3.2立体几何中的向量方法第1课时 空间向量与平行关系教师版
- 格式:doc
- 大小:535.50 KB
- 文档页数:9
第1课时 空间向量与平行关系1.直线的方向向量与平面的法向量 (1)直线的方向向量的定义直线的方向向量是指和这条直线_平行或共线的非零向量,一条直线的方向向量有无数个.(2)平面的法向量的定义直线l ⊥α,取直线l 的方向向量a ,则a 叫做平面α的法向量. 思考:直线的方向向量(平面的法向量)是否唯一?[提示] 不唯一,直线的方向向量(平面的法向量) 有无数个,它们分别是共线向量. 2.空间中平行关系的向量表示1.若A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量为( ) A .(1,2,3) B .(1,3,2) C .(2,1,3)D .(3,2,1)A [AB →=(2,4,6)=2(1,2,3).]2.若平面α,β的一个法向量分别为m =⎝ ⎛⎭⎪⎫-16,13,-1,n =⎝ ⎛⎭⎪⎫12,-1,3,则( ) A .α∥βB .α⊥βC .α与β相交但不垂直D .α∥β或α与β重合D [∵n =-3m ,∴m ∥n ,∴α∥β或α与β重合.]3.已知AB →=(-3,1,2),平面α的一个法向量为n =(2,-2,4),点A 不在平面α内,则直线AB 与平面α的位置关系为( )A .AB ⊥αB .AB ⊂αC .AB 与α相交但不垂直D .AB ∥αD [因为n ·AB →=2×(-3)+(-2)×1+4×2=0,所以n ⊥AB →.又点A 不在平面α内,n 为平面α的一个法向量,所以AB ∥α,故选D.]4.若直线l 的方向向量a =(2,2,-1),平面α的法向量μ=(-6,8,4),则直线l 与平面α的位置关系是________.l ⊂α或l ∥α [∵μ·a =-12+16-4=0,∴μ⊥a ,∴l ⊂α或l ∥α.]AD =12,试建立适当的坐标系.(1)求平面ABCD 的一个法向量; (2)求平面SAB 的一个法向量; (3)求平面SCD 的一个法向量.[解] 以点A 为原点,AD 、AB 、AS 所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (0,1,0),C (1,1,0),D ⎝ ⎛⎭⎪⎫12,0,0,S (0,0,1).(1)∵SA ⊥平面ABCD ,∴AS →=(0,0,1)是平面ABCD 的一个法向量. (2)∵AD ⊥AB ,AD ⊥SA ,AB ∩SA =A ,∴AD ⊥平面SAB , ∴AD →=⎝ ⎛⎭⎪⎫12,0,0是平面SAB 的一个法向量.(3)在平面SCD 中,DC →=⎝ ⎛⎭⎪⎫12,1,0,SC →=(1,1,-1).设平面SCD 的法向量是n =(x ,y ,z ), 则n ⊥DC →,n ⊥SC →,所以⎩⎪⎨⎪⎧n ·DC →=0,n ·SC →=0,得方程组⎩⎪⎨⎪⎧12x +y =0,x +y -z =0,∴⎩⎪⎨⎪⎧x =-2y ,z =-y , 令y =-1,得x =2,z =1,∴平面SCD 的一个法向量为n =(2,-1,1).1.利用待定系数法求平面法向量的步骤 (1)设向量:设平面的法向量为n =(x ,y ,z ). (2)选向量:在平面内选取两个不共线向量AB →,AC →. (3)列方程组:由⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,列出方程组.(4)解方程组:⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0.(5)赋非零值:取其中一个为非零值(常取±1). (6)得结论:得到平面的一个法向量. 2.求平面法向量的三个注意点(1)选向量:在选取平面内的向量时,要选取不共线的两个向量.(2)取特值:在求n 的坐标时,可令x ,y ,z 中一个为一特殊值得另两个值,就是平面的一个法向量.(3)注意0:提前假定法向量n =(x ,y ,z )的某个坐标为某特定值时一定要注意这个坐标不为0.1.正方体ABCD A 1B 1C 1D 1中,E 、F 分别为棱A 1D 1、A 1B 1的中点,在如图所示的空间直角坐标系中,求:(1)平面BDD 1B 1的一个法向量; (2)平面BDEF 的一个法向量.[解] 设正方体ABCD A 1B 1C 1D 1的棱长为2,则D (0,0,0),B (2,2,0),A (2,0,0),C (0,2,0),E (1,0,2).(1)连接AC (图略),因为AC ⊥平面BDD 1B 1,所以AC →=(-2,2,0)为平面BDD 1B 1的一个法向量.(2)DB →=(2,2,0),DE →=(1,0,2). 设平面BDEF 的一个法向量为n =(x ,y ,z ). ∴⎩⎪⎨⎪⎧n ·DB →=0,n ·DE →=0,∴⎩⎪⎨⎪⎧2x +2y =0,x +2z =0,∴⎩⎪⎨⎪⎧y =-x ,z =-12x . 令x =2,得y =-2,z =-1.∴n =(2,-2,-1)即为平面BDEF 的一个法向量.111111四边形AEC 1F 是平行四边形.[解] 以点D 为坐标原点,分别以DA →,DC →,DD 1→为正交基底建立空间直角坐标系,不妨设正方体的棱长为1,则A (1,0,0),E ⎝ ⎛⎭⎪⎫0,0,12,C 1(0,1,1),F ⎝⎛⎭⎪⎫1,1,12, ∴AE →=⎝⎛⎭⎪⎫-1,0,12,FC 1→=⎝⎛⎭⎪⎫-1,0,12,EC 1→=⎝⎛⎭⎪⎫0,1,12,AF →=⎝⎛⎭⎪⎫0,1,12,∴AE →=FC 1→,EC 1→=AF →,∴AE →∥FC 1→,EC 1→∥AF →, 又∵FAE ,F EC 1,∴AE ∥FC 1,EC 1∥AF ,∴四边形AEC 1F 是平行四边形.1.两直线的方向向量共线(垂直)时,两直线平行(垂直);否则两直线相交或异面. 2.直线的方向向量与平面的法向量共线时,直线和平面垂直;直线的方向向量与平面的法向量垂直时,直线在平面内或线面平行;否则直线与平面相交但不垂直.3.两个平面的法向量共线(垂直)时,两平面平行(垂直);否则两平面相交但不垂直.2.长方体ABCD A 1B 1C 1D 1中,E ,F 分别是面对角线B 1D 1,A 1B 上的点,且D 1E =2EB 1,BF =2FA 1.求证:EF ∥AC 1.[证明] 如图所示,分别以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,设DA =a ,DC =b ,DD 1=c ,则得下列各点的坐标:A (a ,0,0),C 1(0,b ,c ),E ⎝ ⎛⎭⎪⎫23a ,23b ,c ,F ⎝ ⎛⎭⎪⎫a ,b 3,23c .∴FE →=⎝ ⎛⎭⎪⎫-a 3,b 3,c 3,AC 1→=(-a ,b ,c ),∴FE →=13AC 1→.又FE 与AC 1不共线,∴直线EF ∥AC 1.在用向量法处理问题时,若几何体的棱长未确定,应如何处理? [提示] 可设几何体的棱长为1或a ,再求点的坐标.【例3】 在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是CC 1,B 1C 1的中点.求证:MN ∥平面A 1BD . 思路探究:[证明] 法一:如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝⎛⎭⎪⎫0,1,12, N ⎝ ⎛⎭⎪⎫12,1,1,于是DA 1→=(1,0,1),DB →=(1,1,0),MN →=⎝ ⎛⎭⎪⎫12,0,12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ⊥DA 1→,n ⊥DB →,即⎩⎪⎨⎪⎧n ·DA 1→=x +z =0,n ·DB →=x +y =0,取x =1,则y=-1,z =-1,∴平面A 1BD 的一个法向量为n =(1,-1,-1).又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n .