16.1 二次根式(第2课时)
- 格式:ppt
- 大小:958.00 KB
- 文档页数:19
16.1二次根式第2课时一、教学目标【知识与技能】1.理解(G)2="(α20)和后二α(α20),并利用它们进行计算和化简.2,用具体数据结合算术平方根的意义推出(√Ξ)QNo)和探究后二〃(。
20),会用这个结论解决具体问题.3,了解代数式的概念.【过程与方法】在明确(√S)2=a(420)和后二〃(〃20)的算理的过程中,感受数学的实用性.【情感态度与价值观】通过运用二次根式的性质化简的相关计算,解决一些实际问题,培养学生解决问题的能力.二、课型新授课三、课时第2课时共2课时四、教学重难点【教学重点】掌握二次根式的性质,并能将二次根式的性质运用于化简.【教学难点】能运用二次根式的性质化简.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2-3)观察课件中所列数字的进出情况,想一想你发现了什么?(一)探索新知1.探究(VH)2的性质(出示课件5-7)教师问:什么叫做一个数的平方根?如何表示?学生答:一般地,若一个数的平方等于m则这个数就叫做。
的平方根.〃的平方根是士4教师问:什么是一个数的算术平方根?如何表示?学生答:若一个正数的平方等于公则这个数就叫做。
的算术平方根.用GQNO)表示.教师问:请同学们完成下面的题目:(出示课件6)教师依次出示问题:填空:(M)2=( ),(√i)2=( )φz=(),(励=()学生1答:(")M.学生2答:(√5)2=2.r学生3答:(八)M.学生4答:(√δ)2=0.教师问:通过(1)的计算,你能确定(√Ξ)2(〃20)的化简结果吗?说说你的理由.师生一起解答:〃是4的算术平方根,根据算术平方根的意义,√5是一个平方等于4的非负数,因此有(√ξ)2=4.同理,√2,G VU分别是2,*0的算术平方根.因此(加)2二2,(J)2=∣,(√0)2=0教师总结:(出示课件8)(迎)2(α≥0)的性质:一般地,(JΞ)~=a(a20).即一个非负数的算术平方根的平方等于它本身.教师强调:不要忽略心0这一限制条件.这是使二次根式G有意义的前提条件.考点1:利用(√Ξ)2U≥0)的性质进行计算计算:(出示课件9)⑴(√L5)2,⑵(2√5)2.师生共同讨论解答如下:解:⑴(√L5)2=1.5;(2)(2√5)⅛2×(√5)MX5=20出示课件10,学生自主练习,教师给出答案。
16.1 二次根式(2)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点 1.二次根式的性质及应用 (1))2=a( a≥0 ),反过来可得到a =)2(a≥0).(2)=|a|= ,2.用基本的运算符号将数或表示数的字母连接起来的式子,叫做代数式 基础知识和能力拓展训练 一、选择题 1()23-的结果是()A.9B.3C.-3D.±3 238() 2436322316( ) A.8B.﹣8C.﹣4D.44.下列运算正确的是( )163-8﹣2(-2)﹣19+4=3+125.下列式子正确的是()2(9)9-=-255=±2(1)1-= D.2(2)2-=-6.化简(1-x 11x - ) 1x --1x -1x -1x -7.在数轴上实数a ,b 的位置如上图所示,化简|a+b|+2a-b ()的结果是( )A.﹣2a ﹣bB.﹣2a+bC.﹣2bD.﹣2a8.若5n +是整数,则正整数n 的最小值是( ) A.2B.3C.4D.59.实数32-的绝对值是( ) A.32- B.23- C.32+ D.1 10.若()424A a =+,则A =()A.24a + B.22a + C.()222a + D.()224a + 二、填空题 11.若a <1,化简()211a --=_________.12.已知xy <0,化简二次根式x 2yx -的正确结果为 . 13.能够说明“2x =x 不成立”的x 的值是__(写出一个即可). 14.当__________x 时,()21x -是二次根式.15.化简:a= .16.()22130,a b c a b c ++-+-=++=则_______________。
