无穷级数-单元测试
- 格式:ppt
- 大小:90.50 KB
- 文档页数:4
无穷级数习题一、填空题1、设幂级数0nn n a x ∞=∑的收敛半径为3,则幂级数11(1)n n n na x ∞+=-∑的收敛区间为 .2、幂级数0(21)n n n x ∞=+∑的收敛域为 。
3、幂级数211(3)2n n nn n x ∞-=-+∑的收敛半径R = 。
4、幂级数0nn ∞=的收敛域是 . 5、级数21(2)4nnn x n ∞=-∑的收敛域为 . 6、级数0(ln3)2nnn ∞=∑的和为 。
7、111()2n n n ∞-==∑ 。
8、设函数2()f x x x π=+ ()x ππ-<<的傅里叶级数展开式为01(cos sin )2n n n a a nx b nx ∞=++∑,则其系数3b 的值为 。
9、设函数21,()1,f x x -⎧=⎨+⎩ 0,0,x x ππ-<≤<≤ 则其以2π为周期的傅里叶级数在点x π=处的敛于 。
10、级数11(1)(2)n n n n ∞=++∑的和 。
11、级数21(2)4nnn x n ∞=-⋅∑的收敛域为 。
参考答案:1、(2,4)- 2、(1,1)- 3、R 4、[1,1)- 5、(0,4) 6、22ln 3- 7、4 8、23π 9、212π 10、1411、(0,4)二、选择题1、设常数0λ>,而级数21n n a ∞=∑收敛,则级数1(1)nn ∞=-∑( )。
(A)发散 (B )条件收敛 (C )绝对收敛 (D )收敛与λ有关 2、设2n n n a a p +=,2n nn a a q -=, 1.2n =,则下列命题中正确的是( )。
(A )若1n n a ∞=∑条件收敛,则1n n p ∞=∑与1n n q ∞=∑都收敛.(B )若1n n a ∞=∑绝对收敛,则1n n p ∞=∑与1n n q ∞=∑都收敛。
(C )若1n n a ∞=∑条件收敛,则1n n p ∞=∑与1n n q ∞=∑的敛散性都不一定。
《无穷级数》单元检测参考答案一 选择题1, (C ) 2, (D) 3, (C) 4, (A) 5, (B)二 填空题1, )3,3(- 2 , ln2 3 , ⎪⎩⎪⎨⎧-=11)(x e x S x 00=≠x x 4 , 0 5, α>35三 (1)当λ≠0,±1,±2,⋯时,0sin )(lim ≠=+∞→λππμλπnn ,级数发散。
(2)当λ=0,±1,±2,⋯时,πμμπλπλ∑∑∞=∞=--=+-11sin )1()1()sin()1(n n nn n n ,μ≠0时,级数收敛,μ=0时,级数收敛于0。
四 设nn nn u )1()1(-+-=,由于11)1(1)1()1(+≥-+=-+-n n n nnn ,所以原级数非绝对收敛。
下面讨论其条件收敛情况:)21121()4151()2131(2n n S n -+++-+-=上式中括号内每项小于0,所以⎨S 2n ⎬单调下降。
又2122121)21221()4161()2141(2->++-=-+++-+->n n n S n ,所以,⎨S 2n ⎬有下界。
故S S n n =∞→2lim。
又S u S S n n n n n =+=+∞→+∞→)(lim lim 22212, 故原级数条件收敛。
五 因为{}0lim,,0≥=∴↓≥∞→a a a a n n n n 。
若0lim ==∞→a a n n ,则∑∞=-1)1(n n n a 收敛,与∑∞=-1)1(n n na 发散矛盾,所以,0lim>=∞→a a n n 。
对∑∞=+1)11(n nn a ,用柯西判别法:111)11(lim <+=+∞→a a n n n n ,所以,级数收敛。
六 由于 f(-x)=f(x),所以)00(='f .又02)0(>=''f ,所以f(x)在x=0取得极小值1,由泰勒公式:)(0)0(!21)0()0()(22x x f f f x f +''+'+=。
第十二章无穷级数练习题含答案第十二章无穷级数练习1.判断下列数列的收敛性和发散性:n?1sin1n?;2?n?1ln(1?1n?);?n?1n!n?;n?n?1(2n?13n?2)2n?12.判断下列序列是绝对收敛、条件收敛还是发散?(?1)n?1n?1n1;[n?]3n2??n?1ncosn3n2?;N1(?1)n?11n?lnn3.求幂级数?n?0(x?1)nn?1的收敛区间。
4.证明系列?N1n!NNX何时|x |?当e是绝对收敛时,当| x |?E.1n)处的散度单调增加,而limxn?En??nn注:数列xn?(1?5.找出区间(?1,1)中的幂级数n?1xn?1n的和函数。
6.找到这个系列吗?N21(n?1)和22 n。
一7.设a1?2,an?1?12(an?1an)(n?1,2,?)证明1)利曼存在;2)连续剧?(n?Anan?1?1)收敛。
n?18.设定一个??40? ntanxdx1)求?n?11n(an?an?2)的值;2)验证:对于任何常数??0系列?N1安?汇聚19.设正项数列{an}单调减少,且?(?1)nan发散,试问a?1?是否收敛?并说明理N1.N1n拜拜。
1211??11?xlndx。
10.已知1?2?2[参见教材246页],计算??1?x3580x。
二无穷级数例题选解1.判断下列数列的收敛性和发散性:n?1sin1n?;2?n?1ln(1?1n21n?);n?1n!n2?;n?n?1(2n?13n?2)2n?1解决方案:1)?sin1n2和N11n收敛,由比较审敛法知2)?ln(1?1n?n?1sin1n2收敛。
)~ 1n(n??)和N1.1n散度,由比较审敛法的极限形式知联合国?1un?N1ln(1?1n)散度。
n3)??lim?nlim(n?1)!(n?1)n?1?n??1?nlim,NN1n!Ennn??知识收敛比1n1n!n2收敛。
14)?? 林恩??un4?2n?1.2n?1.N林N3n?29 3n?2.2n?1.2n?1.汇聚1.从根值收敛法,我们可以知道3n?2.N1.2.判断下列序列是绝对收敛、条件收敛还是发散?N1(?1)n?1n1;[n?]3n?n?12??n?1ncosn3n2?;N1(?1)n?11n?lnn解:1)对于级数?(?1)n?1n32n,N1人??林?|联合国?1 | | un | n?1n13.知道进展情况吗?(?1)n?1.N32n绝对收敛,n1[n?]条件收敛。
第十一章 无穷级数§11.1 常数项级数的概念与性质一、判断题 1.∑∞=1n n u 收敛,则3)3(lim 2=+-∞→n n n u u ( )2.若0lim ≠∞→n n u ,∑∞=1n nu发散。
( )3.∑∞=1n nu收敛,则∑∞=+1)10(n nu收敛。
( )4.∑∞=1n nu发散,∑∞=1n nv发散,则)(1n n nv u-∑∞=也发散。
( )5.若∑∞=1n nu收敛,则∑∞=+12n n u也收敛。
( )二、填空题1.∑∞=⋅⋅-⋅⋅⋅1)2(642)12(531n n n 该级数的前三项是 。
2.级数⋅⋅⋅-+-+-5645342312的一般项是 。
3.级数⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅+86426424222x x x x x 的一般项为 。
4.级数)21)1(1(1n n n n -+∑∞=的和为 。
三、选择题1. 下列级数中收敛的是( )(A )∑∞=+1884n n n n (B )∑∞=-1848n n nn (C )∑∞=+1842n n nn (D )∑∞=⋅1842n nn n2. 下列级数中不收敛的是( )(A ))11(ln 1n n +∑∞= (B )∑∞=131n n (C )∑∞=+1)2(1n n n (D )∑∞=-+14)1(3n nnn3. 如果∑∞=1n nu收敛,则下列级数中( )收敛。
(A )∑∞=+1)001.0(n n u (B )∑∞=+11000n n u (C )∑∞=12n n u (D) ∑∞=11000n nu4. 设∑∞=1n n u =2,则下列级数中和不是1的为( )(A )∑∞=+1)1(1n n n (B )∑∞=121n n (C )∑∞=22n n u (D)∑∞=12n nu 四、求下列级数的和1.∑∞=+1523n nnn 2. ∑∞=+-1)12)(12(1n n n3.)122(1n n n n ++-+∑∞= 4.)1()12(11<-∑∞=-q qn n n五、判断下列级数的收敛性。
第十一章练习题一、 填空题1.级数)21)1(1(1nn n n -+∑∞=的和为( ). 2.若∑∞=1n n u 为正项级数,且其部分和数列为{}n s ,则∑∞=1n n u 收敛的充要条件是( ).3.级数∑∞=122sin2n nn π的敛散性为( ).4.幂级数n n x n )32(11-∑∞=的收敛区间为().5.幂级数∑∞=-122)1(n nnnx的收敛域为( ).6.将函数2)1(1x +展开成x 的幂级数为( ).7.)(x f 满足收敛的条件,其傅立叶级数的和函数为S(x),已知f (x )在x=0处左连续,且)(lim ,2)0(,1)0(0x f S f x +→=-=则=( ). 8.设)(x f 是周期为2π的函数,在一个周期上可积.当)(x f 是奇函数时,它的傅里叶系数为 =n a ( ),=n b ( ).二、 单项选择题1. 若级数∑∞=1n n a 条件收敛,则下列结论不正确的是( ).A. 交换律成立;B.结合律成立;C.分配律成立;D.以上都不成立。
