初中数学212《整式(多项式)》习题精选
- 格式:doc
- 大小:31.50 KB
- 文档页数:3
七年级整 式训练题一.判断题 (1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( )(4)x 3+y 3是6次多项式.( )(5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( ) A .二次二项式 B .三次二项式 C .四次二项式 D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5B .3x -3y 与2 x 2―2x y -5都是多项式 C .多项式-2x 2+4x y 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z 不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列代数式中,不是整式的是( )A 、23x -B 、745b a -C 、x a 523+D 、-20056.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( )A 、2)(y x -B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。
A 、2b a +B 、b a s +C 、b s a s +D 、b s a s s+29.下列单项式次数为3的是( )A.3abcB.2×3×4C.41x 3yD.52x10.下列代数式中整式有( )x 1, 2x +y , 31a 2b , πy x -, xy 45, 0.5 , a A.4个 B.5个 C.6个D.7个11.下列整式中,单项式是( ) A.3a +1 B.2x -y C.0.1 D.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -113.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式 C .0是单项式 D .单项式-31x 2y 的系数是31 14.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( ) A .1 B .2 C .3 D .416.单项式-232xy 的系数与次数分别是( ) A .-3,3 B .-21,3 C .-23,2 D .-23,3 17.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式18.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、519.系数为-21且只含有x 、y 的二次单项式,可以写出( ) A .1个 B .2个 C .3个 D .4个20.多项式212x y -+的次数是( )A 、1B 、 2C 、-1D 、-2三.填空题1.当a =-1时,34a = ;2.单项式: 3234y x -的系数是 ,次数是 ; 3.多项式:y y x xy x +-+3223534是 次 项式;4.220053xy 是 次单项式;5.y x 342-的一次项系数是 ,常数项是 ;6._____和_____统称整式.7.单项式21xy 2z 是_____次单项式. 8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 . 9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有10.x+2xy +y 是 次多项式.11.比m 的一半还少4的数是 ;12.b 的311倍的相反数是 ;13.设某数为x ,10减去某数的2倍的差是 ;14.n 是整数,用含n 的代数式表示两个连续奇数 ;15.42234263y y x y x x --+-的次数是 ;16.当x =2,y =-1时,代数式||||x xy -的值是 ; 17.当t = 时,31t t +-的值等于1;18.当y = 时,代数式3y -2与43+y 的值相等; 19.-23ab 的系数是 ,次数是 次.20.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1)都是 式;(2)都是 次.21.多项式x 3y 2-2xy 2-43xy -9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .22.若2313m x y z -与2343x y z 是同类项,则m = . 23.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .24.单项式7532c ab 的系数是____________,次数是____________. 25.多项式x 2y +xy -xy 2-53中的三次项是____________.26.当a=____________时,整式x 2+a -1是单项式.27.多项式xy -1是____________次____________项式.28.当x =-3时,多项式-x 3+x 2-1的值等于____________.29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n30.一个n 次多项式,它的任何一项的次数都____________.31.系数是-3,且只含有字母x 和y 的四次单项式共有 个,分别是 .32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 .四、列代数式1. 5除以a 的商加上323的和;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。
2.1 整式习题精选一、选择题:1.单项式−的( )A.系数是5,次数是n B.系数是−5,次数是n+1C.系数是−,次数是n D.系数是−,次数是n+1答案:D说明:单项式−的数字因数是−,即它的系数为−,而在这个单项式中x的指数为1,y的指数为n,因此,它所有字母的指数之和为n+1,即它的次数为n+1,答案为D.2.多项式xy2−9xy+5x2y−25的二次项为( )A.5 B.−9 C.5x2y D.−9xy答案:D说明:多项式的二次项即在这个多项式中次数为二次的项,因为在多项式中,每个单项式是多项式的项,由此来看这个多项式的每一项,xy2次数为1+2 =3,−9xy次数为1+1 = 2,5x2y次数为2+1 = 3,−25不含字母,为常数项,所以次数为二次的项应该是−9xy,答案为D.3.如果一个多项式的次数是5,那么这个多项式中任何一项的次数( )A.都小于5 B.都等于5 C.都不大于5 D.都不小于5答案:C说明:多项式的次数为多项式中次数最高的项的次数,因此,如果这个多项式的次数为5,那么这个多项式中次数最高的项的次数是5,也就是说这个多项式中其它项的次数都不会超过5,即这个多项式中任何一项的次数都不大于5,答案为C.4.(m+1)xy n−1是关于x、y的四次单项式,则m、n的值分别为( )A.m为任意数,n = 4 B.m = 0,n = 3C.m≠−1,n = 4 D.m = 1,n = 4答案:C说明:由已知条件不难得出(m+1)xy n−1的次数应该是4,即1+n−1 = 4,n应该为4,此时单项式即(m+1)xy3,只有当它的系数m+1不为0时,它才是四次单项式,所以m≠−1,答案为C.5.P是关于y的8次多项式,Q是关于y的5次多项式,则P−Q是关于y的( )多项式A.5次 B.6次C.7次D.8次答案:D说明:由已知P是关于y的8次多项式,即P中次数最高的项的次数为8,而Q是关于y的5次多项式,即Q中次数最高的项的次数为5,它不含次数为8的项,因此,P−Q中一定含有次数为8的项,且8次项为次数最高的项,即P−Q是关于y的8次多项式,答案为D.6.下列说法中正确的个数是( )(1)单项式−的系数是−;(2)单项式n的系数和次数都是1;(3)ab的系数和次数分别是0和1;1(4)和都是单项式;(5)多项式2x3−x2y2+y3+26的次数是6.A.1 B.2 C.3 D.4答案:B说明:(3)中ab的系数应是1,(4)中不是单项式,(5)中2x3−x2y2+y3+26的次数是4;(1)、(2)的说法是正确的,所以答案为B.7.下列说法中正确的是( )A.x3yz2没有系数B.++不是整式C.4π是一次单项式 D.8x−2是一次二项式答案:D说明:选项A,x3yz2的系数是1,A错;选项B ,、、都是单项式,所以++是几个单项式的和,是整式,B错;4π中不含字母,所以它是常数项,不是一次单项式,C错;选项D是正确的,答案为D.8.代数式,x2y2,0,,−b,a+b2,(a−a)(b−c2)中单项式的个数是( )A.3 B.4 C.5 D.6 答案:C说明:根据单项式的定义不难看出,x2y2,0,−b都是单项式,而,a+b2则不是单项式,(a−a)(b−c2) = 0•(b−c2) = 0,也是单项式,因此,一共有5个单项式,答案为C.二、解答题:如果多项式(a+1)x4−(1−b)x5+x2−2是关于x的二次多项式,求a+b的值.解析:因为多项式(a+1)x4−(1−b)x5+x2−2是关于x的二次多项式,所以多项式中含x4与x5的项的系数都应该是0,即a+1 = 0,1−b = 0,可求得a = −1,b = 1,则a+b = 0.2。
初中整式练习题及答案作为初中数学的一部分,整式是一个基础且重要的概念。
掌握整式的运算规则和解题技巧,对学生的数学学习能力和解决问题的能力都是非常有帮助的。
在这篇文章中,我们将介绍一些常见的初中整式练习题,并附上它们的答案,希望能够帮助同学们更好地掌握整式的知识。
【题目一】简化下列各式:1. 2x + 3y - x + y答案:x + 4y2. 5a + 7b - (2a - 4b)答案:3a + 11b3. (2x + 3y) - (x - y)答案:x + 4y【题目二】展开下列各式:1. (x + 3)(2x - 5)答案:2x^2 - 5x + 6x - 15 = 2x^2 + x - 152. (2a - b)^2答案:(2a - b)(2a - b) = 4a^2 - 2ab - 2ab + b^2 = 4a^2 - 4ab + b^23. (3x - 2y)(3x + 2y)答案:9x^2 - 4y^2【题目三】对下列各式进行合并同类项:1. 4x + 2y - 3x + y答案:x + 3y2. 5a^2b - 3ab + 2a^2b + ab答案:7a^2b - 2ab【题目四】对下列各式进行分解因式:1. x^2 + 2xy + y^2答案:(x + y)(x + y) = (x + y)^22. 4m^2 - 9n^2答案:(2m + 3n)(2m - 3n)【题目五】计算下列各式的值:1. 3(x - 2) + 2(3x + 1) - 4x答案:3x - 6 + 6x + 2 - 4x = 5x - 42. 2(3a - 4) - 3(2a + 1) + 5a答案:6a - 8 - 6a - 3 + 5a = 5a - 11【题目六】求解下列等式:1. 2x + 3 = 9答案:2x + 3 - 3 = 9 - 3,得到2x = 6,再除以2,得到x = 32. 5(2a - 1) = 13答案:10a - 5 = 13,再加上5,得到10a = 18,再除以10,得到a = 1.8通过解答这些练习题,我们可以发现整式的运算和变形是非常有规律和逻辑性的。
