20.2数据的波动程度(2)
- 格式:ppt
- 大小:1.08 MB
- 文档页数:11
人教版初中数学八年级下册 20.2.2 数据的波动程度(2) 教学设计一、教学目标:1.能熟练计算一组数据的方差;2.能用样本的方差估计总体的方差及根据方差做决策. 二、教学重、难点: 重点:应用方差做决策问题.难点:综合运用平均数、众数、中位数和方差解决实际问题. 三、教学过程: 复习回顾 忆一忆方差的计算公式:s 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2] 方差越大,数据的波动越大;方差越小,数据的波动越小.方差的适用条件:当两组数据的平均数相等或相近时,才利用方差来判断它们的波动情况. 练一练1.某一段时间,小芳测得连续五天的日最高气温后,整理得出下表(有两个数据被遮盖):被遮盖的两个数据依次是( )A.3℃,2B.3℃,4C.4℃,2D.4℃,42.甲、乙两台包装机同时分装质量为400g 的奶粉,从它们各自分装的奶粉中随机抽取了10袋,测得它们的实际质量(单位:g)如下:甲:401 395 408 404 410 406 400 393 392 391 乙:403 404 397 395 402 401 403 395 402 398哪台包装机包装的奶粉质量比较稳定?解:甲、乙两台包装机包装的奶粉平均质量分别是40010391392393400406410404408395401=+++++++++=甲x40010398402395403401402395397404403=+++++++++=乙x它们的方差分别是6.4310)400391()400395()400401(2222=-+⋯+-+-=甲s6.1010)400398()400404()400403(2222=-+⋯+-+-=乙s由2甲s >2乙s 可知,乙包装机包装的奶粉质量比较稳定.典例解析例1.某快餐公司的香辣鸡腿很受消费者欢迎.现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近,快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量如下(单位:g)如下表.根据表中的数据,你认为快餐公司应选购哪家工厂的鸡腿.解:检查人员从甲、乙两家农副产品加工厂各随机抽取的15个鸡腿分别组成一个样本,样本数据的平均数分别是751573277474≈++⋯++=甲x ,751575177375≈++⋯++=乙x样本数据的方差分别是310)7573()7572()7574()7574(22222≈-+-+⋯+-+-=甲s810)7575()7571()7573()7575(22222≈-+-+⋯+-+-=乙s由乙甲x x ≈可知,两家加工厂的鸡腿质量大致相等;由2甲s <2乙s 可知,甲加工厂的【针对练习】某跳远队准备从甲、乙两名运动员中选取成绩稳定的一名参加比赛.下表是这两名运动员10次测验成绩(单位:m).你认为应该选择哪名运动员参赛?为什么? 解:甲、乙两名运动员的平均成绩分别是01.61019.693.585.5=+⋯++=甲x ,61021.608.611.6=+⋯++=乙x它们的方差分别是00954.010)01.619.6()01.693.5()01.685.5(2222≈-+⋯+-+-=甲s02434.010)621.6()608.6()611.6(2222≈-+⋯+-+-=乙s由乙甲x x ≈可知,甲、乙两名运动员的平均成绩大至相等;由2甲s <2乙s 可知,甲的成绩更稳定.如果要从中选出一人参加市级比赛,历届比赛表明,成绩达到5.92m 就能夺冠,你认为应选谁参加比赛?如果历届比赛成绩表明,成绩达到6.08m 就能打破记录,你认为又应该选谁参加这次比赛呢?解:甲成绩更稳定,如果成绩达到5.92m 就能夺冠,应选甲参赛;乙达到6.08m 的可能性较大,如果成绩达到6.08m 能打破纪录,应选乙参赛.例2.在某旅游景区上山的一条小路上,有一些断断续续高低不等的台阶.如图是其中的甲、乙两段台阶路的示意图(图中数字表示每一阶的高度,单位:cm).哪段台阶路走起来更舒服?为什么?分析:通过计算两段台阶的方差,比较波动性大小. 解:201921206...x +++==甲231917206...x +++==乙()()()22221220201920212063...=s ⎡⎤=-+-++-⎢⎥⎣⎦甲 ()()()222212223201920172063...=s ⎡⎤=-+-++-⎢⎥⎣⎦乙∵22s s <甲乙∴走甲台阶的波动性更,走起来更舒适.例3.某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛.在最近10次选拔赛中,他们的成绩(单位: cm )如下:甲:585 596 610 598 612 597 604 600 613 601 乙:613 618 580 574 618 593 585 590 598 624 (1)这两名运动员的运动成绩各有何特点?