2.在下面级数中,绝对收敛的级数是( ).A.∑∞=+1121n n ; B.nn n)23()1(1∑∞=-;C.311)1(nn n∑∞=-; D.nn n n1)1(1--∑∞=.3. 在下列级数中,条件收敛的级数是( ).A. ∑∞=+-11)1(n nn n ;B.∑∞=-11)1(n nn;C.∑∞=-121)1(n nn;D.∑∞=+-1)1(1)1(n nn n4. 已知级数∑∑∞=∞=--==-111215,2)1(n n n n n aa ,则级数∑∞==1n n a ( )A. 3 ; B. 7 ; C. 8 ; D. 95.幂级数nxnn ∑∞=1的和函数是( ).A.)1ln(x --; B. )1ln(x -; C.)1ln(x +; D. )1ln(x +- 6. 函数2)(x e x f -=展开成x 的幂级数为( ).A. ∑∞=02!n nn xB.∑∞=⋅-02!)1(n n n n xC.∑∞=0!n n n xD.∑∞=⋅-0!)1(n nn n x7. 若∑∞=-1)1(n nn x a 在1-=x 处收敛,则此级数在2=x 处( ).A.条件收敛;B.绝对收敛;C.发散;D.收敛性不能确定。
第八章 无穷级数一、基本要求1.理解常数项级数收敛与发散的概念,收敛级数和的概念,掌握级数的基本性质和收敛的必要条件;2.掌握几何级数,P —级数的敛散性;3.掌握正项级数的比较判别性,比值判别法,会用根值判别法,了解积分判别法;4.掌握交错级数的莱布尼兹判别法;5.了解函数项级数的绝对收敛与条件收敛的概念,以及二者之间的关系;6.了解函数项级数的收敛域及和函数的概念;7.掌握幂级数的收敛半径,收敛区间以及收敛域的求法;8.了解幂级数在收敛区间内的一些基本性质,会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和; 9.了解泰勒公式、泰勒级数;掌握xe ,sin x ,[]0, ,()ln 1x +及()1x α+的麦克劳林展开式,并能利用这些展开式将一些简单的函数展成幂级数; 10.了解幂级数在近似计算中的简单应用;11.了解傅立叶级数的概念以及函数展开成傅立叶级数的狄利克莱定理;12.会将定义在[],ππ-,[],- 及[]0,π,[]0, 上的函数展开为傅立叶级数,会写出傅立叶级数的和的表达式。
二、主要内容1. 数项级数的定义(1)设有数列{},1,2,3,n u n = ,则121nn u u u∞=++=∑ 称作以1u 为首项,以n u 为近项的无穷级数。
(2)121nn kn k u u u us +=++==∑ 称作无穷级数1n n u ∞=∑的前n 项的部分和。
(3)若lim n n s s →∞=,则称级数1nn u∞=∑收敛于s ,s 称为级数1nn u∞=∑的和,即1nn us ∞==∑;若lim n n s →∞不存在,则称级数1nn u∞=∑发散,即1nn u∞=∑的和不存在。
(4)一般项数列{}n u 与部分和数列{}n s 关系:1n n n u s s -=-2. 数项级数的性质 (1)级数1nu∞∑收敛的必要条件是:lim 0n n u →∞=,当lim 0n n u →∞≠或lim n n u →∞不存在时,1nn u∞=∑必发散。
第九章 无穷级数 测试题一、选择题(每小题4分,共24分) 1.级数∑∞=+111n na 敛散的情况是( ) A. 当0>a 时收敛 B. 当0>a 时发散C. 当10≤<a 时发散,当1>a 时收敛D.当10≤<a 时收敛,当1>a 时发散 2. 级数()∑∞=⎪⎭⎫ ⎝⎛--1cos 11n n n α (常数0>α) ( )(A )发散; (B )条件收敛;(C )绝对收敛; (D )敛散性与α有关. 3. 设0lim =∞→n n a ,则常数项级数∑∞=1n na( )(A )一定收敛且和为0 (B )一定收敛但和不一定为0(C )一定发散 (D )可能收敛也可能发散 4. 若∑∞=1n nu收敛,则下列级数中哪一个必收敛。
( )(A)∑∞=-1)1(n n nu (B)∑∞=12n nu(C)()∑∞=+-11n n nu u(D)∑∞=1n nu5、如果81lim 1=+∞→nn n a a ,则幂级数∑∞=03n n n x a ( )(A)当2<x 时收敛 (B) 当8<x 时收敛 (C) 当81>x 时发散 (D) 当21>x 时发散 6、级数 ∑∞=1!2n n n n n (1) 与级数∑∞=1!3n n n nn (2)( )(A )级数(1)(2)都收敛 (B )级数(1)(2)都发散(C )级数(1)收敛,级数(2)发散 (D )级数(1)发散,级数(2)收敛二、填空题(每小题4分,共28分) 1.已知级数∑∞=1n n u 的前n 项部分和13+=n ns n () 2, 1=n 则此级数的通项=n u .2.设幂级数∑∞=0n nnx a的收敛半径是4,则幂级数∑∞=+012n n n x a 的收敛半径是 .3. 幂级数()()()∑∞=---121311n n nn n x 的收敛域为 . 4. x ln 在10=x 处展开成的泰勒级数为x ln =_____________________ 5、如果幂级数()nn n x a 10-∑∞=的收敛半径是1,则级数在开区间 内收敛.6、幂级数nn nx n n ∑∞=12cos 的收敛域是 . 7、幂级数()∑∞=-15n n nx 的收敛半径是 ,收敛域是 .三、解答下列各题(每题12分,共48分)1. 判别级数21cos 32n n n n π∞=∑的敛散性。
一、选择题1.设级数∑∞=-1)3(n n n x a 在6=x 条件收敛,在5-=x ( C )。
A .条件收敛B .绝对收敛C .发散D .敛2.当)(1n n n v u +∑∞=收敛时,则级数∑∞=1n n u 与∑∞=1n n v ( )。
A .可能都发散B .必定都收敛C .必定都发散D .必定都绝对收敛 3.若nn n x a )1(0-∑∞=在2-=x 处收敛,则n n n x a )1(0-∑∞=在3=x 处( )。
A .一定发散B .可能收敛可能发散C .一定绝对收敛D .一定条件收敛 4.级数11sin n n n∞=∑( C )A 绝对收敛B 条件收敛C 发散D 无法判别 5.当k >时,级数21(1)nn k n n ∞=+-∑( B )A 发散B 条件收敛C 绝对收敛D 无法判定二、填空题1. 设级数nn n x a ∑∞=⎪⎭⎫⎝⎛+021,若31lim 1=+∞→n n n a a ,则级数收敛半径是_____23_______。
2. 将xe 展开成1-x 的泰勒级数是0(1)!n n ex n ∞=-∑。
3.()nnnn x n !3110⋅-∑∞=的收敛区间是(,)-∞+∞。
4.幂级数nn nx n ∑∞=131的收敛域是 。
[3,3)-5.级数=+-+-+-!111!91!71!51!3111sin6.2322222!3!!nn +++++ 的和为。
21e -三、计算1. 判断级数是否收敛,如果收敛是绝对收敛还是条件收敛(交错级数)(1)10(1)tan2nn n n π∞+=-∑(2)1(1)ln(1n n ∞=-+∑ (3)11(1)(1)nnn n e∞=--∑(4)1n n +∞=(5) 11(1)2n nn n -∞=-∑ 答案:(1)绝对收敛;(2)条件收敛;(3)发散;(4)条件收敛;(5)绝对收敛。
2. 求标准幂级数nn n a x∞=∑的收敛半径、收敛域。
第十一章 无穷级数(A)用定义判断下列级数的敛散性1. n 2n 1; .1;3. 11 。
2n 1 2n 2n2n 13 n5 nn 1判断下列正项级数的敛散性.n! ;5. n e; 6.n 1;7. 2n 3;8. n 4 ;n 1 e n1 2nn 1 n n 3 n 1 n! n 1 100 n nn nn1 n9.;10.3n n 12n。
n 11求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛.1n 1n 1 ; 12.1n1; 13.1.1 1.01 1.001 1.0001;112 nln nn 1n 214.122 2 3 1 4 1 ;21 32 4 2求下列幂级数的收敛半径和收敛区间.3n x n;16.1 n x n ; 17.n! xn; .1 n;n n n 1 2n n n 1 n n 1n 119.1 2n 1; 20. n 2n;1 2 n 1xn 1 3 n xn求下列级数的和函数21. n 1 nxn 1; 22. n 1 21n 1 x2n 1;将下列函数展开成 x x 0 的幂的级数23. shx e xe x , x 00 ;24. cos 2 x , x 00 ;225. 1 x ln 1 x , x 00 ; 26. 1, x 0 3 ;x将下列函数在区间, 上展开为付里叶级数27. A xcos x,x。
28. f x 2t , x22x , 3x t 029.将函数 f x, 0 t 3 展开成付里叶级数。
xx, 0 xl2分别展开成正弦级数和余弦级数。