三、解答题 17.计算:18.阅读下面的文字后,回答问题.小军和小红在解答题目“先化简,再求值:a +,其中a =9”时给出了不同的解答,你知道小军和小红的解答谁的是错误的吗?错在哪里?19.已知实数在数轴上如图,化简()22a ab ac b c -++-+-的值20.(1)当15a =,求211a a a ⎛⎫+- ⎪⎝⎭的值.(2)当0<x<3时,化简()()223211x x x --+++.21.计算:= ,= ,= ,= ,= ,(1)根据计算结果,回答:一定等于a 吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算:.22.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1+)2,善于思考的小明进行了以下探索: 设a +b=(m +n)2(其中a 、b 、m 、n 均为整数),则有a +b=m 2+2n 2+2mn.∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把部分a +b 的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题: (1)当a 、b 、m 、n 均为正整数时,若a +b =(m +n)2,用含m 、n 的式子分别表示a 、b ,得a =________,b =________; (2)试着把7+4化成一个完全平方式.(3)请化简:.23.选取二次三项式()20ax bx c a ++≠中的两项,配成完全平方式的过程叫配方.例如:①选取二次项和一次项配方:()224925x x x -+=-+;②选取二次项和常数项配方:()224932x x x x -+=-+,或()2249310x x x x -+=+-③选取一次项和常数项配方:2222549339x x x x ⎛⎫-+=-+ ⎪⎝⎭根据上述材料,解决下面问题:(1)写出2616x x ++的两种不同形式的配方;(2)已知2245-4-840x y xy y ++=,求参考答案 1.B3==,故选B .2.C=故选:C.点睛:此题主要考查了二次根式的化简,解题关键是明确最简二次根式的条件,被开方数中不含有开方开不尽的数,分母中不含有二次根号,根号中不含有分母. 3.D4=,故选D. 4.B【解析】试题解析:=4,故原选项错误;﹣2,故该选项正确;,故原选项错误;,故原选项错误. 故选B. 5.C【解析】9=,故A 选项错误;5=,故B 选项错误;1=,正确;D.2(2=,故D 选项错误,故选C. 6.B【解析】解:(1﹣x B . 点睛:此题主要考查了二次根式的性质与化简,正确得出二次根式整体的符号是解题关键.7.D【解析】如图所示:可得,a+b<0,a −b<0, 故原式=−(a+b)−(a −b)=−2a. 故选:D.点睛:此题考查了二次根式的性质与化简以及实数与数轴,正确得出各项符号是解题的关键. 8.Cn 为正整数,∴n ≥0,∴n+5≥5,5+n 为9,16等等,即n 的值为4,11等等,∴正整数n 的最小值是4,故选C .点睛:本题考查了二次根式的定义和性质,注意:n 是正整数可以得出n ≥0,n +5是一个完全平方数. 9.B【解析】2|2=选B. 10.A【解析】()224A a ==+24a ==+.故选A .11.-a【解析】∵a <1, ∴a -1<0,1=-(a -1)-1=-a +1-1=-a12.【解析】∵xy <0, ∴y <0,x >0,∴原式.. 13.-1x =,∴x x =不成立,则x ≤0.故答案不唯一,只要x ≤0即可,如:-1.故答案为:答案不唯一,只要x ≤0即可,如:-1. 14.为任意实数【解析】解:﹙1-x ﹚2是恒大于等于0的,不论x 的取值,都恒大于等于0,所以x 为任意实数.故答案为:为任意实数. 15.-a -【解析】试题解析:由题意可得:0.a <211.a a a a a ⎛⎫∴-=-⨯-=-- ⎪⎝⎭故答案为:.a -- 16.2【解析】试题分析:几个非负数的和为零,则每一个非负数都为零.根据题意可得:a+2=0,b-1=0,3-c=0,解得:a=-2,b=1,c=3,则a+b+c=-2+1+3=2.