【分析】分别计算出平均数和方差;根据平均数判断出谁的成绩好,根据方差判断出谁的成绩波动大. 解:110=(585+596+610+598+612+597+604+600+613+601)=601.6x 甲s 2甲≈65.84;110=(613+618+580+574+618+593+585+590+598+624)=599.3x 乙s 2乙≈284.21.由上面计算结果可知:甲队员的平均成绩较好,也比较稳定,乙队员的成绩相对不稳定.但甲队员的成绩不突出,乙队员和甲队员相比比较突出.(2)历届比赛表明,成绩达到5.96m 就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m 就能打破纪录,那么你认为为了打破纪录应选谁参加这项比赛.解:从平均数分析可知,甲、乙两队员都有夺冠的可能.但由方差分析可知,甲成绩比较平稳,夺冠的可能性比乙大.但要打破纪录,成绩要比较突出,因此乙队员打破纪录的可能性大,我认为为了打破纪录,应选乙队员参加这项比赛. 课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?【设计意图】培养学生概括的能力。
第二十章数据的分析20.2数据的波动程度一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.能够刻画一组数据离散程度的统计量是A.平均数B.众数C.中位数D.方差【答案】D【解析】由于方差反映数据的波动情况,所以能够刻画一组数据离散程度的统计量是方差,故选D.2.在方差的计算公式s2=110[(x1-20)2+(x2-20)2+…+(x10-20)2]中,数字10和20分别表示的意义可以是A.数据的个数和方差B.平均数和数据的个数C.数据的个数和平均数D.数据组的方差和平均数【答案】C【解析】10位于分数110的分母上,根据方差的计算公式可知,10表明样本数据的个数,也就是样本容量为10,数字20为样本数据的平均数,即样本的均值.故选C.3.一组数据8,0,2,4-,4的方差等于A.15 B.16 C.17 D.18 【答案】B【解析】数据8、0、2、−4、4的平均数8024425++-+==,方差21(364364)165s=+++=,故选B.4.甲、乙两组数据,它们都是由n个数据组成,甲组数据的方差是0.4,乙组数据的方差是0.2,那么下列关于甲乙两组数据波动说法正确的是.A.甲的波动小B.乙的波动小C.甲、乙的波动相同D.甲、乙的波动的大小无法比较【答案】B【解析】因为s甲2=0.4,s乙2=0.2,方差小的为乙,所以本题中成绩比较稳定的是乙,乙的波动小,故选B.5.方差反映了一组数据的波动大小.有两组数据,甲组数据:-1,-1,0,1,2;乙组数据:-1,-1,0,1,1,它们的方差分别记为2s 甲和2s 乙,则 A .2s 甲=2s 乙 B .2s 甲>2s 乙 C .2s 甲<2s 乙D .无法比较【答案】B【解析】(11012)50.2x --+++÷==甲,(11011)50x --+++÷==乙, ∵s 甲2=15[(−1−0.2)2+(−1−0.2)2+(0−0.2)2+(1−0.2)2+(2−0.2)2]=1.224, s 乙2=15[(−1−0)2+(−1−0)2+(0−0)2+(1−0)2+(1−0)2]=0.8,∴s 甲2>s 乙2,故选B . 6.两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学成绩哪一位更稳定,通常还需要比较他们成绩的 A .众数B .中位数C .方差D .以上都不对【答案】C【解析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.故选C .7.如果一组数据x 1,x 2,…,x n 的方差是3,则另一组数据x 1+5,x 2+5,…,x n +5的方差是 A .3B .8C .9D .14【答案】A【解析】设数据x 1,x 2,…,x n 的平均数设为a ,则数据x 1+5,x 2+5,…,x n +5的平均数为a +5,根据方差公式:s 21n=[(x 1-a )2+(x 2-a )2+…+(x n -a )2]=3. 则s 21n={[(x 1+5)-(a +5)]2+[(x 2+5)-(a +5)]2+…+(x n +5)-(a +5)]}2=1n [(x 1-a )2+(x 2-a )2+…+(x n -a )2]=3.故选A .二、填空题:请将答案填在题中横线上.8.已知甲、乙两组数据的平均数相等,若甲组数据的方差2s 甲=0.055,乙组数据的方差2s 乙=0.105,则__________组数据波动较大. 【答案】乙【解析】∵s 甲2<s 乙2,∴乙组数据波动较大.故答案为:乙.9.