30.将函数 f xllx , x l2(B)用定义判断下列级数的敛散性1.1;2.1; 3.n 2 2 n 2n 03n 1 3n4n 1n n 1 n2n 1判断下列正项级数的敛散性2n n!2n2n3n na n. ; 5.;6. ,( a 0 );4n3n 12n nn 1nn1n 11nb7.,其中 a na ( n), a n , b , a 均为正数;n 1a n11x8.n,( a 0);9. n 42x ;1 n 1 0 1 x n 1 1判断下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛n 12 n 2n 1ln 2110.1;11.n 1;12.1n 1 nn!12 n 13n 2 3nn 1n 1nn 1求下列幂级数的收敛半径和收敛域.nx 2 n;14.x n ,( a 0 ,b 0 ); 1312n!n 1 anb nn 115.n12 n 1; 16. 3n2 nn;12 n4 n x 5x 1 n 1n 1n求下列级数的和函数17. nx 2n ;18.2n 1x 2 n ; 19. n 2 x n ;n 1n 1n ! n 120.求证: ln 21;n ;; 2将下列函数展开成 xx 0 的幂的级数21.f x21,x 0 0 ;22.f x12 ,x 01;23. x ,x 0 0 ; 2x3x 1x1 x 224.证明偶函数的付里叶级数数仅含余弦项;25.写出函数 f x1 x 2k , x2k 1 , 2k1 , k 0, 1, 2,的2付里叶级数,并讨论收敛情况。
无穷级数练习题无穷级数是数学中的重要概念之一,涉及到数列和数列的和。
在本文中,我们将通过一些练习题来进一步理解和掌握无穷级数的概念和性质。
1. 练习题一考虑无穷级数:1/2 + 1/4 + 1/8 + ...求出该级数的和。
解答:我们可以观察到这是一个等比数列,公比为1/2。
根据等比数列求和公式,该无穷级数的和为:S = a / (1 - r)其中a为首项,r为公比。
代入相应的数值,我们有:S = (1/2) / (1 - 1/2)= (1/2) / (1/2)= (1/2) * (2/1)= 1因此,该无穷级数的和为1。
2. 练习题二考虑无穷级数:2 + 2/3 + 2/9 + ...求出该级数的和。
解答:我们可以发现这是一个等比数列,公比为1/3。
同样地,根据等比数列求和公式,该无穷级数的和为:S = a / (1 - r)代入相应的数值,得到:S = 2 / (1 - 1/3)= 2 / (2/3)= 3因此,该无穷级数的和为3。
3. 练习题三考虑无穷级数:1/3 + 1/9 + 1/27 + ...求出该级数的和。
解答:观察到这是一个等比数列,公比为1/3。
根据等比数列求和公式,该无穷级数的和为:S = a / (1 - r)代入相应的数值,我们有:S = (1/3) / (1 - 1/3)= (1/3) / (2/3)= 1/2因此,该无穷级数的和为1/2。
4. 练习题四考虑无穷级数:1/2 + 1/4 + 1/8 + ...求出该级数的和,并判断级数是否收敛。
解答:根据练习题一的解答,该无穷级数的和为1。
由于公比r = 1/2小于1,因此该级数是一个收敛级数。
5. 练习题五考虑无穷级数:1 + (-1) + 1 + (-1) + ...求出该级数的和,并判断级数是否收敛。
解答:我们可以观察到这个级数没有公比。
此级数的和没有一个确定的值,因为级数在每一项之间交替着正负号,所以无法收敛到一个特定的数值。
第十一章 无穷级数 复习题(答案)一、单项选择题:1.已知级数∑∞=1n nu收敛,n S 是它的部分和,则它的和是( A )A. n n S ∞→lim B. n S C. n u D. n n u ∞→lim2、若0lim =∞→n n u ,则级数∑∞=1n n u ( C )A 、条件收敛B 、发散C 、可能收敛也可能发散D 、收敛3、若级数1n n u ∞=∑发散,则1(0)n n au a ∞=≠∑( A )A.一定发散 C.当0a >时收敛,当0a <时发散B.可能收敛,也可能发散 D.当0a >时收敛,当0a >时发散4、下列级数中条件收敛的是( A )A.111n n -∞=- B.()1311n n n -∞=-∑C.()1111n n n n ∞-=-+∑ D.()11213nn n ∞-=⎛⎫- ⎪⎝⎭∑ 5、在下列级数中,条件收敛的是( B ) A. 111(1)()2n n n ∞-=-∑ B. 111(1)1n n n ∞-=-+∑ C. 11(1)21n n nn ∞-=-+∑ D. 11(1)n n ∞-=-∑()()()()().1..;..;1..;..;,...,2,1,10.7....;||1..6121111212∑∑∑∑∑∑∞=∞=∞=∞=∞=∞=--=<≤+-n n nn n n n n nn n n n nn n a D a C a B a A Dn n a 。
D ;C ;B ;A Cn a ,a 是则下列级数肯定收敛的设有关收敛性与绝对收敛条件收敛发散则级数收敛设级数λλ().10.;1.;1.;1.,.8.11<<<≥>=+∞→∞=∑g D g C g B g A 。
,Cg a a lin,a nn n n n 级数收敛时则当若设有正项级数二、填空题:1、1025n n +∞=⎛⎫= ⎪⎝⎭∑ ;2、正项级数∑∞=1n nu收敛的充分必要条件是 它的部分和数列{Sn}有界 ;5、级数∑∞=--1123)1(n n n 的和=s 6、级数11(1)n n n ∞=+∑前n 项的部分和n S = ,而此级数的和S = 17、幂级数∑∞=02n n nx 的收敛域是[-2,2]8、幂级数1(1)2(1)n n n n x n ∞=-+∑的收敛半径R = 2 ;收敛域为9.绝对收敛的级数必_____1__________10、幂级数n n ∞=的收敛半径R = 1 ,收敛域为 ;;u ,v n v u v u u lin u n n n n n n n n n nn n n n _____,....),3,2,1(.4.;_____0__.311111收敛收敛时则当满足与正项级数收敛的必要条件是级数∑∑∑∑∑∞=∞=∞=∞=∞→∞==<=,3223111+-n (]2,2-)1,1[-三、解答题:1.判定级数∑∞=-+-12211ln )1(n n n n 的敛散性,若收敛,请指出它是绝对收敛,还是条件收敛。
第十一章 无穷级数测试题一、单项选择题1、若幂级数1(1)n n n a x ∞=+∑在1x =处收敛,则该幂级数在52x =-处必然( )(A) 绝对收敛; (B) 条件收敛; (C) 发散; (D) 收敛性不定.2、下列级数条件收敛的是( ).(A) 1(1);210n n nn ∞=-+∑(B) 11n n -∞= (C) 111(1)();2nn n ∞-=-∑(D)11(1)n n ∞-=-∑ 3、若数项级数1n n a ∞=∑收敛于S ,则级数()121n n n n a a a ∞++=++=∑( )(A) 1;S a + (B) 2;S a + (C) 12;S a a +- (D) 21.S a a +- 4、设a为正常数,则级数21sin n na n ∞=⎡⎢⎣∑( ). (A) 绝对收敛; (B) 条件收敛; (C) 发散; (D) 收敛性与a 有关.5、设2(),01f x x x =<≤,而1()sin π,n n S x b n x x ∞==-∞<<+∞∑,其中102()sin π,(1,2,)n b f x n x n ==⎰,则1()2S -等于( ) (A) 1;2- (B) 1;4- (C) 1;4 (D) 12.二、填空题1、 设14n n u ∞==∑,则111()22n nn u ∞=-=∑( ) 2、 设()111n n n a x ∞+=-∑的收敛域为[)2,4-,则级数()11nn n na x ∞=+∑的收敛区间为( )3、 设32,10(),01x f x x x -<⎧=⎨<⎩≤≤,则以2为周期的傅里叶级数在1x =处收敛于( )4、 设2()π,ππf x x x x =+-<<的傅里叶级数为()01cos sin ,2n n n a a nx b nx ∞=++∑ 则3b =( )5、级数()1(1)221!n n nn ∞=-+∑的和为( )三、计算与应用题1、求级数()113;3nnn x n ∞=-⋅∑的收敛域 2、求()21112nn n ∞=-⋅∑的和 3、将函数()2()ln 12f x x x =--展开为x 的幂级数,并求()(1)0n f +4、求2012!nn n n x n ∞=+∑的和函数5、 已知()n f x 满足1()()e n xn n f x f x x -'=+,n 为正整数,且e(1)n f n=,求函数项级数()1n n f x ∞=∑的和函数.6、 设有方程10n x nx +-=,其n 中为正整数,证明此方程存在唯一正根0x ,并证明当1α> 时,级数1n n x α∞=∑收敛.四、证明题设π40tan d n n a x x =⎰(1)求()211n n n a a n∞+=+∑(2)试证:对任意常数0λ>,级数1nn a nλ∞=∑收敛 提示:()()2111n n a a n n n ++=+,()2111n n n a a n∞+=+=∑.因为211n n a a n ++=+,所以111n a n n <<+,1111nn n a n nλλ∞∞+==<∑∑ 第十一章 无穷级数测试题答案与提示 一、1、A ;2、D ;3、B ;4、C ;5、B. 二、1、1;2、()4,2-;3、32;4、2π3;5、cos1sin1-. 三、1、答案:[)0,6.2、答案:53ln 284-提示:原式为级数()211n n x n ∞=-∑的和函数在12x =点的值.而()22221121211n n nn n n x x x n n n ∞∞∞====--+-∑∑∑,分别求出2121n n x n ∞=-∑和2121n n x n ∞=+∑的和函数即可.3、答案:110(1)211(),,122n n n n f x x x n +∞+=--⎡⎫=∈-⎪⎢+⎣⎭∑ ()1(1)(1)20!1n n n fn n ++--=⋅+.