0,4)是椭圆的一个顶点,若△BMN 的重心恰是椭圆的右焦点,求直线 l 的方程.【例 2】已知倾斜角为4π的直线 l 被双曲线 x 2-4y 2=60截得的弦长82AB =,求直线l 的方程及以AB 为直径的圆的方程.【例 3】已知直线l :x =-1,点F (1,0),以F 为焦点,l 为准线的椭圆中,短轴一端点为B ,P为FB 的中点.(Ⅰ)求 P 点的轨迹方程,并说明它是什么曲线; (Ⅱ)M (m ,0)为定点,求|PM |的最小值.【例 4】已知两定点A (-2,0),B (1,0),如果动点P 满足2PA PB =,求点P 的轨迹所包围的图形的面积.【基础达标】1.已知 M (-2,0),N (2,0),4P M P N -=,则动点P 的轨迹是( )A .双曲线B .双曲线左支C .一条射线D .双曲线右支2.若圆 x 2+y 2=4上每个点的横坐标不变.纵坐标缩短为原来的13,则所得曲线的方程是( ) A .22+1412x y = B .22+1436x y = C .229+144x y = D .22+1364x y = 3.已知 F 1,F 2是椭圆22+1169x y =的两焦点,过点F 2的直线交椭圆于点A ,B ,若5AB =,则12AF BF -=( )A .3B .8C .13D .164.曲线()()22346225x y x y ---+-=的离心率为( ) A .110 B .12C .2D .无法确定5.抛物线y2=14x 关于直线x-y=0对称的抛物线的焦点坐标是()A.(1,0)B.116⎛⎫⎪⎝⎭,C.(0,1)D.116⎛⎫⎪⎝⎭,6.与椭圆4x2+ 9y2=36有相同的焦点,且过点(-3,2)的椭圆方程为.7.以双曲线22145x y-=的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是.1~5 C CABD 【能力提高】8.设F1,F2为双曲线2214xy-=的两个焦点,点P在双曲线上且满足∠F1PF2=90°,求△F1PF2的面积.9.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,求直线l的斜率的取值范围.10.设椭圆22+162x y=和双曲线2213xy-=的公共焦点为F1,F2,P是两曲线的一个公共点,求cos∠F1PF2的值.。
2.1.2椭圆的简单几何性质(一)课时过关·能力提升基础巩固1.椭圆x 22+y24=1的短轴长为()A.√2B.2C.2√2D.42.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是()A.x 23+y24=1B.x242√3=1C.x 2+y2=1D.x2+y2=13.已知椭圆中心在原点,一个焦点为(−√3,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是( )A.x 24+y2=1B.x2+y24=1C.x 23+y2=1D.x2+y23=1一个焦点为(−√3,0),∴焦点在x轴上,且c=√3.又长轴长是短轴长的2倍,即2a=2×2b,∴a=2b.故选A.4.在一个椭圆中,以焦点F1,F2为直径两端点的圆恰好过椭圆短轴的两个端点,则此椭圆的离心率e等于()A.12B.√22C.√32D.2√55b=c,故a=√2c.所以e=ca =√22.5.椭圆x 225+y29=1与x29-k+y225-k=1(0<k<9)的关系为()A.有相等的长、短轴B.有相等的焦距C.有相同的焦点D.有相等的离心率x2+y2=1中,a=5,b=3,c=4,且焦点在x轴上.在椭圆x2+y2=1中, ∵0<k<9,且25-k>9-k,∴焦点在y轴上,且c=4,∴两个椭圆有相等的焦距.6.已知P是椭圆x 22+y2b2=1(a>b>0)上的一个动点,且点P与椭圆长轴两顶点连线的斜率之积为−1,则椭圆的离心率为()A.√32B.√22C.12D.√33P(x0,y0),则y0x0-a·y0x0+a=−12,化简得x02a2+2y02a2=1.又因为点P在椭圆上,所以x02a2+y02b2=1,所以a2=2b2,故e=√22.7.若焦点在x轴上的椭圆x 22+y2m=1的离心率为12,则m=.x轴上, 所以0<m<2.所以a2=2,b2=m.所以c2=a2-b2=2-m.因为椭圆的离心率为e=12,所以e2=14=c2a2=2-m2,解得m=32.8.若椭圆的中心在原点,其对称轴为坐标轴,长轴长为2√3,离心率为√33,则该椭圆的方程为.,a=√3.又e =√33,∴c =1.∴b2=2,∴椭圆的方程为x 23+y 22=1或y 23+x 22=1.y 22=1或y 23+x 22=19.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交椭圆C 于点D ,且BF ⃗⃗⃗⃗⃗ =2FD ⃗⃗⃗⃗⃗ ,则椭圆C 的离心率为 .x 2a 2+y 2b2=1(a >b >0),则不妨设B (0,b ),F (c ,0). 设D (x 0,y 0),∵BF ⃗⃗⃗⃗⃗ =2FD ⃗⃗⃗⃗⃗ , ∴(c ,-b )=2(x 0-c ,y 0). ∴x 0=3c,y0=−b.代入椭圆方程得9c 24a 2+b24b2=1,∴c 2a2=13,∴e =c a =√33.10.已知A 为y 轴上一点,F 1,F 2是椭圆的两个焦点,△AF 1F 2为等边三角形,且AF 1的中点B 恰好在椭圆上,求此椭圆的离心率.,连接BF 2.∵△AF 1F 2是等边三角形,且B 为线段AF 1的中点,∴AF 1⊥BF 2.又∠BF 2F 1=30°,|F 1F 2|=2c , ∴|BF 1|=c ,|BF 2|=√3c.根据椭圆定义得|BF 1|+|BF 2|=2a , 即c +√3c =2a,∴ca =√3−1. ∴椭圆的离心率e =√3−1.能力提升1.已知椭圆x 2a 2+y 2b2=1(a >b >0)有两个顶点在直线x +2y =2上,则此椭圆的焦点坐标是( )A.(±√3,0)B.(0,±√3)C.(±√5,0)D.(0,±√5)2.椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F,椭圆C 与x 轴正半轴交于点A,与y 轴正半轴交于点B(0,2),且BF⃗⃗⃗⃗⃗ ·BA ⃗⃗⃗⃗⃗ =4√2+4,则椭圆C 的方程为( ) A .x 24+y 22=1B.x 26+y 24=1C .x 28+y 24=1D.x 216+y 28=13.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为( ) A .14B.√55C .1D.√5−2A ,B 为椭圆的左、右顶点,F 1,F 2为椭圆的左、右焦点,所以|AF 1|=a-c ,|F 1F 2|=2c ,|F 1B|=a+c.又因为|AF 1|,|F 1F 2|,|F 1B|成等比数列, 所以(a-c )(a+c )=4c 2,即a 2=5c 2. 所以离心率e =c a =√55,故选B.4.已知椭圆的中心在原点,焦点在x 轴上,离心率为√55,且过点P(−5,4),则椭圆的方程为 .e =c a=√55,∴c 2a 2=a 2-b 2a 2=15,∴5a 2-5b 2=a 2,即4a 2=5b 2.设椭圆的标准方程为x 2a 2+5y 24a 2=1(a >0). ∵椭圆过点P (-5,4),∴25a 2+5×164a 2=1.解得a2=45.∴椭圆方程为x 245+y236=1.y236=1★5.已知椭圆x225+y216=1的左、右焦点分别是F1,F2,弦AB过F1,若△ABF2的面积是5,A,B两点的坐标是(x1,y1),(x2,y2),则|y1-y2|=.,S△ABF2=S△AF1F2+S△BF1F2=c|y1−y2|(A,B在x轴上、下两侧),又S△ABF2=5,∴|y1−y2|=5c=53.6.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是等边三角形,求该椭圆的离心率.x轴上,如图,由AB⊥F1F2,且△ABF2是等边三角形,得出在Rt△AF1F2中,∠AF2F1=30°.令|AF1|=x,则|AF2|=2x,利用勾股定理,求出|F1F2|=√3x=2c.而|AF1|+|AF2|=2a,即可求出离心率e.x轴上,∵AB⊥F1F2,且△ABF2为等边三角形,∴在Rt△AF1F2中,∠AF2F1=30°.令|AF1|=x,则|AF2|=2x.∴|F1F2|=√|AF2|2-|AF1|2=√3x=2c.由椭圆定义,可知|AF1|+|AF2|=2a.∴e=2c2a=√3x3x=√33.★7.设椭圆的中心在原点,焦点在x轴上,离心率e=√32,已知点P(0,32)到这个椭圆上的点的最远距离为√7,求这个椭圆方程.x2a2+y2b2=1(a>b>0),M(x,y)为椭圆上的点,由ca=√32,得a=2b,|PM|2=x2+(y-32)2=−3(y+12)2+4b2+3(−b≤y≤b).若0<b<12,则当y=-b时|PM|2最大,即(b+32)2=7,解得b=√7−32>12,故矛盾.若b≥12,则当y=−12时,4b2+3=7,b2=1,从而a2=4.所求方程为x24+y2=1.。
一、选择题1.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=2.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+=3.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5C .52D .64.已知点()P m n ,是抛物线214y x =-上一动点,则A .4B .5C D .65.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .3⎡⎢⎣B .3⎡⎢⎣C .3⎡⎢⎣D .3⎡⎢⎣ 6.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若1MF =,则E 的离心率为( )A .3B .2C .5D .27.如图,F 是抛物线28x y =的焦点,过F 作直线交抛物线于A 、B 两点,若AOF 与BOF 的面积之比为1:4,则AOB 的面积为( )A .10B .8C .16D .128.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,若双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .231e <<B .23e >C .3e >D .13e <<9.设抛物线2:4(0)C x y p =>的焦点为F ,准线为l ,过点F 的直线交抛物线C 于,M N 两点,交l 于点P ,且PF FM =,则||MN =( )A .2B .83C .5D .16310.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25411.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( )A .)+∞B .)+∞C .(D .(12.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .8二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.过双曲线221x y -=上的任意一点(除顶点外)作圆221x y +=的切线,切点为,A B ,若直线AB 在x 轴、y 轴上的截距分别为,m n ,则2211m n-=___________. 15.已知拋物线()2:20C y px p =>的焦点为F ,O 为坐标原点,C 的准线为l 且与x 轴相交于点B ,A 为C 上的一点,直线AO 与直线l 相交于E 点,若BOE BEF ∠=∠,6AF =,则C 的标准方程为_____________.16.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.17.在双曲线22221x y a b-=上有一点P ,12,F F 分别为该双曲线的左、右焦点,121290,F PF F PF ∠=︒的三条边长成等差数列,则双曲线的离心率是_______.18.