两个小组进行定点投篮对抗赛,每组6名组员,每人投10次.两组组员进球数的统计结果如下:则组员投篮水平较整齐的小组是__________组. 【答案】乙【解析】甲的方差=[(8-3)2+(5-3)2+(3-3)2+(1-3)2+(1-3)2+(0-3)2]÷6≈7.7, 乙的方差=[(5-3)2+(4-3)2+(3-3)2+(3-3)2+(2-3)2+(1-3)2]÷6≈1.7, 由于乙的方差较小,所以整齐的是乙组.故答案为:乙.10.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差__________(填“变小”“不变”或“变大”). 【答案】变大【解析】∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大.故答案为:变大.11.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为2s 甲__________2s 乙(填>或<).【答案】>【解析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小, 则乙地的日平均气温的方差小,故2s 甲>2s 乙,故答案为:>. 三、解答题:解答应写出文字说明、证明过程或演算步骤.12.甲、乙两个样本的相关信息如下:样本甲数据:1,6,2,3;样本乙方差:2s 乙=3.4.(1)计算样本甲的方差; (2)试判断哪个样本波动大. 【解析】(1)∵样本甲的平均数是1(1623)34⨯+++=, ∴样本甲的方差是:2s 甲=14[(1-3)2+(6-3)2+(2-3)2+(3-3)2]=3.5. (2)∵2s 甲=3.5,2s 乙=3.4,∴2s 甲>2s 乙,∴样本甲的波动大.13.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差2s 甲,2s 乙哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选__________参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选__________参赛更合适.【解析】(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环). (2)根据图象可知:甲的波动大于乙的波动,则2s 甲>2s 乙,(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适; 如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.。
20.2数据的波动程度第2课时根据方差做决策一、导学1.导入课题我们在考察一组数据的波动情况时,光看它的平均数和极差还远远不够,就必须对它的波动大小情况进行考察,这个问题在产品检验、技能竞赛中技能人员的挑选、优质品种的选择等方面具有广泛应用(板书课题).2.学习目标(1)进一步认识方差的作用.(2)学会运用方差分析数据进行优化选择和决策.3.学习重、难点重点:方差的计算.难点:运用方差大小与数据波动程度的关系,解决产品挑选等问题.4.自学指导(1)自学内容:P125例1至P127例2的内容.(2)自学时间:6分钟.(3)自学要求:思考例1中身高整齐与哪个统计量相关?例2中选择购哪家鸡腿合算可考虑哪些统计量?(4)自学参考提纲:①方差的计算步骤是什么?②例1中身高整齐说明要使身高的波动大小要小,即运用方差来衡量.③例2中选取哪家产品,可考虑样本的平均数,也可考虑样本的方差.由于平均数大致相等,所以适合通过方差来判断.④怎样用样本方差估计总体方差.⑤完成P127练习题.二、自学学生可结合自学指导进行自主学习.三、助学:1.师助生(1)明了学情:①关注学生是否知道“身高整齐”程度与什么相关;②选取产品应用哪些统计量来比较;③求方差的步骤是否掌握.(2)差异指导:对例2的选购标准、方法不会或不理解的学生进行指导.2.生助生:相互交流,帮助矫正错误.四、强化1.点学生口答P126练习第1题和第2题,并让学生进行评价,找出不足之处.2.产品优选的衡量标准及比较.3.强化方差公式和方差的作用.五、评价1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己的学习方法、学习收获及存在的困惑.2.教师对学生的评价:(1)表现性评价:点评学生课堂学习活动的积极性和不足.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).方差的特点是与生产及日常生活中的实际问题紧密联系的,对学生统计观念的形成有着举足轻重的作用.本节课创设了一个很好的问题情境和统计知识的背景,当学生融入到具体情境中后,就会思考如何对实际问题做出决策.