点睛:本题主要考查的就是非负数的性质的应用,几个非负数的和为零,则每一个非负数都是零.在初中阶段我们所学的运算结果为非负数有以下几种:①、平方;②、绝对值;③、算术平方根.非负数性质的应用我们也经常会运用在判定三角形形状的题目中,我们都会采用完全平方公式进行配方转化为非负数的和的形式,然后进行解答.17.(1)解:原式=4-3+3×-6=-4(2)解:原式=×5-×-4=118. 解:小军的解答错误. ∵a =9,1-a <0, ∴=a -119.2c-a.【解析】试题分析:由图可知:0b a c <<<,从而可得:000a b a c b c +<-<-<,,,然后根据“绝对值的意义”化简即可. 试题解析:∵从数轴可知:0b a c <<<,∴000a b a c b c +<-<-<,,, ∴()22a ab ac b c -++-+-=()()()a a b a c b c ⎡⎤⎡⎤⎡⎤---++--+--⎣⎦⎣⎦⎣⎦ =a a b c a c b -+++-+- =2c a -.点睛:解这类时,首先要从数轴上获取所涉及的数的大小和正、负信息;若绝对值符号里(或被开方数中)涉及到异号两数和的还要从数轴上获取两数绝对值的大小关系;然后根据所获取的信息确定好绝对值符号里各个式子的符号,再根据绝对值的代数意义去掉绝对值符号化简. 20.(1)495; (2)-2x+3.【解析】试题分析:(1)先根据二次根式的性质进行化简,然后再代入求值即可; (2)根据二次根式的性质得出|x-3|-|2x+1|+|x+1|,去掉绝对值符号,合并即可. 试题解析:(1)当15a =时,11454055a a -=-=>. 所以21111112a a a a a a a a a a a ⎛⎫+-=+-=+-=- ⎪⎝⎭.当15a =时,原式=1449109555-==. (2)当0<x<3时,x-3<0,2x+1>0,x+1>0,()()223211x x x --+++=|x-3|-|2x+1|+|x+1| =-(x-3)-(2x+1)+(x+1) =-2x+3.21.3;0.7;0;6;,(1)|a|(2)-3.14 【解析】原式各项计算得到结果;(1)不一定等于a ,=|a|;(2)原式利用得出规律计算即可得到结果.解:=3,=0.7,=0,=6,=,(1)=|a|;(2)原式=|3.14-π|=π-3.14.故答案为:3;0.7;0;6;.“点睛”此题考查了算术平方根,熟练掌握二次根式的性质是解本题的关键. 22.(1)m 2+3n 2;2mn ;(2)(2+)2;(3)3+【解析】试题分析:(1)利用已知直接去括号进而得出a ,b 的值; (2)直接利用完全平方公式,变形得出答案; (3)直接利用完全平方公式,变形化简即可. 试题解析: (1)∵a+b =(m+n)2,∴a+b=(m+n)2=m 2+3n 2+2mn ,∴a=m 2+3n 2,b=2mn ; 故答案为:m 2+3n 2;2mn ; (2)7+4=(2+)2;故答案为:(2+)2; (3)∵12+6=(3+)2,∴==3+.【点睛】此题主要考查了二次根式的性质与化简,正确利用完全平方公式化简是解题关键.23.(1)23)7x ++((22【解析】试题分析:(1)根据配方法的步骤根据二次项系数为1,常数项是一次项系数的一半的平方进行配方和二次项和常数项在一起进行配方即可.(2)根据配方法的步骤把2245-4-840x y xy y ++=变形为()222)410x y y -+-=(,再根据2x-y=0,y-1=0,求出x ,y 化简后代入求值即可. (1)答案不唯一.如23)7x ++(,24)2x x +-(,()2414x x -+,22374416x x ⎛⎫++ ⎪⎝⎭. (2)∵2245-4-840x y xy y ++=,∴()222)410x y y -+-=(.∴1,12x y ==.∴. 点睛:本题考查了配方法的应用,根据配方法的步骤和完全平方公式:a 2±2ab+b 2=(a±b)2进行配方是解题的关键,是一道基础题.。