整式同步测验题(一)一.选择题1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣3.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣44.在式子,2πx2y,,y2﹣5,π+6,中,多项式的个数是()A.1B.2C.3D.45.多项式4x2﹣xy2﹣x+1的三次项系数是()A.4B.﹣C.D.﹣6.在代数式﹣7,m,x3y2,,2x+3y中,整式有()A.2个B.3个C.4个D.5个7.下列说法正确的是()A.x不是单项式B.﹣15ab的系数是15C.单项式4a2b2的次数是2D.多项式a4﹣2a2b2+b4是四次三项式8.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+19.单项式﹣3ab的系数是()A.3B.﹣3C.3a D.﹣3a10.下列说法中错误的有()个.①绝对值相等的两数相等;②若a,b互为相反数,则=﹣1;③如果a大于b,那么a的倒数小于b的倒数;④任意有理数都可以用数轴上的点来表示;⑤x2﹣2x﹣33x3+25是五次四项式;⑥一个数的相反数一定小于或等于这个数;⑦正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个11.某九年级学生复习了整式有关概念后,他用一个圆代表所有代数式,画了下列图形来表示整式,多项式,单项式的关系,正确的是()A.B.C.D.二.填空题12.﹣πx2的次数是.13.多项式x2y3﹣2x3y3+x4﹣3y3﹣1是一个次五项式.14.单项式的次数为:.15.多项式3x2y﹣7x4y2﹣xy3+28是次项式,最高次项的系数是.三.解答题16.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.17.已知多项式2x2+x3+x﹣5x4﹣(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.18.(1)下列代数式:①2x2+bx+1;②﹣ax2+3x;③;④x2;⑤,其中是整式的有.(填序号)(2)将上面的①式与②式相加,若a,b为常数,化简所得的结果是单项式,求a,b 的值.19.已知式子M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,且二次项的系数为b,在数轴上有点A、B、C三个点,且点A、B、C三点所表示的数分别为a、b、c,如图所示已知AC=6AB(1)a=;b=;c=.(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,点E为线段AP的中点,点F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,求的值.(3)点P、Q分别自A、B出发的同时出发,都以每秒2个单位长度向左运动,动点M自点C出发,以每秒6个单位长度的速度沿数轴向右运动设运动时间为t(秒),3<t<时,数轴上的有一点N与点M的距离始终为2,且点N在点M的左侧,点T为线段MN 上一点(点T不与点M、N重合),在运动的过程中,若满足MQ﹣NT=3PT(点T不与点P重合),求出此时线段PT的长度.参考答案与试题解析一.选择题1.【解答】解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.【解答】解:单项式﹣的系数和次数是:﹣,5.故选:B.3.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.4.【解答】解:在式子,2πx2y,,y2﹣5,π+6,中,多项式有:,y2﹣5,共2个.故选:B.5.【解答】解:多项式4x2﹣xy2﹣x+1的三次项是﹣xy2,三次项系数是﹣.故选:B.6.【解答】解:在代数式﹣7,m,x3y2,,2x+3y中,整式有:﹣7,m,x3y2,2x+3y共4个.故选:C.7.【解答】解:A、x是单项式,故原说法错误;B、﹣15ab的系数是﹣15,故此选项错误;C、单项式4a2b2的次数是4,故此选项错误;D、多项式a4﹣2a2b2+b4是四次三项式,正确.故选:D.8.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.9.【解答】解:单项式﹣3ab的系数是﹣3.故选:B.10.【解答】解:①如|2|=2,|﹣2|=2,2≠﹣2,即绝对值相等的两数不一定相等,故①错误;②若a,b互为相反数,当a和b,都不是0时,=﹣1,故②错误;③当a=2,b=﹣3时,a>b,但a的倒数大于b的倒数,故③错误;④任意有理数都可以用数轴上的点来表示,故④正确;⑤x2﹣2x﹣33x3+25是三次四项式,故⑤错误;⑥﹣3的相反数是3,3>﹣3,故⑥错误;⑦正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数,故⑦错误;即错误的有6个,故选:C.11.【解答】解:代数式包括整式和分式,整式包括多项式和单项式,故正确的是选项D,故选:D.二.填空题12.【解答】解:单项式﹣πx2的次数是:2.故答案为:2.13.【解答】解:多项式x2y3﹣2x3y3+x4﹣3y3﹣1是一个六次五项式,故答案为:六.14.【解答】解:单项式的次数为:2+2=4.故答案为:4.15.【解答】解:多项式式3x2y﹣7x4y2﹣xy3+28是六次四项式,最高次项的系数是﹣7.故答案为六、四、﹣7三.解答题(共4小题)16.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.17.【解答】解:(1)按x降幂排列为:﹣5x4+x3+2x2+x﹣;(2)该多项式的次数是4,它的二次项是2x2,常数项是﹣.18.【解答】解:(1)①是多项式,也是整式;②是多项式,也是整式;③是分式,不是整式;④是单项式,也是整式;⑤是二次根式,不是整式;故答案为:①②④;(2)(2x2+bx+1)+(﹣ax2+3x)=2x2+bx+1﹣ax2+3x=(2﹣a)x2+(b+3)x+1∵①式与②式相加,化简所得的结果是单项式,∴2﹣a=0,b+3=0,∴a=2,b=﹣3.19.【解答】解:(1)∵M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,二次项的系数为b∴a=16,b=20;∴AB=4∵AC=6AB∴AC=24∴16﹣c=24∴c=﹣8故答案为:16,20,﹣8;(2)设点P的出发时间为t秒,由题意得:EF=AE﹣AF=AP﹣BQ+AB=(24﹣2t)﹣(20﹣3t)+4=6+∴BP﹣AQ=(28﹣2t)﹣(16﹣3t)=12+t,∴=2;(3)设点P的出发时间为t秒,P点表示的数为16﹣2t,Q点表示的数为20﹣2t,M点表示的数为6t﹣8,N点表示的数为6t﹣10,T点表示的数为x,∴MQ=28﹣8t,NT=x﹣6t+10,PT=|16﹣2t﹣x|。
整式阿城区舍利中学隋景龙一选择1.下列说法正确的是().A.a的系数是0 B.1y是一次单项式C.-5x的系数是5 D.0是单项式2.下列单项式书写不正确的有().①312a2b;②2x1y2;③-32x2;④-1a2b.A.1个 B.2个 C.3个 D.4个3.“比a的32大1的数”用式子表示是().A.32a+1 B.23a+1 C.52a D.32a-14.下列式子表示不正确的是().A.m与5的积的平方记为5m2 B.a、b的平方差是a2-b2C.比m除以n的商小5的数是mn-5D.加上a等于b的数是b-a5.目前,财政部将证券交易印花税税率由原来的1‰(千分之一)•提高到3‰.如果税率提高后的某一天的交易额为a亿元,则该天的证券交易印花税(•交易印花税=印花税率×交易额)比按原税率计算增加了()亿元. A.a‰ B.2a‰ C.3a‰ D.4a‰6.为了做一个试管架,在长为a(cm)(a>6)的木板上钻3个小孔(如图),每个小孔的直径为2cm,则x等于().A.3366...4444a a a acm B cm C cm D-+-+cm二填空7.填写下表8.若x2y n-1是五次单项式,则n=_______.9.针对药品市场价格不规范的现象,药监部门对部分药品的价格进行了调整,已知某药品原价为a元,经过调整后,药价降低了60%,则该药品调整后的价格为_______元.10.某班a名同学参加植树活动,其中男生b名(b<a),若只由男生完成,•每人需植树15株;若只由女生完成,则每人需植树________棵.11.小明在银行存a元钱,银行的月利率为%,利息税为20%,6个月后小明可得利息________元.12.某音像公司对外出租光盘的收费方法是:每张光盘出租后的前2•天每天收费元,以后每天收费元,那么一张光盘在出租后第n天(n>•2,•且为整数)•应收费_______元.三解答13.列式表示:(1)某数x的平方的3倍与y的商;(2)比m的14多20%的数.14.某种商品进价m元/件.在销售旺季,该商品售价较进价高30%;销售旺季过后,又以7折(70%)的价格开展促销活动,这时一件商品的售价是多少元?15.观察图的点阵图形和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应的等式;(2)通过猜想,写出与第n 个图形相对应的等式.整式答案:1.D 2.C 3.A 4.A 5.B 6.C7.-5,0;-1,2;,3;-75,1;45,4;52,4 8.4 9. 10.15b a b11. 12.+(n-2) 13.(1)23x y(2) 14.m×(1+30%)×70%=(元) 15.(1)4×3+1=4 ×4-3,4×4+1=4×5-3 (2)4(n -1)+1=4n -3.。
初中数学单项式多项式整式加减综合练习题一、单选题1.若长方形的周长为4m ,一边长为m n -,则另一边长为( )A.3m n +B.22m n +C.m n +D.2m n + 2.若5x y -=-,则()315y x --的值为( ). A.3- B.3 C.2- D.23.下列各组中是同类项的是( )A.23x y 与22xyB.413x y 与412yxC.2a -与0D.231π2a bc 与233a cb - 4.若单项式33m n x y -与单项式23n n x y 的和是6m n n x y -,则( )A.9m ≠B.3n ≠C.9m =,3n ≠D.9m =,3n = 5.如果整式252n x x --+是关于x 的三次三项式,那么n 等于( )A.3B.4C.5D.66.下列说法正确的是( ) A.17a+是多项式 B.22243562x x y y ---是四次四项式C.61x -的项数和次数都是6D.3a b +不是多项式 7.多项式221x x -+的各项分别是( )A. 2,2,1x x +B.2,2,1x x -+C. 2,2,1x x --D.2,2,1x x ---8.有理数a b ,在数轴上的位置如图,则2a b a b +--化简后为( )A.63a -B.2a b --C.2a b +D.a b --9.下列运算正确的是( )A.()23161x x --=--B.()23161x x --=-+C.()23162x x --=--D.()23162x x --=-+10.下列代数式中,既不是单项式,也不是多项式的是( )A.341553x y --B.2453m n - C.325118x y x D.2216a b +- 11.在多项式323238143x y x y xy --++中,最高次项为( )A.323x yB.323x y -C.328x yD.328x y -12.关于x 的多项式232x x -+的二次项系数、一次项系数和常数项分别为( )A.3,2,1B.3-,2,0C.3-,2,1D.3,2,0二、解答题13.指出下列多项式的项、项数、次数. (1)21212a ab -+. (2)22231122m m n mn ---. (3)2312xy x y --(4)223330.5x y xy x y --.14.已知549a x y ++和317b x y +-是同类项,求式子43433642b a b b ba --+的值.15.若代数式22269a kab b ab ++-+中不含ab 项,求k 的值.16.若代数式2231a a ++的值为5,求代数式2468a a ++的值.17.已知多项式212254531m x y x y x y +--.(1)求多项式中各项的系数和次数.(2)若该多项式是八次三项式,求m 的值.三、填空题18.若代数式13m n a b -与369a b -的和是单项式,则m n += 。