∴MN ∥平面A 1BD .法二:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→,∴MN→∥DA 1→,∴MN ∥平面A 1BD .法三:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12DA →-12A 1A →=12()DB →+BA→-12()A 1B →+BA →=12DB →-12A 1B →. 即MN →可用A 1B →与DB →线性表示,故MN →与A 1B →,DB →是共面向量,故MN ∥平面A 1BD .1.本例中条件不变,试证明平面平面AEB ,BE ⊂平面AEB 两两垂直.0),C (2,4,0),F (00),AB →=(2,0,-2).,z ),1.向量法证明线面平行的三个思路(1)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a ⊥u ,即a ·u =0.(2)根据线面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行,要证明一条直线和一个平面平行,在平面内找一个向量与已知直线的方向向量是共线向量即可.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线的向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.2.证明面面平行的方法设平面α的法向量为μ,平面β的法向量为v ,则α∥β⇔μ∥v .1.应用向量法证明线面平行问题的方法 (1)证明直线的方向向量与平面的法向量垂直.(2)证明直线的方向向量与平面内的某一直线的方向向量共线.(3)证明直线的方向向量可用平面内的任意两个不共线的向量表示.即用平面向量基本定理证明线面平行.2.证明面面平行的方法设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).1.已知向量a =(2,4,5),b =(3,x ,y ),a 与b 分别是直线l 1,l 2的方向向量,若l 1∥l 2,则( )A .x =6,y =15B .x =3,y =152C .x =3,y =15D .x =6,y =152D [∵l 1∥l 2,∴a ∥b , ∴存在λ∈R ,使a =λb , 则有2=3λ,4=λx ,5=λy , ∴x =6,y =152.]2.已知线段AB 的两端点坐标为A (9,-3,4),B (9,2,1),则线段AB 与坐标平面( ) A .xOy 平行 B .xOz 平行 C .yOz 平行D .yOz 相交 C [AB →=(0,5,-3),坐标平面yOz 的一个法向量为n =(1,0,0),因为AB →·n =0,所以AB →⊥n .故线段AB 与坐标平面yOz 平行.]3.已知直线l 的方向向量为(2,m ,1),平面α的法向量为⎝ ⎛⎭⎪⎫1,12,2,且l ∥α,则m =________.-8 [∵l ∥α,∴l 的方向向量与α的法向量垂直. ∴(2,m ,1)×⎝ ⎛⎭⎪⎫1,12,2=2+12m +2=0. 解得m =-8.]4.在长方体OAEB O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且SB 1=2BS ,点Q ,R 分别是棱O 1B 1,AE 的中点.求证:PQ ∥RS .[解] 如图,建立空间直角坐标系,则A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).易求得P ⎝ ⎛⎭⎪⎫3,0,43,Q (0,2,2),R (3,2,0),S ⎝ ⎛⎭⎪⎫0,4,23,于是PQ →=⎝ ⎛⎭⎪⎫-3,2,23,RS →=⎝ ⎛⎭⎪⎫-3,2,23.∴PQ →=RS →,∴PQ →∥RS →.∵R PQ ,∴PQ ∥RS .。
3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。
3.2 立体几何中的向量方法第1课时空间向量与平行关系【课标要求】1.理解直线的方向向量与平面的法向量,并能运用它们证明平行问题.2.能用向量语言表述线线、线面、面面的平行关系.【核心扫描】1.求直线的方向向量、平面的法向量.(重点)2.用方向向量、法向量处理线线、线面、面面间的平行关系.(重点、难点)自学导引1.直线的方向向量直线的方向向量是指和这条直线______平行或共线_____的向量.想一想:直线的方向向量唯一吗?若不唯一,它们之间有怎样的关系?提示不唯一.直线的方向向量有无数条,它们都是平行向量.2.平面的法向量直线l⊥α,取直线l的____方向向量a _______,则a叫做平面α的法向量.想一想:平面的法向量唯一吗?若不唯一,它们之间的关系怎样?提示不唯一,平面的法向量有无数条,它们都是平行向量.空间平行关系的向量表示(1)线线平行设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔a∥b⇔____a =λb______⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔a⊥u⇔___a·u=0_____⇔ _____a1a2+b1b2+c1c2=0______________ .(3)面面平行设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔u∥v⇔___u=λv_____⇔ __________a1=λa2,b1=λb2,c1=λc2________(λ∈R).试一试:证明过程中,如何确定直线的方向向量和平面的法向量?提示实际应用中,直线的方向向量即把线段看作有向线段时表示的向量,平面的法向量一般可建系后用待定系数法求出.名师点睛 1.平面法向量的求法(1)当已知平面的垂线时,在垂线上取一非零向量即可作为平面的法向量.(2)当已知平面α内两不共线向量a=(a1,a2,a3),b=(b1,b2,b3)时,常用待定系数法求法向量:设法向量),,(z y x n =,由⎪⎩⎪⎨⎧=⋅=⋅00n b ,得⎩⎨⎧=++=++00321321z b y b x b z a y a x a 在上述方程组中,对x ,y ,z 中的任一个赋值,求出另两个,所得n 即为平面的法向量.2.用向量方法证明空间中的平行关系3.向量法解决几何问题的步骤(1)建立空间图形与空间向量的关系,把几何问题转化为向量问题.(2)进行向量的加减、数乘、数量积运算,得出向量运算的结果.(3)把向量运算的结果转化为相应的几何问题的结果.题型一 利用方向向量和法向量判定线面位置关系【例1】(1)设a ,b 分别是不重合的直线l 1,l 2的方向向量,根据下列条件判断l 1,l 2的位置关系:①a =(4,6,-2),b =(-2,-3,1);②a =(5,0,2),b =(0,1,0);(2)设u ,v 分别是不同的平面α,β的法向量,根据下列条件判断α,β的位置关系;②u =(3,0,0),v =(-2,0,0); (3)设u 是平面α的法向量,a 是直线l 的方向向量,根据下列条件判断平面α与l 的位置关系;①u =(2,2,-1),a =(-6,8,4);②u =(2,-3,0),a =(8,-12,0).解 (1)①∵a =(4,6,-2),b =(-2,-3,1),∴a =-2b ,∴a ∥b ,∴l 1∥l 2.②∵a =(5,0,2),b =(0,1,0),∴a ·b =0,∴a ⊥b ,∴l 1⊥l 2.①u =(-1,1,-2),v =(3,2,-12);规律方法 利用直线的方向向量与平面的法向量判断直线与直线、直线与平面、平面与平面的位置关系是直线的方向向量与平面的法向量的基本应用,解决此类问题时需注意以下几点:(1)能熟练的判断两向量的共线与垂直;(2)搞清直线的方向向量,平面的法向量和直线、平面位置关系之间的内在联系;(3)将向量问题转化为几何问题时的等价性.