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.三、解答题21.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x ya b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点21,A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.22.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点31,2A ⎛⎫⎪⎝⎭,且124AF AF +=. (1)求C 的方程;(2)过点2F 且斜率为1的直线与C 交于点M 、N ,求OMN 的面积.23.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.24.已知椭圆()2222:10x y C a b a b +=>>过点421,3P ⎛⎫ ⎪ ⎪⎝⎭,离心率为53.(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值. 25.已知是抛物线2:2C y px=(0)p >的焦点,(1,)M t 是抛物线上一点,且||2MF =.(1)求抛物线C 的方程;(2)过点O (坐标原点)分别作,OA OB 交抛物线C 于,A B 两点(,A B 不与O 重合),且.2OA OB k k =.求证:直线AB 过定点.26.如图,已知抛物线()2:20C y px p =>,焦点为F ,过点()2,0G p 作直线l 交抛物线C 于A 、B 两点,设()11,A x y 、()22,B x y .(1)若124x x ⋅=,求抛物线C 的方程;(2)若直线l 与x 轴不垂直,直线AF 交抛物线C 于另一点M ,直线BF 交抛物线C 于另一点N .求证:直线l 与直线MN 斜率之比为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果. 【详解】设(,0)F c -,因为直线30x y -+=过(,0)F c -,所以030c --+=,得3c =所以2223a b c -==, 设1122(,),(,)A x y B x y ,由22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+, 因为P 为线段AB 的中点,O 为坐标原点,所以1212(,)22x x y y P ++,1212121212202OP y y y y k x x x x +-+===-++-,所以221222122(2)ABy y b b k x x a a-==-⋅-=-,又,A B在直线0x y -+=上,所以1AB k =,所以2221b a =,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D 【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程; ③作差变形并利用斜率公式和中点坐标公式求解.2.B解析:B 【分析】首先利用点,C D 分别是线段AB 的两个三等分点,则211222x x y y =-⎧⎪⎨=⎪⎩,得1112y k x =⋅,再利用点差法化简得2212214y b x a=,两式化简得到选项.【详解】设()11,A x y ,()22,B x y ,,C D 分别是线段AB 的两个三等分点,()1,0C x ∴-,10,2y D ⎛⎫ ⎪⎝⎭,则112,2y B x ⎛⎫- ⎪⎝⎭ ,得211222x x y y =-⎧⎪⎨=-⎪⎩,1121121131232y y y y k x x x x -===⋅-,利用点差法22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=, 整理得到2212214y b x a =,即222222244b a c k k a a-=⇒=, 即221k e +=故选:B 【点睛】关键点点睛:本题的关键利用三等分点得到211222x x y y =-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.3.C解析:C 【分析】设E是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.4.D解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n +++-++的几何意义,数形结合求最值.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n +++-++几何意义是点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.5.C解析:C【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k-+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以2222))122k k B k C k A D +++=+++,令21k t +=,因为0k ≠,所以1t >,所以22222))122211(21)(1)k k AB t D k k t t t C +++=+=++--++=+=22211212t t t t =+-+-,令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以1AB CD y +=∈⎢⎣, 综上AB CD +的取值范围是3⎡⎢⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.6.A解析:A 【分析】由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则1MF =,1cos aFOM c∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=,则2||MF b ==,OM a ==,1MF =,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.7.A解析:A 【分析】设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,将直线AB 的方程与抛物线的方程联立,列出韦达定理,结合已知条件可得出214x x =-,结合韦达定理求出2k 的值,进而可得出AOB 的面积为1212OAB S OF x x =⋅-△,即可得解. 【详解】易知抛物线28x y =的焦点为()0,2F .若直线AB 与x 轴垂直,此时直线AB 与抛物线28x y =有且只有一个公共点,不合乎题意.设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y , 联立228y kx x y=+⎧⎨=⎩,消去y 并整理得28160x kx --=, 由韦达定理可得128x x k +=,1216x x =-,由于AOF 与BOF 的面积之比为1:4,则4BF FA =,则()()2211,24,2x y x y --=-,所以,214x x =-,则12138x x x k +=-=,可得183k x =-, 2221218256441639k k x x x ⎛⎫=-=-⨯-=-=- ⎪⎝⎭,可得2916k =,所以,OAB 的面积为1211222OAB S OF x x =⋅-=⨯△29646464641016k =+=⨯+=. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.8.B解析:B 【分析】设点()2,0F c ,设点P 在第一象限,设2F 关于直线1PF 的对称点为点M ,推导出12MF F △为等边三角形,可得出tan 30ba >,再由公式21b e a ⎛⎫=+ ⎪⎝⎭可求得该双曲线离心率的取值范围. 【详解】 如下图所示:设点()2,0F c ,设点P 在第一象限,由于2F 关于直线1PF 的对称点在y 轴上,不妨设该点为M ,则点M 在y 轴正半轴上, 由对称性可得21122MF MF F F c ===,22113MO MF OF c =-=,所以,1260MF F ∠=,则1230PF F ∠=,所以,双曲线的渐近线by xa=的倾斜角α满足30α>,则123tan3bPF Fa>∠=,因此,该双曲线的离心率为2222222313c c a b bea a a a+⎛⎫====+>⎪⎝⎭.故选:B.【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a、c的值,根据离心率的定义求解离心率e的值;(2)齐次式法:由已知条件得出关于a、c的齐次方程,然后转化为关于e的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.9.D解析:D【分析】由题意作出MD垂直于准线l,然后得2PM MD=,得30∠=︒DPM,写出直线方程,联立方程组,得关于y的一元二次方程,写出韦达定理,代入焦点弦公式计算.【详解】如图,过点M做MD垂直于准线l,由抛物线定义得MF MD=,因为PF FM=,所以2PM MD=,所以30∠=︒DPM,则直线MN方程为3(1)x y=-,联立23(1)4x yx y⎧=-⎪⎨=⎪⎩,,消去x得,231030y y-+=,设()()1122,,,M x y N x y,所以121210,13y y y y+==,得121016||2233MN y y=++=+=.故选:D.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12||=++AB x x p 或12||=++AB y y p ,若不过焦点,则必须用一般弦长公式.10.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍)当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.11.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e -=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.12.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y , 由题意得22x ty a y px=+⎧⎨=⎩,整理得2220y pty pa --=, 所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.1【分析】设出三点坐标表示出直线利用方程思想得到直线的方程算出可计算得到解【详解】设双曲线上任意一点为过作圆的切线切点为不是双曲线的顶点故切线存在斜率且则故直线化简得:即同理有又均过点有故直线故答案解析:1 【分析】设出,,P A B 三点坐标,表示出直线,PA PB ,利用方程思想,得到直线MN 的方程,算出,m n ,可计算2211m n-得到解.【详解】设双曲线上任意一点为()11,P x y ,()22,A x y ,()33,B x y 过()11,P x y 作圆221x y +=的切线,切点为,A B()11,P x y 不是双曲线的顶点,故切线存在斜率且OA PA ⊥,则221PA OA x k k y =-=-故直线()2222:xPA y y x xy-=--化简得:222222y y y x x x-=-+即2222221x x y y x y+=+=同理有33:1PB x x y y+=又,PA PB均过点()11,P x y,有313131311,1x x y y x x y y+=+=故直线11:1MN x x y y+=1111,m nx y==221222111x xm n-=-=故答案为:115.