专题2.4 整式-多项式(专项练习)一、填空题类型一、多项式的判断1.在式子①25x +,①1-,①222a ab b ++,①xyz ,①11x y +,①2x y +,①23π+,①22x y -中是整式的有________,其中是单项式的有________,是多项式的有________.2.在代数式23xy ,m ,263a a -+,12,22145x yz xy -,23ab 中,单项式有___个,多项式有____个. 3.代数式2x y -、m 、2x xy -、0、2ab -、1x 、3a b +、()2a b +、0.5-、xy a +中,单项式有________个,多项式有________个,整式有________个.4.在代数式xy ,﹣3,31+14x -,x ﹣y ,﹣m 2n ,1x ,4x ,4﹣x 2,ab 2,23x +中,单项式有_____个,多项式有_____个. 类型二、多项式的项、项的系数、次数5.多项式234a b ++的常数项是_____. 6.多项式12x |m|﹣(m ﹣3)x+6是关于x 的三次三项式,则m 的值是_____. 7.如果y |m|﹣3﹣(m -5)y+16是关于y 的二次三项式,则m 的值是_____.8.多项式3233525xy x y x y -+-+的次数是________,最高次项的系数是________,常数项是________. 类型三、由多项式的系数求值9.若多项式||22(2)1m n xy n x y 是关于x ,y 的三次多项式,则mn =_____.10.若关于x ,y 的多项式4xy 3–2ax 2–3xy +2x 2–1不含x 2项,则a =__________.11.已知多项式kx 2+4x ﹣x 2﹣5是关于x 的一次多项式,则k=_____.12.若多项式()()4322311x a x x b x --+-+-中不含3x 和x 项,则a+b=_______. 类型四、由多项式的指数求值13.已知多项式x |m |+(m ﹣2)x ﹣10是二次三项式,m 为常数,则m 的值为_____.14.如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________. 15.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.16.已知p=(m+2)2m x ﹣(n ﹣3)xy |n|﹣1﹣y ,若P 是关于x 的四次三项式,又是关于y 的二次三项式,则32m n +的值为_____. 类型五、按某个字母升幂(降幂)排列 17.把多项式 32x 3y ﹣45y 2+ 12xy ﹣12x 2 按照字母 x 升幂排列:_____. 18.把多项式2ab 2-5a 2b -7+a 3b 3按字母b 的降幂排列,排在第三项的是___________.19.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.20.2a 4+a 3b 2-5a 2b 3+a -1是____次____项式.它的第三项是__________.把它按a 的升幂排列是____________________.类型六、据要求写出多项式21.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________22.一个只含有字母x 的二次三项式,它的二次项系数为-2,一次项系数为37,常数项为-1,则这个二次三项式为__________.23.请写出一个单项式,同时满足下列条件:①含有字母x 、y ;①系数是负整数;①次数是4,你写的单项式为______. 类型七、整式的判断24.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.25.如果一个整式具备以下三个条件:(1)它是一个关于字母x 的二次三项式;(2)各项系数的和等于10;(3)它的二次项系数和常数项都比﹣2小1,请写出满足这些条件的一个整式_____.26.在下列各式中:12x y -,3x ,22x x y -+,5x ,3x y z +-中,单项式有________,多项式有________,整式有________. 27.代数式2x ,223x x --,2x a +,322y y y+-中,整式有________个. 类型八、数字类规律探索28.找出下列各图形中数的规律,依此,a 的值为_____.29.按一定规律排列的一列数为12-,2,92-,8,252-,18……,则第8个数为________,第n个数为_________.30.观察以下一列数:3,54,79,916,1125,…则第20个数是_____.31.按一定规律排列的一列数:3,23,13-,33,43-,73,113-,183,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是__________.类型九、图形类规律探索32.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).33.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图①,图①的规律摆下去,摆成第n个“T”字形需要的棋子个数为_______.34.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形按此规律摆下去,第n个图案有_______个三角形(用含n 的代数式表示).35.如图,每一幅图中有若干个菱形,第1幅图中有1个菱形,第2幅图中有3菱形.第3幅图中有5个菱形,依照此规律,第6幅图中有_____个菱形.参考答案1.①①①①①①① ①① ①①①①①【解析】【分析】根据整式、单项式、多项式的定义,结合所给各式进行判断即可.【详解】解:所给式子中整式有:①①①①①①①;单项式有:①①①;多项式有:①①①①.故答案为:①①①①①①①、①①、①①①①①.【点睛】本题考查了多项式、单项式及整式的知识,掌握三者的定义是解题的关键,属于基础知识考察类题目. 2.3 2【详解】单项式有:3xy 2,m ,12,共3个,多项式有:6a 2-a+3,4x 2yz -15xy 2,共2个. 故答案为3,2.3.4 4 8【解析】【分析】根据整式的定义和多项式、单项式的定义求解.【详解】解:单项式有:m 、0、-ab 2、|-0.5|共4个.多项式有2x -y 、x 2-xy 、3a +b 、2(a+b )共4个. 1x 、x a+y 分母中含有未知数不是整式,其余的都是整式,共8个. 故答案为:4,4,8.【点睛】本题重点对整式、单项式、单项式定义的考查.4.5, 3【解析】【分析】根据单项式和多项式的概念解答即可.【详解】在代数式xy ,﹣3,31+14x -,x ﹣y ,﹣m 2n ,1x ,4x ,4﹣x 2,ab 2,23x +中,单项式有: xy ,﹣3,﹣m 2n ,,4x ,ab 2,5个,多项式有:31+14x -,x ﹣y ,4﹣x 2,3个.故答案为:(1). 5 (2). 3. 【点睛】本题考查了单项式和多项式的概念,解题的关键是掌握:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;几个单项式的和叫做多项式.5.34【解析】【分析】根据常数项的定义即可求解.【详解】a+2b+3a 2b 3=++4444. 故答案为34. 【点睛】本题主要考查常数项的定义,熟悉掌握是关键.6.-3【分析】由题意可知:|m|=3,且m -3≠0即可作答.【详解】由题意可知:|m|=3,且m -3≠0;①m= -3;故答案为-3.【点睛】本题考查了单项式与多项式的概念,掌握一个单项式中,所有字母的指数的和叫做这个单项式的次数.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数是解题的关键. 7.-5【分析】根据二次三项式的定义,可知多项式y |m|-3-(m -5)y+16的最高次数是二次,共有三项,据此列出m 的关系式,从而确定m 的值.【详解】①y |m|-3-(m -5)y+16是关于y 的二次三项式,①|m|-3=2,m -5≠0,①m=-5,故答案为-5.【点睛】本题考查了二次三项式的定义:一个多项式含有几项,是几次就叫几次几项式.注意一个多项式含有哪一项时,哪一项的系数就不等于0.8.5 -2 +5【解析】【分析】根据多项式的概念及单项式的次数、系数的定义解答.【详解】多项式3233525xy x y x y -+-+的次数是5.最高次项系数是-2,常数项是+5.故答案为:5,-2,+5.【点睛】本题考查了多项式:几个单项式的和叫多项式.多项式中每个单项式都是多项式的项,这些单项式的最高次数,就是这个多项式的次数.9.0或8【分析】直接利用多项式的次数确定方法得出答案.【详解】 解:多项式||22(2)1m n xy n x y 是关于x ,y 的三次多项式,20n ∴-=,1||3m n ,2n ∴=,||2m n ,2m n ∴-=或2n m ,4m ∴=或0m =,0mn 或8.故答案为:0或8.【点睛】本题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.10.1【分析】把a看成是常数,合并同类项,然后令x2项的系数为0即可求出a的值.【详解】解:4xy3-2ax2-3xy+2x2-1=4xy3+(2-2a)x2-3xy-1,因为多项式不含x2项,所以2-2a=0,解得:a=1.故答案为1.【点睛】此题主要考查了多项式,关键是掌握合并同类项法则.即系数相加作为系数,字母和字母的指数不变.在多项式中不含某一项,即合并同类项后令这一项的系数为0.11.1.【分析】根据多项式的次数的定义来解题.要先找到题中的等量关系,然后列出方程求解.【详解】多项式kx2+4x﹣x2﹣5是关于的一次多项式, 多项式不含x2项,即k-1=0,k=1.故k的值是1.【点睛】本题考查了以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.12.1【解析】【分析】根据多项式的有关概念和题目要求得到-(a-2)=0,b+1=0,然后解一次方程即可.【详解】根据题意得−(a−2)=0,b+1=0,解得a=2,b=−1,则a+b=2-1=1.故答案为:1.【点睛】此题考查多项式,代数式求值,解题关键在于掌握其概念.13.