【变式1】根据下列各条件,判断相应的直线与直线、平面与平面、直线与平面的位置关系.(1)直线l 1、l 2的方向向量分别是a =(1,-3,-1),b =(8,2,2);(2)平面α、β的法向量分别是u =(1,3,0),v =(-3,-9,0);(3)直线l 的方向向量、平面α的法向量分别是a =(1,-4,-3),μ=(2,0,3);(4)直线l 的方向向量、平面α的法向量分别是a =(3,2,1),u =(-1,2,-1).解 (1)∵a =(1,-3,-1),b =(8,2,2),∴a ·b =8-6-2=0,∴a ⊥b ,∴l 1⊥l 2.(2)∵u =(1,3,0),v =(-3,-9,0),∴v =-3u ,∴u ∥v ,∴α∥β.(3)∵a =(1,-4,-3),u =(2,0,3),∴a 与u 即不共线,也不垂直,∴l 与平面α斜交.(4)∵a =(3,2,1),u =(-1,2,-1),∴a ·u =-3+4-1=0,∴a ⊥u ,∴l ⊂α或l ∥α.题型二 求平面的法向量【例2】 已知点A (a ,0,0)、B (0,b ,0)、C (0,0,c ),求平面ABC 的一个法向量.(2)①∵u =(-1,1,-2),v =(3,2,-12), ∴u ·v =-3+2+1=0,∴u ⊥v ,∴α⊥β. ②∵u =(3,0,0),v =(-2,0,0), ∴u =-32v ,∴u ∥v ,∴α∥β. (3)①∵u =(2,2,-1),a =(-6,8,4), ∴u ·a =-12-4+16=0, ∴u ⊥a ,∴l ⊂α或l ∥α. ②∵u =(2,-3,0),a =(8,-12,0). ∴u =14a ,∴u ∥a ,∴l ⊥α.【变式2】如图,ABCD 是直角梯形,090=∠ABC ,ABCD SA 平面⊥,1===BC AB SA ,21=AD ,求平面SCD 与平面SBA 的法向量。
3.2立体几何中的向量方法第1课时空间向量与平行关系●三维目标1.知识与技能能用向量语言表述直线与直线、直线与平面、平面与平面的平行关系,能用向量方法判断有关直线和平面平行关系的立体几何问题.2.过程与方法通过用向量方法解决立体几何中的平行问题的过程,体会向量运算的几何意义.3.情感、态度与价值观引导学生用联系与转化的观点看问题,体验在探索问题的过程中的受挫感和成功感,培养合作意识和创新精神,同时感受数学的形式美与简洁美,从而激发学习兴趣.●重点难点重点:用向量方法判断有关直线和平面平行关系问题.难点:空间直角坐标系的正确建立,空间向量的运算及其坐标表示;用向量语言证明立体几何中有关平行关系的问题.●教学建议在“以生为本”理念的指导下,充分体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,构建学生主动的学习活动过程.在教学策略上宜采用“复习引入——推进新课——归纳与总结——反思”组成的探究式教学策略,并使用计算机多媒体作为辅助教具,提高课堂效率.本节课难点在于用向量证明平行关系,所以利用多媒体帮助分散难点,更符合学生的认知规律.同时在教学中注意关注整个过程和全体学生,“以学生发展为核心”,充分调动学生积极参与教学过程的每个环节.●教学流程创设问题情境,在两条平行线上取两向量,它们的位置关系如何?⇒引出直线的方向向量的概念,并用同样的方法得出平面的法向量的概念.⇒结合图形,引导学生分析方向向量、法向量的作用,得出空间平行关系的向量表示方法.⇒通过例1及其变式训练,使学生掌握求已知平面的法向量的方法.⇒通过例2及其变式训练,使学生掌握利用向量法证明线线平行.⇒通过例3及其变式训练,解决利用空间向量证明线面平行问题.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.【问题导思】图3-2-11.如图3-2-1,直线l ∥m ,在直线l 上取两点A 、B ,在直线m 上取两点C 、D ,向量AB →与CD →有怎样的关系?【提示】 AB →∥CD →.2.如图直线l ⊥平面α,直线l ∥m ,在直线m 上取向量n ,则向量n 与平面α有怎样的关系?【提示】 n ⊥α.直线的方向向量是指和这条直线平行或共线的非零向量,一条直线的方向向量有无数个.直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量.图3-2-2已知ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,试建立适当的坐标系.(1)求平面ABCD 与平面SAB 的一个法向量. (2)求平面SCD 的一个法向量.【思路探究】 (1)根据图形特点,如何建立坐标系更方便?(2)怎样求平面的法向量?题中所要求的三个平面的法向量在求解时方法是否相同?【自主解答】 以点A 为原点,AD 、AB 、AS 所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的坐标系,则A (0,0,0),B (0,1,0),C (1,1,0),D (12,0,0),S (0,0,1).(1)∵SA ⊥平面ABCD ,∴AS →=(0,0,1)是平面ABCD 的一个法向量. ∵AD ⊥AB ,AD ⊥SA ,∴AD ⊥平面SAB , ∴AD →=(12,0,0)是平面SAB 的一个法向量.(2)在平面SCD 中,DC →=(12,1,0),SC →=(1,1,-1).设平面SCD 的法向量是n =(x ,y ,z ),则n ⊥DC →,n ⊥SC →. 所以⎩⎪⎨⎪⎧ n ·DC →=0n ·SC →=0,得方程组⎩⎪⎨⎪⎧12x +y =0x +y -z =0.∴⎩⎪⎨⎪⎧x =-2yz =-y ,令y =-1得x =2,z =1,∴n =(2,-1,1).1.若一个几何体中存在线面垂直关系,则平面的垂线的方向向量即为平面的法向量. 2.一般情况下,使用待定系数法求平面的法向量,步骤如下: (1)设出平面的法向量为n =(x ,y ,z ). (2)找出(求出)平面内的两个不共线的向量 a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).(3)根据法向量的定义建立关于x ,y ,z 的方程组⎩⎪⎨⎪⎧n ·a =0,n ·b =0. (4)解方程组,取其中的一个解,即得法向量.3.在利用上述步骤求解平面的法向量时,方程组⎩⎪⎨⎪⎧n ·a =0,n ·b =0有无数多个解,只需给x ,y ,z 中的一个变量赋于一个值,即可确定平面的一个法向量;赋的值不同,所求平面的法向量就不同,但它们是共线向量.正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱A 1D 1、A 1B 1的中点,在如图3-2-3所示的空间直角坐标系中,求:图3-2-3(1)平面BDD 1B 1的一个法向量. (2)平面BDEF 的一个法向量.【解】 设正方体ABCD -A 1B 1C 1D 1的棱长为2,则D (0,0,0),B (2,2,0),A (2,0,0),C (0,2,0),E (1,0,2)(1)连AC ,因为AC ⊥平面BDD 1B 1,所以AC →=(-2,2,0)为平面BDD 1B 1的一个法向量. (2)DB →=(2,2,0),DE →=(1,0,2).设平面BDEF 的一个法向量为n =(x ,y ,z ). ∴⎩⎪⎨⎪⎧n ·DB →=0n ·DE →=0, ∴⎩⎪⎨⎪⎧2x +2y =0x +2z =0, ∴⎩⎪⎨⎪⎧y =-x z =-12x .令x =2得y =-2,z =-1.∴n =(2,-2,1)即为平面BDEF 的一个法向量.长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是面对角线B 1D 1,A 1B 上的点,且D 1E=2EB 1,BF =2F A 1.求证:EF ∥AC 1.【思路探究】 (1)你能写出EF 、AC 1的方向向量吗?