提示: ()()()2()ln 12ln 12ln 1f x x x x x =--=-++4、答案:222011e 1,2!42xn n n n x x x x n ∞=⎛⎫+=++--∞<<+∞ ⎪⎝⎭∑提示:()2011112!1!2!2n nn n n n n n n x x x n n n ∞∞∞===+⎛⎫⎛⎫=+ ⎪ ⎪-⎝⎭⎝⎭∑∑∑,而()1011e ,e 1!!xn xn n n x x x n n ∞∞====-∑∑5、答案:()()[)1e ln 1,1,1x n nf x x x ∞==--∈-∑提示:先解一阶线性微分方程,求出特解为()e x n xf x n=()111e e x xn n n n x x f x n n ∞∞∞=====∑∑∑,记1()n x S x n∞==∑,则可得()ln(1)S x x =--6、提示:设()1n n f x x nx =+-,则()()0,0n f x x '>>,故()n f x 在()0,+∞内最多有一个正根.而(0)10,(1)0n n f f n =-<=>,所以有唯一正根0x .由方程10n x nx +-=知,00110n x x n n -<=<,故当1α> 时,级数1n n x α∞=∑收敛.四、提示:()()2111n n a a n n n ++=+,()2111n n n a a n∞+=+=∑.因为211n n a a n ++=+,所以111n a n n <<+,1111nn n a n nλλ∞∞+==<∑∑第十章 曲线积分与曲面积分测试题 一、单项选择题1、已知()()2d d x ay x y y x y +++为某二元函数的全微分,则a 等于( )(A) 1;- (B) 0; (C) 1; (D) 2.2、设闭曲线c 为1x y +=的正向,则曲线积分d d cy x x yx y-++⎰的值等于( )(A) 0; (B) 2; (C) 4; (D) 6.3、设∑为封闭柱面()22203x y a z +=≤≤,其向外的单位法向量为{}cos ,cos ,cos n αβγ=,则()cos cos cos d x y z s αβγ∑++⎰⎰等于( )(A) 29π;a (B) 26π;;a (C) 23π;a (D) 0.4、设曲线c 为22220x y z a x y z ⎧++=⎨++=⎩,则d cx s ⎰等于( )(A) 23;a (B) 0; (C) 2;a (D)213a .5、设∑为下半球z =Ω是由∑和0z =所围成的空间闭区域,则d d z x y ∑⎰⎰不等于( )(A) d ;v Ω-⎰⎰⎰(B) 2π00d d r θ⎰⎰;(C) 2π00d d ;ar θ-⎰⎰ (D) ()d d z x y x y ∑++⎰⎰.二、填空题1、设c 是圆周222x y a +=,则()2d cx y s -=⎰( )2、设质点在力()()32F y x i y x j =++-的作用下沿椭圆2244x y +=的逆时针方向运动一周,则F 所做的功等于( )3、设∑是平面6x y z ++=被圆柱面221x y +=所截下的部分,则d z s ∑⎰⎰等于( )4、设∑是球面2221x y z ++=的外侧,则()23222d d xy z xy z∑++⎰⎰等于( )5、设22()d ()d 1cxf x y x f x y x-++⎰与路径无关,其中()f x '连续且(0)0f =,则()f x =( )三、计算与应用题1、求()()x ysin d cos d L I e y b x y x e y ax y ⎡⎤=-++-⎣⎦⎰,其中,a b 为正常数,L 为从点()2,0A a 沿曲线y =()0,0O 的弧.2、计算2d L I y s =⎰,其中L 为圆周2222x y z a x y z ⎧++=⎨++=⎩.3、在变力F yzi zx j xyk =++的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c++=上第一卦挂线的点(),,M ξηζ,问,,ξηζ取何值时,力F 所做的功W 最大并求出W 最大值.4、设S 为椭球面222122x y z ++=的上半部分,点(),,P x y z S ∈,π为S 在点P 处的切平面,(),,x y z ρ为点()0,0,0O 到平面π的距离,求()d ,,Szs x y z ρ⎰⎰.5、求d d 2d d 3d d I xz y z zy z x xy x y ∑=++⎰⎰,其中∑为曲面()221014y z x x =--≤≤的上侧.6、设对于半空间0x >内任意光滑有向闭曲面S ,都有,2()d d ()d d ed d 0xSxf x y z xyf x z x z x y --=⎰⎰,其中函数()f x 在()0,+∞内具有连续的一阶导数,且0lim ()1x f x +→=,求()f x .答案:()e ()e 1x xf x x=-提示:由题设和高斯公式得220()d d ()d d e d d ()()()e d x xSxf x y z xyf x z x z x y xf x f x xf x v Ω'⎡⎤=--=±+--⎣⎦⎰⎰⎰⎰⎰由S 的任意性,知2()()()e 0x xf x f x xf x '+--=,解此微分方程即可.四、证明题已知平面区域(){},0π,0πD x y x x =≤≤≤≤,L 为D 的正向边界,试证: (1)sin sin sin sin e d e d e d e d y x y x LLx y y x x y y x ---=-⎰⎰;(2)2sin sin 5πe d e d 2y x Lx y y x --⎰≤第十章 曲线积分与曲面积分测试题答案与提示 一、1、D ;2、C ;3、A ;4、B ;5、B. 二、1、3πa -;2、4π-;3、;4、4π3;5、211x+. 三、1、答案:23ππ222I a b a ⎛⎫=+- ⎪⎝⎭. 提示:添加从()0,0O 沿0y =到点()2,0A a 的有向直线段1L ,然后用格林公式.2、答案:32π3I a =. 提示:利用变量“对等性”22231d d d d 3L L L L I y s x s z s a s ====⎰⎰⎰⎰. 3、答案:ξηζ===max W =. 提示:直线段:,,OM x t y t z t ξηζ===,t 从0变到1,功W 为120d d d 3d OMW yz x zx y xy z t t ξηζξηζ=++==⎰⎰再求W ξηζ=在条件2222221x y z a b c++=下的最大值即可.4、答案: ()3d π,,2Sz s x y z ρ=⎰⎰.提示:曲面S 在点(),,P x y z 处的法向量为{},,2x y z ,切平面方程为:022x y X Y zZ ++=,点()0,0,0O 到平面π的距离()12222,,44x yx y z z ρ-⎛⎫=++⎪⎝⎭. 5、答案:d d 2d d 3d d πI xz y z zy z x xy x y ∑=++=⎰⎰.提示:添加曲面1∑为平面xoy 上被椭圆()221014y x x +=≤≤所围的下侧,在∑和1∑所围封闭曲面上用高斯公式.注意到在1d d 2d d 3d d I xz y z zy z x xy x y ∑=++⎰⎰的积分等于3d d Dxy x y ⎰⎰为0.6、提示:(1)左边=()π0πsin sin sin sin 0π0πe d πe d πe +e d y x x x y x x ---=⎰⎰⎰,同理,右边=()πsin sin 0πe +e d x x x -⎰(2)由(1)得sin sin e d ed y xLx y y x --⎰=()πsin sin 0πe +e d x x x -⎰,而由sin e x 和sin e x -泰勒展开式知道()π20π2sin d x x +⎰≤()πsin sin 0πe +e d x x x -⎰,而()π2205π2sin d π2x x +=⎰.第九章 重积分测试题一、选择题1、若区域D 是xoy 平面上以(1,1),(1,1)-和(1,1)--为顶点的三角形区域,1D 是D 在第一象限中的部分,则(cos sin )Dxy x y dxdy +=⎰⎰( ).(A) 12cos sin D x ydxdy ⎰⎰;(B) 2cos sin Dx ydxdy ⎰⎰(C) 14(cos sin )D xy x y dxdy +⎰⎰(D) 02、设(,)f x y 连续,且(,)(,)d d Df x y xy f x y x y =+⎰⎰,其中D 是xoy 平面上由20,y y x == 和1x =所围区域,则(,)f x y 等于( ).(A) xy ; (B) 2xy ; (C) 1xy + ; (D) 18xy +3、设22222123d ,cos()d d ,cos()d d ,DDDI x y I x y x y I x y x y ==+=+⎰⎰⎰⎰⎰⎰其中(){}22,1D x y x y =≤+,则( ).(A) 321I I I >>; (B) 123I I I >>; (C) 213I I I >> ; (D)312I I I >>4、设空间闭区域Ω由2221x y z ++≤及z 0≤确定,1Ω为Ω在第一挂限的部分,则( ).(A) 1d 4d x v x v ΩΩ=⎰⎰⎰⎰⎰⎰; (B) 1d 4d y v y v ΩΩ=⎰⎰⎰⎰⎰⎰;(C) 1d 4d z v z v ΩΩ=⎰⎰⎰⎰⎰⎰; (D) 1d 4d xyz v xyz v ΩΩ=⎰⎰⎰⎰⎰⎰5、设空间闭区域({,,z x y z Ω=,d I z v Ω=⎰⎰⎰,则下列将I 化为累次积分中不正确的是( ).