-2【详解】因为多项式x |m|+(m -2)x -10是二次三项式,可得:m−2≠0,|m|=2,解得:m=−2,故答案为−214.24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:①多项式42142mx x +-与多项式35n x x +的次数相同, ①4n =,①22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值.15.2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】①多项式||1(2)32m x m x --+是关于x 的二次三项式, ①||2m =,且()20m --≠,①2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键.16.56- 【解析】分析:根据多项式的概念即可求出m ,n 的值,然后代入求值.详解:依题意得:m 2=4且m+2≠0,|n|-1=2且n -3≠0,解得m=2,n=-3, 所以32m n +=235326-+=-. 故答案是:56-. 点睛:本题考查多项式的概念,解题的关键是熟练运用多项式概念17.﹣45y 2+ 12xy ﹣12x 2 +32x 3y 【解析】【分析】先分清多项式的各项:32x 3y ,﹣45y 2, 12xy ﹣12x 2;再按升幂排列的定义排列. 【详解】多项式32x 3y ﹣45y 2+ 12xy ﹣12x 2按字母x 的升幂排列是: 2234112?3252y xy x x y ﹣﹣++. 故答案是:2234112?3252y xy x x y ﹣﹣++. 【点睛】本题考查了多项式.解答此题必须熟悉降幂排列的定义:我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列称为按这个字母的降幂或升幂排列.18.-5a 2b【分析】先把多项式2ab 2-5a 2b -7+a 3b 3按字母b 的降幂排列,然后找出符合条件的项即可.【详解】多项式2ab 2-5a 2b -7+a 3b 3按字母b 的降幂排列为:a 3b 3+2ab 2-5a 2b -7.故答案为-5a 2b .【点睛】本题主要考查的是多项式概念,掌握多项式按照某一字母的升降幂排列的方法是解题的关键.19.﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.20.五 五 −5a 2b 3 −1+a −5a 2b 3+a 3b 2+2a 4【解析】【分析】根据多项式的次数和项数的定义进行求解,再根据a 的指数的大小按升幂排列起来即可.【详解】2a 4+a 3b 2-5a 2b 3+a -1是五次五项式,它的第三项是-5a 2b 3,把它按a 的升幂排列是-1+a -5a 2b 3+a 3b 2+2a 4. 故答案为:五,五,−5a 2b 3,-1+a -5a 2b 3+a 3b 2+2a 4.【点睛】此题考查了多项式,用到的知识点是多项式的次数和项数以及排列顺序;多项式里次数最高项的次数,叫做这个多项式的次数,多项式中的每个单项式叫做多项式的项.21.-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.22.23217x x -+- 【解析】一个只含有x 的二次三项式,它的二次项系数为-2,一次项系数为37,常数项为-1,得 23217x x -+-. 故答案是:23217x x -+-. 23.﹣xy 3.【解析】①含有字母x 、y ;①系数是负整数;①次数是4,符合条件的单项式不唯一,例如:-xy 3.故答案是:-xy 3等.24.21122x x -+- 【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 25.﹣3x 2+16x ﹣3【解析】分析:根据整式的概念写出要求的整式.详解:根据题意可知答案不唯一,(1)它是一个关于字母x 的二次三项式;(2)各项系数的和等于10,如-3+16-3=10;(3)它的二次项系数和常数项都比-2小1,如二次项系数是-3,常数项是-3,所以满足这些条件的一个整式为:-3x 2+16x -3故本题答案为:-3x 2+16x -3.点睛:主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.本题的关键是根据描述写出式子要特别熟悉整式的特点.26.3x ,5x 12x y -,3x y z +- 3x ,5x ,12x y -,3x y z +- 【解析】【分析】单项式和多项式统称为整式.由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式,字母前的常数为单项式的系数,字母的指数和为单项式的次数.多项式的定义:若干个单项式的和组成的式子叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.根据定义逐项判断即可.【详解】解:单项式有:3x ,5x ; 多项式有:12x y -,3x y z +-; 整式有:3x ,5x ,12x y -,3x y z +-; 故答案为:(1)3x ,5x ;(2)12x y -,3x y z +-;(3)3x ,5x ,12x y -,3x y z +-. 【点睛】本题考查了对多项式、单项式、整式的定义的应用.易错点,多项式和单项式都是整式.27.2【解析】【分析】根据整式的概念分析判断各个式子.【详解】根据整式的概念可知,整式有x 2−x−23,2x a +,共2个. 故答案为:2.【点睛】本题考查了整式的概念,解题的关键是熟练的掌握整式的概念.28.226.【详解】试题分析:观察图形可得,0+2=1×2,2+10=3×4,4+26=5×6,6+50=7×8,由此规律可得14+a=15×16,解得:a=226.考点:规律探究题. 29.32 22(1)n n -⋅ 【分析】首先把整数化为分母是2的分数,可以发现该数列中的每一个数的绝对值的分母都为2,分子恰是自然数列的平方,前面的符号,第奇数个为负,第偶数个为正,可用(﹣1)n 表示,代入即可求解.【详解】把整数化为分母是2的分数,可以发现该数列中的每一个数的绝对值的分母都为2,分子恰是自然数列的平方,前面的符号,第奇数个为负,第偶数个为正,可用(﹣1)n 表示,故第n 个数为:(﹣1)n22n ⨯,第8个数为:(﹣1)8282⨯=32. 故答案为32,(﹣1)n 22n ⨯. 【点睛】本题考查了数列的探索与运用,合理的统一数列中的分母寻找规律是解题的关键.30.41400【分析】观察已知数列得到一般性规律,写出第20个数即可.【详解】解:观察数列得:第n 个数为221n n +,则第20个数是41400. 故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.31.bc=a【分析】根据题目中的数字,可以发现相邻的数字之间的关系,从而可以得到a ,b ,c 之间满足的关系式.【详解】解:①一列数:3,23,13-,33,43-,73,113-,183-,…,可发现:第n 个数等于前面两个数的商,①a ,b ,c 表示这列数中的连续三个数,①bc=a ,故答案为:bc=a .【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出a ,b ,c 之间的关系式.32.3n+1【详解】试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n 个图案的基础图形有4+3(n -1)=3n+1个考点:规律型33.3n +2.【分析】根据题意和图形,可以发现图形中棋子的变化规律,从而可以求得第n 个“T”字形需要的棋子个数.【详解】解:由图可得,图①中棋子的个数为:3+2=5,图①中棋子的个数为:5+3=8,图①中棋子的个数为:7+4=11,……则第n 个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,故答案为3n+2.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.34.()31n +【分析】由图形可知第1个图案有3+1=4个三角形,第2个图案有3×2+ 1=7个三角形,第3个图案有3×3+ 1=10个三角形...依此类推即可解答.【详解】解:由图形可知:第1个图案有3+1=4个三角形,第2个图案有3×2+ 1=7个三角形,第3个图案有3×3+ 1=10个三角形,...第n 个图案有3×n+ 1=(3n+1)个三角形.故答案为(3n+1).【点睛】本题考查图形的变化规律,根据图形的排列、归纳图形的变化规律是解答本题的关键.35.11【分析】根据题意分析可得:第1幅图中有1个,第2幅图中有2×2﹣1=3个,第3幅图中有2×3﹣1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案.【详解】解:根据题意分析可得:第1幅图中有1个.第2幅图中有2×2﹣1=3个.第3幅图中有2×3﹣1=5个.第4幅图中有2×4﹣1=7个.….可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n﹣1)个.当n=6时,2n﹣1=2×6﹣1=11,故答案为:11.【点睛】本题主要考查图形规律类,根据图形的变化找到规律是解题的关键.。
初一数学整式练习题精选(含答案)初一数学整式练习题精选(含答案)练习一:填空题1. 3x + 5y - 4z + 2x - y - 3z = ________.2. (x - 3)(x + 2) = ________.3. (2a + 3b)(4a - 2b) = ________.4. 2(x - 1)(x + 3) - (x - 2)(x + 1) = ________.答案:1. 5x + 4y - 7z2. x^2 - x - 63. 8a^2 - 8b^24. x^2 + 2x练习二:展开和化简1. (m - 4)(m + 2)2. (2x + 1)(x - 3)3. (3a - 2)(3a + 2) - (2a - 1)(2a + 1)4. (5x - 2)(5x + 2) + (3x - 1)(3x + 1)答案:1. m^2 - 2m - 82. 2x^2 - 5x - 33. 5a^2 - 14. 34x^2 - 1练习三:因式分解1. x^2 - 92. 81m^2 - 163. 25x^2 - y^24. 16a^2 - 49b^2答案:1. (x + 3)(x - 3)2. (9m + 4)(9m - 4)3. (5x + y)(5x - y)4. (4a + 7b)(4a - 7b)练习四:扩展与合并同类项1. 2x + 3y - 4x + y2. 5a^2 - 3a - 2a^2 + a3. 4x - 2y + 3x + 5y4. 7x^2 - 5x - 3x^2 + 4x + 2x^2答案:1. -2x + 4y2. 3a^2 - 2a3. 7x + 3y4. 6x^2 - x练习五:乘法公式1. (x + y)^22. (3a - 2b)(3a + 2b)3. (4m + 5n)^24. (2x + 3y)(2x - 3y)答案:1. x^2 + 2xy + y^22. 9a^2 - 4b^23. 16m^2 + 40mn + 25n^24. 4x^2 - 9y^2练习六:因式分解与提取公因式1. 4x^2 + 8x2. 6a^2b - 12ab3. 9x^2 - 44. 10ab - 20b答案:1. 4x(x + 2)2. 6ab(a - 2)3. (3x + 2)(3x - 2)4. 10b(a - 2)练习七:应用题1. 若已知(x + 3)(x - 1) = x^2 + bx - 3,求b的值。