在学生探索过程中,辅以小组讨论,始终以学生的学习过程为主体,在学生独立思考和全班交流的基础上,有针对性地进行引导,培养学生的自主意识和探索精神.(时间:12分钟满分:100分)一、基础巩固(70分)1.(15分)已知一组数据为2,0,-1,3,-4,则这组数据的方差为6.2.(15分)甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,7,6,8,6,7,7经过计算,两人命中环数的平均数相同,但s甲2>s乙2,所以确定乙去参加比赛.3.(20分)从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)甲:9,10,11,12,7,13,10,8,12,8乙:8,13,12,11,10,12,7,7,9,11问:(1)哪种农作物的苗长得比较高?(2)哪种农作物的苗长得比较整齐?解:x甲=x乙=10,∴两种农作物的苗长得一样高.(2)s甲2=3.6,s乙2=4.2,∵s甲2<s乙2,∴甲种农作物的苗长得比较整齐.4.(20分)段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?解:段巍:x1=13,s12=0.4,金志强:x2=13,S22=4.x1=x2, s12<s22,∴段巍的成绩比较稳定.二、综合应用(10分)5.某水果店对一周内甲、乙两种水果每天销量(单位:千克)情况统计如下:(1)分别求出这一周内甲、乙两种水果每天销售量的平均数;(2)试说明甲、乙两种水果哪一种销售量比较稳定.解: (1)x甲=51,x乙=51;(2)s甲2≈64.6,s乙2=24.∵s甲2>s乙2,∴乙种水果销售量比较稳定.三、拓展延伸(20分)6.某中学开展“唱红歌”比赛活动,八年级(1)、(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分100分)如下图所示:⑴根据左图填写右表:(2)结合两班复赛成绩的平均数和中位数,八(1)班复赛成绩较好;(3)结合两班复赛成绩的方差,八(1)班复赛成绩较好;(4)结合两班复赛成绩的众数,八(2)班复赛成绩较好.第2课时 分式的乘方一、教学目标:1、理解分式乘方的运算法则2、熟练地进行分式乘方的运算3.渗透类比转化的数学思想方法.二、重点、难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.三、教学过程1、课堂引入计算下列各题:(1)2)(b a =⋅b a b a =( ) (2) 3)(b a =⋅b a ⋅b a b a =( ) (3)4)(b a =⋅b a ⋅b a b a ba ⋅=( ) [提问]由以上计算的结果你能推出n ba )((n 为正整数)的结果吗? 2、例题讲解例5.计算(1) 332)2(ab - (2)4234223)()()(c a b a c b a c ÷÷ [分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.3、随堂练习1.判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(ab -=2249a b - (3)3)32(xy -=3398x y (4)2)3(b x x -=2229b x x - 2.计算 (1) 22)35(y x (2)332)23(c b a - (2)32223)2()3(x ay xy a -÷ (3)23322)()(z x zy x -÷- (4))()()(422xy x y y x -÷-⋅- (5)232)23()23()2(ayx y x x y -÷-⋅- 4、小结谈谈你的收获5、布置作业6、板书设计四、教学反思:第二十章数据的分析知识点:数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。
人教版数学八年级下册20.2《数据的波动程度》教学设计2一. 教材分析人教版数学八年级下册20.2《数据的波动程度》是学生在学习了数据的收集、整理、描述的基础上,进一步探究数据波动程度的课程。
本节内容主要包括方差、标准差的概念及其计算方法,通过这些内容的学习,使学生能更好地理解数据的波动情况,提高数据分析的能力。
二. 学情分析学生在之前的学习中已经掌握了数据的收集、整理、描述的基本方法,对数据的初步分析能力有所提高。
但是,对于方差、标准差的概念和计算方法可能较为陌生,需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.了解方差、标准差的概念,理解它们在描述数据波动程度方面的作用。
2.学会计算方差、标准差的方法,能熟练运用到实际问题中。
3.提高数据分析能力,培养学生的逻辑思维能力。
四. 教学重难点1.方差、标准差的概念及其计算方法。