【分析】推导出求出可得出直线的方程联立直线与抛物线的方程求出点的坐标利用抛物线的定义求出的值即可得出抛物线的标准方程【详解】因为即所以则直线的方程为联立直线与抛物线方程解得所以解得因此抛物线标准方程解析:28y x=【分析】推导出OBE EBF△△,求出tan BOE∠,可得出直线AO的方程,联立直线AO与抛物线C的方程,求出点A的坐标,利用抛物线的定义求出p的值,即可得出抛物线C的标准方程.【详解】因为BOE BEF∠=∠,90OBE EBF∠=∠=,OBE EBF∴△△,OB BEBE BF∴=,即2222p pBE OB BF p=⋅=⨯=,2BE p∴=,所以tan 2BEBOE OB∠==,则直线AO 的方程为2y x =, 联立直线OA 与抛物线方程222y xy px⎧=⎪⎨=⎪⎩ 解得(),2A p p , 所以3622p pAF p =+==,解得4p =, 因此,抛物线标准方程为28y x =. 故答案为:28y x =. 【点睛】方法点睛:求抛物线的标准方程的主要方法是定义法与待定系数法:(1)若题目已给出抛物线的方程(含有未知数p ),那么只需求出p 即可; (2)若题目未给出抛物线的方程:①对于焦点在x 轴上的抛物线的标准方程可统一设为()20y ax a =≠的正负由题设来定;②对于焦点在y 轴上的抛物线的标准方程可统一设为()20x ay a =≠,这样就减少了不必要的讨论.16.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E 解析:175【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =,∴离心率5c e a ==.【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.17.5【分析】首先根据双曲线的定义和等差数列的形式可设的三边长表示为最后根据勾股定理得到根据齐次方程求解离心率【详解】设并且的三边成等差数列最长的边为则三边长表示为又整理为两边同时除以得解得:或(舍)所解析:5 【分析】首先根据双曲线的定义和等差数列的形式,可设12PF F △的三边长表示为24,22,2c a c a c --,最后根据勾股定理得到22650c ac a -+=,根据齐次方程求解离心率. 【详解】设12PF PF >,并且122PF PF a -=,12PF F △的三边成等差数列,最长的边为2c ,则三边长表示为24,22,2c a c a c --, 又1290F PF ∠=,()()22224224c a c a c ∴-+-=,整理为22650c ac a -+=,两边同时除以2a 得,2650e e -+=,解得:5e =或1e =(舍),所以双曲线的离心率是5. 故答案为:5 【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.18.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化 解析:82-【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan bb BAO CFO ac ∠=∠=,根据离心率可求出22b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFO a c BDC BAO CFO b bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅ 因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有22b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:825-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫-- ⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--, 由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =,∴e =【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.三、解答题21.(1)2212x y +=;(2.【分析】(1)根据椭圆离心率为2,以及椭圆经过点2A ⎛⎫ ⎪ ⎪⎝⎭,结合椭圆的性质列方程求解即可;(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可得结论. 【详解】(1)由题意知222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩ ∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫-⎪--⎝⎭,所以PQ =====为定值. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(1)22143xy +=;(2. 【分析】(1)利用椭圆的定义可求出a 的值,将点A 的坐标代入椭圆C 的方程,求出2b 的值,进而可得出椭圆C 的方程;(2)设点()11,M x y 、()22,N x y ,写出直线MN 的方程,联立直线MN 与椭圆C 的方程,列出韦达定理,利用三角形的面积公式结合韦达定理可求得OMN 的面积. 【详解】(1)由椭圆的定义可得1224AF AF a +==,可得2a =,椭圆C 的方程为22214x y b+=, 将点A 的坐标代入椭圆C 的方程可得291414b +=,解得23b =,因此,椭圆C 的方程为22143x y +=;(2)易知椭圆C 的右焦点为()21,0F ,由于直线MN 的斜率为1,所以,直线MN 的方程为1y x =-,即1x y =+, 设点()11,M x y 、()22,N x y ,联立221143x y x y =+⎧⎪⎨+=⎪⎩,消去x 得27690y y +-=,364793680∆=+⨯⨯=⨯>,由韦达定理可得1267y y +=-,1297y y =-,212112277OMNSOF y y =⋅-===⨯=.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.23.(1)24x y =;(2)1y x =+或1y x =-+. 【分析】(1)由1PM y =+,结合两点间的距离公式得出轨迹方程;(2)由题直线l 斜率存在,设出直线l 的方程,联立轨迹C 的方程,由韦达定理以及抛物线的定义求出直线l 的方程. 【详解】(1)动点(),P x y (0y >)到x 轴的距离为y ,到点M 的距离为PM =由动点(),P x y 到定点()0,1M 的距离比到x 轴的距离大1,1y =+,两边平方得:24x y =,所以轨迹C 的方程:24x y =; (2)显然直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为:1y kx =+,由241x y y kx ⎧=⎨=+⎩,消去x 整理得()222410y k y -++=, ∴21224y y k +=+,∴2122428AB y y p k =++=++=, 解得21k =,即1k =±,∴直线l 的方程为1y x =+或1y x =-+. 【点睛】方法点睛:求轨迹方程的常用方法:(1)直接法,(2)定义法,(3)相关点法.24.(1)22194x y +=;(2)最大值为.(1)将1,3P ⎛ ⎝⎭的坐标代入椭圆方程中,再结合3c a =和222a b c =+可求出,a b 的值,进而可求得椭圆的方程;(2)当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,然后利用点到直线的距离公式求出O 到直线y kx m =+的距离d ,利用弦长公式求出MN 的值,从而有12OMN QMN OMQN S S S MN d =+=⨯四边形△△,化简可求得其范围,当MN 斜率不存在时,直接可得OMQN S =四边形 【详解】(1)因为椭圆C过点1,3P ⎛⎫⎪ ⎪⎝⎭,所以2213219a b +=,c a = 又222a b c =+,所以得22194x y +=;(2)(i )当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,设O 到直线y kx m =+的距离记为d,则d =,联立22,1,94y kx n x y =+⎧⎪⎨+=⎪⎩,消去y 得()()2229418940k x knx n +++-=,设()11,M x y ,()22,N x y ,1221894kn x x k +=-+,()21229494n x x k -=+,所以12294MN x k =-=+, 因为y kx n =+与圆O1=,因为y kx m =+与椭圆相切,所以2294k m +=,1122OMN QMNOMQN S S S MN d =+=⨯=四边形△△=== 可得OMQN S 四边形随k的增大而增大,即OMQN S <四边形(ii )当MN斜率不存在时,不妨取1,3M ⎛ ⎝⎭,1,3N ⎛- ⎝⎭,此时()3,0Q ,OMQN S =四边形综上所得四边形OMQN的面积的最大值为【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查计算能力,解题的关键是当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,从而可得2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△,化简可得结果,属于中档题25.(1)24y x =;(2)直线AB 过定点(2,0)-,证明见解析. 【分析】(1)由抛物线的定义求得p ,得抛物线方程;(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y ,直线方程代入抛物线方程,由判别式大于0得参数满足的条件,应用韦达定理得1212,y y y y +,计算由2OA OB k k =可得128y y =,从而求得参数b ,并可得出m 的范围.此时由直线方程可得定点坐标. 【详解】(1)由抛物线定义可知:122p+=,则2p =, 所以抛物线C 的方程为24y x =(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y联立24y x x my b⎧=⎨=+⎩得2440y my b --=,则216160m b ∆=+>即20()m b +>*。