第十六章二次根式16.1二次根式第1课时二次根式的概念【知识与技能】是一个非负数.【过程与方法】通过新旧知识的联系,培养学生观察、演绎能力,发展学生的归纳概括能力.【情感态度】通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法,进而体验成功的喜悦,并通过合作学习增进终身学习的信念.≥0的基本性质【教学难点】经历知识产生的过程,探索新知识.一、情境导入,初步认识问题(1)一个长方形的围栏,长是宽的3倍,面积为39m2,则它的宽为_______m;(2)面积为S的正方形的边长为_______;(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2,如果用含h的式子表示t,则t=.______【教学说明】设置上述问题的目的是让学生感受到研究二次根式是实际的需要,二次根式与实际生活联系紧密.教师提出问题后,让学生独立思考,然后相互交流,获得对二次根式的感性认识.二、思考探究,获取新知思考的式子,这些式子有什么特点?【教学说明】教师提出问题,同学生一道分析,体会这些式子的特征,从而引出二次根式的定义.a≥0)形式的式子称.针对上述定义,教师可强调以下几点:(1中,a必须是大于等于0的数或式子,否则它就没有意义了;(2=2,是一个整数,但4仍应称为一个二次根式;(3)当a≥0表示a的算术平方根,而一个非负数的算术平方根必≥0(a≥0)三、典例精析,掌握新知例1下列各式中,一定是二次根式的有_______分析:判断二次根式应关注两点:(1;(2)被开方数必须是非负数.因而在所给出四个式子中,只有②③中的式子同时符合两个要求,故应填②③.例2当x为何值时,下列各式在实数范围内有意义.解:(1)中,由x-2≥0,得x≥2;(2)中,由得2≤x≤3;(3)中,由2x-1>0,得x>1/2.【教学说明】对于例3,教师应引导学生分析题目特征,抓住解决问题的突a中a≥0及a≥0的双重非负性特征.四、运用新知,深化理解1.填空题:(1)形如_______的式子叫二次根式;(2)负数算术平方根________(填“有”或者“没有”)2.当a是怎样的实数时,下列各式在实数范围内有意义:【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.五、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识,你获得哪些解决二次根式问题的方法?你还有哪些问题?请与同伴交流.【教学说明】学生相互交流,回顾知识,反思问题,共同发展提高.1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.1.教师创设情境,给出实例.学生积极主动探索,教师引导与启发,师生互动.体现教师的组织者、引导者与合作者地位.2.注意知识之间的衔接,在温故知新的过程中引导出新知,讲练结合旨在巩固学生对新知的理解.第十六章二次根式16.1二次根式第2课时二次根式的性质【知识与技能】理解并掌握二次根式的性质,正确区分=a(a≥0)与2a=a(a ≥0),并利用它们进行化简和计算.【过程与方法】在探索二次根式性质的学习活动中,进一步增强学生的参与意识,培养学生的计算能力和解决问题的能力.【情感态度】通过创设问题情境,激发学生学习兴趣,培养学生主动探究意识和创新精神,形成良好的心理品质,促进身心健康发展.【教学重点】2a=a(a≥0)2a(a≥0)及其应用.【教学难点】用探究的方法探索2a=a(a≥02a(a≥0)的结论.一、情境导入,初步认识试一试:请根据算术平方根填空,.猜一猜:通过对上述问题的思考,你能猜想出2a(a≥0)的结论是什么?说说你的理由.【教学说明】让学生通过具体实例所展示的特征,猜想出结果,然后再利用算术平方根的意义对所猜测结论进行分析,由感性认识到理性思考,培养学生利用代数语言进行推理的能力.二、思考探究,获取新知在学生相互交流的基础上可归纳出:2=a(a≥0).探究(1)填空:(2)通过(1)的思考,你能确定a≥0)的化简结果吗?说说你的理由.【教学说明】教师应尽力引导学生积极主动进行探究思考,让学生经历知识的发现与完善的过程,深化对所学知识的理解和记忆,最后师生共同完成对知识的归纳总结.(a≥0).