信息论编码 田宝玉chapter11-1
- 格式:ppt
- 大小:2.09 MB
- 文档页数:12
信息论与编码习题参考答案第一章 单符号离散信源同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:* (3)信源空间:bit x H 32.436log 3616236log 36215)(=⨯⨯+⨯⨯=∴bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==?如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解: !bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率bitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知 bitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为%.如果你问一位男士:“你是否是红绿色盲”他的回答可能是:“是”,也可能“不是”。
信息论与编码第二版答案《信息论与编码(第二版)》是Claude Elwood Shannon所撰写的经典著作,该书于1948年首次出版,至今被广泛认可为信息论领域的权威指南。
本书通过数学模型和理论阐述了信息的量化、传输、存储以及编码等相关概念和原理。
深入浅出的阐述方式使得本书具备了普适性和可读性,成为信息论领域学习者和研究者的必备参考。
信息论是研究信息的传输、处理和应用的科学,其最初来源于通信工程领域。
而编码作为信息论的一个重要分支,旨在寻求一种有效的方式将信息转化为符号或信号,以便能够高效地传输和存储。
编码的主要目标是通过减少冗余或利用统计特征来压缩信息,并提高信号传输过程中的容错性。
在信息论中,最重要的概念之一是“信息熵”。
信息熵是信息的不确定性度量,也可以看作是信息的平均编码长度。
当一个事件出现的可能性均匀时,信息熵达到最大值,表示信息的不确定度最高;而当事件的概率趋于一个时,信息熵达到最小值,表示事件的确定性最高。
例如,抛一枚公正的硬币,其正反面出现的概率均为0.5,那么信息熵将达到最大值,即1比特。
如果硬币是正面朝上或者反面朝上,那么信息熵将达到最小值,即0比特。
除了信息熵,信息论中还有许多重要的概念,如条件熵、相对熵和互信息等。
其中,条件熵表示给定某些信息后的不确定性,相对熵则用于比较两个概率分布之间的差异,而互信息则度量了两个随机变量之间的相关性。
编码是信息论中的关键技术之一,其目的是将信息通过某种规则进行转换,使其适于传输或存储。
常见的编码方法有哈夫曼编码、香农-费诺编码和算术编码等。
其中,哈夫曼编码常用于无损压缩,通过根据字符频率设计不等长的编码,使得频率高的字符用较短的编码表示,而频率低的字符用较长的编码表示,从而达到压缩的效果。
算术编码则通过将整个信息序列映射为一个实数,从而实现更高的压缩比。
信息论与编码的研究对众多领域都具有重要意义。
在通信领域中,信息论的结果对于提高信道容量和降低误差率具有指导意义。
信息论与编码课后习题答案信息论与编码课后习题答案[信息论与编码]课后习题答案1、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
2、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
3、按照信息的性质,可以把信息分为语法信息、语义信息和语用信息。
4、按照信息的地位,可以把信息分成客观信息和主观信息。
5、人们研究信息论的目的就是为了高效率、可信、安全地互换和利用各种各样的信息。
6、信息的是建立信息论的基础。
8、就是香农信息论最基本最重要的概念。
9、事物的不确定度是用时间统计发生概率的对数来描述的。
10、单符号线性信源通常用随机变量叙述,而多符号线性信源通常用随机矢量叙述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。
12、自信息量的单位通常存有比特、奈特和哈特。
13、必然事件的自信息是。
14、不可能将事件的自信息量就是15、两个相互独立的随机变量的联合自信息量等于两个自信息量之和。
16、数据处理定理:当消息经过多级处置后,随着处理器数目的激增,输出消息与输入消息之间的平均值互信息量趋向变大。
17、离散平稳无记忆信源x的n次扩展信源的熵等于离散信源x的熵的。
limh(xn/x1x2xn1)h n18、线性稳定存有记忆信源的音速熵,。
19、对于n元m阶马尔可夫信源,其状态空间共有m个不同的状态。
20、一维已连续随即变量x在[a,b]。
1log22ep21、平均功率为p的高斯分布的已连续信源,其信源熵,hc(x)=2。
22、对于限峰值功率的n维连续信源,当概率密度均匀分布时连续信源熵具有最大值。
23、对于减半平均功率的一维已连续信源,当概率密度24、对于均值为0,平均功率受限的连续信源,信源的冗余度决定于平均功率的限定值p和信源的熵功率p25、若一线性并无记忆信源的信源熵h(x)等同于2.5,对信源展开相切的并无杂讯二进制编码,则编码长度至少为。
信息论与编码习题参考答案 第一章 单符号离散信源同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3616236log 36215)(=⨯⨯+⨯⨯=∴ (4)信源空间:bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率bitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知bitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为%.如果你问一位男士:“你是否是红绿色盲”他的回答可能是:“是”,也可能“不是”。
《信息论、编码与密码学》课后习题答案第1章信源编码1.1 考虑一个信源概率为{0.30 , 0.25 , 0.20 , 0.15 , 0.10}的DMS求信源嫡H (X)。
5解:信源嫡H(X) = -£P k log 2( P k)H(X)=-[0.30*(-1.737)+0.25*(-2)+0.2*(-2.322)+0.15*(-2.737)+0.1*(-3.322)]=[0.521+0.5+0.464+0.411+0.332]=2.228(bit)故得其信源嫡H(X)为2.228bit1.2 证明一个离散信源在它的输出符号等概率的情况下其嫡达到最大值。
解:若二元离散信源的统计特性为P+Q=1 H(X)=-[P*log(P)+(1-P)*log(1-P)]对H(X)求导求极值,由dH(X)/d(P)=0可得log可知当概率P=Q=1/2时,有信源嫡H (X)max = 1(bit)对丁三元离散信源,当概率R = P2 = P3 = 1/3时,信源嫡H (X )m a=x1 .5 8 (5bit ),此结论可以推广到N元的离散信源。
1.3证明不等式lnx^x—1。
画出曲线y〔=lnx和y2 = x — 1的平■面图以表明上述不等式的正确性。
证明:f (x) = ln x 「x 1(x - 0) f(x)=【x令f(x),=0, x =1 又有x 0. 0 :. x < 1 时f(x) 0 此时 f(x) fx =0 也即 In x _x -1当x _1时同理可得此时Inx _x -1综上可得lnx 笑x -1证毕 绘制图形说明如下 可以很明确说明上述 不等式的正确性。
1.4证明I(X;Y)芝0。
在什么条件下等号成立?n mI(X ; V =' ' P(x,y j )i(x, y j )i 目j 目n m =' P(x,y j )logi 注j T 当和相互独立时等号成立。
信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。