新课程标准数学选修1—1第二章课后习题解答第二章圆锥曲线与方程 2.1椭圆 练习(P36)1、根据椭圆的定义,1220PF PF +=,因为16PF =,所以214PF=. 2、(1)22116x y +=;(2)22116y x +=;(3)2213616x y +=或2213616y x +=. 3、由已知,5,4a b ==,所以3c ==. (1)△1AF B 的周长1212AF AF BF BF =+++. 由椭圆的定义,得122AF AF a +=,122BF BF a += 所以,△1AF B 的周长420a ==.(2)如果AB 不垂直于x 轴,△1AF B 的周长不变化.这是因为①②两式仍然成立,△1AF B 的周长4a =,这是定值. 4、解:设点M 的坐标为(,)x y ,由已知,得直线AM 的斜率1AM yk x =+(1)x ≠-; 直线BM 的斜率1BM y k x =-(1)x ≠; 由题意,得2AMBMk k =,所以211y y x x =⨯+-(1,0)x y ≠±≠ 化简,得3x =-(0)y ≠因此,点M 的轨迹是直线3x =-,并去掉点(3,0)-.练习(P41)1、以点2B (或1B )为圆心,以线段2OA (或1OA 为半径画圆,圆与x 轴的两个交点分别为12,F F . 点12,F F 就是椭圆的两个焦点.这是因为,在22Rt B OF ∆中,2OB b =,22B F OA =所以,2OF c =. 同理有1OF c =.2、(1)焦点坐标为(8,0)-,(8,0); (2)焦点坐标为(0,2),(0,2)-.3、(1)2213632x y +=;(2)2212516y x +=.4、(1)22194x y +=(2)22110064x y +=,或22110064y x +=.5、(1)椭圆22936x y +=的离心率是3,椭圆2211612x y +=的离心率是12,因为132>,所以,椭圆2211612x y +=更圆,椭圆22936x y +=更扁;(2)椭圆22936x y +=的离心率是3,椭圆221610x y +=>221610x y +=更圆,椭圆22936x y +=更扁. 习题2.1 A 组(P42)1、解:由点(,)M x y 10=以及椭圆的定义得,点M 的轨迹是以1(0,3)F -,2(0,3)F 为焦点,长轴长为10的椭圆.它的方程是2212516y x +=. 2、(1)2213632x y +=;(2)221259y x +=;(3)2214940x y +=,或2214940y x +=. 3、(1)不等式22x -≤≤,44y -≤≤表示的区域的公共部分;(2)不等式x -≤≤101033y -≤≤表示的区域的公共部分. 图略.4、(1)长轴长28a =,短轴长24b =,离心率e =焦点坐标分别是(-,,顶点坐标分别为(4,0)-,(4,0),(0,2)-,(0,2);(2)长轴长218a =,短轴长26b =,离心率e =焦点坐标分别是(0,-,,顶点坐标分别为(0,9)-,(0,9),(3,0)-,(3,0).5、(1)22185x y +=;(2)2219x y +=,或221819y x +=;(3)221259x y +=,或221259y x +=. 6、解:由已知,椭圆的焦距122F F =.因为12PF F ∆的面积等于1,所以,12112P F F y ⨯⨯=,解得1P y =.代入椭圆的方程,得21154x +=,解得2x =±所以,点P的坐标是(1)2±±,共有4个. 7、解:如图,连接QA . 由已知,得QA QP =. 所以,QO QA QO QP OP r +=+==. 又因为点A 在圆内,所以OA OP <根据椭圆的定义,点Q 的轨迹是以,O A 为焦点,r 为长轴长的椭圆.8、222213.525 2.875x y +=. 9、地球到太阳的最大距离为81.528810⨯km ,最下距离为81.471210⨯km. 习题2.1 B 组(P78)1、解:设点M 的坐标为(,)x y ,点P 的坐标为00(,)x y ,则0x x =,032y y =. 所以0x x =,023y y =……①. 因为点00(,)P x y 在圆上,所以22004x y +=……②.将①代入②,得点M 的轨迹方程为22449x y +=,即22149x y += 所以,点M 的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解:设d 是点M 到直线8x =的距离,根据题意,所求轨迹就是集合12MF P M d ⎧⎫==⎨⎬⎩⎭(第7题)(第4题)12= 将上式两边平方,并化简,得223448x y +=,即2211612x y +=所以,点M 的轨迹是长轴、短轴长分别为8,.3、解:如图,以O 为原点,HF 所在直线为x 轴,EG 所在直线为y 轴建立坐标系.由已知,得(0,3)E -,(4,0)F ,(0,3)G ,(4,0)H -.因为,,R S T 是线段OF 的四等分点,,,R S T '''是线段CF 的四等分点, 所以,(1,0),(2,0),(3,0)R S T ;933(4,),(4,),(4,)424R S T '''.直线ER 的方程是33y x =-;直线GR '的方程是3316y x =-+. 联立这两个方程,解得3245,1717x y ==.所以,点L 的坐标是3245(,)1717.同样,点M 的坐标是169(,)55,点N 的坐标是9621(,)2525.由作图可见,可以设椭圆的方程为22221x y m n +=(0,0)m n >>……①把点,L M 的坐标代入方程①,并解方程组,得22114m =,22113n =. 所以经过点,L M 的椭圆方程为221169x y +=. 把点N 的坐标代入22169x y +,得22196121()()11625925⨯+⨯=,所以,点N 在221169x y +=上. 因此,点,,L M N 都在椭圆221169x y +=上.。
新编人教版精品教学资料回扣验收特训(二) 圆锥曲线与方程1.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线互相垂直,则该双曲线的离心率是( )A .2B . 3C . 2D .32解析:选C 由题可知y =b a x 与y =-b a x 互相垂直,可得-b a ·b a=-1,则a =b .由离心率的计算公式,可得e 2=c 2a 2=a 2+b 2a 2=2,e =2. 2.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x解析:选B 由题可知抛物线的焦点坐标为⎝⎛⎭⎫a 4,0,于是过焦点且斜率为2的直线的方程为y =2⎝⎛⎭⎫x -a 4,令x =0,可得点A 的坐标为⎝⎛⎭⎫0,-a 2,所以S △OAF =12×|a |4×|a |2=4,得a =±8,故抛物线的方程为y 2=±8x .3.已知一动圆P 与圆O :x 2+y 2=1外切,而与圆C :x 2+y 2-6x +8=0内切,则动圆的圆心P 的轨迹是( )A .双曲线的一支B .椭圆C .抛物线D .圆解析:选A 由题意,知圆C 的标准方程为(x -3)2+y 2=1,则圆C 与圆O 相离,设动圆P 的半径为R .∵圆P 与圆O 外切而与圆C 内切,∴R >1,且|PO |=R +1,|PC |=R -1.又|OC |=3,∴|PO |-|PC |=2<|OC |,即点P 在以O ,C 为焦点的双曲线的右支上.4.我们把由半椭圆x 2a 2+y 2b 2=1(x ≥0)与半椭圆y 2b 2+x 2c 2=1(x <0)合成的曲线称作“果圆”(其中a 2=b 2+c 2,a >b >c >0),如图所示,其中点F 0,F 1,F 2是相应椭圆的焦点.若△F 0F 1F 2是边长为1的等边三角形,则a ,b 的值分别为( )A .72,1B .3,1C .5,3D .5,4解析:选A ∵|OF 2|=b 2-c 2=12,|OF 0|=c =3|OF 2|=32,∴b =1,∴a 2=b 2+c 2=1+34=74,得a =72. 5.已知抛物线的方程为y 2=4x ,直线l 的方程为x -y +4=0,在抛物线上有一动点P 到y 轴的距离为d 1,到直线l 的距离为d 2,则d 1+d 2的最小值为( )A .522+2 B .522+1 C .522-2 D .522-1 解析:选D 因为抛物线的方程为y 2=4x ,所以焦点坐标为F (1,0),准线方程为x =-1.因为点P 到y 轴的距离为d 1,所以到准线的距离为d 1+1.又d 1+1=|PF |,所以d 1+d 2=d 1+1+d 2-1=|PF |+d 2-1.焦点F 到直线l 的距离记为d ,则d =|1-0+4|2=52=522,而|PF |+d 2≥d =522,所以d 1+d 2=|PF |+d 2-1≥522-1,即d 1+d 2的最小值为522-1. 6.双曲线与椭圆4x 2+y 2=64有公共焦点,它们的离心率互为倒数,则双曲线方程为( )A .y 2-3x 2=36B .x 2-3y 2=36C .3y 2-x 2=36D .3x 2-y 2=36 解析:选A 由4x 2+y 2=64得x 216+y 264=1, c 2=64-16=48,∴c =43,e =438=32. ∴双曲线中,c ′=43,e ′=23=c ′a ′. ∴a ′=32c ′=6,b ′2=48-36=12. ∴双曲线方程为y 236-x 212=1,即y 2-3x 2=36. 7.已知椭圆x 2a 2+y 2b2=1(a >b >0),其上一点P (3,y )到两焦点的距离分别是6.5和3.5,则该椭圆的标准方程为________.解析:由椭圆的定义,知2a =6.5+3.5=10,a =5.又⎩⎪⎨⎪⎧(3+c )2+y 2=6.52,(3-c )2+y 2=3.52,解得c =52, 从而b 2=a 2-c 2=754, 所以椭圆的标准方程为x 225+4y 275=1. 答案:x 225+4y 275=1 8.已知直线l 与抛物线y 2=4x 交于A ,B 两点,O 为坐标原点,若OA ·OB =-4,则直线l 恒过的定点M 的坐标是________.解析:设A (x 1,y 1),B (x 2,y 2),则x 1x 2+y 1y 2=-4.当直线l 的斜率不存在时,设其方程为x =x 0(x 0>0),则x 20-4x 0=-4,解得x 0=2;当直线l 的斜率存在时,设直线l 的方程为y =kx +b ,由⎩⎪⎨⎪⎧y =kx +b ,y 2=4x ,得ky 2-4y +4b =0,得y 1y 2=4b k ,则x 1x 2=y 21y 2216=b 2k 2,得b 2k 2+4b k =-4,∴b k=-2,有b =-2k ,直线y =kx -2k =k (x -2)恒过定点(2,0).又直线x =2也恒过定点(2,0),得点M 的坐标为(2,0).答案:(2,0)9.已知A (0,-4),B (3,2),抛物线y 2=x 上的点到直线AB 的最短距离为________.解析:直线AB 为2x -y -4=0,设抛物线y 2=x 上的点P (t ,t 2),d =|2t -t 2-4|5=t 2-2t +45=(t -1)2+35≥35=355. 答案:35510.如图,已知椭圆x 2a 2+y 2b2=1(a >b >0)的长、短轴端点分别为A ,B ,F 1,F 2分别是其左、右焦点.从椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且AB 与OM 是共线向量.(1)求椭圆的离心率e ;(2)设Q 是椭圆上异于左、右顶点的任意一点,求∠F 1QF 2的取值范围.解:(1)∵F 1(-c,0),则x M =-c ,y M =b 2a, ∴k OM =-b 2ac .由题意,知k AB =-b a, ∵OM 与AB 是共线向量,∴-b 2ac =-b a ,∴b =c ,得e =22. (2)设|F 1Q |=r 1,|F 2Q |=r 2,∠F 1QF 2=θ,∴r 1+r 2=2a .又|F 1F 2|=2c ,由余弦定理,得cos θ=r 21+r 22-4c 22r 1r 2=(r 1+r 2)2-2r 1r 2-4c 22r 1r 2=a 2r 1r 2-1≥a 2⎝ ⎛⎭⎪⎫r 1+r 222-1=0, 当且仅当r 1=r 2时等号成立,∴cos θ≥0,∴θ∈⎝⎛⎦⎤0,π2.11.如图,焦距为2的椭圆E 的两个顶点分别为A ,B ,且AB 与n =(2,-1)共线.(1)求椭圆E 的标准方程;(2)若直线y =kx +m 与椭圆E 有两个不同的交点P 和Q ,且原点O 总在以PQ 为直径的圆的内部,求实数m 的取值范围.解:(1)因为2c =2,所以c =1,又AB =(-a ,b ),且AB ∥n ,所以2b =a ,所以2b 2=b 2+1,所以b 2=1,a 2=2,所以椭圆E 的标准方程为x 22+y 2=1. (2)设P (x 1,y 1),Q (x 2,y 2),把直线方程y =kx +m 代入椭圆方程x 22+y 2=1, 消去y ,得(2k 2+1)x 2+4kmx +2m 2-2=0,所以x 1+x 2=-4km2k 2+1,x 1x 2=2m 2-22k 2+1, Δ=16k 2-8m 2+8>0,即m 2<2k 2+1,(*)因为原点O 总在以PQ 为直径的圆的内部,所以OP ·OQ <0,即x 1x 2+y 1y 2<0,又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=m 2-2k 22k 2+1, 由2m 2-22k 2+1+m 2-2k 22k 2+1<0得m 2<23k 2+23, 依题意且满足(*)得m 2<23, 故实数m 的取值范围是⎝⎛⎭⎫-63,63. 12.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A ,B .已知点A 的坐标为(-a,0),点Q (0,y 0)在线段AB 的垂直平分线上,且OA ·OB =4,求y 0的值. 解:(1)由e =c a =32,得3a 2=4c 2. 再由c 2=a 2-b 2,得a =2b .由题意可知12×2a ×2b =4,即ab =2. 解方程组⎩⎪⎨⎪⎧a =2b ,ab =2,得a =2,b =1. 所以椭圆的方程为x 24+y 2=1. (2)由(1)可知A (-2,0).设B 点的坐标为(x 1,y 1),直线l 的斜率为k ,则直线l 的方程为y =k (x +2).联立方程组⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1消去y 并整理,得 (1+4k 2)x 2+16k 2x +(16k 2-4)=0.由-2x 1=16k 2-41+4k 2,得x 1=2-8k 21+4k 2. 从而y 1=4k 1+4k 2. 设线段AB 的中点为M ,则M 的坐标为⎝ ⎛⎭⎪⎫-8k 21+4k 2,2k 1+4k 2. 以下分两种情况:①当k =0时,点B 的坐标为(2,0),线段AB 的垂直平分线为y 轴,于是OA =(-2,-y 0),OB =(2,-y 0).由OA ·OB =4,得y 0=±22. ②当k ≠0时,线段AB 的垂直平分线方程为y -2k 1+4k 2=-1k ⎝ ⎛⎭⎪⎫x +8k 21+4k 2. 令x =0,解得y 0=-6k 1+4k 2. 由OA =(-2,-y 0),OB =(x 1,y 1-y 0). OA ·OB =-2x 1-y 0(y 1-y 0)=-2×(2-8k 2)1+4k 2+6k 1+4k 2⎝ ⎛⎭⎪⎫4k 1+4k 2+6k 1+4k 2 =4×(16k 4+15k 2-1)(1+4k 2)2=4, 整理得7k 2=2,故k =±147.所以y 0=±2145.214综上,y0=±22或y0=±5.。