(2)两直线的方向向量满足什么条件则说明它们平行?【自主解答】 如图所示,分别以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,设DA =a ,DC =b ,DD 1=c ,则得下列各点的坐标:A (a,0,0),C 1(0,b ,c ),E (23a ,23b ,c ),F (a ,b 3,23c ).∴FE →=(-a 3,b 3,c 3),AC 1→=(-a ,b ,c ),∴FE →=13AC 1→.又FE 与AC 1不共线, ∴直线EF ∥AC 1.利用向量法证明线线平行的方法与步骤:图3-2-4如图3-2-4所示,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1和BB 1的中点.求证:四边形AEC 1F 是平行四边形.【证明】 以点D 为坐标原点,分别以DA →,DC →,DD 1→为正交基底建立空间直角坐标系,不妨设正方体的棱长为1,则A (1,0,0),E (0,0,12),C 1(0,1,1),F (1,1,12),∴AE →=(-1,0,12),FC 1→=(-1,0,12),EC 1→=(0,1,12),AF →=(0,1,12),∴AE →=FC 1→,EC 1→=AF →,∴AE →∥FC 1→,EC 1→∥AF →,又∵F ∉AE ,F ∉EC 1,∴AE ∥FC 1,EC 1∥AF , ∴四边形AEC 1F 是平行四边形.图3-2-5如图3-2-5,在正三棱柱ABC -A 1B 1C 1中,D 是AC 的中点,求证:AB 1∥平面DBC 1.【思路探究】 线面平行→线与面的法向量垂直→数量积为0【自主解答】 以A 为坐标原点建立空间直角坐标系.设正三棱柱的底面边长为a (a >0),侧棱长为b (b >0), 则A (0,0,0),B (32a ,a 2,0),B 1(32a ,a 2,b ),C 1(0,a ,b ),D (0,a2,0), ∴AB 1→=(32a ,a 2,b ),BD →=(-32a,0,0),DC 1→=(0,a 2,b ).设平面DBC 1的一个法向量为n =(x ,y ,z ), 则⎩⎨⎧ n ·BD →=-32ax =0,n ·DC 1→=a 2y +=0,∴⎩⎪⎨⎪⎧x =0,z =-a 2b y .不妨令y =2b ,则n =(0,2b ,-a ). 由于AB 1→·n =ab -ab =0,因此AB 1→⊥n . 又AB 1⊄平面DBC 1,∴AB 1∥平面DBC 1.利用空间向量证明线面平行一般有三种方法:方法一:证明直线的方向向量与平面内任意两个不共线的向量共面,即可用平面内的一组基底表示.方法二:证明直线的方向向量与平面内某一向量共线,转化为线线平行,利用线面平行判定定理得证.方法三:先求直线的方向向量,然后求平面的法向量,证明方向向量与平面的法向量垂直.在长方体ABCD -A 1B 1C 1D 1中,AA 1=2AB =2BC ,E ,F ,E 1分别是棱AA 1,BB 1,A 1B 1的中点.求证:CE ∥平面C 1E 1F .【证明】 以D 为原点,以DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设BC =1,则C (0,1,0),E (1,0,1),C 1(0,1,2),F (1,1,1),E 1(1,12,2).设平面C 1E 1F 的法向量为n =(x ,y ,z ), ∵C 1E 1→=(1,-12,0),FC 1→=(-1,0,1),∴⎩⎪⎨⎪⎧n ·C 1E 1→=0,n ·FC 1→=0,即⎩⎪⎨⎪⎧x =12y ,x =z ,取n =(1,2,1). ∵CE →=(1,-1,1),n ·CE →=1-2+1=0, ∴CE →⊥n ,且CE →⊄平面C 1E 1F . ∴CE ∥平面C 1E 1F .向量法证明空间平行关系图3-2-6(12分)如图3-2-6,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF ⊥FB ,AB =2EF ,∠BFC =90°,BF =FC ,H 为BC 的中点.求证:FH ∥平面EDB .【思路点拨】 先通过推理证明FH ⊥平面ABCD ,建立空间直角坐标系,再设证明HF →、BE →、BD →共面.【规范解答】 ∵四边形ABCD 是正方形, ∴AB ⊥BC ,又EF ∥AB , ∴EF ⊥BC . 又EF ⊥FB , ∴EF ⊥平面BFC . ∴EF ⊥FH ,∴AB ⊥FH .2分 又BF =FC ,H 为BC 的中点, ∴FH ⊥BC .∴FH ⊥平面ABC .4分以H 为坐标原点,HB →为x 轴正方向,HF →为z 轴正方向. 建立如图所示的空间直角坐标系. 设BH =1,则B (1,0,0),D (-1,-2,0),E (0,-1,1),F (0,0,1).6分 ∴HF →=(0,0,1),BE →=(-1,-1,1),BD →=(-2,-2,0),设HF →=λ·BE →+μ·BD →=λ·(-1,-1,1)+μ(-2,-2,0)=(-λ-2μ,-λ-2μ,λ)8分 ∴(0,0,1)=(-λ-2μ,-λ-2μ,λ),∴⎩⎪⎨⎪⎧-λ-2μ=0λ=1,解得⎩⎪⎨⎪⎧λ=1μ=-12,∴HF →=BE →-12BD →10分∴向量HF →,BE →,BD →共面. 又HF 不在平面EDB 内, ∴HF ∥平面EDB .12分【思维启迪】 1.建立空间直角坐标系,通常需要找出三线两两垂直或至少找到线面垂直的条件.2.证明时,要注意空间线面关系与向量关系的联系与区别,注意所运用定理的条件要找全.1.利用向量解决立体几何问题的“三步曲”:(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(2)进行向量运算,研究点、直线、平面之间的关系(距离和夹角等);(3)根据运算结果的几何意义来解释相关问题.2.证明线面平行问题,可以利用直线的方向向量和平面的法向量之间的关系;也可以转化为线线平行,利用向量共线来证明.1.若A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量为( ) A .(1,2,3) B .(1,3,2)C .(2,1,3)D .(3,2,1)【解析】 AB →=(2,4,6)=2(1,2,3). 【答案】 A2.下列各组向量中不平行的是( ) A .a =(1,2,-2),b =(-2,-4,4) B .c =(1,0,0),d =(-3,0,0) C .e =(2,3,0),f =(0,0,0) D .g =(-2,3,5),h =(16,24,40)【解析】 ∵b =(-2,-4,4)=-2(1,2,-2)=-2a ,∴a ∥b ,同理:c ∥d ,e ∥f . 【答案】 D3.设平面α内两向量a =(1,2,1),b =(-1,1,2),则下列向量中是平面α的法向量的是( )A .(-1,-2,5)B .(-1,1,-1)C .(1,1,1)D .(1,-1,-1)【解析】 平面α的法向量应当与a 、b 都垂直,可以检验知B 选项适合. 【答案】 B4.根据下列各条件,判断相应的直线与直线、平面与平面、直线与平面的位置关系: (1)直线l 1,l 2的方向向量分别是a =(1,-3,-1),b =(8,2,2); (2)平面α,β的法向量分别是u =(1,3,0),v =(-3,-9,0);(3)直线l 的方向向量,平面α的法向量分别是a =(1,-4,-3),u =(2,0,3). 【解】 (1)∵a ·b =1×8+(-3)×2+(-1)×2=0,∴l 1⊥l 2.(2)∵v =(-3,-9,0)=-3(1,3,0)=-3μ,∴α∥β. (3)∵a 、u 不共线,∴l 不与α平行,也不在α内. 又∵a ·u =-7≠0,∴l 与α不垂直. 故l 与α斜交.一、选择题1.(2013·吉林高二检测)l 1的方向向量为v 1=(1,2,3),l 2的方向向量v 2=(λ,4,6),若l 1∥l 2,则λ=( )A .1B .2C .3D .4 【解析】 ∵l 1∥l 2,∴v 1∥v 2,则1λ=24,∴λ=2.