北师大版九年级数学上册第三章检测
- 格式:ppt
- 大小:2.77 MB
- 文档页数:74
北师大版九年级数学上册第三章达标检测卷一、选择题(每题3分,共30分)1.小明制作了十张卡片,上面分别标有1~10这十个数.从这十张卡片中随机抽取一张,这张卡片上的数恰好能被4整除的概率是()A.110 B.25 C.15 D.3102.用频率估计概率,可以发现抛掷硬币“正面向上”的概率为0.5,那么抛掷一枚质地均匀的硬币10次,下列说法正确的是()A.每两次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上3.现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取2张,则这2张卡片正面图案相同的概率是()A.916 B.34 C.38 D.124.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是()A.点数都是偶数B.点数的和为奇数C.点数的和小于13 D.点数的和小于25.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开.小明从入口1进入并从出口A离开的概率是()A.12 B.13 C.14 D.166.小红、小明在玩“石头、剪刀、布”的游戏,小红给自己一个规定:一直不出“石头”.小红、小明获胜的概率分别是P1,P2,则下列结论正确的是() A.P1=P2B.P1>P2C.P1<P2D.P1≤P27.一个不透明的盒子里有n个除颜色外其他完全相同的球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中球的个数n为()A.20 B.24 C.28 D.308.用图中两个可自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色,即可配成紫色(若指针指在分界线上,则重转),则配成紫色的概率为()A.16 B.13 C.12 D.239.一个盒子里有完全相同的三个小球,球上分别标有数-1,1,2.随机摸出一个小球(不放回),其数记为p,再随机摸出另一个小球,其数记为q,则满足关于x的方程x2-px+q=0有实数根的概率是()A.12 B.13 C.23 D.5610.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为()A.14 B.25 C.23 D.59二、填空题(每题3分,共24分)11.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面朝上的概率是________.12.在一个不透明的袋中装有除颜色外其余均相同的n 个球,其中有10个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表: 摸球试验次数 100 1 000 5 000 10 000 50 000 100 000 摸出黑球次数464872 5065 00824 99650 007根据列表,可以估计出n =________.13.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从布袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为________.14.如图,在3×3的方格中,A ,B ,C ,D ,E ,F 分别位于格点上,从C ,D ,E ,F 四点中任取一点,与点A ,B 为顶点作三角形,则所作三角形为等腰三角形的概率是________.15.如图,随机地闭合开关S 1,S 2,S 3,S 4,S 5中的三个,能够使灯泡L 1,L 2同时发光的概率是________.16.某市举办“体彩杯”中学生篮球赛,初中男子组有市区学校的A ,B ,C 三个队和县区学校的D ,E ,F ,G ,H 五个队.如果从A ,B ,D ,E 四个队与C ,F ,G ,H 四个队中各抽取一个队进行首场比赛,那么参加首场比赛的两个队都来自县区学校的概率是________.17.已知a ,b 可以取-2,-1,1,2中的任意一个值(a ≠b ),则直线y =ax +b经过第一、二、四象限的概率是________.18.从-1,1,2这三个数中随机抽取一个数,记为a ,那么使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题(19题8分,20题10分,其余每题12分,共66分)19.甘肃省省府兰州,又名金城.在金城,黄河母亲河通过自身文化的演绎,衍生和流传了独特的“金城八宝”美食.“金城八宝”美食中甜品类有味甜汤糊“灰豆子”、醇香软糯“甜胚子”、生津润肺“热冬果”、香甜什锦“八宝百合”,其他类有青白红绿“牛肉面”、酸辣清凉“酿皮子”、清爽溜滑“浆水面”、香醇肥美“手抓羊肉”.