最后,教师给出代数式的概念.代数式:用运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子称为代数式.(代数式的定义只要求学生了解就行,不必深究.)三、典例精析,掌握新知例1计算:(1))2;(2)(2【教学说明】以上例1、例2可由学生自主完成,教师巡视,对有困难的学生及时予以指导,让每个学生都能得到发展.例3教师引导学生看懂数轴,结合数轴确定a、b的符号.四、运用新知,深化理解【教学说明】以上1~3题可试着让学生自主完成,第4题稍有难度,教师适时点拨.(22a进行化简.然后再根据x>2的这个范围,来判断x-2与1-2x的正负,最后化简掉绝对值符号.∵x>2,∴x-2>0,1-2x<0.3.(1)原式=5-5+1=1(2)原式=7+49×2/7=7+14=21(2)首先利用a2=|a|化简掉二次根号,再根据x的取值范围来判断绝对值中的代数式的正负,化掉绝对值的符号.五、师生互动,课堂小结1.本节知识可这样归纳:2.通过这节课的学习,你有哪些收获和体会?与同伴交流.1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.1.注意前后知识的联系,在复习旧知的过程中导入本节课的数学内容,按照由特殊到一般的规律,降低学生理解的难度.2.在总结二次根式的性质过程中,由学生经过观察、分析的过程,让学生在交流中体会成功.3.几个例题,旨在帮助学生对二次根式的性质的理解,在练习和作业中都增加了难度,主要给能力较好的学生提供更大的发展空间.。
人教版数学八年级下册16.1《二次根式的性质》(第2课时)说课稿一. 教材分析人教版数学八年级下册16.1《二次根式的性质》(第2课时)是在学生已经掌握了二次根式的概念、性质和运算法则的基础上进行的一节内容。
本节课的主要内容是进一步探讨二次根式的性质,包括二次根式的乘除运算、合并同类二次根式等。
通过本节课的学习,使学生能够灵活运用二次根式的性质进行各种运算,提高他们的数学思维能力和解决问题的能力。
二. 学情分析在进入本节课的学习之前,学生已经对二次根式有了初步的认识和了解,能够进行一些基本的二次根式运算。
但是,对于一些复杂的二次根式运算,学生可能还存在一定的困难。
因此,在教学过程中,教师需要针对学生的实际情况,采取有效的教学方法,引导学生逐步掌握二次根式的性质,提高他们的运算能力。
三. 说教学目标1.知识与技能目标:使学生掌握二次根式的性质,能够熟练地进行二次根式的乘除运算和合并同类二次根式。
2.过程与方法目标:通过观察、分析、归纳等方法,引导学生自主探索二次根式的性质,培养他们的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们克服困难的勇气和自信心,培养他们的团队协作精神。
四. 说教学重难点1.教学重点:使学生掌握二次根式的性质,能够进行二次根式的乘除运算和合并同类二次根式。
2.教学难点:二次根式的乘除运算和合并同类二次根式的方法。
五. 说教学方法与手段在本节课的教学过程中,我将采用自主探索、合作交流的教学方法,引导学生通过观察、分析、归纳等方法自主学习二次根式的性质。
同时,利用多媒体教学手段,展示二次根式的运算过程,帮助学生更好地理解和掌握二次根式的性质。
六. 说教学过程1.导入:通过复习二次根式的概念和性质,为学生进入本节课的学习做好铺垫。
2.自主探索:引导学生观察、分析、归纳二次根式的性质,使学生能够自主掌握二次根式的性质。
3.合作交流:学生进行小组讨论,分享他们在自主探索过程中得到的二次根式的性质,培养学生团队协作精神。
