第5章点的复合运动
- 格式:ppt
- 大小:2.99 MB
- 文档页数:69
第5章 点的复合运动分析5-1 曲柄OA 在图示瞬时以ω0绕轴O 转动,并带动直角曲杆O 1BC 在图示平面内运动。
若d 为已知,试求曲杆O 1BC 的角速度。
解:1、运动分析:动点:A ,动系:曲杆O 1BC ,牵连运动:定轴转动,相对运动:直线,绝对运动:圆周运动。
2、速度分析:r e a v v v += 0a 2ωl v =;0e a 2ωl v v == 01e 1ωω==AO v BC O (顺时针)5-2 图示曲柄滑杆机构中、滑杆上有圆弧滑道,其半径cm 10=R ,圆心O 1在导杆BC 上。
曲柄长cm 10=OA ,以匀角速rad/s 4πω=绕O 轴转动。
当机构在图示位置时,曲柄与水平线交角 30=φ。
求此时滑杆CB 的速度。
解:1、运动分析:动点:A ,动系:BC ,牵连运动:平移,相对运动:圆周运动,绝对运动:圆周运动。
2、速度分析:r e a v v v +=πω401a =⋅=A O v cm/s ; 12640a e ====πv v v BC cm/s5-3 图示刨床的加速机构由两平行轴O 和O 1、曲柄OA 和滑道摇杆O 1B 组成。
曲柄OA 的末端与滑块铰接,滑块可沿摇杆O 1B 上的滑道滑动。
已知曲柄OA 长r 并以等角速度ω转动,两轴间的距离是OO 1 = d 。
试求滑块滑道中的相对运动方程,以及摇杆的转动方程。
解:分析几何关系:A 点坐标 d t r x +=ωϕcos cos 1 (1) t r x ωϕsin sin 1= (2) (1)、(2)两式求平方,相加,再开方,得: 1.相对运动方程trd r d t r d t rd t r x ωωωωcos 2sin cos 2cos 22222221++=+++=将(1)、(2)式相除,得: 2.摇杆转动方程: dt r tr +=ωωϕcos sin tandt r t r +=ωωϕcos sin arctan5-4 曲柄摇杆机构如图所示。
第5章 点的复合运动分析5-1 曲柄OA 在图示瞬时以ω0绕轴O 转动,并带动直角曲杆O 1BC 在图示平面内运动。
若d 为已知,试求曲杆O 1BC 的角速度。
解:1、运动分析:动点:A ,动系:曲杆O 1BC ,牵连运动:定轴转动,相对运动:直线,绝对运动:圆周运动。
2、速度分析:r e a v v v += 0a 2ωl v =;0e a 2ωl v v == 01e 1ωω==AO v BC O (顺时针)5-2 图示曲柄滑杆机构中、滑杆上有圆弧滑道,其半径cm 10=R ,圆心O 1在导杆BC 上。
曲柄长cm 10=OA ,以匀角速rad/s 4πω=绕O 轴30=φ。
求此时滑转动。
当机构在图示位置时,曲柄与水平线交角杆CB 的速度。
解:1、运动分析:动点:A ,动系:BC ,牵连运动:平移,相对运动:圆周运动,绝对运动:圆周运动。
2、速度分析:r e a v v v += πω401a =⋅=A O v cm/s ; 12640a e ====πv v v BC cm/s5-3 图示刨床的加速机构由两平行轴O 和O 1、曲柄OA 和滑道摇杆O 1B 组成。
曲柄OA 的末端与滑块铰接,滑块可沿摇杆O 1B 上的滑道滑动。
已知曲柄OA 长r 并以等角速度ω转动,两轴间的距离是OO 1 = d 。
试求滑块滑道中的相对运动方程,以及摇杆的转动方程。
解:分析几何关系:A 点坐标 d t r x +=ωϕcos cos 1 (1) t r x ωϕsin sin 1= (2) (1)、(2)两式求平方,相加,再开方,得: 1.相对运动方程 将(1)、(2)式相除,得: 2.摇杆转动方程:5-4 曲柄摇杆机构如图所示。
已知:曲柄O 1A 以匀角速度ω1绕轴O 1转动,O 1A = R ,O 1O 2 =b ,O 2O = L 。
试求当O 1A 水平位置时,杆BC 的速度。
解:1、A 点:动点:A ,动系:杆O 2A ,牵连运动:定轴转动,相对运动:直线,绝对运动:圆周运动。
951力学基础考试大纲(2012版)注意:总分150分,理论力学部分占40%,材料力学部分占60% 。
第一部分理论力学大纲一、基本要求静力学1、几何静力学(第1-3章)基本内容:静力学的基本公理,受力分析,力系简化的基本方法和有关力学量的基本计算,平衡方程的建立与求解,摩擦(滑动摩擦和滚动摩擦)问题,桁架内力的计算,平衡结构的静定性问题。
基本要求:深入理解静力学中有关的公理,熟练掌握刚体(刚体系)的受力分析,力系简化的基本方法和有关基本概念和基本量的计算,能够确定给定力系作用下独立平衡方程的数目,能够用定性和定量的方法研究刚体(刚体系)的平衡问题。
能够分析研究考虑摩擦时刚体或刚体系的平衡问题以及平面桁架的内力计算问题。
2、分析静力学(第4章)基本内容:各种力(重力、弹性力、有势力、摩擦力、合力、等效力系)的功,约束及其分类、广义坐标和自由度、虚位移与虚功、理想约束、虚位移原理及其应用、有势力作用下质点系平衡位置的稳定性。