【答案】 B2.(2013·青岛高二检测)若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A .相交B .平行C .在平面内D .平行或在平面内【解析】 ∵AB →=λCD →+μCE →,∴AB →、CD →、CE →共面,则AB 与平面CDE 的位置关系是平行或在平面内.【答案】 D3.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A .(1,-1,1)B .(1,3,32)C .(1,-3,32)D .(-1,3,-32)【解析】 对于B ,AP →=(-1,4,-12),则n ·AP →=(3,1,2)·(-1,4,-12)=0,∴n ⊥AP →,则点P (1,3,32)在平面α内.【答案】 B4.已知A (1,1,0),B (1,0,1),C (0,1,1),则平面ABC 的一个法向量的单位向量是( ) A .(1,1,1) B .(33,33,33) C .(13,13,13)D .(33,33,-33) 【解析】 设平面ABC 的法向量为n =(x ,y ,z ),AB →=(0,-1,1),BC →=(-1,1,0),AC→=(-1,0,1),则⎩⎨⎧AB →·n =-y +z =0BC →·n =-x +y =0AC →·n =-x +z =0∴x =y =z ,又∵单位向量的模为1,故只有B 正确.【答案】B图3-2-75.如图3-2-7,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则( )①A 1M ∥D 1P ; ②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1. 以上正确说法的个数为( )A .1B .2C .3D .4【解析】 A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,∴A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥面DCC 1D 1,A 1M ∥面D 1PQB 1.①③④正确.【答案】 C 二、填空题6.(2013·泰安高二检测)已知直线l 的方向向量为(2,m,1),平面α的法向量为(1,12,2),且l ∥α,则m =________.【解析】 ∵l ∥α,∴l 的方向向量与α的法向量垂直, ∴(2,m,1)·(1,12,2)=2+12m +2=0,∴m =-8.【答案】 -87.已知A (4,1,3),B (2,3,1),C (3,7,-5),点P (x ,-1,3)在平面ABC 内,则x =________. 【解析】 AB →=(-2,2,-2),AC →=(-1,6,-8),AP →=(x -4,-2,0),由题意知A 、B 、C 、P 共点共面,∴AP →=λAB →+μAC →=(-2λ,2λ,-2λ)+(-μ,6μ,-8μ)=(-2λ-μ,2λ+6μ,-2λ-8μ).∴⎩⎪⎨⎪⎧ 2λ+6μ=-2-2λ-8μ=0,∴⎩⎪⎨⎪⎧λ=-4μ=1,而x -4=-2λ-μ,∴x =11. 【答案】 118.下列命题中,正确的是________.(填序号)①若n 1,n 2分别是平面α,β的一个法向量,则n 1∥n 2⇔α∥β; ②若n 1,n 2分别是平面α,β的一个法向量,则α⊥β ⇔n 1·n 2=0; ③若n 是平面α的一个法向量,a 与平面α共面,则n ·a =0; ④若两个平面的法向量不垂直,则这两个平面一定不垂直. 【解析】 ②③④一定正确,①中两平面有可能重合. 【答案】 ②③④ 三、解答题图3-2-89.已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图3-2-8所示),并且OE →=kOA →,OF →=kOB →,OH →=kOD →,AC →=AD →+mAB →,EG →=EH →+mEF →.求证:(1)A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面; (2)AC →∥EG →; (3)OG →=kOC →.【解】 (1)由AC →=AD →+mAB →,EG →=EH →+mEF →,知A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面.(2)∵EG →=EH →+mEF →=OH →-OE →+m (OF →-OE →) =k (OD →-OA →)+km (OB →-OA →)=kAD →+kmAB → =k (AD →+mAB →)=kAC →, ∴AC →∥EG →.(3)由(2)知OG →=EG →-EO →=kAC →-kAO →=k (AC →-AO →)=kOC →. ∴OG →=kOC →.10.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,DC 的中点,求证:AE →是平面A 1D 1F 的法向量.【证明】 设正方体的棱长为1,建立如图所示的空间直角坐标系,则A (1,0,0),E (1,1,12),D 1(0,0,1),F (0,12,0),A 1(1,0,1),AE →=(0,1,12), D 1F →=(0,12,-1),A 1D 1→=(-1,0,0).∵AE →·D 1F →=(0,1,12)·(0,12,-1)=12-12=0, 又AE →·A 1D 1→=0, ∴AE →⊥D 1F →,AE →⊥A 1D 1→. 又A 1D 1∩D 1F =D 1, ∴AE ⊥平面A 1D 1F ,∴AE →是平面A 1D 1F 的法向量.图3-2-911.如图3-2-9,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =π4,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点,证明:直线MN ∥平面OCD .【证明】 作AP ⊥CD 于点P .如题图分别以AB 、AP 、AO 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.A (0,0,0),B (1,0,0),P (0,22,0),D (-22,22,0),O (0,0,2),M (0,0,1),N (1-24,24,0).MN →=(1-24,24,-1),OP →=(0,22,-2),OD →=(-22,22,-2).设平面OCD 的法向量为n =(x ,y ,z ), 则n ·OP →=0,n ·OD →=0.即⎩⎨⎧22y -2z =0-22x +22y -2z =0,取z =2,则y =4,x =0,得n =(0,4,2).∵MN →·n =(1-24,24,-1)·(0,42)=0,∴MN ∥平面OCD .(教师用书独具)如图所示,在直角梯形ABCP 中,AP ∥BC ,AP ⊥AB ,AB =BC =12AP =2,D 是AP 的中点,E 、F 、G 分别为PC 、PD 、CB 的中点,将△PCD 沿CD 折起,使得PD ⊥平面ABCD .试用向量方法证明AP ∥平面EFG .【自主解答】 如图,以D 为原点,以DA →、DC →、DP →为方向向量建立空间直角坐标系Dxyz ,则有关点及向量的坐标为: P (0,0,2),C (0,2,0),G (1,2,0),E (0,1,1),F (0,0,1),A (2,0,0). AP →=(-2,0,2),EF →=(0,-1,0),EG →=(1,1,-1). 设平面EFG 的法向量为n =(x ,y ,z ). ∴⎩⎪⎨⎪⎧n ·EF →=0n ·EG →=0⇒⎩⎪⎨⎪⎧ -y =0x +y -z =0⇒⎩⎪⎨⎪⎧x =z ,y =0.取n =(1,0,1).