2.方差、标准差在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题情境,引导学生自主探究方差、标准差的定义和计算方法;通过案例分析,使学生理解方差、标准差在实际问题中的应用;通过小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学课件:制作方差、标准差的概念和计算方法的课件。
2.案例材料:准备一些实际问题,用于引导学生应用方差、标准差进行分析。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾之前学过的数据描述方法,为新课的学习做好铺垫。
2.呈现(15分钟)介绍方差、标准差的概念,并通过实例讲解它们的计算方法。
3.操练(20分钟)让学生分组进行练习,运用方差、标准差分析实际问题。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)总结方差、标准差的计算方法,并通过一些练习题进行巩固。
5.拓展(10分钟)引导学生思考方差、标准差在实际生活中的应用,举例说明。
6.小结(5分钟)对本节课的主要内容进行总结,强调方差、标准差在数据分析中的重要性。
20.2 数据的波动程度一.选择题(共1小题)1.甲、乙两班举行班际电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:输入汉字个数(个)132133134135136137甲班人数(人)102412乙班人数(人)0141222=2.0,s乙2=2.7,则下列说法:①甲组学通过计算可知两组数据的方差分别为s甲生比乙组学生的成绩稳定;②两组学生成绩的中位数相同;③两组学生成绩的众数相同,其中正确的有()A.0个B.1个C.2个D.3个【分析】根据中位数,众数的计算方法,分别求出,就可以分别判断各个命题的真假.【解答】解:①甲组学生比乙组学生的成绩方差小,∴甲组学生比乙组学生的成绩稳定.②甲班学生的成绩按从小到大排列:132、134、134、135、135、135、135、136、137、137,可见其中位数是135;乙班学生的成绩按从小到大排列:133、134、134、134、134、135、136、136、137、137,可见其中位数是134.5,所以两组学生成绩的中位数不相同;③甲班学生成绩的众数是135,乙班学生成绩的众数是134,所以两组学生成绩的众数不相同.故选:B.【点评】此题考查方差问题,对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可.方差是反映数据波动大小的量.二.填空题(共3小题)2.在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:班级平均分中位数方差甲班92.595.541.25乙班92.590.536.06应用统计学知识分析乙班成绩较好,理由是甲乙两班平均水平一样,但乙班方差小,成绩比较均衡(或甲班成绩好,甲乙两班平均水平一样,但甲班中位数大,高分段人数多).【分析】根据平均数、中位数和方差的意义进行解答即可得出答案.【解答】解:∵甲班的平均成绩是92.5分,乙班的平均成绩是92.5分,∴这次数学测试成绩中,甲、乙两个班的平均水平相同;∵甲班的方差是41.25分,乙班的方差是36.06分,∴甲班的方差大于乙班的方差,∴乙班学生的数学成绩比较整齐,分化较小;故答案为:乙;甲乙两班平均水平一样,但乙班方差小,成绩比较均衡.【点评】此题考查了平均数、中位数和方差,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.3.已知一组数据a,b,c的平均数为5,方差为3,那么数据a+2,b+2,c+2的平均数和方差分别是7、3.【分析】根据数据a,b,c的平均数为5可知(a+b+c)=5,据此可得出(a+2+b+2+c+2)的值;再由方差为3可得出数据a+2,b+2,c+2的方差.【解答】解:∵数据a,b,c的平均数为5,∴(a+b+c)=5,∴(a+2+b+2+c+2)=(a+b+c)+2=5+2=7,∴数据a+2,b+2,c+2的平均数是3;∵数据a,b,c的方差为3,∴[(a﹣5)2+(b﹣5)2+(c﹣5)2]=3,∴a+2,b+2,c+2的方差=[(a+2﹣7)2+(b+2﹣7)2+(c+2﹣7)2]=[(a﹣5)2+(b﹣5)2+(c﹣5)2]=3.故答案为:7、3.【点评】本题考查的是方差,熟记方差的定义是解答此题的关键.4.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数经统计计算后填入下表:班级参赛人数平均字数中位数方差甲55135149191乙55135151110某同学根据上表分析得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀人数多于甲班优秀人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩波动比乙班的成绩波动大,上述结论正确的是①②③.