第十六章 二次根式16.1 二次根式(第二课时 二次根式的性质)精选练习答案一、单选题(共10小题)1.(2020·江苏淮安市·9﹣m ,则实数m 的取值范围是( ) A .m >9B .m <9C .m ≥9D .m ≤9 【答案】D【分析】根据算数平方根的定义可知9-m 是非负数,所以可得9﹣m≥0,求解不等式即可得出结果.【详解】根据二次根式的性质以及绝对值的意义,列不等式求解即可.|9﹣m |=9﹣m , ∴9﹣m ≥0,∴m ≤9,故选:D .【点睛】此题考查二次根式的性质,注意被开方数和开方的结果都是非负数是关键. 2.(2020·陕西西安市八年级期中)已知a 、b 、c 是三角形的三边长,如果满足()26100a c --=,则三角形的形状是( )A .底与腰不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形【答案】D【分析】根据非负性求解出a ,b ,c 的具体值,再由勾股定理的逆定理判断即可.【详解】∵()260a -≥0≥,100c -≥,又∵()26100a c -+-=,∴60a -=,80b -=,100c -=,解得:6a =,8b =,10c =,∵22268366410010,∴是直角三角形.故选:D .【点睛】本题考查绝对值,二次根式,完全平方式的非负性,及勾股定理的逆定理,熟练掌握相关代数式的非负性是解题关键.3.(2020·金华市七年级期中)已知非零实数a ,b 满足212a b a -+-=-则a -b 等于( )A .−1B .0C .1D .2【答案】D【分析】先由条件得出20a -≥,然后即可将原式去掉一个绝对值,从而即可求出a 、b 的值,可得到答案.【详解】解:由212a b a -+-=-可知,20a -≥,∴212a b a -+-=-,即10b -=∴10b -=, 30a -=,∴1b =, 3a =,∴312a b -=-=,故选:D .【点睛】本题考查了绝对值和算术平方根的非负性,得到20a -≥是解题的关键.4.(2020·辽宁阜新蒙古族自治县八年级期末)实数a ,b 在数轴上对应点的位置如图所示,则化简代数式2-a b a +的结果是( ).A .-bB .2aC .-2aD .-2a-b【答案】A【分析】根据数轴得b<a<0,判断a+b<0,即可化简绝对值及二次根式,计算加减法即可得到答案.【详解】由数轴得b<a<0,∴a+b<0,∴2-a b a +=-a-b+a=-b ,故选:A .【点睛】 此题考查数轴与数的表示,利用数轴比较数的大小,化简绝对值,化简二次根式,依据数轴化简绝对值及二次根式是解题的关键.5.(2020·广东揭阳市·3 ) A .3B 3C 3D 3【答案】D【分析】 直接利用倒数的定义分析和二次根式的化简即可得出答案;相乘为1的两个数即为倒数; 【详解】3 3 =33. 故选:D .【点睛】本题考查了二次根式的化简、倒数的定义,正确化简二次根式是解题的关键;6.(2020·甘肃白银市·八年级期中)当1<a <2+|a ﹣1|的值是( ) A .1B .﹣1C .2a ﹣3D .3﹣2a 【答案】A【分析】 根据二次根式的化简方法将原式化简成21a a -+-,再根据a 的取值范围化简绝对值.【详解】解:∵12a <<,∴20a -<,10a ->, ∴原式21211a a a a =-+-=-+-=.故选:A .【点睛】本题考查绝对值的化简和二次根式的化简,解题的关键是掌握绝对值和二次根式的化简方法.7.(2020·=则x 可取的整数值有( ).A .1个B .2个C .3个D .4个【答案】B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.8.(2020·清远市八年级期中)下列四个数中,是负数的是( )A .2-B .2(2)-C .2-D .2(2)-【答案】C【分析】 先根据绝对值的性质,有理数的乘方,二次根式的性质对各式化简,再利用正数和负数的定义对各选项分析判断后利用排除法求解.【详解】A 、220-=>,不符合题意;B 、()2240-=>,不符合题意;C 、20-<,符合题意;D 、()2220-=>,不符合题意;故选:C .9.(2020·吉林长春市·九年级期中)2(3)-等于( ) A .3B .-3C .±3D .9【答案】A【分析】根据实数的性质即可化简.【详解】 2(3)-3-=3故选A .【点睛】此题主要考查实数的性质,解题的关键是熟知实数的运算法则.10.(2020·西安市八年级期中)当2a <3(2)a a - )A .(2)a a -B .(2)a a a --C .(2)a a a -D .(2)a a a --【答案】B【分析】根据二次根式的性质即可化简.