第2课时 多项式能力提升1.下列说法中正确的是( )A.多项式ax 2+bx+c 是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.-35ab 2,-x 都是单项式,也都是整式D.-4a 2b ,3ab ,5是多项式-4a 2b+3ab-5中的项2.如果一个多项式是五次多项式,那么它任何一项的次数( )A.都小于5B.都等于5C.都不小于5D.都不大于5 3.一组按规律排列的多项式:a+b ,a 2-b 3,a 3+b 5,a 4-b 7,…,其中第10个式子是( )A.a 10+b 19B.a 10-b 19C.a 10-b 17D.a 10-b 21★4.若x n-2+x 3+1是五次多项式,则n 的值是( )A.3B.5C.7D.0 5.下列整式:①-25x 2;②12a+bc ;③3xy ;④0;⑤2a 3+1;⑥-5a 2+a.其中单项式有 ,多项式有 .(填序号)6.一个关于a 的二次三项式,二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为 .7.多项式-3a +4b 25的二次项系数是 .8.老师在课堂上说:“如果一个多项式是五次多项式……”老师的话还没有说完,甲同学抢着说:“这个多项式最多只有六项.”乙同学说:“这个多项式只能有一项的次数是5.”丙同学说:“这个多项式一定是五次六项式.”丁同学说:“这个多项式最少有两项,并且最高次项的次数是5.”你认为甲、乙、丙、丁四位同学谁说得对,谁说得不对?你能说出他们说得对或不对的理由吗?9.如果多项式3x m-(n-1)x+1是关于x的二次二项式,试求m,n的值.★10.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.(1)请把游戏最后丁所报出的答案用整式的形式描述出来;(2)若甲取的数为19,则丁报出的答案是多少?创新应用★11.如图所示,观察点阵图形和与之对应的等式,探究其中的规律:(1)请在④和⑤后面的横线上分别写出相应的等式:(2)通过猜想,写出与第n个图形相对应的等式.能力提升1.C2.D多项式的次数指的是次数最高项的次数,故一个五次多项式次数最高项的次数为5.3.B根据多项式排列的规律,字母a的指数是按1,2,3,…的正整数排列,所以第10个式子应为a10.字母b的指数是按1,3,5,7,…的奇数排列,所以第10个式子应为b19.中间的符号第1个式子是正,第2个式子是负,这样正、负相间,所以第10个式子应为a10-b19.4.C n-2=5,n=7.5.①③④②⑤⑥6.2a2-3a-37.4 5-3a+4b25=-3a5+4b25,二次项为4b25,所以二次项系数为45.8.解:丁同学说得对,甲、乙、丙三位同学说得都不对.理由:因为这个多项式是五次多项式,所以它的最高次项的次数是5,又因为它是多项式,也就是几个单项式的和.所以这个多项式至少有两项,因此,丁同学说得对.因为老师没有限制多项式的项数和可以包含的字母,因此它的项数不确定,可能只有两项,如x5+1,也可能是六项,如x5+x4+x3+x2+x+1,还可能有更多的项,如x5+y4+z5+a3+a2+a+1等,因此甲和丙两位同学说得都不对;另外,这个多项式的最高次项的次数是5,但最高次项不一定只有一项,如x5+y5+x4中就有两项的次数是5,因此,乙同学说得也不对.9.分析:题中多项式是关于x的二次二项式,所以次数最高项的次数为2,系数不为0,另外,-(n-1)x的系数为0.解:由题知m=2,且-(n-1)=0,即m=2,n=1.10.解:(1)由甲传给乙变为a+1;由乙传给丙变为(a+1)2;由丙传给丁变为(a+1)2-1.故丁所报出的答案为(a+1)2-1.(2)由(1)知,代入a=19得399.创新应用11.解:(1)④4×3+1=4×4-3⑤4×4+1=4×5-3(2)4(n-1)+1=4n-3.。
中考数学满分冲刺讲义: 一、选择题1.(2018北京市朝阳区初二期末)下列计算正确的是A .235a a a ⋅=B .325()a a =C .22(3)6a a = D .2841a a a ÷= 答案:A2.(2018北京市东城区初二期末)下列运算正确的是A. 532b b b ÷=B.527()b b =C. 248b b b = D .2-22a a b a ab =+()解:A 3.(2018北京市海淀区八年级期末)下列计算正确的是A .325a a a +=B .325a a a ⋅=C .236(2)6a a =D .623a a a ÷=答案:B4.(2018北京市师达中学八年级第一学期第二次月考)5. (2018北京西城区二模)下列运算中,正确的是A .22456x x x +=B .326x x x ⋅=C . 236()x x =D .33()xy xy =答案: C6.(2018北京东城区二模) 6. 如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是A. 6B. 2C. - 2D. - 6 答案A7.(2018北京朝阳区二模)6.已知a a 252=-,代数式)1(2)2(2++-a a 的值为 (A )-11 (B )-1 (C ) 1 (D )11答案:D8.(2018北京石景山区初三毕业考试)下列各式计算正确的是A .23525a a a +=B .23a a a ⋅=C .623a a a ÷= D .235()a a =答案:B9. (2018北京市大兴区检测)下列运算正确的是 A. 236(2)6=a a B. 325⋅=a a aC. 224246+=a a aD. 222(2)4+=+a b a b答案B10.(2018北京延庆区初一第一学期期末)4.下列计算中,正确的是A .22254a b a b a b -=B .a b ab +=C .33624a a -=D .235235b b b += 答案:A11.(2018北京平谷区初一第一学期期末)下列运算正确的是A .4x -x =3xB .6y 2-y 2=5C .b 4+b 3=b 7D .325a b ab +=答案A12.(2018北京朝阳区七年级第一学期期末)下列计算正确的是A .2233x x -=B .22232a a a --=-C .3(1)31a a -=-D .2(1)22x x -+=--答案:D13.(2018北京丰台区初一第一学期期末) 下列运算正确的是 A .33323a a a =- B .34-=-m m C .022=-ab b aD .2532x x x =+答案:A14.(2018北京朝阳区七年级第一学期期末)李老师用长为6a 的铁丝做了一个长方形教具,其中一边长为b -a ,则另一边的长为A .7a b -B .2a b -C .4a b -D .82a b - 答案:C15.(2018北京东城区初一第一学期期末)下列运算正确的是A . 43m m -=B . 33323a a a -=-C . 220a b ab -=D . 2yx xy xy -= 答案:B16.(2018北京海淀区七年级第一学期期末) 下列结论正确的是( )A. 23ab -和2b a 是同类项B.π2不是单项式 C. a 比a -大 D. 2是方程214x +=的解 答案:A17.(2018北京怀柔区初一第一学期期末)如图,正方形的边长为a ,圆的直径是d ,用字母表示图中阴影部分的面积为A .22a d π- B .22a d π- C .2212a d π-D .22()2da π-答 案D18.(2018北京怀柔区初一第一学期期末)如果23(2)0a b ++-=,那么代数式2017()a b +的值为A .5B .-5C .1D .-1 答 案D19.(2018北京延庆区初一第一学期期末)元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春 ”.中国古代曾以腊月、十月等的月首为元旦.1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x 元(x >100),则购买该商品实际付款的金额(单位:元)是A . 80%x -20B .80%(x -20)C . 20%x -20D .20%(x -20)答案:A二、填空题20.(2018北京房山区二模)10. 若代数式26x x b -+可化为2()5x a +-,则a b +的值为 .答案:121.(2018北京顺义区初一第一学期期末)13.多项式32232421x y x y xy y +-+-是 次 项式.答案:四次五项式22.(2018北京顺义区初一第一学期期末)16.如果23x y -=,那么代数式142x y -+的值为 . 答案:-523.(2018北京顺义区初一第一学期期末)18.如果21(1)0x y +++=,那么代数式20172018x y -的值是 .答案:-224.(2018北京石景山区初一第一学期期末)若710x y -与415m x y -是同类项,则m 的值为 . 答案:225.(2018北京怀柔区初一第一学期期末)单项式343x y 的系数是 ,次数是 . 答案:43,26.(2018北京怀柔区初一第一学期期末)如果2a -b =-2,ab =-1,那么代数式3ab -4a +2b-5的值是_________. 答案:-427.(2018北京海淀区七年级第一学期期末)小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元则小何共花费 元.(用含a ,b 的代数式表示)答案: 410a b +;28.(2018北京西城区九年级统一测试)化简:()()42(1)a a a a +--+=__________. 答案: 8a -.29.(2018北京昌平区初一第一学期期末) 234x y -的系数是 ,次数是 . 答案: -4,530.(2018北京昌平区初一第一学期期末)写出32m n - 的一个同类项 . 答案:答案不唯一,如m 3n 等.31.(2018北京东城区初一第一学期期末)单项式﹣xy 2的系数是 ;次数是_________.答案:1-32,32.(2018北京东城区初一第一学期期末)已知代数式2x ﹣y 的值是12,则代数式﹣6x +3y ﹣1的值是 . 答案:33.(2018北京东城区初一第一学期期末)13.写出一个与32x y -是同类项的单项式为______.答案:3x y (答案不唯一)34 .(2018北京房山区一模)如图,正方形ABCD ,根据图形,写出一个正确的等式:__________. 答案()2222a b a ab b+=++35. (2018北京市朝阳区综合练习(一))赋予式子“ab ”一个实际意义: . 答案答案不惟一,如:边长分别为a ,b 的矩形面积36.(2018北京平谷区中考统一练习)计算:23222333m n ++++⨯⨯⨯个个= .答案23n m +37.(2018北京平谷区中考统一练习)已知:24a a +=,则代数式()()()2122a a a a +-+-的值是 .答案8;38.(2018北京东城区初一第一学期期末)14. 如图:(图中长度单位:m ),阴影部分的面积是______2m答案:2+420x x +39.(2018北京东城区初一第一学期期末)19.