∵n ·AP →=1×(-2)+0×0+1×2=0, ∴n ⊥AP →.又AP ⊄平面EFG ,∴AP ∥平面EFG .如图,四棱锥P -ABCD 中,P A ⊥平面ABCD ,PB 与底面成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,P A =BC =12AD =1.问:在棱PD 上是否存在一点E ,使得CE ∥平面P AB ?若存在,求出E 点的位置,若不存在,请说明理由.【解】 分别以AB 、AD 、AP 为x ,y ,z 轴建立空间直角坐标系,如图.则P (0,0,1),C (1,1,0),D (0,2,0), 设E (0,y ,z ),则 PE →=(0,y ,z -1), PD →=(0,2,-1), ∵PE →∥PD →,∴y (-1)-2(z -1)=0,①∵AD →=(0,2,0)是平面P AB 的法向量, CE →=(-1,y -1,z ), ∴由CE ∥平面P AB, 可得CE →⊥AD →. ∴(-1,y -1,z )·(0,2,0)=2(y -1)=0. ∴y =1,代入①式得z =12.∴E 是PD 的中点,即存在点E 为PD 中点时,CE ∥平面P AB .。
§3.2立体几何中的向量方法(一)——空间向量与平行关系课时目标 1.理解直线的方向向量与平面的法向量,并能运用它们证明平行问题.2.能用向量语言表述线线,线面,面面的平行关系.1.直线的方向向量直线的方向向量是指和这条直线________或______的向量,一条直线的方向向量有________个.2.平面的法向量直线l⊥α,取直线l的____________a,则向量a叫做平面α的__________.3.空间中平行关系的向量表示(1)线线平行设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),且a2b2c2≠0,则l∥m⇔______________⇔__________⇔________________________.(2)线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔________⇔__________⇔________________________.(3)面面平行设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔__________⇔__________⇔________________________.一、选择题1.若n=(2,-3,1)是平面α的一个法向量,则下列向量能作为平面α的一个法向量的是()A.(0,-3,1) B.(2,0,1)C.(-2,-3,1) D.(-2,3,-1)2.若A(-1,0,1),B(1,4,7)在直线l上,则直线l的一个方向向量为()A.(1,2,3) B.(1,3,2)C.(2,1,3) D.(3,2,1)3.已知平面α上的两个向量a=(2,3,1),b=(5,6,4),则平面α的一个法向量为() A.(1,-1,1) B.(2,-1,1)C.(-2,1,1) D.(-1,1,-1)4.从点A(2,-1,7)沿向量a=(8,9,-12)的方向取线段长AB=34,则B点的坐标为() A.(-9,-7,7) B.(18,17,-17)C.(9,7,-7) D.(-14,-19,31)5.在正方体ABCD—A1B1C1D1中,棱长为a,M、N分别为A1B、AC的中点,则MN与平面BB1C1C的位置关系是()A.相交B.平行C.垂直D.不能确定6.已知线段AB的两端点的坐标为A(9,-3,4),B(9,2,1),则与线段AB平行的坐标平面是()A .xOyB .xOzC .yOzD .xOy 或yOz二、填空题7.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的单位法向量坐标为________________________.8.已知直线l 的方向向量为(2,m,1),平面α的法向量为⎝⎛⎭⎫1,12,2,且l ∥α,则m =________. 9.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 、P 、Q 分别为棱AB 、CD 、BC 的中点,若平行六面体的各棱长均相等,则 ①A 1M ∥D 1P ; ②A 1M ∥B 1Q ;③A 1M ∥面DCC 1D 1; ④A 1M ∥面D 1PQB 1.以上结论中正确的是________.(填写正确的序号) 三、解答题10.已知平面α经过三点A (1,2,3),B (2,0,-1),C (3,-2,0),试求平面α的一个法向量. 11.如图所示,在空间图形P —ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,CD ∥AB ,∠ABC =∠BCD =90°,AB =4,CD =1,点M 在PB 上,且PB =4PM ,∠PBC =30°,求证:CM ∥平面P AD .【能力提升】12.在正方体ABCD—A1B1C1D1中,O是B1D1的中点,求证:B1C∥平面ODC1.13.如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=60°,P A⊥平面ABCD,P A=AC =a,点E在PD上,且PE∶ED=2∶1.在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.平行关系的常用证法(1)证明线线平行只需要证明表示两条直线的向量满足实数倍数关系,如证明AB ∥CD只需证AB →=λCD →.证明线面平行可转化为证直线的方向向量和平面的法向量垂直,然后说明直线在平面外.证面面平行可转化证两面的法向量平行.(2)证明线面平行问题或面面平行问题时也可利用立体几何中的定理转化为线线平行问题,再利用向量进行证明.§3.2 立体几何中的向量方法(一)——空间向量与平行关系知识梳理1.平行 重合 无数 2.方向向量 法向量3.(1)a ∥b a =λb a 1a 2=b 1b 2=c 1c 2(a 2b 2c 2≠0)(2)a ⊥u a·u =0 a 1a 2+b 1b 2+c 1c 2=0(3)u ∥v u =k v a 1a 2=b 1b 2=c 1c 2(a 2b 2c 2≠0)作业设计1.D [只要是与向量n 共线且非零的向量都可以作为平面α的法向量.故选D.]2.A [∵AB →=(2,4,6),而与AB →共线的非零向量都可以作为直线l 的方向向量,故选A.]3.C [显然a 与b 不平行,设平面α的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧a·n =0,b·n =0, ∴⎩⎪⎨⎪⎧2x +3y +z =0,5x +6y +4z =0. 令z =1,得x =-2,y =1,∴n =(-2,1,1).]4.B [设B (x ,y ,z ),AB →=(x -2,y +1,z -7) =λ(8,9,-12),λ>0.故x -2=8λ,y +1=9λ,z -7=-12λ, 又(x -2)2+(y +1)2+(z -7)2=342, 得(17λ)2=342,∵λ>0,∴λ=2.∴x =18,y =17,z =-17,即B (18,17,-17).]5.B [可以建立空间直角坐标系,通过平面的法向量AB →和MN →的关系判断.]6.C [AB →=(0,5,-3),AB 与平面yOz 平行.]7.⎝⎛⎭⎫33,33,33或⎝⎛⎭⎫-33,-33,-338.-8解析 ∵l ∥α,∴l 的方向向量与α的法向量垂直.∴(2,m,1)·⎝⎛⎭⎫1,12,2=2+12m +2=0,∴m =-8. 9.①③④解析 ∵A 1M →=AM →-AA 1→=D P →-DD 1→=D 1P →, ∴A 1M ∥D 1P .∵D 1P ⊂面D 1PQB 1,∴A 1M ∥面D 1PQB 1. 