【详解】解:∵2a <∴a 20-<-故选:B .【点睛】此题主要考查二次根式的化简,解题的关键是熟练掌握二次根式的性质.二、填空题(共5小题)11.(2020·_____.1.【分析】直接根据二次的性质进行化简即可.【详解】>1,|1(11=-=1.【点睛】()(0)0(0)a a a a a a a >⎧⎪===⎨⎪-<⎩是解答此题的关键.12.(2020·=_____.【答案】【分析】根据二次根式的性质计算,即可得到答案.【详解】故答案为:43. 【点睛】 本题考查了二次根式的知识;解题的关键是熟练掌握二次根式的性质,从而完成求解. 13.(2020·西青区八年级期中)写出m n -的一个有理化因式:_______.【答案】m n -【分析】平方根与平方是互逆运算,据此解题.【详解】2()m n m n m n -⋅-=-m n ∴-的一个有理化因式是m n -,故答案为:m n -.【点睛】本题考查二次根式的有理化,是基础考点,难度较易,掌握相关知识是解题关键. 14.(2020·高台县八年级期末)已知实数a 、b 在数轴上的位置如图所示,化简2()a b a b -++=_____________【答案】2a -【分析】先根据数轴的定义可得0a b <<,从而可得0,0a b a b -<+<,再化简绝对值和二次根式,然后计算整式的加减即可得.【详解】由数轴的定义得:0a b <<,则0,0a b a b -<+<,因此2()()a b a b b a a b -+=-+--,b a a b =---,2a =-,故答案为:2a -.【点睛】本题考查了数轴、绝对值、二次根式、整式的加减,熟练掌握数轴的定义是解题关键.15.(2020·)0y >=______.【答案】2【分析】根据二次根式的性质进行化简根式即可.【详解】2x =∵0y >,2=故答案为2【点睛】本题主要考查二次根式的化简,熟练掌握二次根式的性质是解题的关键.三、解答题(共2小题)16.(2020·福建三明市八年级期中)先阅读下列解答过程,然后再解答:小芳同学在研究化437+=,4312⨯=,即:227+=, =2=== 问题:(1=__________=____________﹔(2a ,b (a b >),使a b m +=,ab n =,即22m +==2m n ±=__________. (3)化简:415-(请写出化简过程) 【答案】(1)31+,3-2;(2)()a b a b ±>;(3)106- 【分析】(1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算;(2)根据题目给的a ,b 与m 、n 的关系式,用一样的方法列式算出结果;(3)将15写成1524,4写成3522+,就可以凑成完全平方的形式进行计算. 【详解】解:(1)()242331233131+=++=+=+; 5-26=23-223+⨯()2=3-2=3-2; (2)()()()22222()m n a b a b a b a b a b ±=+±⨯=±=±>;(3)415-15=424-3535=22222+-⨯=210622⎛⎫- ⎪ ⎪⎝⎭=106-22. 【点睛】本题考查二次根式的计算和化简,解题的关键是掌握二次根式的运算法则.17.(2020·福建泉州市·泉州七中八年级期中)已如实数a 、b 在数轴上的位置如图所示,请化简()()22a 1ab 1b +-++-【答案】0【分析】由题意可得:2-<a <1-,0<b <1,从而可得:1a +<0, +a b <0, 1b ->0, 再利()()22a 1a b 1b ++-11a a b b =+-++-,从而可得答案.【详解】解:由题意得:2-<a <1-,0<b <1,1a ∴+<0,+a b <0, 1b ->0,1b -11a a b b =+-++-11a a b b =--+++-0.=【点睛】本题考查的是实数的大小比较,二次根式的性质,二次根式的化简,绝对值的化简,合并同类项,掌握以上知识是解题的关键.。
沪科版数学八年级下册16.1《二次根式》教学设计2一. 教材分析沪科版数学八年级下册16.1《二次根式》是学生在学习了实数、有理数、无理数等基础知识后,进一步对根式的深入学习。