基本要求:熟练计算各种力的功,能够确定系统的约束类型,确定系统的自由度和广义坐标,理解虚位移的基本概念,会判断约束是否是理想约束;能够熟练应用虚位移原理求解质点系平衡问题;会判断有势力作用下质点系平衡位置的稳定性。
动力学1、质点动力学(第五章)基本内容:质点的运动方程、速度、加速度的各种表示方法(矢量法、直角坐标法、自然坐标法)以及有关基本量的计算,质点运动微分方程,点的复合运动(三种运动分析、速度合成定理和加速度合成定理),质点相对运动动力学基本方程。
基本要求:熟练掌握质点运动方程、速度和加速度的各种表示方法和有关基本量的计算,能够熟练建立质点运动微分方程,对于简单的运动微分方程能够求解。
熟练应用点的复合运动的基本理论与方法研究点的复合运动(速度和加速度)问题,能够在非惯性参考系下建立质点相对运动动力学基本方程,具有对质点的运动学和动力学问题进行定性和定量分析的初步能力。
2、质点系动力学(第六章)基本内容:质点系的动量定理、变质量质点动力学方程、动量矩定理(包括对固定点、动点和质心的动量矩定理)、动能定理及其有关基本量的计算。
复试理力重点知识点总结静力学第一章静力学基础1、掌握平衡、刚体、力的概念以及等效力系和平衡力系,静力学公理。
2、掌握柔性体约束、光滑接触面约束、光滑铰链约束、固定端约束和球铰链的性质。
3、熟练掌握如何计算力的投影和平面力对点的矩,掌握空间力对点的矩和力对轴之矩的计算方法,以及力对轴的矩与对该轴上任一点的矩之间的关系。
4、对简单的物体系统,熟练掌握取分离体并画出受力图。
第二章力系的简化1、掌握力偶和力偶矩矢的概念以及力偶的性质。
2、掌握汇交力系、平行力系、力偶系的简化方法和简化结果。
3、熟练掌握如何计算主矢和主矩;掌握力的平移定理和空间一般力系和平面力系的简化方法和简化结果。
4、掌握合力投影定理和合力矩定理。
5、掌握计算平行力系中心的方法以及利用分割法和负面积法计算物体重心。
第三章力系的平衡条件1、了解运用空间力系(包括空间汇交力系、空间平行力系和空间力偶系)的平衡条件求解单个物体和简单物体系的平衡问题。
2、熟练掌握平面力系(包括平面汇交力系、平面平行力系和平面力偶系)的平衡条件及其平面力系平衡方程的各种形式;熟练掌握利用平面力系平衡条件求解单个物体和物体系的平衡问题。
3、了解静定和静不定问题的概念。
4、掌握平面静定桁架计算内力的节点法和截面法,掌握判断零力杆的方法。
第四章摩擦1、掌握运用平衡条件求解平面物体系的考虑滑动摩擦的平衡问题。
2、了解极限摩擦定律、滑动摩擦系数、摩擦角、自锁现象、摩阻的概念。
运动学第五章点的运动1、掌握描述点的运动的矢量法、直角坐标法和弧坐标法,能求点的运动方程。
2、熟练掌握如何计算点的速度、加速度及其有关问题。
第六章刚体的基本运动1、掌握刚体平动和定轴转动的特征;掌握刚体定轴转动的转动方程、角速度和角加速度;掌握定轴转动刚体角速度矢量和角加速度矢量的概念以及刚体内各点的速度和加速度的矢积表达式。
2、熟练掌握如何计算定轴转动刚体的角速度和角加速度、刚体内各点的速度和加速度。
理论力学习题集第一章静力学的基本概念及物体的受力分析1-1 画出指定物体的受力图,各接触面均为光滑面。
1-2 画出下列指定物体的受力图,各接触面均为光滑,未画重力的物体的重量均不计。
1-3 画出下列各物体以及整体受力图,除注明者外,各物体自重不计,所有接触处均为光滑。
(a) (b)(c) (d)(e) (f)第二章平面一般力系2-1 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在铰车D 上,如图所示。
转动铰车,物体便能升起,设滑轮的大小及滑轮转轴处的摩擦忽略不计,A、B、C三处均为铰链连接。
当物体处于平衡状态时,试求拉杆AB和支杆CB所受的力。
2-2 用一组绳悬挂重P=1kN的物体,求各绳的拉力。
2-3 某桥墩顶部受到两边桥梁传来的铅直力P1=1940kN,P2=800kN及制动力T=193kN,桥墩自重W=5280kN,风力Q=140kN。
各力作用线位置如图所示,求将这些力向基底截面中心O简化的结果,如能简化为一合力,试求出合力作用线的位置。
2-4 水平梁的支承和载荷如图所示,试求出图中A、B处的约束反力。
2-5 在图示结构计算简图中,已知q=15kN/m,求A、B、C处的约束力。
2-6 图示平面结构,自重不计,由AB、BD、DFE三杆铰接组成,已知:P=50kN,M=40kN·m,q=20kN/m,L=2m,试求固定端A的反力。
图2-6 图2-72-7 求图示多跨静定梁的支座反力。
2-8 图示结构中各杆自重不计,D、E处为铰链,B、C为链杆约束,A为固定端,已知:q G=1kN/m,q=1kN/m,M=2kN·m,L1=3m,L2=2m,试求A、B、C 处约束反力。