(A)22π1d d d rI r r zθ=⎰⎰;(B)π2π240d d cos sin d I θϕϕρϕρ=⋅⎰⎰;(C) 122201πd π(2)d I z z z z z =+-⎰⎰; (D) 221004d d x y I x y z z +=⎰二、填空题1、设区域D 为222x y R +≤,则2222d d D x y I x y a b ⎛⎫=+ ⎪⎝⎭⎰⎰的值等于( )2、设(){}22,1D x y x y =≤+,则2221lim ln(1)d d πx y r De x y x y r -→++⎰⎰的值等于( )3、积分222d e d y xI x y -=⎰⎰的值等于( )4、积分2222222()d x y z R I f x y z v ++=++⎰⎰⎰≤可化为定积分0()d Rx x ϕ⎰,则()x ϕ等于( ) 5、积分22221()d x y z I ax by v ++=+⎰⎰⎰≤的值等于( )三、计算与应用题1、求)d d DI y x y =⎰⎰,其中D 是由圆224x y +=和22(1)1x y ++=所围的平面区域. 2、求{}22max ,e d d x y DI x y =⎰⎰,其中(){},1,1D x y x y =≤≤≤≤00.3、计算22()d I x y z v Ω=++⎰⎰⎰,其中Ω由曲线220y zx ⎧=⎨=⎩绕z 轴旋转一周而成的旋转曲面与平面4z =所围的立体.4、计算()d I x z v Ω=+⎰⎰⎰,Ω由z =z =确定.5、计算112111224d e d d e d y y xxy I y x y x =+⎰⎰⎰.6、设有一高度为()h t (t 为时间)的雪堆在融化过程中,其侧面满足方程222()()()x y z h t h t +=-(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为0.9),问高度为130cm 的雪堆全部融化需多少小时四、证明题设函数()f x 在[]0,1上连续,并设1()d f x x A=⎰,证明11201d ()()d 2x I x f x f y y A ==⎰⎰.第九章 重积分测试题答案与提示一、1、A ;2、D ;3、A ;4、C ;5、B. 二、1、22222πR 4x y ab ⎛⎫+ ⎪⎝⎭;2、1;3、()411e 2--;4、224π()x f x ;5、()224π+15a b .三、1、答案:()163π-29I =. 提示:将D 看成两个圆域的差,再考虑到奇偶对称性,利用极坐标计算便可. 2、答案:e 1I =-提示:为确定{}22max ,x y ,必须将D 分成两个区域,再考虑到积分次序的选取问题即可.3、答案:256π3I =提示:旋转曲面的方程为222x y z +=,用柱面坐标计算22π42002d d ()d r I r r z z θ=+⎰⎰⎰即可.4、答案:π8I =.提示: d 0x v Ω=⎰⎰⎰, ππ122400d 4d d cos sin d z v θϕρϕρϕρΩ=⋅⎰⎰⎰⎰⎰⎰.5、答案:3e 8I =- 提示:交换积分次序. 6、答案:100t =小时提示:先利用三重积分求出雪堆的体积222()31()()2πd d d ()4h t x y h t h t z V zx y h t ⎡⎤+-⎣⎦==⎰⎰⎰≤;再求出雪堆的侧面积22221()213πd ()12x y h t S x y h t +==⎰⎰≤; 由题意d 0.9d V S t =-,所以d ()13d 10h t t =-,解出()h t 并令其等于0,则可得结果.四、提示:交换积分次序,并利用1111000001d ()()d d ()()d d ()()d 2y xy f x f y x x f x f y y x f x f y y ==⎰⎰⎰⎰⎰⎰.第八章 多元函数微分法及应用测试题 一、选择题1、已知函数()f x 在[]1,1-上连续,那么sin cos ()xy f t dt x∂=∂⎰( ).(A)(sin )(cos )f x f y - (B)(sin )cos (cos )sin f x x f y y - (C) (sin )cos f x x ; (D) (cos )sin f y y2、在矩形域00:,D x x y y δδ-<-<内,(,)(,)0x y f x y f x y =≡是(,)f x y c ≡(常数)的( ).(A) 充要条件; (B)充分条件; (C) 必要条件; (D).既非充分又非必要条件3、若函数(,)f x y 在区域D 内的二阶偏导数都存在,则( ) (A ) (,)(,)xy yx f x y f x y =在D 内成立; (B )(,),(,)x y f x y f x y 在D 内连续;(C ) (,)f x y 在D 内可微分; (D )以上结论都不对 4、42002lim3x y xyx y →→+的值为( )(A)∞ ; (B) 不存在; (C) 23; (D) 0.5、设有三元函数ln e 1xz xy z y -+=,据隐函数存在定理,存在点()0,1,1的一个邻域,在此邻域内该方程( ).(A )只能确定一个具有连续偏导的隐函数(),z z x y =;(B )可确定两个具有连续偏导的隐函数(),z z x y =和(),y y x z =; (C )可确定两个具有连续偏导的隐函数(),z z x y =和(),x x y z =; (D )可确定两个具有连续偏导的隐函数(),x x y z =和(),y y x z =. 二、填空题1、设(,)cos()(2xy f x y e x y π=+-,则(1,1)x f 的值为( ). 2、设(,)f x y 具有连续偏导数,且(1,1)1,(1,1),(1,1)x y f f a f b''===,令[]{}(),,(,)x f x f x f x x ϕ=,则(1)ϕ'的值为( ).3、设2(,,)x f x y z e yz =,其中(,)z z x y =是由0x y z xyz +++=确定的隐函数,则(0,1,1)x f '-=( ).4、曲线222320x y z x y z ⎧++=⎨-+=⎩在点()1,1,1M 处的切线方程为( ).5、函数22223326u x y z xy x y z =++++--在点()0,0,0O 处沿( )方向的方向导数最大三、计算和应用题1、设()()3222cos d 1sin 3d axy y x x by x x y y -+++为某一函数(,)f x y 的全微分,求a 和b 的值2、设()()ky x g y x y x f z +++-=,,g f ,具有二阶连续偏导数,且0≡/''g ,如果222222242f y zy x z x z ''=∂∂+∂∂∂+∂∂,求常数k 的值. 3、在椭球2222221x y z a b c++=内嵌入一中心在原点的长方体,问长宽高各是多少时长方体的体积最大4、设(,)y g x z =,而z 是由方程(,)0f x z xy -=所确定的,x y 的函数,求d d zx5、设),(y x f 有二阶连续偏导数, ),(),(22y x e f y x g xy +=, 且))1((1),(22y x o y x y x f +-+--=, 证明),(y x g 在)0,0(取得极值, 判断此极值是极大值还是极小值, 并求出此极值.6、设有一小山,取它的底面所在的平面为xoy 坐标面,其底部所占的区域为(){}22,75D x y x y xy =≤+-,小山的高度函数为22(,)75h x y x y xy =--+(1)设()000,M x y 为区域D 上一点,问(,)h x y 在该点沿平面上什么方向的方向导数最大若记此方向导数的最大值为00(,)g x y ,试写出00(,)g x y 的表达式.(2)现利用此小山开展攀岩活动,为此需在山脚下寻找一上山坡度最大的点作为攀登的起点,试确定攀登起点的位置.四、证明题设(,)F u v 可微,试证曲面(,)0x a y bF z c z c--=--上任一点处的切平面都通过定点.第八章 多元函数微分法及应用测试题答案与提示 一、1、C ;2、A ;3、D ;4、B ;5、D. 二、 1、πe 2-;2、23(1)a b b b +++;3、1;4、111101x y z ---==-;5、326o gradu i j k =--.三、1、答案:2,2a b ==-.提示: 利用xyyx f f ''''=这一条件. 2、答案:1k =-. 提示:g f f xz'+'+'=∂∂21,g k f f y z '+'+'-=∂∂21,g f f f x z ''+''+''+''=∂∂221211222,g k f f f yz ''+''+''-''=∂∂2221211222, g k f f y x z ''+''+''-=∂∂∂22112,()g k k f y zy x z xz ''+++''=∂∂+∂∂∂+∂∂222222222142, 又因为0≡/''g ,所以0212=++k k ,1-=k .3、答案:,,333a . 提示:设所嵌入的长方体在第一挂线的顶点坐标为(),,x y z ,则求体积8V xyz =在条件2222221x y z a b c++=下的极值就可.4、答案:1221122d d f yf xf g z x f xf g ''''++='''-.5、答案:故0)0,1()0,0(==f g 是极大值.