本节课的主要内容是二次根式的定义、性质和运算。
教材通过丰富的例题和练习题,帮助学生掌握二次根式的相关知识,为学生后续学习二次方程、二次函数等知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数、无理数等基础知识,对根式有一定的了解。
但学生对二次根式的定义、性质和运算规则可能还不够清晰,需要通过本节课的学习来进一步掌握。
同时,学生需要通过实例来理解二次根式的实际应用,提高解决问题的能力。
三. 教学目标1.知识与技能:学生能够理解二次根式的定义,掌握二次根式的性质和运算规则。
2.过程与方法:学生能够通过实例来理解二次根式的实际应用,提高解决问题的能力。
3.情感态度与价值观:学生能够激发对数学的兴趣,培养积极的学习态度,提高合作交流的能力。
四. 教学重难点1.重点:二次根式的定义、性质和运算规则。
2.难点:二次根式的实际应用,理解二次根式在解决问题中的作用。
五. 教学方法1.情境教学法:通过实例引入二次根式的概念,使学生能够直观地理解二次根式的实际应用。
2.引导发现法:引导学生通过自主探究、合作交流,发现二次根式的性质和运算规则。
3.练习法:通过大量的练习题,巩固学生对二次根式的理解和运用。
六. 教学准备1.教学课件:制作精美的教学课件,帮助学生直观地理解二次根式的概念和性质。
2.练习题:准备适量的练习题,用于巩固学生的学习成果。
3.教学工具:准备黑板、粉笔等教学工具,用于板书和讲解。
七. 教学过程1.导入(5分钟)通过一个实际问题引入二次根式的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解二次根式的定义,通过实例来解释二次根式的实际应用。
3.操练(10分钟)学生独立完成一些简单的二次根式运算题,巩固对二次根式的理解。
16.1 二次根式(第2课时)教学内容本节课主要学习二次根式的性质a(a≥0)是一个非负数与(a)2=a及其运用。
教学目标一、知识技能理解a(a≥0)是一个非负数和(a)2=a(a≥0),并利用它们进行计算和化简。
二、数学思考乘方与开方互为逆运算在推导结论(a)2=a(a≥0)中的应用。
三、解决问题利用二次根式的非负性和(a)2=a(a≥0)解题。
四、情感态度通过利用乘方与开方互为逆运算推导结论(a)2=a(a≥0),使学生感受到数学知识的内在联系。
重难点、关键重点:a(a≥0)是一个非负数;(a)2=a(a≥0)及其运用。
难点:理解二次根式a(a≥0)是一个非负数与(a)2=a。
关键:用分类思想的方法导出a(a≥0)是一个非负数;•用探究的方法导出(a)2=a(a≥0)。
教学准备教师准备:制作课件,精选习题。
学生准备:复习有关知识,预习本节课内容。
教学过程一、复习引入【提出问题】1、什么叫二次根式?2、当a≥0时,a表示什么?当a<0时,a有意义吗?【活动方略】教师给出题目。
学生根据所学知识回答问题。
【设计意图】复习二次根式的概念及算术平方根的基本形式.为二次根式的性质引入作好铺垫。
二、探索新知【问题】a (a ≥0)有没有可能小于零?为什么?教师提出问题。
学生总结出二次根式的性质1: a (a ≥0)是一个非负数. 【设计意图】使学生归纳出二次根式的性质1:a (a ≥0)是一个非负数。
【探究】根据算术平方根的意义填空:(4)2=_______;(2)2=_______;(13)2=______;(0)2=_______。
教师给出题目。
学生口答结果后总结有何规律。
老师点评:是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此有(4)2=4。
4同理可得:(2)2=2,132=13,0)2=0,所以(a )2=a (a ≥0)【设计意图】归纳出二次根式的性质2:a 2=a (a ≥0)三、范例点击 例1 已知3+x +5-y =0,求xy 的值是多少? 解:∵3+x +5-y =0,∴3+x ≥0且5-y ≥0, ∴3+x =0且5-y =0;即x +3=0且y -5=0解得x =-3,y =5 ∴xy =-15【设计意图】使学生掌握二次根式的性质1,理解非负式的应用。