图2-8 图2-92-9 支架由两杆AO、CE和滑轮等组成,O、B处为铰链,A、E是固定铰支座,尺寸如图,已知:r=20cm,在滑轮上吊有重Q=1000N的物体,杆及轮重均不计,试求支座A和E以及AO杆上的O处约束反力。
第一章 静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。
( )2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。
( )3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。
( )4、凡是受两个力作用的刚体都是二力构件。
( )5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。
( ) 二.选择题1、在下述公理、法则、原理中,只适于刚体的有( )①二力平衡公理 ②力的平行四边形法则③加减平衡力系公理 ④力的可传性原理 ⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)a (球A )b (杆AB)c(杆AB、CD、整体)d(杆AB、CD、整体)e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)a(球A、球B、整体)b(杆BC、杆AC、整体第一章静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
WA DBCEOriginal FigureADBCEWWF AxF Ay F BFBD of the entire frame )a(杆AB、BC、整体)b(杆AB、BC、轮E、整体)c(杆AB、CD、整体)d(杆BC带铰、杆AC、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’,所以力偶的合力等于零。
()2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。
()3、力偶矩就是力偶。
()二.电动机重P=500N,放在水平梁AC的中央,如图所示。
机械原理问答题1。
什么是机构、机器和机械?答:机构:在运动链中,其中一个件为固定件(机架),一个或几个构件为原动件,其余构件具有确定的相对运动的运动链称为机构。
机器:能代替或减轻人类的体力劳动或转化机械能的机构。
机械:机器和机构的总称。
2.机器有什么特征?答:⑴经过人们精心设计的实物组合体。
⑵各部分之间具有确定的相对运动。
⑶能代替或减轻人的体力劳动,转换机械能.3.机构有什么特征?答:⑴经过人们精心设计的实物组合体。
⑵各部分之间具有确定的相对运动。
4.什么是构件和零件?答:构件:是运动的单元,它可以是一个零件也可以是几个零件的刚性组合。
零件:是制造的单元,加工制造不可再分的个体。
1.什么是平面机构?答:组成机构的所有构件都在同一平面或相互平行的平面上运动。
2。
什么是运动副?平面运动副分几类,各类都有哪些运动副?其约束等于几个?答:运动副:两个构件直接接触而又能产生一定相对运动的联接叫运动副.平面运动副分两类:(1)平面低副(面接触)包括:转动副、移动副,其约束为 2.(2)平面高副(点、线接触)包括:滚子、凸轮、齿轮副等,约束为 1.3。
什么是运动链,分几种?答:若干个构件用运动副联接组成的系统。
分开式链和闭式链。
4。
什么是机架、原动件和从动件?答:机架:支承活动构件运动的固定构件。
原动件:运动规律给定的构件.从动件:随原动件运动,并且具有确定运动的构件。
5.机构确定运动的条件是什么?什么是机构自由度?答:条件:原动件的数目等于机构的自由度数。
机构自由度:机构具有确定运动所需要的独立运动参数。
6 。
平面机构自由度的计算式是怎样表达的?其中符号代表什么?答:F =3n— 2P L—P H其中:n--—-活动构件的数目,P L-—-—低副的数目,p H—-——高副的数目.7.在应用平面机构自由度计算公式时应注意些什么?答:应注意复合铰链、局部自由度、虚约束。
8.什么是复合铰链、局部自由度和虚约束,在计算机构自由度时应如何处理?答:复合铰链:多个构件在同一轴线上组成转动副,计算时,转动副数目为m —1个局部自由度:与整个机构运动无关的自由度,计算时将滚子与其组成转动副的构件假想的焊在一起,预先排除局都自由度。
第五章复合手法和特殊手法复合手法是由两种或两种以上单式手法复合而成的一类推拿手法,包括一个部位同时受到两种单式手法的合成刺激(如拿揉法、牵抖法),或一手同时运用两种单式手法同步操作(如推摩法)。
本章介绍的特殊手法包括扫散法、踩蹻法和捏脊法。
一、拿揉法(grasping - kneading manipulation)拿揉法是由拿法和揉法相结合而成的一种复合手法。
【术式】在拿法动作的基础上,使拇指与其他手指在做捏、提时,增加了适度的旋转揉动,所产生的拿揉之力连绵不断地作用于施术部位。