【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,说明甲班的波动情况大,所以③正确;上述结论正确的是①②③;故答案为:①②③.【点评】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.三.解答题(共7小题)5.在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm),请你用所学过的有关统计的知识回答下列问题(数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=)(1)分别求甲、乙两段台阶路的高度平均数;(2)哪段台阶路走起来更舒服?与哪个数据(平均数,中位数方差和极差)有关?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下,请你提出合理的整修建议.【分析】(1)利用平均数的计算公式分别求出甲、乙两段台阶路的高度平均数;(2)根据方差的性质解答;(3)根据方差的性质提出合理的整修建议.【解答】解:(1)甲段台阶路的高度平均数=×(15+16+16+14+14+15)=15,乙段台阶路的高度平均数=×(11+15+18+17+10+19)=15;(2)∵S甲2<S乙2,∴甲段台阶的波动小,∴甲段台阶路走起来更舒服;(3)每个台阶的高度均为15cm,使方差为0,游客行走比较舒服.【点评】本题考查的是平均数、方差,掌握算术平均数的计算公式、方差的计算公式是解题的关键.6.某水果店去年3至8月销售吐鲁番葡萄、哈密大枣的情况见下表:3月4月5月6月7月8月48581013吐鲁番葡萄(单位:百公斤)8797107哈密大枣(单位:百公斤)(Ⅰ)请你根据以上数据填写下表:平均数方差吐鲁番葡萄89哈密大枣8(Ⅱ)请你根据上述信息,对这两种水果在去年3月份至8月份的销售情况进行分析.【分析】从表格中得出相关数据,计算平均数和方差,填入表格中,根据平均数和方差的意义分析.分析两种水果销售量的趋势即可.【解答】解:哈密大枣的月平均销量=(8+7+9+7+10+7)÷6=8吨,2=[(8﹣8)2+(7﹣8)2+(9﹣8)2+(7﹣8)2+(10﹣哈密大枣销量的方差S大枣8)2+(7﹣8)2]÷6=;(Ⅰ)平均数方差吐鲁番葡萄89哈密大枣8(Ⅱ)①由于两种水果的平均数相同,哈密大枣的方差较小,故哈密大枣的销售较稳定;②由于吐鲁番葡萄销售量处于上升趋势,故吐鲁番葡萄销售量前景较好.【点评】此题考查方差问题,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.某校要从小王和小李两名同学中挑选一人参加全市知识竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:第1次第2次第3次第4次第5次小王60751009075小李7090808080根据上表解答下列问题:(1)完成下表:姓名平均成绩(分)中位数(分)众数(分)方差小王807575190小李808080104(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.【分析】(1)根据平均数、中位数、众数的定义及计算公式分别进行解答即可;(2)根据方差的意义即方差反映数据的波动程度,得出方差越小越稳定,应此小李的成绩稳定;再根据80分以上(含80分)的成绩视为优秀,小王有2次优秀,小李有3次,分别计算出优秀率即可;(3)选谁参加比赛的答案不唯一,小李的成绩稳定,所以获奖的几率大;小王的90分以上的成绩好,则小王获一等奖的机会大.【解答】解:(1)小李的平均成绩是:(70+90+80×3)=80(分);把这些数从小到大排列为70,80,80,80,90,最中间的数是80,则中位数是80;80出现了3次,出现的次数最多,则众数是80;故答案为:80;80;80;(2)在这五次考试中,成绩比较稳定的是小李;小王的优秀率为40%,小李的优秀率为80%;(3)方案一:我选小李去参加比赛,因为小李的优秀率高,有4次得80分以上(含80分),成绩比较稳定,获奖机会大,方案二:我选小王去参加比赛,因为小王的成绩获得一等奖的机率较高,有2次90分以上(含90分),因此有可能获得一等奖.【点评】本题考查了方差、中位数及众数的知识,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.