又D 1P ⊂面DCC 1D 1,∴A 1M ∥面DCC 1D 1. ∵B 1Q 为平面DCC 1D 1的斜线,∴B 1Q 与D 1P 不平行,∴A 1M 与B 1Q 不平行. 10.解 ∵A (1,2,3),B (2,0,-1),C (3,-2,0),∴AB →=(1,-2,-4),AC →=(2,-4,-3), 设平面α的法向量为n =(x ,y ,z ).依题意,应有n ·AB →=0,n ·AC →=0. 即⎩⎪⎨⎪⎧ x -2y -4z =02x -4y -3z =0,解得⎩⎪⎨⎪⎧x =2y z =0. 令y =1,则x =2.∴平面α的一个法向量为n =(2,1,0).11.证明 建立如图所示的空间直角坐标系Cxyz . 方法一 ∵∠PBC =30°,PC =2, ∴BC =23,PB =4.于是D (1,0,0),C (0,0,0),A (4,23,0),P (0,0,2). ∵PB =4PM ,∴PM =1,M ⎝⎛⎭⎫0,32,32.∴CM →=⎝⎛⎭⎫0,32,32,DP →=(-1,0,2),DA →=(3,23,0).设CM →=x DP →+y DA →,其中x ,y ∈R .则⎝⎛⎭⎫0,32,32=x (-1,0,2)+y (3,23,0).∴⎩⎨⎧-x +3y =023y =322x =32,解得x =34,y =14.∴CM →=34DP →+14DA →,∴CM →,DP →,DA →共面.∵CM ⊄平面P AD ,∴CM ∥平面P AD .方法二 由方法一可得CM →=⎝⎛⎭⎫0,32,32,DP →=(-1,0,2),DA →=(3,23,0).设平面P AD的法向量为n =(x ,y ,z ),则有,即⎩⎨⎧-x +2z =03x +23y =0.令x =1,解得z =12,y =-32.故n =⎝⎛⎭⎫1,-32,12.又∵CM →·n =⎝⎛⎭⎫0,32,32·⎝⎛⎭⎫1,-32,12=0.∴CM →⊥n ,又CM ⊄平面P AD . ∴CM ∥平面P AD .12.证明 方法一 ∵B 1C →=A 1D →,B 1∉A 1D , ∴B 1C ∥A 1D ,又A 1D ⊂平面ODC 1,∴B 1C ∥平面ODC 1.方法二 ∵B 1C →=B 1C 1→+B 1B →=B 1O →+OC 1→+D 1O →+OD →=OC 1→+OD →. ∴B 1C →,OC 1→,OD →共面.又B 1C ⊄平面ODC 1,∴B 1C ∥平面ODC 1. 方法三建系如图,设正方体的棱长为1,则可得 B 1(1,1,1),C (0,1,0), O ⎝⎛⎭⎫12,12,1,C 1(0,1,1), B 1C →=(-1,0,-1),OD →=⎝⎛⎭⎫-12,-12,-1,OC 1→=⎝⎛⎭⎫-12,12,0. 设平面ODC 1的法向量为n =(x 0,y 0,z 0),则得⎩⎨⎧-12x 0-12y 0-z 0=0, ①-12x 0+12y 0=0, ②令x 0=1,得y 0=1,z 0=-1,∴n =(1,1,-1). 又B 1C →·n =-1×1+0×1+(-1)×(-1)=0, ∴B 1C →⊥n ,且B 1C ⊄平面ODC 1, ∴B 1C ∥平面ODC 1.13.解 方法一 当F 是棱PC 的中点时,BF ∥平面AEC . ∵BF →=BC →+12CP →=AD →+12(CD →+DP →)=AD →+12(AD →-AC →)+32(AE →-AD →)=32AE →-12AC →. ∴BF →、AE →、AC →共面. 又BF ⊄平面AEC , ∴BF ∥平面AEC . 方法二如图,以A 为坐标原点,直线AD 、AP 分别为y 轴、z 轴,过A 点垂直于平面P AD 的直线为x 轴,建立空间直角坐标系.由题意,知相关各点的坐标分别为A (0,0,0),B ⎝⎛⎭⎫32a ,-12a ,0,C ⎝⎛⎭⎫32a ,12a ,0,D (0,a,0),P (0,0,a ),E ⎝⎛⎭⎫0,23a ,13a . 所以AE →=⎝⎛⎭⎫0,23a ,13a ,AC →=⎝⎛⎭⎫32a ,12a ,0, AP →=(0,0,a ),PC →=⎝⎛⎭⎫32a ,12a ,-a ,BP →=⎝⎛⎭⎫-32a ,12a ,a .设点F 是棱PC 上的点,PF →=λPC →=⎝⎛⎭⎫32aλ,12aλ,-aλ,其中0<λ<1, 则BF →=BP →+PF →=⎝⎛⎭⎫32aλ-1 ,12a 1+λ,a 1-λ,令BF →=λ1AC →+λ2AE →即⎩⎪⎨⎪⎧λ-1=λ1,1+λ=λ1+43λ2,1-λ=13λ2.解得λ=12,λ1=-12,λ2=32,即λ=12时,BF →=-12AC →+32AE →,即F 是PC 的中点时,BF →、AC →、AE →共面.又BF ⊄平面AEC ,所以当F 是棱PC 的中点时,BF∥平面AEC.。
3.2 立体几何中的向量方法第1课时空间向量与平行关系【课标要求】1.理解直线的方向向量与平面的法向量,并能运用它们证明平行问题.2.能用向量语言表述线线、线面、面面的平行关系.【核心扫描】1.求直线的方向向量、平面的法向量.(重点)2.用方向向量、法向量处理线线、线面、面面间的平行关系.(重点、难点)自学导引1.直线的方向向量直线的方向向量是指和这条直线______平行或共线_____的向量.想一想:直线的方向向量唯一吗?若不唯一,它们之间有怎样的关系?提示不唯一.直线的方向向量有无数条,它们都是平行向量.2.平面的法向量直线l⊥α,取直线l的____方向向量a _______,则a叫做平面α的法向量.想一想:平面的法向量唯一吗?若不唯一,它们之间的关系怎样?提示不唯一,平面的法向量有无数条,它们都是平行向量.空间平行关系的向量表示(1)线线平行设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔a∥b⇔____a =λb______⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔a⊥u⇔___a·u=0_____⇔ _____a1a2+b1b2+c1c2=0______________ .(3)面面平行设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔u∥v⇔___u=λv_____⇔ __________a1=λa2,b1=λb2,c1=λc2________(λ∈R).试一试:证明过程中,如何确定直线的方向向量和平面的法向量?提示实际应用中,直线的方向向量即把线段看作有向线段时表示的向量,平面的法向量一般可建系后用待定系数法求出.名师点睛 1.平面法向量的求法(1)当已知平面的垂线时,在垂线上取一非零向量即可作为平面的法向量.(2)当已知平面α内两不共线向量a=(a1,a2,a3),b=(b1,b2,b3)时,常用待定系数法求法向量:设法向量),,(z y x n =,由⎪⎩⎪⎨⎧=⋅=⋅00n b ,得⎩⎨⎧=++=++00321321z b y b x b z a y a x a 在上述方程组中,对x ,y ,z 中的任一个赋值,求出另两个,所得n 即为平面的法向量.2.用向量方法证明空间中的平行关系3.向量法解决几何问题的步骤(1)建立空间图形与空间向量的关系,把几何问题转化为向量问题.(2)进行向量的加减、数乘、数量积运算,得出向量运算的结果.(3)把向量运算的结果转化为相应的几何问题的结果.题型一 利用方向向量和法向量判定线面位置关系【例1】(1)设a ,b 分别是不重合的直线l 1,l 2的方向向量,根据下列条件判断l 1,l 2的位置关系:①a =(4,6,-2),b =(-2,-3,1);②a =(5,0,2),b =(0,1,0);(2)设u ,v 分别是不同的平面α,β的法向量,根据下列条件判断α,β的位置关系;②u =(3,0,0),v =(-2,0,0); (3)设u 是平面α的法向量,a 是直线l 的方向向量,根据下列条件判断平面α与l 的位置关系;①u =(2,2,-1),a =(-6,8,4);②u =(2,-3,0),a =(8,-12,0).