2 G 圆锥曲线知识点小结圆锥曲线在高考中的地位:圆锥曲线在高考数学中占有十分重要的地位,是高考的重点、热点和难点。
通过以圆锥曲线为载体,与平面向量、导数、数列、不等式、平面几何等知识进行综合,结合数学思想方法,并与高等数学基础知识融为一体,考查学生的数学思维能力及创新能力,其设问形式新颖、有趣、综合性很强。
(1).重视圆锥曲线的标准方程和几何性质与平面向量的巧妙结合。
(2).重视圆锥曲线性质与数列的有机结合。
(3).重视解析几何与立体几何的有机结合。
高考再现:2011年(文22)在平面直角坐标系xOy中,已知椭圆C:+y2= 1.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A、B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=-3于点D(-3,m).(1)求m2+k2的最小值;(2)若∣OG∣=∣OD∣·∣OE∣,①求证:直线l过定点;②试问点B、能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.(理22)已知动直线l与椭圆C:+=1相交于P(x,y),Q(x,112y△2)两个不同点,且OPQ的面积△SOPQ=,其中O为坐标原点.(1)证明:+ 和 + 均为定值;(2)设线段 PQ 的中点为 M ,求∣OM ∣·∣PQ∣的最大值;(3)椭圆 C 上是否存在三点 D,E,G ,使得 △S OD E= △S OD G= S △OEG= ?若存在,判断△DEG 的形状;若不存在,请说明理由.(2009 年山东卷)设 m ∈R,在平面直角坐标系中,已知向量 a =(mx,y+1),向量 b =(x,y-1),a⊥b ,动点 M(x,y)的轨迹为 E.(1)求轨迹 E 的方程,并说明该方程所表示曲线的形状;(2)已知 m=1/4,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨 迹 E 恒有两个交点 A,B,且 OA⊥OB(O 为坐标原点),并求出该圆的方程;(3)已知 m=1/4,设直线 l 与圆 C:x 2+y 2=R 2(1<R<2)相切于 A ,且 l 与轨迹 E 只有1一个公共点 B ,当 R 为何值时,|A B |取得最大值?并求最大值.11 1一.圆锥曲线的定义:椭圆:平面内与两个定点的距离之和等于定长(大于 )的点的轨迹叫做椭圆。
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.双曲线x 225-y 29=1的两个焦点分别是F 1,F 2,双曲线上一点P 到F 1的距离是12,则P 到F 2的距离是( )A .17B .7C .7或17D .2或22【解析】 由双曲线方程x 225-y 29=1得a =5, ∴||PF 1|-|PF 2||=2×5=10. 又∵|PF 1|=12,∴|PF 2|=2或22. 故选D. 【答案】 D2.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( )A .x 2-y 23=1B.x 23-y 2=1 C .y 2-x23=1D.x 22-y 22=1【解析】 由双曲线定义知,2a =(2+2)2+32-(2-2)2+32=5-3=2, ∴a =1.又c =2,∴b 2=c 2-a 2=4-1=3, 因此所求双曲线的标准方程为x 2-y 23=1.【答案】 A3.设动点M 到A (-5,0)的距离与它到B (5,0)的距离的差等于6,则P 点的轨迹方程是( )A.x 29-y 216=1 B.y 29-x 216=1 C.x 29-y 216=1(x <0)D.x 29-y 216=1(x >0)【解析】 由双曲线的定义得,P 点的轨迹是双曲线的一支.由已知得⎩⎪⎨⎪⎧2c =10,2a =6,∴a =3,c =5,b =4.故P 点的轨迹方程为x 29-y 216=1(x>0),因此选D.【答案】 D4.已知双曲线x 26-y 23=1的焦点为F 1,F 2,点M 在双曲线上,且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( )A.365B.566C.65D.56【解析】 不妨设点F 1(-3,0),容易计算得出 |MF 1|=32=62,|MF 2|-|MF 1|=2 6. 解得|MF 2|=52 6.而|F 1F 2|=6,在直角三角形MF 1F 2中, 由12|MF 1|·|F 1F 2|=12|MF 2|·d ,求得F 1到直线F 2M 的距离d 为65.故选C. 【答案】 C5.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是( )A.12 B .1或-2 C .1或12D .1【解析】 由于a >0,0<a 2<4,且4-a 2=a +2,所以可解得a =1,故选D.【答案】 D 二、填空题6.经过点P (-3,27)和Q (-62,-7),且焦点在y 轴上的双曲线的标准方程是________.【导学号:26160046】【解析】 设双曲线的方程为mx 2+ny 2=1(mn <0),则⎩⎪⎨⎪⎧9m +28n =1,72m +49n =1,解得⎩⎪⎨⎪⎧m =-175,n =125,故双曲线的标准方程为y 225-x 275=1.【答案】 y 225-x 275=17.已知方程x 24-t +y 2t -1=1表示的曲线为C .给出以下四个判断:①当1<t <4时,曲线C 表示椭圆;②当t >4或t <1时,曲线C 表示双曲线;③若曲线C 表示焦点在x 轴上的椭圆,则1<t <52;④若曲线C 表示焦点在y 轴上的双曲线,则t >4.其中判断正确的是________(只填正确命题的序号).【解析】 ①错误,当t =52时,曲线C 表示圆;②正确,若C 为双曲线,则(4-t )(t -1)<0,∴t <1或t >4;③正确,若C 为焦点在x 轴上的椭圆,则4-t >t -1>0.∴1<t <52;④正确,若曲线C 为焦点在y 轴上的双曲线,则⎩⎪⎨⎪⎧4-t <0t -1>0,∴t >4.【答案】 ②③④8.已知F 是双曲线x 24-y 212=1的左焦点,点A (1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________.【解析】 设右焦点为F ′,依题意,|PF |=|PF ′|+4,∴|PF |+|P A |=|PF ′|+4+|P A |=|PF ′|+|P A |+4≥|AF ′|+4=5+4=9.【答案】 9 三、解答题9.求以椭圆x 216+y 29=1短轴的两个端点为焦点,且过点A (4,-5)的双曲线的标准方程.【解】 由x 216+y 29=1,得a =4,b =3,所以短轴两端点的坐标为(0,±3),又双曲线过A 点,由双曲线定义得2a =|(4-0)2+(-5-3)2-(4-0)2+(-5+3)2| =25,∴a =5,又c =3, 从而b 2=c 2-a 2=4, 又焦点在y 轴上,所以双曲线的标准方程为y 25-x 24=1.10.已知△ABC 的两个顶点A ,B 分别为椭圆x 2+5y 2=5的左焦点和右焦点,且三个内角A ,B ,C 满足关系式sin B -sin A =12sin C .(1)求线段AB 的长度; (2)求顶点C 的轨迹方程.【解】 (1)将椭圆方程化为标准形式为x 25+y 2=1. ∴a 2=5,b 2=1,c 2=a 2-b 2=4, 则A (-2,0),B (2,0),|AB |=4. (2)∵sin B -sin A =12sin C ,∴由正弦定理得|CA |-|CB |=12|AB |=2<|AB |=4, 即动点C 到两定点A ,B 的距离之差为定值. ∴动点C 的轨迹是双曲线的右支,并且c =2,a =1,∴所求的点C 的轨迹方程为x 2-y23=1(x >1).[能力提升]1.已知F 1,F 2分别为双曲线C :x 2-y 2=1的左、右焦点,点P在C 上,∠F 1PF 2=60°,则|PF 1||PF 2|=( )A .2B .4C .6D .8【解析】 由题意,得||PF 1|-|PF 2||=2,|F 1F 2|=2 2.因为∠F 1PF 2=60°,所以|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos 60°=|F 1F 2|2,所以(|PF 1|-|PF 2|)2+2|PF 1||PF 2|-2|PF 1||PF 2|×12=8,所以|PF 1|·|PF 2|=8-22=4.【答案】 B2.(2016·临沂高二检测)已知双曲线的两个焦点F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( )A.x 29-y 2=1 B .x 2-y29=1C.x 23-y 27=1D.x 27-y 23=1【解析】 由双曲线定义||MF 1|-|MF 2||=2a ,两边平方得:|MF 1|2+|MF 2|2-2|MF 1||MF 2|=4a 2,因为MF 1→·MF 2→=0,故△MF 1F 2为直角三角形,有|MF 1|2+|MF 2|2=(2c )2=40,而|MF 1→|·|MF 2→|=2,∴40-2×2=4a 2,∴a 2=9,∴b 2=1,所以双曲线的方程为x29-y 2=1.【答案】 A3.若F 1,F 2是双曲线8x 2-y 2=8的两焦点,点P 在该双曲线上,且△PF 1F 2是等腰三角形,则△PF 1F 2的周长为________.【解析】 双曲线8x 2-y 2=8可化为标准方程x 2-y28=1,所以a=1,c =3,|F 1F 2|=2c =6.因为点P 在该双曲线上,且△PF 1F 2是等腰三角形,所以|PF 1|=|F 1F 2|=6,或|PF 2|=|F 1F 2|=6,当|PF 1|=6时,根据双曲线的定义有|PF 2|=|PF 1|-2a =6-2=4,所以△PF 1F 2的周长为6+6+4=16;同理当|PF 2|=6时,△PF 1F 2的周长为6+6+8=20.【答案】 16或204.如图2-2-2,已知双曲线中c =2a ,F 1,F 2为左、右焦点,P 是双曲线上的点,∠F 1PF 2=60°,S △F 1PF 2=12 3.求双曲线的标准方程.【导学号:26160047】图2-2-2【解】 由题意可知双曲线的标准方程为x 2a 2-y 2b 2=1. 由于||PF 1|-|PF 2||=2a , 在△F 1PF 2中,由余弦定理得 cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|= (|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|-|F 1F 2|22|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=4(c 2-a 2)=4b 2,所以S △F 1PF 2=12|PF 1|·|PF 2|·sin 60°=2b 2·32=3b 2,从而有3b 2=123,所以b 2=12,c =2a ,结合c 2=a 2+b 2,得a 2=4.所以双曲线的标准方程为x 24-y 212=1......................................使用本文档删除后面的即可致力于打造全网一站式文档服务需求,为大家节约时间文档来源网络仅供参考欢迎您下载可以编辑的word文档谢谢你的下载本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。