提示:由全微分的定义知 0)0,1(=f 1)0,1()0,1(-='='y x f fx f y e f g xy x 221⋅'+⋅'=' y f x e f g xy y 221⋅'+⋅'=' 0)0,0(='x g 0)0,0(='y g2222121121122)2()2(2f x x f y e f y e f y e x f y e f g xyxy xy xy x '+⋅''+⋅''+⋅'+⋅''+⋅''='' x y f x e f e xy e f y e y f x e f g xyxy xy xy xy xy 2)2()()2(222111211⋅''+⋅''++⋅'+⋅''+⋅''=''2222121121122)2()2(2f y y f x e f x e f x e y f x e f g xyxy xy xy y'+⋅''+⋅''+⋅'+⋅''+⋅''='' A=2)0,1(2)0,0(22-='=''f g x 1)0,1()0,0(1-='=''=f g B xy2)0,1(2)0,0(22-='=''=f g C y032>=-B AC , 且0<A , 故0)0,1()0,0(==f g 是极大值.6、答案: 00(,)g x y ==攀登起点的位置: ()()125,5,5,5M M --.提示: 沿梯度方向的方向导数最大,方向导数的最大值即为梯度的模.然后再求(,)g x y 在条件22750x y xy --+=下的极大值点就可. 四、答案: 通过定点(),,M a b c . 第六章 微分方程测试题 一、选择题1、设()y f x =是240y y y '''-+=的解,若0()0f x >且0()0f x '=,则在0x 点()f x ( ).(A) 取极大值; (B) 取极小值; (C) 在0x 某邻域内单增; (D) 在0x 某邻域内单减.2、微分方程2448x y y y e '''-+=的一个特解应具有形式 ( ) (,,,a b c d 为常数).(A) 2;x ce (B) 22;x dx e (C) 2;x cxe (D) 22().x bx cx e + 3、微分方程21sin y y x x ''+=++的特解形式可设为( ).(A) *2(sin ecos );y ax bx c x d x x =++++ (B) *2(sin ecos );y x ax bx c d x x =++++ (C) *2sin ;y ax bx c d x =+++ (D) *2ecos .y ax bx c x =+++4、设线性无关的函数123,,y y y 都是非齐次线性微分方程()()()y p x y q x y f x '''++=的解,12,c c 是任意常数,则该方程的通解为( ).(A) 11223;c y c y y ++ (B) ()1122123;c y c y c c y +-+ (C) ()11221231;c y c y c c y +--- (D) ()11221231.c y c y c c y ++--5、方程0xy y '+=满足(1)2y =的特解为( ).(A) 21;xy = (B) 22;x y = (C) 2;xy = (D) 1.xy = 二、填空题1、已知微分方程23e x y y y -'''--=有一个特解1e 4x y x *-=-,则其通解为( ).2、以12e ,e x x y y x --==为特解的二阶常系数齐次微分方程是( ).3、若连续函数()f x 满足()0()e xf t f x dt =⎰,则()f x 等于( ). 4、已知函数()y y x =在任意点x 处的增量21y xy xα∆∆=++,其中α是比x ∆(0)x ∆→高阶的无穷小,且(0)πy =,则(1)y 等于( ).5、2e x y y y x '''++=的通解为( ). 三、计算和应用题1、 设2e(1)e xx y x =++是二阶常系数线性微分方程e x y y y αβγ'''++=的一个特解,求该微分方程的通解.2、 设函数()y y x =在(),-∞+∞内具有二阶导数,且()0,y x x y '≠=是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程()322d d sin 0d d xx y x y y ⎛⎫++= ⎪⎝⎭变换为()y y x =所满足的微分方程;(2) 求变换后的微分方程满足条件3(0)0,(0)2y y '==的解. 3、已知22123e e ,e e ,e e e x x x x x x x y x y x y x --=+=+=+-都是某二阶常系数非齐次线性微分方程的解,试求此微分方程4、 已知连续函数()f x 满足320()()d e 3xx tf x f t =+⎰,求()f x . 5、 已知连续函数()f x 满足()100()()d e 2()d xxf x x u f u u x f xu u +-=+⎰⎰,求()f x .6、设函数()f x 在[)1,+∞上连续恒正,若曲线()y f x =,直线()1,1x x t t ==>与x 轴所围成的平面图形绕x 轴旋转一周所成的旋转体的体积为2π()(1)3t f t f ⎡⎤-⎣⎦,试求()y f x =所满足的微分方程,并求该方程满足2(2)9f =的特解.四、证明题证明方程()y y f x ''+=(其中()f x 连续)的通解为()120cos sin ()sin d xy c x c x f t x t t =++-⎰,其中为任意常数.第六章 微分方程测试题答案与提示 一、1、A ;2、B ;3、A ;4、D ;5、C. 二、1、3121e e e 4xxx c c x --+-;2、20y y y '''++=;3、ln(1)x +;4、π4πe ;5、()()121e 1e 4x x y c c x x -=++-. 三、1、答案:2212e e e (1)e x x x x c c x ++++.提示:将2e (1)e x x y x =++代入原方程,比较同类项系数,求出,,αβγ的值,然后再去求解微分方程.2、答案: (1) sin y y x ''-=;(2) 1e e sin 2x x y x -=--.3、答案: 2e 2e x x y y y x '''--=-.提示: 21312e ,=e x x y y y y --=-是对应齐次微分方程的特解,从而可得出对应齐次微分方程为20y y y '''--=, 设非齐次线性微分方程为2()y y y f x '''--=,再将其中任意个非齐次特解代入,得出()e 2e x x f x x =-.4、答案: 32()3e 2e x x f x =-.5、答案: 21()12e 2xf x x x ⎛⎫=++ ⎪⎝⎭.提示:作代换xu t =,则1002()d 2()dt xx f xu u f t =⎰⎰. 6、答案: 3()1xf x x =+. 提示:依题意可得:221π()(1)π()d 3t t f t f f x x ⎡⎤-=⎣⎦⎰,然后两边求导. 四、略.第五章 定积分及应用测试题一、选择题1、设()f x 连续,0()d ,0,0st I t f tx x t s =>>⎰,则I 的值是( ). (A ) 依赖于s 和t ; (B )是一个常数; (C )不依赖于s 但依赖于t ; (D )依赖于s 但不依赖于t . 2、下列积分中,等于零的是( ).(A) 12212cos ln(1)d x x x -+⎰ (B) 233(1)e d x x x -+⎰(C) 4222sin cos d 1x x x x ππ-+⎰(C) 211(d x x -⎰ 3、设在[],a b 上()0,()0,()0f x f x f x '''><>,令()[]()1231()d ,(),()()2ba S f x x S fb b a S f a f b b a ==-=+-⎰,则( ).(A) 321S S S >>; (B) 312S S S >>; (C) 213S S S >> ; (D)132S S S >>.4、已知0sin πd 2x x x +∞=⎰,则220sin d x x x +∞⎰的值等于( ). (A) π;2(B) π; (C) 2π;4 (D) π-1.5、设()f x 在0处可导,且(0)0f =,则极限02()dt lim xx f x t x→-⎰的值等于( ).(A)不存在; (B) 0; (C) (0);f ' (D) 1(0).2f ' 二、填空题 1、设()f x 连续,31()dt x f t x -=⎰,则(7)f 等于( ).2、定积分3π43π4(1arctan x x -+⎰的值为( ). 3、定积分11()e d x x x x -+⎰的值为( ).4、若积分(21)d 4a a x x --=-⎰,则常数a 的值等于( ).5、曲线322y x x x =-++与x 轴所围成的面积值等于( ). 三、计算和应用题1、已知(π)1f =,且[]0()()sin d 3f x f x x x π''+=⎰,求(0)f . 2、计算21x x x --⎰3、设2π20sin ()d 12cos t f x t x t x =++⎰,求(1)(0)f f 4、 计算π320sin d sin cos xx x x+⎰.5、设3e e ()ln ()d xf x x f x x =+⎰,求()f x .6、设()f x 可导,(0)1f =,且[]10()()d f x xf xt t +⎰与x 无关,求()f x . 四、证明题设函数()f x 在[],a b 上连续,在(),a b 内()0f x '>,证明存在唯一的(),a b ξ∈使曲线()y f x =和(),y f x a ξ==所围面积1S 是()y f x =和(),y f x b ξ==所围面积2S 的3倍.第五章 定积分及应用测试题答案与提示 一、1、D ;2、C ;3、B ;4、A ;5、D. 二、1、112;2、2;3、2;4、2;5、3712. 三、1、答案:(0)2f =. 提示:用分部积分.2、答案:4π-.