解 (1)①∵a =(4,6,-2),b =(-2,-3,1),∴a =-2b ,∴a ∥b ,∴l 1∥l 2.②∵a =(5,0,2),b =(0,1,0),∴a ·b =0,∴a ⊥b ,∴l 1⊥l 2.①u =(-1,1,-2),v =(3,2,-12);规律方法 利用直线的方向向量与平面的法向量判断直线与直线、直线与平面、平面与平面的位置关系是直线的方向向量与平面的法向量的基本应用,解决此类问题时需注意以下几点:(1)能熟练的判断两向量的共线与垂直;(2)搞清直线的方向向量,平面的法向量和直线、平面位置关系之间的内在联系;(3)将向量问题转化为几何问题时的等价性.【变式1】根据下列各条件,判断相应的直线与直线、平面与平面、直线与平面的位置关系.(1)直线l 1、l 2的方向向量分别是a =(1,-3,-1),b =(8,2,2);(2)平面α、β的法向量分别是u =(1,3,0),v =(-3,-9,0);(3)直线l 的方向向量、平面α的法向量分别是a =(1,-4,-3),μ=(2,0,3);(4)直线l 的方向向量、平面α的法向量分别是a =(3,2,1),u =(-1,2,-1).解 (1)∵a =(1,-3,-1),b =(8,2,2),∴a ·b =8-6-2=0,∴a ⊥b ,∴l 1⊥l 2.(2)∵u =(1,3,0),v =(-3,-9,0),∴v =-3u ,∴u ∥v ,∴α∥β.(3)∵a =(1,-4,-3),u =(2,0,3),∴a 与u 即不共线,也不垂直,∴l 与平面α斜交.(4)∵a =(3,2,1),u =(-1,2,-1),∴a ·u =-3+4-1=0,∴a ⊥u ,∴l ⊂α或l ∥α.题型二 求平面的法向量【例2】 已知点A (a ,0,0)、B (0,b ,0)、C (0,0,c ),求平面ABC 的一个法向量.(2)①∵u =(-1,1,-2),v =(3,2,-12), ∴u ·v =-3+2+1=0,∴u ⊥v ,∴α⊥β. ②∵u =(3,0,0),v =(-2,0,0), ∴u =-32v ,∴u ∥v ,∴α∥β. (3)①∵u =(2,2,-1),a =(-6,8,4), ∴u ·a =-12-4+16=0, ∴u ⊥a ,∴l ⊂α或l ∥α. ②∵u =(2,-3,0),a =(8,-12,0). ∴u =14a ,∴u ∥a ,∴l ⊥α.【变式2】如图,ABCD 是直角梯形,090=∠ABC ,ABCD SA 平面⊥,1===BC AB SA ,21=AD ,求平面SCD 与平面SBA 的法向量。
SACB D解 设坐标原点为O , 由已知可得:AB →=OB →-OA → =(0,b ,0)-(a ,0,0)=(-a ,b ,0), AC →=OC →-OA →=(0,0,c )-(a ,0,0)=(-a ,0,c ). 设平面ABC 的一个法向量为n =(x ,y ,z ), 则n ·AB →=(x ,y ,z )·(-a ,b ,0)=-ax +by =0, n ·AC →=(x ,y ,z )·(-a ,0,c )=-ax +cz =0. 于是得y =a b x ,z =a c x . 不妨令x =bc ,则y =ac ,z =ab . 因此,可取n =(bc ,ac ,ab )为平面ABC 的一个法向量. 解 ∵AD 、AB 、AS 是三条两两垂直的线段,∴以A 为原点,以AD →、AB →、AS →的方向为x 轴,y 轴,z 轴的正方向建立坐标系,则A (0,0,0),D (12,0,0),C (1,1,0),S (0,0,1), AD →=(12,0,0)是平面SAB 的法向量,设平面SCD 的法向量n =(1,λ,u ), 则n ·DC →=(1,λ,u )·(12,1,0)=12+λ=0,∴λ=-12. n ·DS →=(1,λ,u )·(-12,0,1)=-12+u =0, =(1,-1,1).规律方法 平面的法向量有无数条,一般用待定系数法求解,解一个三元一次方程组,求得其中一条即可,构造方程组时,注意所选平面内的两向量是不共线的,赋值时保证所求法向量非零,本题中法向量的设法值得借鉴.题型三 利用空间向量证明平行问题【例3】已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、DD 1的中点,求证:(1)FC 1∥平面ADE ;(2)平面ADE ∥平面B 1C 1F .证明 如图所示建立空间直角坐标系D -xyz ,则有D (0,0,0)、A (2,0,0)C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2),所以FC 1→=(0,2,1), DA →=(2,0,0),AE →=(0,2,1). 2分 (1)设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0, 4分 得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1, 所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1. 又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . 7分 (2)∵C 1B 1→=(2,0,0), 设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0z 2=-2y 2 10分 令z 2=2得y 2=-1, 所以n 2=(0,-1,2),因为n 1=n 2, 所以平面ADE ∥平面B 1C 1F . 12分规律方法 利用向量法解此类题的关键是建立适当的坐标系,求出平面的法向量,通过分析直线的方向向量、平面的法向量之间的关系进行证明.【变式3】 如图所示,正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1B 1,A 1D 1,B 1C 1,C 1D 1的中点.求证:平面AMN ∥平面EFDB .证明 如图,分别以DA 、DC 、DD 1所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系. 设正方体棱长为a ,则A (a ,0,0),A 1(a ,0,a ),D 1(0,0,a ),B 1(a ,a ,a ),B (a ,a ,0),C 1(0,a ,a ).∴N (a2,0,a ),M (a ,a 2,a ),E (a2,a ,a ),F (0,a2,a ),∴AN →=(-a2,0,a ),NM →=(a 2,a2,0),DB →=(a ,a ,0),DF →=(0,a 2,a ),设平面AMN 与平面EFDB 的法向量分别为m =(x 1,y 1,z 1)和n =(x 2,y 2,z 2),则⎩⎪⎨⎪⎧m ·AN →=0,m ·NM →=0,∴⎩⎪⎨⎪⎧-a2x 1+0×y 1+az 1=0,a2x 1+a 2y 1+0×z 1=0,∴y 1=-x 1=-2z 1,取z 1=1,∴平面AMN 的一个法向量为m =(2,-2,1),同理由⎩⎪⎨⎪⎧n ·DB →=0,n ·DF →=0,可得x 2=-y 2,y 2=-2z 2,令z 2=1,∴平面EFDB 的一个法向量为n =(2,-2,1),∵m =n ,∴m ∥n ,方法技巧 探索性、存在性问题的解题技巧探索性、存在性问题是条件不完备和结论不确定的问题,这类问题对学生解决问题、处理问题的能力要求较高.立体几何中的探索性、存在性问题,是比较有思维层次的,对能力要求非常高.利用向量的方法,可以将这类问题由立体几何问题转化成为代数的方程式或不等式的解的问题,降低了问题的难度.【例4】如图,四棱柱P -ABCD 中,ABCD PA 平面⊥PB 与底面成的角为045,底面ABCD 为直角梯形,090=∠=∠BAD ABC ,121===AD BC PA ,问在棱PD 上是否存在一点E ,使PAB CE 平面//?若存在,求出E 点的位置;若不存在,请说明理由。