2.1.2椭圆的简单几何性质(二)课时过关·能力提升基础巩固1.椭圆x 225+y24=1的两个焦点为F1,F2,过点F2的直线交椭圆于A,B两点.若|AB|=8,则|AF1|+|BF1|的值为()A.10B.12C.16D.18|AB|+|AF1|+|BF1|=4a, ∴|AF1|+|BF1|=4×5-8=12.2.已知直线l:x+y-3=0,椭圆x 24+y2=1,则直线与椭圆的位置关系是() A.相交 B.相切C.相离D.相切或相交y=3-x代入x 24+y2=1,得5x2-24x+32=0.Δ=(-24)2-4×5×32=576-640=-64<0,方程无解.故直线l与椭圆相离.3.直线y=x+1被椭圆x 24+y22=1所截得的弦的中点坐标是()A.(23,53)B.(43,73)C.(-2,1)D.(-13,17)A(x1,y1),B(x2,y2)为直线与椭圆的交点,中点M(x0,y0),由{y=x+1,x24+y22=1,得3x2+4x-2=0.x0=x1+x22=12×(-43)=−23,y0=x0+1=13,故中点坐标为(-23,13).4.直线y=kx-k+1与椭圆x 29+y 24=1的位置关系是( ) A.相交 B.相切 C.相离D.不确定1=k (x-1)+1,所以直线过点(1,1).又因为点(1,1)在椭圆内,所以直线与椭圆相交.5.若点(x ,y )在椭圆4x 2+y 2=4上,则yx -2的最小值为( ) A.1B.-1C.−23√3D.以上都不对6.已知中心在原点,焦点在坐标轴上,焦距为4的椭圆与直线x +√3y +4=0有且仅有一个交点,则椭圆的长轴长为( ) A.3√2或4√2B.2√6或2√7 C.2√5或2√7D.√5或√7mx 2+ny 2=1(m ≠n ,且m ,n>0),与直线方程x +√3y +4=0联立,消去x ,得(3m+n )y 2+8√3my +16m −1=0, 由Δ=0,得3m+n=16mn ,即3n +1m=16.① 又c=2,即1m −1n =±4,② 由①②联立得{m =17,n =13或{m =1,n =15, 故椭圆的长轴长为2√7或2√5.7.若直线y=x+2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是 .{x 2m+y 23=1,y =x +2,得(m+3)x2+4mx+m=0.∵直线与椭圆有两个公共点,∴Δ=(4m)2-4m(m+3)=16m2-4m2-12m=12m2-12m>0,解得m>1或m<0.又m>0,且m≠3,∴m>1,且m≠3.∪(3,+∞)8.若直线3x-y-2=0截焦点为(0,±5√2)的椭圆所得弦中点的横坐标是12,则该椭圆的标准方程是.y2a2+x2b2=1(a>b>0),由{y2a2+x2b2=1,3x-y-2=0,联立得(a2+9b2)x2-12b2x+4b2-a2b2=0,x1+x2=12b2a2+9b2=1,∴a2=3b2.①又由焦点为(0,±5√2)知,a2-b2=50.②由①②,得a2=75,b2=25.故所求椭圆方程为x225+y275=1.y275=19.椭圆ax2+by2=1(a>0,b>0,且a≠b)与直线x+y-1=0相交于A,B两点,C是AB的中点,若|AB|=2√2,直线OC的斜率为√22,求椭圆的方程.,得{ax2+by2=1,x+y=1,则(a+b)x2-2bx+b-1=0.设A(x1,y1),B(x2,y2),则|AB|=√(1+k2)[(x1+x2)2-4x1x2]=√2·√4b2-4(a+b)(b-1)(a+b)2.∵|AB|=2√2,∴√a+b-aba+b=1.①设C(x,y),则x=x1+x22=ba+b,y=1−x=aa+b.∵直线OC 的斜率为√22,∴a b =√22. 代入①得a =13,b =√23. ∴椭圆方程为x 23+√2y 23=1. 10.如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)经过点A(0,−1),且离心率为√22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.c a =√22,b =1,结合a 2=b 2+c 2,解得a =√2. 所以椭圆的方程为x 22+y2=1.,直线PQ 的方程为y=k (x-1)+1(k ≠2),代入x 22+y2=1,得(1+2k 2)x 2-4k (k-1)x+2k (k-2)=0. 由已知Δ>0.设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k2,x1x2=2k (k -2)1+2k2.从而直线AP ,AQ 的斜率之和 k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k+(2-k )(1x 1+1x 2)=2k +(2−k)x 1+x2x 1x 2=2k+(2-k )4k (k -1)2k (k -2)=2k −2(k −1)=2.能力提升1.设P ,Q 分别为圆x 2+(y-6)2=2和椭圆x 210+y2=1上的点,则P,Q 两点间的最大距离是( )A.5√2B.√46+√2C.7+√2D.6√2Q (x ,y ),则该点到圆心的距离d =√(x -0)2+(y -6)2=√x 2+(y -6)2=√10(1-y 2)+(y -6)2=√-9y 2-12y +46,y ∈[-1,1], ∴当y=−-122×(-9)=−23时,d max =√-9×(-23)2-12×(-23)+46=√50=5√2.∴圆上点P 和椭圆上点Q 的距离的最大值为d max +r=5√2+√2=6√2.故选D.2.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是( ) A.x-2y=0 B.x+2y-4=0 C.2x+3y+4=0D.x+2y-8=0l 与椭圆的两交点分别为(x 1,y 1),(x 2,y 2),则有{x 1236+y 129=1, ①x 2236+y 229=1,②①-②,得(x 1+x 2)(x 1-x 2)36+(y 1+y 2)(y 1-y 2)9=0.由x 1+x 2=8,y 1+y 2=4,可得2(x 1-x 2)+4(y 1-y 2)=0,即y 1-y2x 1-x 2=−12.故方程为y-2=−12(x −4), 即x+2y-8=0.3.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为√32,过右焦点F 且斜率为k(k >0)的直线与C 相交于A,B 两点,若AF ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则k 等于( ) A.1 B .√2C .√3D.2C 的离心率为√3,得c =√3a,b2=a 2. ∴椭圆C :x 22+4y 22=1. 设A (x A ,y A ),B (x B ,y B ),F (√32a ,0).∵AF⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ , ∴(√32a -x A ,-y A )=3(x B -√32a ,y B ).∴{√32a -x A =3(x B -√32a),-y A =3y B , 即{x A +3x B =2√3a ,y A +3y B =0.①将点A ,B 的坐标代入椭圆C ,得{x A2a 2+4y A2a 2=1,x B2a 2+4y B 2a2=1,②③③×9-②,得9x B 2-x A2a 2=8,(3x B +x A )(3x B -x A )a 2=8,∴3x B -x A =4√33a.④联立①④,得{x A +3x B =2√3a ,3x B -x A =4√33a , 解得x A =√33a,xB =5√39a. ∴y A =−√66a,yB =√618a. ∴k =y B -y A x B -x A=√618a+√66a 5√39a -√33a=√2.4.若直线ax+by+4=0和圆x 2+y 2=4没有公共点,则过点(a ,b )的直线与椭圆x 29+y 24=1的公共点个数为 .直线ax+by+4=0与圆x 2+y 2=4没有公共点,∴√a 2+b 2>2,∴√a 2+b 2<2.∴点(a ,b )在椭圆内,即过点(a ,b )的直线与椭圆相交,有2个公共点.★5.如图,过点M (-2,0)的直线m 与椭圆x 22+y2=1交于点P1,P2,线段P1P2的中点为P,设直线m 的斜率为k1(k1≠0),直线OP 的斜率为k 2,则k 1k 2的值为 .P 1(x 1,y 1),P 2(x 2,y 2),代入椭圆方程得{x 122+y 12=1,x 222+y 22=1,两式相减并变形整理得y 2-y 1x 2-x 1·y 1+y 2x 1+x 2=−12.设P (x 0,y 0),则y 1+y 2=2y 0,x 1+x 2=2x 0,k 2=y 0x 0,k1=y 2-y 1x 2-x 1,故k 1k 2=−12.16.在平面直角坐标系xOy 中,点P 到两点(0,−√3),(0,√3)的距离之和等于4,设点P 的轨迹为C. (1)写出C 的方程;(2)设直线y=kx+1与C 交于A ,B 两点,则k 为何值时,OA⃗⃗⃗⃗⃗ ⊥OB ⃗⃗⃗⃗⃗ ?此时|AB|的值是多少?设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,−√3),(0,√3)为焦点,长半轴长为2的椭圆.它的焦距为2√3,所以短半轴的平方为1,故曲线C 的方程为x 2+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2), 其坐标满足{x2+y 24=1,y =kx +1.消去y ,并整理得(k 2+4)x 2+2kx-3=0, 故x 1+x 2=−2k k 2+4,x1x2=−3k 2+4.∵OA⃗⃗⃗⃗⃗ ⊥OB ⃗⃗⃗⃗⃗ ,∴x1x2+y1y2=0. ∵y 1y 2=k 2x 1x 2+k (x 1+x 2)+1, ∴x 1x 2+y 1y 2 =−3k 2+4−3k2k 2+4−2k2k 2+4+1=-4k 2+1k 2+4.又x 1x 2+y 1y 2=0, ∴k=±12.当k=±12时,x 1+x 2=∓417,x1x2=−1217. |AB|=√(x 2-x 1)2+(y 2-y 1)2=√(1+k 2)(x 2-x 1)2,而(x 2-x 1)2=(x 2+x 1)2-4x 1x 2=(417)2+4×1217=43×13172,∴|AB|=√54×43×13172=4√6517. ★7.已知椭圆G :x 24+y2=1,过点(m,0)作圆x2+y2=1的切线l 交椭圆G 于A,B 两点. (1)求椭圆G 的焦点坐标和离心率;(2)将|AB|表示为m 的函数,并求|AB|的最大值.由已知得a=2,b=1,所以c =√a 2-b 2=√3.所以椭圆G 的焦点坐标为(−√3,0),(√3,0), 离心率为e =c a =√32. (2)由题意知,|m|≥1.当m=1时,切线l 的方程为x=1, 点A ,B 的坐标分别为(1,√32),(1,-√32).此时|AB|=√3.当m=-1时,同理可得|AB|=√3. 当|m|>1时,设切线l 的方程为y=k (x-m ).由{y =k (x -m ),x 24+y 2=1,得(1+4k 2)x 2-8k 2mx+4k 2m 2-4=0. 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1+x 2=8k 2m 1+4k2,x1x2=4k 2m 2-41+4k2. 又由l 与圆x 2+y 2=1相切,|km |√k +1=1,即m 2k 2=k 2+1.所以|AB|=√1+k 2|x1−x2|=√(1+k 2)[(x 1+x 2)2-4x 1x 2]=√(1+k 2)[64k 4m 2(1+4k 2)2-4(4k 2m 2-4)1+4k 2]=4√3|m |m 2+3.因为当m=±1时,|AB|=√3, 所以|AB|=4√3|m |m 2+3,m ∈(-∞,-1]∪[1,+∞). 因为|AB|=4√3|m |m 2+3=4√3|m |+3|m |≤2,且当m=±√3时,|AB|=2, 所以|AB|的最大值为2.。