按下列图示的程序计算,若开始输入的值为x =﹣6,则最后输出的结果是 .答案:12040.(2018北京丰台区初一第一学期期末)写出一个系数为32-且次数为3的单项式 .答案:答案不唯一,如332a -41.(2018北京门头沟区七年级第一学期期末)两个单项式满足下列条件:① 互为同类项;②次数都是3.任意写出两个满足上述条件的单项式 ,将这两个单项式合并同类项得_______________. 答案:略42.(2018北京平谷区初一第一学期期末)已知622x y 和-313m n x y是同类项,则m-n 的值是答案:043.(2018北京西城区七年级第一学期期末)已知222x x +=,则多项式2243x x +-的值为 . 答案:144.(2018北京西城区七年级第一学期期末)16.右图是一所住宅的建筑平面图(图中长度单位:m ),这所住宅的建筑面积为 m. .答案:2218x x ++45.(2018北京延庆区初一第一学期期末)13.写出-21x 2y 3的一个同类项 .答案:ax 2y 3三、解答题46.(2018北京交大附中初一第一学期期末)先化简,再求值:22113122()()223233x x y x y x y --+-+=-=,其中,47.(2018北京朝阳区七年级第一学期期末)21.已知2250x y --=,求223(2)(6)4x xy x xy y ----的值.解:223(2)(6)4x xy x xy y ----223664x xy x xy y =--+- 224x y =-.因为2250x y --=, 所以225x y -=. 所以原式=10.48.(2018北京昌平区初一第一学期期末)24. 化简求值:22(2)33(31)(93)x x x x -⨯+---+,其中13x =-.解:原式= -6x + 9x 2 - 3 - 9x 2 + x - 3…………………… 3分 = -5x - 6. ………………………… 4分当13x =-时,原式=15()63-⨯--………………………… 5分=133-.………………………… 6分49.(2018北京东城区初一第一学期期末)先化简,再求值:(5a 2+2a ﹣1)﹣4(3﹣8a +2a 2),其中a =﹣1.解:原式=5a 2+2a ﹣1﹣12+32a ﹣8a 2=﹣3a 2+34a ﹣13. ………3分 当a =﹣1时,原式=﹣3﹣34﹣13=﹣50. ………4分50.(2018北京丰台区初一第一学期期末)先化简,再求值:()[]xy y x xy xy y x ---+2223275,其中1-=x ,32-=y .解:原式=()xy y x xy xy y x -+-+224675=y x y x 2245+ =y x 29. ……3分当1-=x ,32-=y 时, 原式=()⎪⎭⎫⎝⎛-⨯-⨯32192= – 6.……4分51.(2018北京海淀区七年级第一学期期末)已知37=3a b --,求代数式2(21)5(4)3a b a b b +-+--的值.答案.解: 2(21)5(4)3a b a b b +-+--=4225203a b a b b +-+--=9212a b --…………………………………..2分37=3a b --Q ∴原式=9212a b -- =3(37)2a b -- =3(3)2⨯-- =92--=11-…………………………………..4分52.(2018北京怀柔区初一第一学期期末)21.先化简,再求值:22(22)(21)x x x ---+,其中12x =-. 解:原式=224421x x x ---- ……………………………………1分=2265x x --………………………………………………………3分 当x=12-时, 原式=2112()6()522⨯--⨯-- 1352=+-32=-………………………… 4分53.(2018北京门头沟区七年级第一学期期末)23.先化简,再求值:已知210a -=,求()()225+212a a a a --+的值.答案 解:()()225212a a a a +--+2252122a a a a =+---……………………………………………………………2分 231a =-…………………………………………………………………………3分 又∵210a -=∴21a =………………………………………………………………………………4分 ∴ 原式2313112a =-=⨯-=……………………………………………………5分54.(2018北京平谷区初一第一学期期末)22.化简)()(223212a a a a +-+-- 答案 解:=2a 2-a -1+6-2a+2a 2 ……………………………………………………… 3 =4a 2-3a +5 ………………………………………………………… 5 55.(2018北京平谷区初一第一学期期末)23.先化简,再求值:若2=x ,1-=y ,求)332()1(22222-----xy y x xy y x 的值. 答案 )332()1(22222-----xy y x xy y x3322222222++---=xy y x xy y x ............................................. 2 12+=xy (4)当2=x ,1-=y 时,原式=3 (5)56.(2018北京石景山区初一第一学期期末)23.先化简,再求值:22173)6()3x xy x xy ---(,其中13,3x y =-=. 答案.解:原式222736x xy x xy +=-- ……………………………… 2分 2x xy =-. ………………………………… 3分当13,3x y =-=时, 原式21(3)(3)3=---⨯10.= ………………………………… 5分57.(2018北京顺义区初一第一学期期末)27.王老师给同学们出了一道化简的题目:222(2)3(2)x y x x y x +--,小亮同学的做法如下:222222(2)3(2)432x y x x y x x y x x y x x y x +--=+--=-.请你指出小亮的做法正确吗?如果不正确,请指出错在哪?并将正确的化简过程写下来. 答案:去括号时应用分配率出错. ………………………………………………… 2分 正确化简结果如下:原式224236x y x x y x =+-+ ……………………………………………… 4分 28x y x =+ ……………………………………………………………… 5分 58.2018北京西城区七年级第一学期期末).先化简,再求值:2223()2()3x xy x y xy ---+,其中1x =-,3y =.答案: 解:2223()2()x xy x y xy ---+=22233223x xy x y xy --++ ............................................................................. 2分 =222x y + ............................................................................................................. 3分 当1x =-,3y =时,原式=22(1)23-+⨯ ............................................................................................. 4分 =19.5分59.(2018北京西城区七年级第一学期期末附加题)输液时间与输液速率问题静脉输液是用来给病人注射液体和药品的.在医院里,静脉输液是护士护理中最重要的一项工作,护士需要依据输液速率D ,即每分钟输入多少滴液体,来计算输完点滴注射液的时间t (单位:分钟).他们使用的公式是:dVt D=,其中,V 是点滴注射液的容积,以毫升(ml )为单位,d 是点滴系数,即每毫升(ml )液体的滴数.(1)一瓶点滴注射液的容积为360毫升,点滴系数是每毫升25 滴,如果护士给病人注射的输液速率为每分钟50滴,那么输完这瓶点滴注射液需要多少分钟?(2)如果遇到的病人年龄比较大时,护士会把输液速率缩小为原来的12,准确地描述,在V和 d 保持不变的条件下, 输完这瓶点滴注射液的时间将会发生怎样的变化? 答案:(1)由D = 50, d = 25, 360V =, dVt D=, ∴ 2536050t ⨯=. ........................................................................... 3分 ∴ t =180. ............................................................................. 4分答:输完点滴注射液的时间是180分钟.(2)设输的速率为D 1滴/分,点滴注射的时间为t 1分钟,则11dV t D =........................................................................................... 5分 输液速率缩小为112D 2,点滴注射的时间延长到t 2分钟, 则21112212dV dV t t D D ===, .................................................................... 6分 答:在d 和V 保持不变的条件下,D 将缩小到原来的12时,点输完滴注射的时间延长为原来的2倍. ..................................................................................... 7分60.(2018北京延庆区初一第一学期期末)先化简,再求值:222(22)(21)x x x x +----,其中12x =-. 答案 18.解:原式=2224421x x x x +--++ ……………………3分=263x x +-………………………………………4分 当12x =-时, 原式=211()6()322-+⨯-- 1334=--234=-………………… 5分 61.(2018北京房山区二模)已知2212x x --=. 求代数式2(1)(4)(2)(2)x x x x x -+-+-+的值.答案. 原式=2222144x x x x x -++-+-=2363x x --.……………………………………………………………………3′ ∵2212x x --=∴原式=2363x x --23(21)x x =--6=.………………………………………4′62.(2018北京市朝阳区初二期末)已知0a b +=,求代数式(4)(2)(2)a a b a b a b +-+-的值.解: (4)(2)(2)a a b a b a b +-+-2224(4)a ab a b =+--…………………………………………………2分 244ab b =+. …………………………………………………………………3分∵0a b +=,∴原式4()0b a b =+=.………………………………………………………5分63.(2018北京市东城区初二期末))已知2+2x x =,求()()()()22311x x x x x +-+++-的值【解析】。