提示:利用奇偶对称性.3、答案:1.提示:分别求出(0)f 和(1)f 的值即可. 4、答案:()1π14-.提示:πππ333322200sin cos 1sin cos d d d sin cos sin cos 2sin cos x x x x x x x x x x x x x+==+++⎰⎰⎰.5、答案:ln 4()x f x x x=-. 6、答案:()e x f x -=.提示:令()[]11000()()d ()()d ()()d xF x f x xf xt t f x x f xt t f x x f u u =+=+=+⎰⎰⎰,由()0F x '=得()()0f x f x '+=,所以e ()0xf x '⎡⎤=⎣⎦. 四、提示:()()()10,,()()d t t a b S t t a f t f x x ∀∈=--⎰,()()2()d ,bt S t f x x b t =--⎰ 令()()12()3t S t S t ϕ=-,用零点定理和单调性证明即可.第一章综合测试题 一、单项选择题1、()f x 当0x x →时的左极限和右极限都存在且相等是0lim ()x xf x →存在的( )条件.(A) 充分; (B) 必要; (C) 充要; (D) 无关.2、设22212lim()n nn n n →∞+++= ( ). (A) 22212lim lim lim0n n n nn n n →∞→∞→∞+++=; (B) ∞;(C) 21+2+1lim2n n n →∞+=; (D) 极限不存在.3、设()=232x x f x +-,则当0x →,有 ( ).(A) ()f x 与x 是等价无穷小; (B) ()f x 与x 是同阶但非等价无穷小;(C) ()f x 是比x 高阶的无穷小; (D) ()f x 是比x 低阶的无穷小.4、设11e 1()e 1xxf x -=+,则0x =是()f x 的( ).(A) 可去间断点; (B) 跳跃间断点; (C) 第二类间断点; (D) 连续点.5、方程410x x --=至少有一个根的区间是( ).(A) 1(0,)2; (B) 1(,1)2; (C) (1,2); (D) (2,3).二、填空题7、 若2211()3f x x xx +=++,则()f x =(). 8、 已知函数2(cos ), 0() , 0x x x f x a x -⎧≠⎪=⎨=⎪⎩在0x =连续,则a = ( ).9、n →∞().10、设2013sin coslim (1cos )(e 1)x x x x x x →+=+- ( ). 5、已知25lim 232n a bn n →∞++=-,则a = ( ),b = ( ).三、计算与应用题1、设0, 0(), 0x f x x x ⎧=⎨>⎩≤,20, 0(), 0x g x x x ⎧=⎨->⎩≤,求函数项级数[()]f f x ,[()],g g x[()],[()]f g x g f x .2、设21sin ,0(),0x x f x x a x x ⎧>⎪=⎨⎪+⎩≤,要使()f x 在(,)-∞+∞内连续,应当怎样选择数a3、设11e , 0()ln(1), 10x x f x x x -⎧⎪>=⎨⎪+-<⎩≤,求()f x 的间断点,并说明间断点所属类型.4、计算极限tan π2lim(sin )x x x →.5、计算极限123lim()21x x x x +→∞++ 6、设()f x 的定义域是[0,1],求函数11()()22f x f x ++-的定义域.四、证明题证明方程sin 10x x ++=在开区间ππ(,)22-内至少有一个根.第一章综合测试题答案与提示 一、1、C ;2、C ;3、B ;4、B ;5、C. 二、1、21x +;2、1;3、32;4、32;5、任意常数,6. 三、1、答案:[()] = (),f f x f x [()]0,g g x = [()]0,f g x = [()]()g f x g x =.2、答案:0a =.3、答案: 0x =是第一类间断点,1x =是第二类间断点.4、答案: 1.5、答案:e .6、答案: 12x =.四、提示:利用零点定理.第二章综合测试题一、单项选择题1、若 e , 0()sin 2, 0ax x f x b x x ⎧<=⎨+⎩≥在0x =处可导,则a b 、的值应为( ).(A) 2,1a b ==; (B) 1,2a b ==; (C) 2,1a b =-=; (D)2,1a b ==-.2、设222, 1() 1 , 1x x x f x x ⎧-+>=⎨⎩≤ ( ).(A)不连续; (B)连续,但不可导;(C)连续,且有一阶导数; (D) 有任意阶导数.3、若()f x 为(,)l l -内的可导奇函数,则()f x ' ( ).(A) 必为(,)l l -内的奇函数; (B) 必为(,)l l -内的偶函数; (C) 必为(,)l l -内的非奇非偶函数; (D) 在(,)l l -内,可能为奇函数,也可能为偶函数.4、()f x 在0x 处可导,则000()()limx f x x f x x∆→-∆-=∆ ( ).(A) 02()f x '; (B)0()f x '-; (C) 0()f x '; (D)0()f x '-.5、设()sin cos 2xf x x =+,则(15)(π)f = ( ).(A) 0; (B) 15112+; (C) 1-; (D) 1512-.二、填空题11、()f x 在点0x 可导是()f x 在点0x 连续的( 充分 )条件,()f x 在点0x 可导是()f x 在点0x 可微的( )条件.12、设()(1)(2)() (2)f x x x x x n n =+++≥,则(0)f '= ( ). 13、设()f x 为可微函数,则当0x ∆→时,在点x 处的d y y ∆-是关于x∆的( )无穷小.14、已知(cos sin )(sin cos )x a t t t y a t t t =+⎧⎨=-⎩,则3π4d d t x y == ( 1-),223 π4d d t xy == () .15、设函数()y f x =由方程23ln()sin x y x y x +=+确定,则d d y x=( ). 三、计算与应用题1、讨论函数1sin , 00 , 0x x y x x ⎧≠⎪=⎨⎪=⎩在0x =处的连续性和可导性. 2、已知22e 1, 0() 1 , 0x x f x xx ⎧-⎪≠=⎨⎪=⎩,求 ()f x '. 3、设()(e )e x f x y f =且()f x '存在,求d d y x. 4、设y =2d x y =. 5、用对数求导法计算函数y =的导数 6、求函数2cos y x =的n 阶导数. 四、证明题设)(x f 在),(+∞-∞内有定义,且,(,)x y ∀∈-∞+∞,恒有()()()f x y f x f y +=⋅,()1()f x xg x =+,其中0lim ()1x g x →=,证明()f x 在),(+∞-∞内处处可导.第二章综合测试题答案与提示一、1、A ;2、C ;3、B ;4、D ;5、B .二、1、充要;2、!n ;3、高阶;4、3πa -;5、1. 三、1、答案:连续不可导.2、答案:223(22)e 2, 0() 0 , 0x x x f x xx ⎧-+⎪≠'=⎨⎪=⎩. 3、答案:()d e [(e )e (e )()]d f x x x x yf f f x x ''=+.4、答案:67211d [7()]d 7y x x x-=-;2d (ln 7)d 144x y x ==-⋅. 5、答案:45(3)145[](1)2(2)31x y x x x x -'=⋅+-++-+.6、答案: ()1π2cos(2)2n n n y x -=+. 四、提示: ,(,)x y ∀∈-∞+∞,有()[()1]()()y f x f x f x x g x =-=⋅⋅,00()limlim ()()().x x yf x f xg x f x x →→∆'==⋅=∆第三章综合测试题一、单项选择题1、下列函数在[1,e]上满足拉格朗日定理条件的是 ( ).(A) ln(ln )x ; (B) ln x ; (C) 1ln x ; (D) ln(2)x -.2、设00()()0f x f x '''== ,0()0f x '''>,则( ).(A) 0()f x '是()f x '的极大值; (B) 0()f x 是()f x 的极大值;(C)0()f x 是()f x 的极小值; (D) 00(,())x f x 是曲线()y f x =的拐点.3、设函数()f x 在[0,1]上满足()0f x ''>,则(1)f ',(0)f ',(1)(0)f f -或(0)(1)f f -的大小顺序是 ( ).(A) (1)(0)(1)(0)f f f f ''>>-; (B) (1)(1)(0)(0)f f f f ''>->; (C) (1)(0)(1)(0)f f f f ''->>; (D) (1)(0)(1)(0)f f f f ''>->. 4、指出曲线2()3xf x x =-的渐近线 ( ). (A) 没有水平渐近线; (B)只有一条垂直渐近线;(C) 既有垂直渐近线,又有水平渐近线; (D) 只有水平渐近线.5、曲线53(5)2y x =-+ ( ).(A) 有极值点5x =,但无拐点; (B) 有拐点(5,2),但无极值点;(C) 有极值点5x =,且(5,2)是拐点; (D) 既无极值点,又无拐点.二、填空题16、设常数0k >,函数()ln ex f x x k =-+在(0,)+∞内零点的个数为( ).17、若2sin 2e 1,0() , 0 ax x x f x x a x ⎧+-≠⎪=⎨⎪=⎩在(,)-∞+∞上连续,则a = ( ).18、曲线1ln(e )(0)y x x x =+>的渐近线方程为 ( ). 