第二章 章末检测(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.12C .2D .4 2.设椭圆x 2m 2+y 2n 2=1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为( )A.x 212+y 216=1B.x 216+y 212=1 C.x 248+y 264=1 D.x 264+y 248=1 3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1B.x 29-y 227=1 C.x 2108-y 236=1 D.x 227-y 29=1 4.P 是长轴在x 轴上的椭圆x 2a 2+y 2b 2=1上的点,F 1、F 2分别为椭圆的两个焦点,椭圆的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( )A .1B .a 2C .b 2D .c 25.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1B.y 24-x 24=1 C.y 24-x 28=1 D.x 28-y 24=1 6.设a >1,则双曲线x 2a 2-y 2(a +1)2=1的离心率e 的取值范围是( ) A .(2,2) B .(2,5)C .(2,5)D .(2,5)7.过点M (2,4)作直线与抛物线y 2=8x 只有一个公共点,则这样的直线的条数是( )A .1B .2C .3D .08.设F 为抛物线y 2=4x 的焦距,A 、B 、C 为该抛物线上三点,若F A →+FB →+FC →=0,则FB →|+|FB →|+|FC →|等于( )A .9B .6C .4D .39.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)10.若动圆圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过定点( )A .(4,0)B .(2,0)C .(0,2)D .(0,-2)11.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是( )A.(32,54) B .(1,1) C. (32,94) D .(2,4) 12.已知椭圆x 2sin α-y 2cos α=1 (0≤α<2π)的焦点在y 轴上,则α的取值范围是( )A.(34π,π)B.(π4,π) C.(π ,π) D.(π ,3π)二、填空题(本大题共4小题,每小题5分,共20分) 13.椭圆的两个焦点为F 1、F 2,短轴的一个端点为A ,且三角形F 1AF 2是顶角为120°的等腰三角形,则此椭圆的离心率为________.14.点P (8,1)平分双曲线x 2-4y 2=4的一条弦,则这条弦所在直线的方程是______________.15.设椭圆x 2a 2+y 2b 2=1 (a >b >0)的左、右焦点分别是F 1、F 2,线段F 1F 2被点(b 2,0)分成3∶1的两段,则此椭圆的离心率为________.16.对于曲线C :x 24-k +y 2k -1=1,给出下面四个命题: ①曲线C 不可能表示椭圆;②当1<k <4时,曲线C 表示椭圆;③若曲线C 表示双曲线,则k <1或k >4;④若曲线C 表示焦点在x 轴上的椭圆,则1<k <52. 其中所有正确命题的序号为________.三、解答题(本大题共6小题,共70分)17.(10分)已知点M 在椭圆x 236+y 29=1上,MP ′垂直于椭圆焦点所在的直线,垂足为P ′,并且M 为线段PP ′的中点,求P 点的轨迹方程.18.(12分)双曲线C 与椭圆x 28+y 24=1有相同的焦点,直线y =3x 为C 的一条渐近线.求双曲线C 的方程.19.(12分)直线y =kx -2交抛物线y 2=8x 于A 、B 两点,若线段AB 中点的横坐标等于2,求弦AB 的长.20.(12分)已知点P (3,4)是椭圆x 2a 2+y 2b 2=1 (a >b >0)上的一点,F 1、F 2为椭圆的两焦点,若PF 1⊥PF 2,试求:(1)椭圆的方程;(2)△PF 1F 2的面积.21.(12分)已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A 、B 两点,且|AB |=52p ,求AB 所在的直线方程.22.(12分)在直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4,设点P 的轨迹为C ,直线y =kx +1与C 交于A 、B 两点.(1)写出C 的方程;(2)若OA →⊥OB →,求k 的值.第二章 圆锥曲线与方程(A) 答案1.A [由题意可得21m =2×2,解得m =14.] 2.B [∵y 2=8x 的焦点为(2,0),∴x 2m 2+y 2n2=1的右焦点为(2,0),∴m >n 且c =2. 又e =12=2m,∴m =4. ∵c 2=m 2-n 2=4,∴n 2=12.∴椭圆方程为x 216+y 212=1.] 3.B [抛物线y 2=24x 的准线方程为x =-6,故双曲线中c =6. ①由双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =3x ,知b a=3, ② 且c 2=a 2+b 2.③由①②③解得a 2=9,b 2=27.故双曲线的方程为x 29-y 227=1,故选B.] 4.D [由椭圆的几何性质得|PF 1|∈[a -c ,a +c ],|PF 1|+|PF 2|=2a ,所以|PF 1|·|PF 2|≤⎝⎛⎭⎫|PF 1|+|PF 2|22=a 2,当且仅当|PF 1|=|PF 2|时取等号.|PF 1|·|PF 2|=|PF 1|(2a -|PF 1|)=-|PF 1|2+2a |PF 1|=-(|PF 1|-a )2+a 2≥-c 2+a 2=b 2,所以|PF 1|·|PF 2|的最大值与最小值之差为a 2-b 2=c 2.]5.B [由于双曲线的顶点坐标为(0,2),可知a =2,且双曲线的标准方程为y 24-x 2b2=1. 根据题意2a +2b =2·2c ,即a +b =2c .又a 2+b 2=c 2,且a =2,∴解上述两个方程,得b 2=4.∴符合题意的双曲线方程为y 24-x 24=1.] 6.B [∵双曲线方程为x 2a 2-y 2(a +1)2=1, ∴c = 2a 2+2a +1.∴e =c a = 2+1a 2+2a= ⎝⎛⎭⎫1a +12+1. 又∵a >1,∴0<1a <1.∴1<1a+1<2. ∴1<⎝⎛⎭⎫1+1a 2<4.∴2<e < 5.] 7.B8.B [设A 、B 、C 三点的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),F (1,0), ∵ F A →+FB →+FC →=0,∴x 1+x 2+x 3=3.又由抛物线定义知|F A →|+|FB →|+|FC →|=x 1+1+x 2+1+x 3+1=6.]9.C [如图所示,要使过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率小于等于渐近线的斜率b a ,∴b a ≥3,离心率e 2=c 2a 2=a 2+b 2a 2≥4,∴e ≥2.] 10.B [根据抛物线的定义可得.]11.B [设与直线2x -y =4平行且与抛物线相切的直线为2x -y +c =0 (c ≠-4),2x -y +c =0由y =x 2得x 2-2x -c =0. ①由Δ=4+4c =0得c =-1,代入①式得x =1.∴y =1,∴所求点的坐标为(1,1).]12.D [椭圆方程化为x 21sin α+y 2-1cos α=1. ∵椭圆焦点在y 轴上,∴-1cos α>1sin α>0. 又∵0≤α<2π,∴π2<α<3π4.] 13.32解析 由已知得∠AF 1F 2=30°,故cos 30°=c a ,从而e =32. 14.2x -y -15=0解析 设弦的两个端点分别为A (x 1,y 1),B (x 2,y 2),则x 21-4y 21=4,x 22-4y 22=4,两式相减得(x 1+x 2)(x 1-x 2)-4(y 1+y 2)(y 1-y 2)=0.因为线段AB 的中点为P (8,1),所以x 1+x 2=16,y 1+y 2=2.所以y 1-y 2x 1-x 2=x 1+x 24(y 1+y 2)=2. 所以直线AB 的方程为y -1=2(x -8),代入x 2-4y 2=4满足Δ>0.即2x -y -15=0.15.22解析 由题意,得b 2+c c -b 2=3⇒b 2+c =3c -32b ⇒b =c , 因此e =c a = c 2a 2= c 2b 2+c 2= 12=22. 16.③④解析 ①错误,当k =2时,方程表示椭圆;②错误,因为k =52时,方程表示圆;验证可得③④正确.17.解 设P 点的坐标为(x ,y ),M 点的坐标为(x 0,y 0).∵点M 在椭圆x 236+y 29=1上,∴x 2036+y 209=1. ∵M 是线段PP ′的中点,x 0=x , x 0=x ,∴ y 0=y 2, 把 y 0=y 2, 代入x 2036+y 209=1,得x 236+y 236=1,即x 2+y 2=36. ∴P 点的轨迹方程为x 2+y 2=36.18.解 设双曲线方程为x 2a 2-y 2b2=1. 由椭圆x 28+y 24=1,求得两焦点为(-2,0),(2,0), ∴对于双曲线C :c =2.又y =3x 为双曲线C 的一条渐近线,∴b a=3,解得a 2=1,b 2=3, ∴双曲线C 的方程为x 2-y 23=1. 19.解 将y =kx -2代入y 2=8x 中变形整理得:k 2x 2-(4k +8)x +4=0,由⎩⎪⎨⎪⎧k ≠0(4k +8)2-16k 2>0,得k >-1且k ≠0. 设A (x 1,y 1),B (x 2,y 2),由题意得:x 1+x 2=4k +8k2=4⇒k 2=k +2⇒k 2-k -2=0. 解得:k =2或k =-1(舍去)由弦长公式得:|AB |=1+k 2·64k +64k 2=5×1924=215. 20.解 (1)令F 1(-c,0),F 2(c,0),则b 2=a 2-c 2.因为PF 1⊥PF 2,所以kPF 1·kPF 2=-1,即43+c ·43-c=-1, 解得c =5,所以设椭圆方程为x 2a 2+y 2a 2-25=1. 因为点P (3,4)在椭圆上,所以9a 2+16a 2-25=1. 解得a 2=45或a 2=5.又因为a >c ,所以a 2=5舍去.故所求椭圆方程为x 245+y 220=1. (2)由椭圆定义知|PF 1|+|PF 2|=65, ①又|PF 1|2+|PF 2|2=|F 1F 2|2=100, ②①2-②得2|PF 1|·|PF 2|=80,所以S △PF 1F 2=12|PF 1|·|PF 2|=20. 21.解 焦点F (p 2,0),设A (x 1,y 1),B (x 2,y 2), 若AB ⊥Ox ,则|AB |=2p <52p ,不合题意.所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p 2),k ≠0. 由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px 消去x , 整理得ky 2-2py -kp 2=0.由韦达定理得,y 1+y 2=2p k,y 1y 2=-p 2. ∴|AB |=(x 1-x 2)2+(y 1-y 2)2= (1+1k2)·(y 1-y 2)2 = 1+1k2·(y 1+y 2)2-4y 1y 2 =2p (1+1k 2)=52p . 解得k =±2.∴AB 所在的直线方程为y =2(x -p 2)或y =-2(x -p 2). 22.解 (1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3)、(0,3)为焦点,长半轴为2的椭圆,它的短半轴b =22-(3)2=1,故曲线C 的方程为x 2+y 24=1. (2)设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1. 消去y 并整理得(k 2+4)x 2+2kx -3=0.其中Δ=4k 2+12(k 2+4)>0恒成立.故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4. OA →⊥OB →,即x 1x 2+y 1y 2=0.而y 1y 2=k 2x 1x 2+k (x 1+x 2)+1,于是x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k 2k 2+4+1=0, 化简得-4k 2+1=0,所以k =±12.小课堂:如何培养中学生的自主学习能力? 自主学习是与传统的接受学习相对应的一种现代化学习方式。