初一七年级数学第三单元 整式练习题精选(含答案)一.判断题(1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( ) (3)单项式xy 的系数是0.( ) (4)x 3+y 3是6次多项式.( ) (5)多项式是整式.( ) 二、选择题 1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y 2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( ) A .二次二项式 B .三次二项式 C .四次二项式 D 五次二项式 3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5 B .3x -3y 与2 x 2―2xy -5都是多项式 C .多项式-2x 2+4xy 的次数是3 D 一个多项式的次数是6,则这个多项式中只有一项的次数是6 4.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z不是整式 C .-2不是整式 D .整式2x+1是一次二项式 5.下列代数式中,不是整式的是( )A 、23x - B 、745b a - C 、xa 523+ D 、-20056.下列多项式中,是二次多项式的是( ) A 、132+x B 、23x C 、3xy -1 D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( ) A 、2)(y x - B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。
A 、2b a + B 、ba s + C 、b s a s + D 、bs a s s+2 9.下列单项式次数为3的是( ) A.3abcB.2×3×4C.41x 3y D.52x 10.下列代数式中整式有( ) x 1, 2x +y , 31a 2b , πyx -, x y 45, 0.5 , aA.4个B.5个C.6个D.7个11.下列整式中,单项式是( ) A.3a +1B.2x -yC.0.1D.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1 B .x 2+y +1 C .x 2y -xy 2 D .x 3-x 2+x -113.下列说法正确的是( ) A .x(x +a)是单项式 B .π12+x 不是整式 C .0是单项式 D .单项式-31x 2y 的系数是31 14.在多项式x 3-xy 2+25中,最高次项是( ) A .x 3 B .x 3,xy2 C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( )A .1 B .2 C .3 D .416.单项式-232xy 的系数与次数分别是( )A .-3,3B .-21,3 C .-23,2 D .-23,3 17.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式18.已知:32y x m-与nxy 5是同类项,则代数式n m 2-的值是( ) A 、6- B 、5- C 、2- D 、5 19.系数为-21且只含有x 、y 的二次单项式,可以写出( )A .1个 B .2个 C .3个 D .4个 20.多项式212x y -+的次数是( ) A 、1 B 、 2 C 、-1 D 、-2 三.填空题1.当a =-1时,34a = ; 2.单项式: 3234y x -的系数是 ,次数是 ; 3.多项式:y y x xy x +-+3223534是 次 项式; 4.220053xy 是 次单项式;5.y x 342-的一次项系数是 ,常数项是 ; 6._____和_____统称整式.7.单项式21xy 2z 是_____次单项式. 8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 .9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有10.x+2xy +y 是 次多项式. 11.比m 的一半还少4的数是 ; 12.b 的311倍的相反数是 ;13.设某数为x ,10减去某数的2倍的差是 ; 14.n 是整数,用含n 的代数式表示两个连续奇数 ; 15.42234263y y x y x x --+-的次数是 ; 16.当x =2,y =-1时,代数式||||x xy -的值是 ;17.当t = 时,31tt +-的值等于1;18.当y = 时,代数式3y -2与43+y 的值相等; 19.-23ab 的系数是 ,次数是 次.20.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1)都是 式;(2)都是 次. 21.多项式x 3y 2-2xy 2-43xy-9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .22.若2313mx y z -与2343x y z 是同类项,则m = . 23.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .24.单项式7532c ab 的系数是____________,次数是____________.25.多项式x 2y +xy -xy 2-53中的三次项是____________. 26.当a=____________时,整式x 2+a -1是单项式. 27.多项式xy -1是____________次____________项式. 28.当x =-3时,多项式-x 3+x 2-1的值等于____________.29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n 30.一个n 次多项式,它的任何一项的次数都____________.31.系数是-3,且只含有字母x 和y 的四次单项式共有 个,分别是 . 32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 . 四、列代数式 1. 5除以a 的商加上323的和; 2.m 与n 的平方和; 3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。
数学中的多项式与整式练习题在数学的学习中,多项式与整式是非常重要的概念。
为了帮助大家更好地理解和掌握这部分知识,下面为大家准备了一系列的练习题。
一、选择题1、下列式子中,属于单项式的是()A $x + y$B $3x^2y$C $\frac{x + 1}{2}$D $x^2 + y^2$2、下列式子中,次数为 3 的单项式是()A $2x^3$B $-3x^2y$C $4xy^2$D $x^3 + 1$3、在多项式$3x^2 5x + 2$ 中,二次项系数是()A 3B -5C 2D 54、下列多项式中,是二次三项式的是()A $x^2 + 2x + 1$B $x^3 2x^2 + 3$C $x^2 2xy + y^2$D $2x 1$5、下列式子中,整式有()①$-2x^2$ ②$\frac{1}{x}$③$x + y$ ④$x^2 2xy +y^2$ ⑤$0$ ⑥$\frac{x + 1}{2}$A 3 个B 4 个C 5 个D 6 个二、填空题1、单项式$\frac{2}{3}x^2y$ 的系数是_____,次数是_____。
2、多项式$2x^3 3x^2 + 5x 1$ 是_____次_____项式,常数项是_____。
3、整式包括_____和_____。
4、若多项式$x^2 + kx + 9$ 是一个完全平方式,则$k =$_____。
5、一个多项式加上$-3 + x 2x^2$ 得到$x^2 1$,则这个多项式是_____。
三、解答题1、化简下列各式:(1)$3x^2 + 2x 5x^2 4x$(2)$(2x^2 3xy + 4y^2) (x^2 2xy + y^2)$2、先化简,再求值:$3(x^2 2xy) 3x^2 2y + 2(xy + y)$,其中$x =-1$,$y =2$3、已知多项式$A = 3x^2 5x + 1$,$B =-2x^2 + 3x 4$,求$A B$。
《整式 多项式》 1.填空: (1)几个单项式的 ,叫做 . 和 统称整式. (2)多项式2x 4-3x 5-5是 次项式,最高次项的系数是 ,四次项的系数是 ,常数项是 .(3)多项式a 3-3ab 2+3a 2b-b 3是 次项式,它的各项的次数都是 . (4)-254143a b ab 是 次 项式,其中三次项系数是 ,二次项为 ,常数项为 ,写出所有的项 。
(5)把下列代数式,分别填在相应的集合中:-5a 2,-ab,-3xy ,a 2-2ab,32m n ,1-22x ,13m ; 单项式集合:{ …} 多项式集合:{…} 整 式集合:{ …}2.判断题(对的画“√”,错的画“×”)(1)362m 是整式;( ) (2)单项式6ab 3的系数是6,次数是4;( ) (3)32b c a是多项式;( ) 3.选择题(1)单项式-xy 2z 3的系数和次数分别是( ).A .-1,5B .0,6C .-1,6D .0,5(2)多项式-x 2-21x-1的各项分别是( ) A .-x 2, 21x,1; B .-x 2,-21x,-1; C .x 2, 21x,1; D .以上答案都不对. 知识点归纳:叫做多项式, 叫做多项式的次数, 叫做多项式的项。
叫做常数项。
叫做整式特别注意:(1)多项式的次数不是所有项的次数之和;(2)多项式的每一项都包括它前面的符号。
当堂检测(1)如果一个多项式是五次多项式,那么( )A .这个多项式最多有六项;B .这个多项式只能有一项的次数是六;C .这个多项式一定是五次六项式;D .这个多项式最少有二项,并且最高次项的次数是五.(2)下列说法正确的是( )A 、222,3;3x y 的系数是次数是 B 、0,0a 单项式的系数是次数是C 、2341,1x y x 是三次三项式常数项是;D 、2392,22ab 单项式的次数是系数为. (3)下列说法正确的是( ).A .21不是单项式;B .a b 是单项式C .x 的系数是0;D .3x 2y 2是整式. 3.已知代数式x 5-5x n y +4y 2是关于字母x 、y 的五次三项式,正整数n 可以取哪些值?课外作业:1. 一个三位数,个位数字是a,十位数字是b,百位数字是个位的两倍,这个三位数表示为 。