19、240ln(1)ln(1)ln(1)lim x x x x x →+---= (). 5、若()f x 是x 的四次多项式函数,它有两个拐点(2,16),(0,0),并且在点(2,16)处的切线平行于x 轴,那么函数()f x 的表达式是 ( ). 三、计算与应用题1、当a 为何值时,1sin sin 33y a x x =+在π3x =处有极值求此极值,并说明是极大值还是极小值.2、求0e ln(1)1lim arctan x x x x x→+---.3、求11cos0sin lim()x x x x-→. 4、求椭圆223x xy y -+=上纵坐标最大和最小的点. 5、求数列的最大项.6、曲线弧sin (0π)y x x =<<上哪一点处的曲率半径最小求出该点处的曲率半径. 四、证明题设()f x 在(,)a b 内二阶可导,且()0f x ''≥. 证明对于(,)a b 少内任意两点12x x 、及01t ≤≤,有1212[(1)](1)()()f t x tx t f x tf x -+-+≤.第三章综合测试题答案与提示 一、1、B ;2、D ;3、B ;4、C ;5、B . 二、1、2;2、2-;3、1ey x =+;4、112;5、43416x x x -+.三、1、答案:2,a =π3y =.2、答案:12-.3、答案:13e -.4、答案: (1,2)和(1,2)--. 56、答案: π(,1)2处的曲率半径最小,值为1.四、略.第四章综合测试题 一、单项选择题1、=⎰( ).(A) C +; (B) arctan x C +; (C)12C; (D) C .2、已知()f x 的一个原函数是2ex -,求()d xf x x '=⎰ ( ).(A) 222e x x C --+; (B) 222e x x C -+;(C) 22e (21)x x C ---+; (D) 以上答案都不正确. 3、已知()d ()f x x F x C =+⎰,则()d f b ax x -=⎰ ( ).(A) ()F b ax C -+; (B) 1()F b ax C a--+; (C) ()aF b ax C -+; (D) 1()F b ax C a-+.4、已知曲线上任一点的二阶导数6y x ''=,且在曲线上(0,2)-处的切线为236x y -=,则这条曲线的方程为( ).(A) 322y x x =--; (B) 332360x x y +--=; (C) 32y x x =-; (D) 以上都不是. 5、若()()F x f x '=,则d ()F x =⎰ ( ).(A) ()f x ; (B) ()F x ; (C) ()f x C +; (D) ()F x C +.二、填空题20、设函数()f x 的二阶导数()f x ''连续,那么()d xf x x ''=⎰( ).21、若(e )1x f x '=+,则()f x = ( ).22、已知曲线()y f x =上任意点的切线的斜率为336ax x --,且1x =-时,112y =是极大值,则()f x =();()f x 的极小值是 ( ). 23、23ed x x x =⎰ ().5、[(()] d f x xf x x '+=⎰ ( ).三、计算与应用题 1、求不定积分d e e x xx--⎰.2、求不定积分4tan d x x ⎰.3、求不定积分e cos d ax bx x ⎰.4、求不定积分x ⎰.5、求不定积分x ⎰.6、求不定积分382d (1)x x x +⎰. 四、证明题设()F x 是()f x 的一个原函数,且(0)1F =,()2()f x x F x =,证明: 2()1dx ln(12)()4f x x C f x =++'⎰.第四章综合测试题答案与提示一、1、A ;2、C ;3、B ;4、B ;5、D . 二、1、()()xf x f x C '-+;2、ln (0)x x C x +>;3、323622x x x --+,8-; 4、221e (1)2x x C -+;5、()xf x C +. 三、1、答案:e 11ln 2e 1xx C -++.2、答案:31tan tan 3x x x C -++ 3、答案:221e (cos sin )axa bxb bx C a b+++ 4、答案:C5、答案:(1)x arc C +.6、答案: 4481arctan 8(1)8x x C x +++.四、提示:()2()f x x F x =()2()F x x F x '⇒=2ln ()F x x C ⇒=+, 由(0)1F =,得22()e ()2e x x F x f x x =⇒=2()()12f x xf x x ⇒='+,2()1dx ln(12)()4f x x C f x ⇒=++'⎰. 第七章综合测试题 一、单项选择题1、点(2,3,1)M -关于xOy 平面的对称点是( ).(A) (2,3,1)--; (B) (2,3,1)---; (C) (2,3,1)--; (D)(2,3,1)--.2、已知平面通过点(,,0)k k 与(2,2,0)k k ,其中0k ≠,且垂直于xOy 平面,则该平面的一般式方程0Ax By Cz D +++=的系数必定满足( ).(A) ,0A B C D =-==; (B) ,0B C A D =-==;(C) ,0C A B D =-==; (D) ,0C A B D ===.3、直线50584360x y z x y z -++=⎧⎨-++=⎩的标准方程是( ).(A) 41413x y z -+==-; (B) 41413x y z --==;(C) 41413x y z -+==--; (D) 41413x y z --==-. 4、点(4,3,5)M -到x 轴的距离是的( ).(A) ; (B) ; (C) ;5、方程22214y x z -+=表示( ).(A) 旋转双曲面; (B) 双叶双曲面; (C) 双曲柱面; (D)锥面.二、填空题24、设(2,1,2)a =,(4,1,10)b =-,c b a λ=-,且a c ⊥,则λ= ( ) 25、若13a =,19b =,24a b +=,则a b -= ( ) 26、直线73121x y z +-==-上与点(3,2,6)的距离最近的点是 ( ) 27、设一平面经过原点及点(6,3,2)-,且与平面4280x y z -+-=垂直,则此平面方程为 ()28、曲线22222z x y z x⎧=+⎨=-⎩关于xOy 面的投影柱面方程是( )三、计算与应用题1、设375a b a b +⊥-,472a b a b -⊥-,求(,)a b ∧.2、设4a =, 3b =, (,)6a b π∧=,求以2a b +和3a b -为边的平行四边形的面积.3、设一平面垂直于平面0z =,并通过从点(1,1,1)-到直线10y z x -+=⎧⎨=⎩的垂线,求此平面的方程.4、求锥面z 与柱面22z x =所围立体在三个坐标面上的投影5、在平面2320x y z +-+=和平面55430x y z +-+=所确定的平面束内,求两个相互垂直的平面,其中一个平面经过点(4,3,1)- .6、光线沿直线30:10x y L x z +-=⎧⎨+-=⎩投射到平面π:10x y z +++=,求反射线所在的直线方程. 四、证明题设M 为ABC ∆的重心,证明:对于任意一点O ,有1()3OM OA OB OC =++.第七章综合测试题答案与提示 一、1、C ;2、A ;3、A ;4、B ;5、A .。
无穷级数测试题一、单项选择(每小题2分,共20分) 1、级数∑+∞=1n n u 收敛的必要条件是( )。
A 、0lim =+∞→n n SB 、0lim =+∞→n n uC 、1lim 1<++∞→n n n u u D 、1lim 1>++∞→nn n u u2、若级数∑+∞=1n n u 发散,则下列级数一定发散的是( )。
A 、∑+∞=+15n n u B 、∑+∞=1n n au (a 为某常数) C 、∑+∞=-1)5(n n u D 、∑+∞=-1)1(n n nu3、下列级数收敛的是( )。
A 、∑+∞=-211n n B 、∑+∞=-2211n n C 、∑+∞=-21n n n D 、∑+∞=-2311n n 4.下列无穷级数中,发散的无穷级数为( )A.()∑∞=+111n n nB. ∑∞=⎪⎭⎫ ⎝⎛+13101n n C. ∑∞=⎪⎭⎫ ⎝⎛+121101n n n D. ∑∞=+1132n n n5.设正项级数∑∞=1n n u 收敛,则下列无穷级数中一定发散的是( )A .∑∞=+1100n n uB .∑∞=++11)(n n n u uC .∑∞=1)3(n n uD .∑∞=+1)1(n n u6、级数∑∞=0n n n x a 在3=x 处收敛,则∑∞=-0)2(n n n a ( )。
A 、绝对收敛B 、条件收敛C 、发散D 、无法判别敛散性7、已知∑+∞=1n nn x a (,...2,10=≠n a n ,)的收敛域为)1,1(-,则∑+∞=+1)1(n n n x a 的收敛域为( )。
A. )1,1(-B. )2,0(C. )0,2(-D. )2,2(-8、幂级数∑∞=0!2n nn x 的和函数为( ) A. x e 2 B. x e 2- C. x e 2- D. x e 29、将函数x e -展开成x 的幂级数为( )。
A 、∑+∞=0!n nn x B 、∑+∞=-0!n n n x C 、∑+∞=-0!)(n n n x D 、∑+∞=1!n n n x10、将函数x +21展开成x 的幂级数为( )。