某班级选派甲、乙两位同学参加学校的跳远比赛,体育老师对他们的5次训练成绩进行了整理,并绘制了不完整的统计图,如图所示,请根据图中信息,解答下列问题:甲、乙两人跳远成绩统计表:第1次第2次第3次第4次第5次甲成绩/厘米588597608610 597乙成绩/厘米613 618580 a 618根据以上信息,请解答下列问题:(1)a=574;(2)请完成图中表示甲成绩变化情况的折线;(3)通过计算,补充完整下面的统计分析表;运动员最好成绩平均数众数方差甲610600597 41.2乙618600.6618378.24 (4)请依据(3)中所统计的数据分析,甲、乙两位同学的训练成绩各有什么特点.【分析】(1)根据折线统计图即可求解;(2)根据统计表即可求解;(3)根据平均数,众数的定义即可求解;(4)分别从平均数,众数;以及方差的角度来解答甲、乙两位同学的训练成绩特点.【解答】解:(1)由折线统计图可知,a=574;(2)如图所示:(3)甲的平均数:(588+597+608+610+597)÷5=600填表如下:运动员最好成绩平均数众数方差甲610600597 41.2乙618600.6618378.24 (4)从最好成绩,平均数,众数来看,乙跳远的成绩优于甲的;从方差来看,甲方差小说明甲成绩比乙的成绩稳定.故答案为:574;610,600,618.【点评】本题考查了折线图的意义和平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.9.某校八年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:八(1)班:88,91,92,93,93,93,94,98,98,100八(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差A班10094b93cB班99a95.5938.4(1)表中的a=95,b=93,c=12;(2)依据数据分析表,有人说:“最高分在八(1)班,八(1)班的成绩比八(2)班好”,但也有人说八(2)班的成绩要好,请给出两条支持八(2)班成绩好的理由.【分析】(1)利用平均数,中位数,以及方差的定义计算所求即可;(2)从平均分,以及中位数角度考虑,合理即可.【解答】解:(1)八(2)班的平均分a=×(89+93+93+93+95+96+96+98+98+99)=95;八(1)班的中位数b=93;八(1)班的方差c=×[(88﹣94)2+(91﹣94)2+(92﹣94)2+(93﹣94)2+(93﹣94)2+(93﹣94)2+(94﹣94)2+(998﹣94)2+(98﹣94)2+(100﹣94)2]=12;故答案为:95;93;12;(2)八(2)班的平均分高于八(1)班;八(2)班的成绩集中在中上游,故支持八(2)班成绩好.【点评】此题考查了方差,算术平均数,中位数,以及众数,熟练掌握各自的性质是解本题的关键.10.某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:组别平均分中位数方差合格率优秀率甲组 6.8a 3.7690%30%乙组b7.5 1.9680%20%(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.【分析】(1)由折线图中数据,根据中位数和加权平均数的定义求解可得;(2)根据中位数的意义求解可得;(3)可从平均数和方差两方面阐述即可.【解答】解:(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,∴其中位数a=6,乙组学生成绩的平均分b==7.2;(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于小组中上游,∴小英属于甲组学生;(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.【点评】本题主要考查折线统计图、加权平均数、中位数及方差,熟练掌握加权平均数、中位数及方差的定义是解题的关键.11.某校要从小明和小芳两名同学中挑选一人参加全县环保知识竞赛,在最近的五次选拔测试中,两人的成绩如下表:第1次第2次第3次第4次第5次小明60751009075小芳7080908080根据上表解答下列问题:(1)分别计算两人成绩的平均数和方差;(2)学校会派哪个同学去参加全县比赛?为什么?【分析】(1)根据平均数、方差的概念即公式即可得出答案;(2)根据方差的意义即方差反映数据的波动程度,得出方差越小越稳定,进而分析即可.【解答】解:(1)小明的平均成绩==80,小芳的平均成绩==80,小明成绩的方差=[(80﹣60)2+(80﹣75)2+(80﹣100)2+(80﹣90)2+(80﹣75)2]=190;小芳成绩的方差=[(80﹣70)2+(80﹣80)2+(80﹣90)2+(80﹣80)2+(80﹣80)2]=40;(2)∵=,>,∴两人平均成绩相当,但小芳成绩稳定,学校会派小芳去参加全县比赛.【点评】本题考查了方差、及平均数的知识,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.。