整式(多项式) 基础检测1.下列说法正确的就是( ).A.整式就就是多项式B.π就是单项式C.x4+2x3就是七次二项次D.315x-就是单项式2.下列说法错误的就是( ).A.3a+7b表示3a与7b的与B.7x2-5表示x2的7倍与5的差C.1a-1b表示a与b的倒数差D.x2-y2表示x,y两数的平方差3.m,n都就是正整数,多项式x m+y n+3m+n的次数就是( ).A.2m+2nB.m或nC.m+nD.m,n中的较大数4.随着通讯市场竞争日益激烈,•某通讯公司的手机市话收费标准按原标准每分钟降低a元后,再次下调25%,现在的收费标准就是每分钟b元,则原收费标准就是每分钟为( )元.A.(54b-a) B.(54b+a) C.(34b+a) D.(43b+a)5.张老板以每颗a元的单价买进水蜜桃100颗.现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b元的价格将剩下的30颗卖出,•求全部水蜜桃共卖多少元?( ).A.70a+30(a-b)B.70×(1+20%)×a+30bC.100×(1+20%)×a-30(a-b)D.70×(1+20%)×a+30(a-b)6.按图程序计算,若开始输入的值为x=3,则最后输出的结果就是( ).A.6B.21C.156D.2317.多项式-m2n2+m3-2n-3就是_____次_____项式,最高次项的系数为_______,•常数项就是_______.8.多项式x m+(m+n)x2-3x+5就是关于x的三次四项式,且二次项系数就是-2,则m=_____,n=_______.9.a平方的2倍与3的差,用代数式表示为________;当a=-1•时,•此代数式的值为_________.10.某电影院的第一排有m 个座位,后面每排比前一排多2个座位,则第k 排的座位数就是_______.11.已知x 2-2y=1,那么2x 2-4y+3=_______.12.数学家发明了一个魔术盒,当任意实数对...(a,b)进入其中时,•会得到一个新的实数:a 2+b+1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,•现将实数对...(-2,3)放入其中得到实数m,再将实数对...(m,1)放入其中后,得到的实数就是_____. 拓展提高13.已知多项式x -3x 2y m+1+x 3y -3x 4-1就是五次四项式,单项式3x 3n y4-m z 与多项式的次数相同,求m,n 的值.14.某房间窗户如图所示.其中上方的装饰物由两个四分之一圆与一个半圆组成(它们的半径相同):(1)装饰物所占的面积就是多少?(2)窗户中能射进阳光的部分的面积就是多少?15.某校暑假将组织该校“三好学生”去北京旅游,由3名老师带队,甲旅行社说:“如果带队老师买全票,则其余学生可享受半价优惠”,乙旅行社说:“包括带队老师在内全部按全票价的6折优惠”.若全票价就是800元,设学生数为x 人,•分别计算两家旅行社的收费.16.国家个人所得税法规定,月收入不超过1600元的不纳锐,月收入超过1600元的部分按照下表规定的税率缴纳个人所得税:全月应纳税所得额税率(%)不超过500元的部分 5超过500~2000元的部分 10超过2000~5000元的部分 15……试写出在不同段的工资所缴纳的个人所得税.(设工资为x元,0<x≤5 000)答案:1.B2.C3.D4.D5.D6.D7.4,4,-1,-3 8.3,-5 9.2a 2-3,-110.•m+2k -2 11.5 12.66 13.m=2,n=1 14.(1)16πb 2;(2)ab -16πb 2 15.甲2400+400x(元)•;•乙480x+1440(元)16.当0<x≤1600时,不缴税;当1600<x≤2100时,缴税:(x -1600)×5%=5%x -80(元);当2100<x≤3600时,缴税:500×5%+(x-2100)×10%=10%x-160(元);当3600≤x≤5000时,500×5%+1500×10%+(x-3600)×15%=15%x-365(元)。
2.1.1整式(单项式和多项式)练习题、选择题、填空题(每空2分,共20分)D.1.单项式一2yX2^的系数是()A. —2 B.2 C.323 2 22.对于单项式一2 x y z的系数和次数,下列说法正确的是()A.系数为一2,次数为8B. 系数为一8,次数为5C.系数为一2,次数为4D. 系数为一2,次数为73.下列多项式的次数为3的是()2 2 2 2 2 2A. —3x +2x+1B.刀x +x+1C.ab +ab+bD.x y - 2xy+13 24.多项式1 - x - x是()A.二次三项式B. 三次三项式C. 三次二项式D. 五次三项式4 2 3 35.多项式7 x y+2xy - x y -7的最高次项是()A. 7 x 4yB. x 3y3C. —x3yD. 2 xy 21.近似数3.05万精确到_________ 位,有 ________个有效数字,它们是 _____________12.若三角形的高是底的-,底为XCm,则这个三角形的面积是cm 2;2m n _.…4. n3.如果单项式一xy z 与5a b都是五次单项式,那么的m值为_____ ,m值为24.多项式姿1的常数项是44 3 2 35.如果多项式中x -(a —1)x +5x +(b+3)x-1 不含x项和x项,则a + b = __三、解答题(每小题5分,共15分)1.找出下列代数式中的单项式、多项式和整式:单项式:多项式:整式:2.若一3axy m是关于x、y的单项式,且系数为—6,次数为3,求a, m的值?3.若多项式6x n+2 - x 2-n + 2 是三次三项式,求代数式n2- 2n + 1的值?。
一、选择题(每题4分,共20分)1. 下列多项式中,不是多项式的是()A. 2x^3 - 5x^2 + 3x - 1B. 3xy + 4y^2 - 2xC. 5x^2 - 3x + 2yD. 2√x + 32. 下列各式中,同类项是()A. 2x^2 和 3x^2B. 4xy 和 5xy^2C. 3x 和 5xD. 2y 和 3y^23. 若多项式A = 3x^2 - 2xy + 4y^2,B = x^2 - 4xy + 5y^2,则A - B = ()A. 2x^2 + 2xy - y^2B. 2x^2 - 6xy + y^2C. 2x^2 + 6xy - y^2D. 2x^2 - 2xy + y^24. 若多项式P(x) = ax^2 + bx + c,其中a、b、c是常数,且P(1) = 4,P(-1) = 2,则P(2) = ()A. 4B. 6C. 8D. 105. 若多项式f(x) = x^3 - 3x^2 + 4x - 1,则f(1) + f(2) + f(3) + f(4) = ()B. 21C. 22D. 23二、填空题(每题5分,共25分)6. 多项式2x^3 - 5x^2 + 3x - 1的次数是______,首项系数是______。
7. 若多项式f(x) = ax^3 + bx^2 + cx + d,其中a、b、c、d是常数,且a ≠ 0,则f(x)的次数是______。
8. 下列各式中,多项式4xy^2 - 3xy + 2x^2y是______次多项式。
9. 若多项式g(x) = 2x^2 - 5x + 3,则g(-1) = ______。
10. 若多项式h(x) = x^3 - 4x^2 + 5x - 6,则h(x) + h(-x) = ______。
三、解答题(每题10分,共30分)11. 简化多项式:3x^2 - 2x + 5 - 4x^2 + 7x - 3。
12. 已知多项式P(x) = 2x^3 - 5x^2 + 3x - 1,求P(-1)的值。
整式 姓名________单项式:即由_________与______的乘积组成的代数式称为单项式。
补充: 单独_________或___________也是单项式。
一个单项式中,单项式中的数字因数称为这个单项式的________, ___ __________的指数的和叫做这个单项式的次数。
多项式:_______________的和叫做多项式。
在多项式中,每个单项式叫做多项式的___。
其中,不含字母的项,叫做_______。
和 统称为整式。
填空题:1.关于x 的多项式(m -1)x 3-2x n +3x 的次数是2,那么m =______,n =______.2.-45a 2b -34a b +1是 次 项式,其中三次项系数是 ,二次项为 , 常数项为 ,写出所有的项 。
3.如果15--m xy 为四次单项式,则m=____;4.当k =______时,多项式x 2-(3k -4)xy -4y 2-8中只含有三个项.5.若(a -1)x 2y b 是关于x ,y 的五次单项式,且系数为8,则a =______,b =______.6.关于x 的多项式(m -1)x 3-2x n +3x 的次数是2,那么m =______,n =______.解答题:7.多项式()51372++-+x n kx x m 是关于x 的三次三项式,并且一次项系数为-7, 求k n m -+的值。
8.已知六次多项式-5x 2y m +1+xy 2-6,单项式22x 2n y 5-m 的次数也是6,求m ,n 的值.9.m 为何值时22)2(y xm m +33xy -时六次二项式?10.当1-=x 时, 10423---kx x x 的值为0,当x=5时,求这个代数式的值。
11. 若多项式7322++x x 的值为10,求多项式7962-+x x 的值。
12、代数式6432+-x x 的值为9,求6342+-x x 的值。
整式(多项式)
基础检测
1.下列说法正确的是().
A.整式就是多项式 B.是单项式
C.x4+2x3是七次二项次 D.是单项式
2.下列说法错误的是().
A.3a+7b表示3a与7b的和B.7x2-5表示x2的7倍与5的差
C.-表示a与b的倒数差
D.x2-y2表示x,y两数的平方差
3.m,n都是正整数,多项式x m+y n+3m+n的次数是().
A.2m+2n B.m或n C.m+n D.m,n中的较大数
4.随着通讯市场竞争日益激烈,•某通讯公司的手机市话收费标准按原标准每分钟降低a元后,再次下调25%,现在的收费标准是每分钟b元,则原收费标准是每分钟为()元.
A.( b-a)B.( b+a) C.( b+a) D.(b+a)
5.张老板以每颗a元的单价买进水蜜桃100颗.现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b元的价格将剩下的30颗卖出,•求全部水蜜桃共卖多少元?().
A.70a+30(a-b) B.70×(1+20%)×a+30b
C.100×(1+20%)×a-30(a-b)
D.70×(1+20%)×a+30(a-b)
6.按图程序计算,若开始输入的值为x=3,则最后输出的结果是().
A.6 B.21 C.156
D.231
7.多项式-m2n2+m3-2n-3是_____次_____
项式,最高次项的系数为_______,•常数项是_______.
8.多项式x m+(m+n)x2-3x+5是关于x的三次四项式,且二次项系数是-2,则m=_____,n=_______.
9.a平方的2倍与3的差,用代数式表示为________;当a=-1•时,•此代数式的值为_________.
10.某电影院的第一排有m个座位,后面每排比前一排多2个座位,则第k排的座位数是_______.
11.已知x2-2y=1,那么2x2-4y+3=_______.
12.数学家发明了一个魔术盒,当任意实数对
...(a,b)进入其中时,•会得到一个新的实数:a2+b+1.例如把(3,
-2)放入其中,就会得到32+(-2)+1=8,•现将实数对
...(m,
...(-2,3)放入其中得到实数m,再将实数对1)放入其中后,得到的实数是_____.
拓展提高13.已知多项式x-3x2y m+1+x3y-3x4-1是五次四项式,单项式3x3n y4-m z与多项式的次数相同,求m,n 的值.
14.某房间窗户如图所示.其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同):(1)装饰物所占的面积是多少?
(2)窗户中能射进阳光的部分的面积是多少?
15.某校暑假将组织该校“三好学生”去北京旅游,由3名老师带队,甲旅行社说:“如果带队老师买全票,则其余学生可享受半价优惠”,乙旅行社说:“包括带队老师在内全部按全票价的6折优惠”.若全票价是800元,设学生数为x人,•分别计算两家旅行社的收费.
16.国家个人所得税法规定,月收入不超过1600元的不纳锐,月收入超过1600元的部分按照下表规定的税率缴纳个人所得税:
试写出在不同段的工资所缴纳的个人所得税.(设工资为x元,0<x≤5 000)
答案:。