【要领】1.拿揉法在拿中含有一定量的旋转揉动,以拿为主,以揉为辅。
2.操作时要自然流畅,不可呆滞僵硬。
3.拿揉肢体可边拿揉边移动。
【应用】拿揉法较拿法的用力更趋缓和舒适自然,更易令人接受。
对术者而言,因拿法中增加了旋转揉动,相对减弱了拇指与其他四指捏持的对合力,所以操作时不易疲劳。
拿揉法具备拿法与揉法的双重作用,主要用于四肢部及颈项部,如拿揉项部、拿揉肩部、拿揉前臂伸肌群、拿揉股后部等。
用于颈项强痛、颈椎病、肩关节周围炎、四肢疲劳酸痛等病症。
二、牵抖法(prilling - shaking maiupulation)牵抖法为拔伸法与抖法相结合而成的一种复合手法。
【术式】1.上肢牵抖法受术者取坐位,术者用双手握住其腕关节近端,先拔伸片刻,待119肩部放松时,减缓牵引力,做2 ~3次较大幅度的抖动,使抖动力作用于肩关节。
2.下肢牵抖法受术者取俯卧位,术者用双手握住其踝关节近端,先拔伸片刻,待髋部放松时,减缓牵引力,做2 ~3次较大幅度的抖动,使抖动力作用于髋关节。
3.腰部牵抖法受术者取俯卧位,两手拉住床头或由助手固定其两腋部。
术者以两手握住其两足踝部,缓缓拔伸其腰部,拔伸的同时可小幅度晃动其腰部。
待其腰部放松后,术者两手维持一定的牵引力,随后做2 ~3次较大幅度的抖动,产生较大幅度的波浪状运动,使抖动之力作用于腰部。
【要领】1.牵抖法要将牵引力同抖动力有机地结合起来。
编码:EP04012 Code: EP04012课程名称:理论力学A Course Title: Theoretical Mechanics A课程类别:学类核心Course category: Core Courses in General Category学分:3Credit(s): 3开课单位:机械与运载工程学院Offering College/School: College of Mechanical &Vehicle Engineering课程描述:本课程是一门为能源与动力等非力学专业学生开设的力学基础课程,以高等数学、普通物理学为先导课程。
为材料力学、机械设计等后续课程学习提供理论基础。
本课程主要包括静力学、运动学和动力学等知识。
通过本课程学习,使学生能掌握静力学、运动学及动力学的基本概念、基本理论及分析方法,为学生学习后续专业课程如材料力学等打下基础。
通过理论力学的教学,逐渐培养学生将复杂的工程实际问题抽象简化为便于计算的力学模型,并进行数学求解的能力。
培养学生基于基本概念和公理进行逻辑推理的能力、独立思考以及创新的能力。
Course description: This course is one of the basic Mechanics courses for students who major in Energy and Power Engineering . Led by Advanced Mathematics and Physics, this course lays the foundation for the follow-up professional courses, such as Mechanics of Materials and Fundamentals of Mechanical Design. The main contents include theories of statics, kinematics and dynamics. Learning through this course, enable students to master the basic concepts, theories and analytical methods of statics, kinematics and dynamics; Lay foundations for the subsequent courses such as material mechanics, structural mechanics. Through theoretical mechanics teaching, students will gradually develop abilities of simplifying complex engineering problems into simply mechanical model for the computing purpose, and that of solving mathematical problems as well. To develop the students' abilities of logical reasoning based on the basic concepts and axioms, and that of independent thinking and innovation.课程内容(一)课程教学目标通过本课程的教学,使学生具备以下能力:1.具有解决复杂机械工程问题所需的数学知识和应用能力。