2.2双曲线2.2.1双曲线及其标准方程课时过关·能力提升基础巩固1.双曲线x 210−y22=1的焦距为()A.3√2B.4√3C.3√3D.4√2c2=a2+b2=10+2=12,得2c=4√3.2.已知F1(-5,0),F2(5,0)为定点,动点P满足|PF1|-|PF2|=2a,则当a=3和a=5时,点P的轨迹分别为()A.双曲线和一条直线B.双曲线的一支和一条直线C.双曲线和一条射线D.双曲线的一支和一条射线|F1F2|=10,|PF1|-|PF2|=2a,∴当a=3时,2a=6<|F1F2|,此时轨迹为双曲线的一支;当a=5时,2a=10=|F1F2|,此时轨迹为一条射线.3.若双曲线方程为x2-2y2=2,则它的左焦点坐标为()A.(-√22,0)B.(-√52,0)C.(-√62,0)D.(−√3,0)x22−y2=1,∴c2=2+1=3.∴左焦点坐标为(−√3,0).4.若椭圆x24+y2m2=1与双曲线x2m2−y22=1有相同的焦点,则m的值是() A.±1 B.1C.-1D.不存在5.已知双曲线x 225−y 29=1上的一点到一个焦点的距离为12,则到另一个焦点的距离为( )A.22或2B.7C.22D.26.已知△ABP 的顶点A ,B 分别为双曲线C :x 216−y 29=1的左、右焦点,顶点P 在双曲线C 上,则|sinA -sinB |sinP的值等于( ) A .√7B.√74C.54D.45|PB|=m ,|PA|=n ,由正弦定理得|sinA -sinB |sinP=|m -n |2c =810=45.7.若点P 到点(0,-3)与到点(0,3)的距离之差为2,则点P 的轨迹方程为 .,可知点P 的轨迹方程为双曲线的上支,且c=3,2a=2,∴a=1,∴b 2=9-1=8,故点P 的轨迹方程为y 2−x 28=1(y ≥1).2−x28=1(y ≥1)8.设P 为双曲线x 2−y 212=1上的一点,F1,F2是该双曲线的两个焦点,若|PF1|∶|PF2|=3∶2,则△PF 1F 2的面积为 .|PF 1|-|PF 2|=2a=2,且|PF 1|∶|PF 2|=3∶2,∴|PF 1|=6,|PF 2|=4.又|F 1F 2|=2c=2√13, ∴|PF 1|2+|PF 2|2=|F 1F 2|2,∴S △PF 1F 2=12|PF1|·|PF 2|=12×6×4=12.9.根据下列条件,求双曲线的标准方程. (1)经过点P (3,154),Q (-163,5); (2)c =√6,经过点(−5,2),焦点在x 轴上.设双曲线方程为mx 2+ny 2=1(mn<0),∵点P (3,154),Q (-163,5)在双曲线上,∴{ 9m +22516n =1,2569m +25n =1,解得{m =-116,n =19.∴双曲线方程为y 29−x 216=1. (2)∵c =√6,焦点在x 轴上,∴设双曲线方程为x 2a 2−y 26-a 2=1.∵点(-5,2)在双曲线上,∴25a 2−46-a 2=1, ∴a2=5.∴双曲线方程为x 25−y2=1.10.动圆C 与定圆C 1:(x+3)2+y 2=9,C 2:(x-3)2+y 2=1都外切,求动圆圆心C 的轨迹方程.,由题意,得定圆圆心分别为C 1(-3,0),C 2(3,0),半径r 1=3,r 2=1.设动圆圆心为C (x ,y ),半径为r ,则|CC 1|=r+3,|CC 2|=r+1.两式相减,得|CC 1|-|CC 2|=2,∴点C 的轨迹是以C 1,C 2为焦点,实轴长为2的双曲线的右支. ∵a=1,c=3,∴b 2=c 2-a 2=8. ∴方程为x 2−y 28=1(x ≥1).能力提升1.若方程x 2m -1+y 2m 2-4=3表示焦点在y 轴上的双曲线,则m 的取值范围是( ) A.(1,2) B.(2,+∞) C.(-∞,-2) D.(-2,2)2.已知双曲线的两个焦点分别为F 1(−√5,0),F2(√5,0),P 是双曲线上的一点,且PF1⊥PF 2,|PF 1|·|PF 2|=2,则双曲线的标准方程是( ) A .x 22−y 23=1B.x 23−y 22=1C.x 2−y 24=1D.x 24−y2=1|PF 1|=m ,|PF 2|=n ,其中m>0,n>0,在Rt△PF1F2中,m2+n2=(2c)2=20,m·n=2,由双曲线定义,知|m-n|2=m2+n2-2mn=16=4a2.∴a2=4,∴b2=c2-a2=1.∴双曲线的标准方程为x 2−y2=1.3.已知F1,F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则点P到x轴的距离为()A.√32B.√62C.√3D.√6|PF1|=m,|PF2|=n.由方程知c=√2.在△F1PF2中,由余弦定理得4c2=m2+n2-mn.∵|m-n|=2,∴8=(m-n)2+mn=4+mn,∴mn=4.设点P到x轴的距离为h,则12×2c·h=12mnsin 60°,∴h=√62.4.已知点F1,F2分别是双曲线x 2a2−y29=1(a>0)的左、右焦点,P是该双曲线上的一点,且|PF1|=2|PF2|=16,则△PF1F2的周长是.|PF1|=2|PF2|=16,∴|PF1|-|PF2|=16-8=8=2a.∴a=4.又b2=9,∴c2=25.∴2c=10.∴△PF1F2的周长为|PF1|+|PF2|+|F1F2|=16+8+10=34.★5.已知F是双曲线x 24−y212=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为.如图,已知F(-4,0),设F'为双曲线的右焦点,则F'(4,0),点A(1,4)在双曲线的两支之间.由双曲线的定义,得|PF|-|PF'|=2a=4,所以|PF|+|PA|=4+|PF'|+|PA|≥4+|AF'|=4+5=9,当且仅当A,P,F'三点共线时,取等号.6.已知动圆M过定点B(-4,0),且和定圆(x-4)2+y2=16相切,则动圆圆心M的轨迹方程为.M的半径为r,依题意有|MB|=r,另设A(4,0),则有|MA|=r±4,即|MA|-|MB|=±4.亦即动圆圆心M到两定点A,B的距离之差的绝对值等于常数4,又4<|AB|,因此动点M的轨迹为双曲线,且c=4,2a=4,所以a=2,a2=4,b2=c2-a2=12,故轨迹方程是x 24−y212=1.y212=17.已知△ABC一边的两个顶点B(-a,0),C(a,0)(a>0),另两边的斜率之积等于m(m≠0).求顶点A的轨迹方程,并且根据m的取值情况讨论轨迹的图形.A的坐标为(x,y),则k AB=yx+a,kAC=yx-a.由题意,得yx+a·yx-a=m,即x2a2−y2ma2=1(y≠0).当m>0时,轨迹是中心在原点,焦点在x轴上的双曲线(两顶点除外);当m<0,且m≠-1时,轨迹是中心在原点,以坐标轴为对称轴的椭圆(除去与x轴的两个交点),其中当-1<m<0时,椭圆焦点在x轴上;当m<-1时,椭圆焦点在y轴上;当m=-1时,轨迹是圆心在原点,半径为a的圆(除去与x轴的两个交点).★8.某部队进行军事演习,一方指挥中心接到其正西、正东、正北方向三个观测点A,B,C的报告:正西、正北两个观测点同时听到了炮弹的爆炸声,正东观测点听到爆炸声的时间比其他两个观测点晚4 s,已知各观测点到该中心的距离都是1 020 m,试确定该枚炮弹的袭击位置.(声音的传播速度为340 m/s,相关各点均在同一平面内),以指挥中心为原点,正东、正北方向分别为x轴、y轴的正方向建立平面直角坐标系,则A(-1 020,0),B(1 020,0),C(0,1 020).设P(x,y)为炮弹的袭击位置,则|PB|-|PA|=340×4<|AB|,由双曲线定义,知点P在以A,B为焦点的双曲线的左支上,且a=680,c=1 020,所以b2=1 0202-6802=5×3402.所以双曲线方程为x 26802−y25×3402=1(x≤-680).①又|PA|=|PC|,因此点P在直线y=-x上,把y=-x代入①式,得x=-680√5.所以P(-680√5,680√5),|OP|=680√10(m).故该枚炮弹的袭击位置在北偏西45°,距指挥中心680√10 m处.。
作业范围:选修第二章圆锥曲线与方程
姓名学校班级
时间: 分钟分值分
第Ⅰ卷
一、选择题(本题共小题,每小题分,共分,在每小题给出的四个选项中,只有一项是符合题目要求的)
.已知椭圆上一点到椭圆的一个焦点的距离为,到另一个焦点距离为,则(). . . .
】学年陕西延川县中学高二下学期期末数学(理)试卷
【答案】.
考点:椭圆的定义.
【题型】选择题
【难度】较易
.抛物线:的焦点坐标是()
. . . .
】学年陕西延川县中学高二下学期期末数学(理)试卷
【答案】.
【解析】由题意可知,焦点在轴上,且,则焦点坐标是,
故选.
考点:抛物线性质.
【题型】选择题
【难度】较易
.双曲线的渐近线方程和离心率分别是()
.
.
】学年陕西延川县中学高二下学期期末数学(理)试卷
【答案】.
考点:双曲线的性质.
【题型】选择题
【难度】较易
.已知抛物线,过其焦点的直线交抛物线于点,若,则直线的斜率等于()
. . . .
】【百强校】届福建福州市高三上学期期末数学(理)试卷
【答案】
【解析】由题意得,设,在第一象限,∵,故
,∴,∴直线的斜率等于,同理在第四象限,直线的斜率等于,故选.
考点:抛物线的简单性质.
【题型】选择题
【难度】一般
.双曲线的左右焦点分别为,为右支上一点,
且,,则双曲线的渐近线方程是()。
知识点一 圆锥曲线的定义和性质
对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义
重要的解题策略;应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵活运用.例1 已知双曲线的焦点在x轴上,离心率为2,F1,F2为左、右焦点,
3
上一点,且∠60°,S△PF1F2=12,求双曲线的标准方程.
知识点二 直线与圆锥曲线的位置关系
例2
为坐标原点,过点P(2,0)且斜率为
例3 设点
,⊥
例4 若直线
,为椭圆的右顶点且
例5
+MB
例6 已知
弦,求△ABF
例1 解
2
=1 (a>0,b>0).
例2
把=
消去
由于直线与抛物线交于不同两点,
例3
,则直线
例4
,
例5 解 是椭圆的右焦点,设A′为椭圆的左
,由椭圆定义知|MA|+|MA′|=10.
|MA′|+|MB|-|MA
的延长线上时取等号.
与椭圆的交点时,
10
+2.
+|MA′|-|MA′|+|MB
的延长线上时取等号.
与椭圆的交点时,
(|MA|+
例6
设直线
代入椭圆方程
得2+。