李华和王涛同时去品尝美食,李华准备在“甜胚子、牛肉面、酿皮子、手抓羊肉”这四种美食中选择一种,王涛准备在“八宝百合、灰豆子、热冬果、浆水面”这四种美食中选择一种.(甜胚子、牛肉面、酿皮子、手抓羊肉分别记为A,B,C,D,八宝百合、灰豆子、热冬果、浆水面分别记为E,F,G,H)(1)用画树状图或列表的方法表示李华和王涛同时选择美食的所有可能结果;(2)求李华和王涛同时选择的美食都是甜品类的概率.20.一个不透明的口袋中有9个红球和若干个白球,这些球除颜色不同外,其余都相同.在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的数量:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……小明重复上述过程,共摸了100次,其中40次摸到白球,请回答:口袋中的白球约有多少个?21.某小区为了改善生态环境、促进生活垃圾的分类处理,将生活垃圾分为三类:厨余、可回收和其他,分别记为a,b,c,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收垃圾”箱和“其他垃圾”箱,分别记为A,B,C.(1)若将三类垃圾随机投入三类垃圾箱,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总共1 000 t生活垃圾,数据统计如下(单位:t):试估计“厨余垃圾”投放正确的概率.22.某学校为了提高学生的能力,决定开设以下项目:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家.为了了解学生最喜欢哪一项目,随机抽取了部分学生进行调查,并将调查结果绘制成了如图所示两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有________人;(2)请你将条形统计图补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两名同学的概率(用画树状图或列表法解答).23.小明、小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯,并设甲在a层出电梯,乙在b 层出电梯.(1)小明想知道甲、乙二人在同一层出电梯的概率,你能帮他求出来吗?(2)小亮和小芳打赌:若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜.该游戏是否公平?若公平,说明理由;若不公平,请修改游戏规则,使游戏公平.24.端午节吃粽子是中华民族的传统习俗,今年某商场销售甲厂家的高档、中档、低档三个品种及乙厂家的精装、简装两个品种的盒装粽子.现需要在甲、乙两个厂家中各选购一个品种.(1)写出所有选购方案(利用树状图或表格求选购方案).(2)如果(1)中各种选购方案被选中的可能性相同,那么甲厂家的高档粽子被选中的概率是多少?(3)现某中学准备购买两个品种的粽子共32盒(价格如下表)发给学校的“留守儿童”,让他们过一个愉快的端午节,其中指定购买了甲厂家的高档粽子,再从乙厂家购买一个品种.若恰好用了1 200元,请问:购买了多少盒甲厂家的高档粽子?答案一、1.C 2.B 3.D 4.C 5.C6.A 【点拨】根据题意画出树状图,如图所示:由树状图可知,共有6种等可能的情况,其中小红获胜的情况有2种,小明获胜的情况有2种,所以P 1=P 2=26=13,故选A. 7.D 8.C 9.A10.B 【点拨】如图,正六边形中连接任意两点可得15条线段,其中AC ,AE ,BD ,BF ,CE ,DF 这6条线段的长度为3,∴所求概率为615=25.二、11.34 【点拨】随机掷一枚质地均匀的硬币两次,可能出现的结果有(正,正),(正,反),(反,正),(反,反)4种,且每种结果出现的可能性相同,至少有一次正面朝上的结果有3种,故所求概率是34. 12.20 13.13 14.34 15.1516.38 【点拨】列表如下:A B D E C (A ,C) (B ,C) (D ,C) (E ,C) F (A ,F) (B ,F) (D ,F) (E ,F) G (A ,G) (B ,G) (D ,G) (E ,G) H(A ,H)(B ,H)(D ,H)(E ,H)由表格可知共有16种等可能情况,参加首场比赛的两个队都来自县区学校的有6种情况,所以概率为616=38. 17.13 18.13三、19.解:(1)列表如下:或画树状图如图所示:(2)由(1)可知,共有16种等可能的结果,而李华和王涛同时选择的都是甜品类的有3种结果,分别是(A ,E),(A ,F),(A ,G), ∴李华和王涛同时选择的美食都是甜品类的概率为316. 20.解:设口袋中的白球约有x 个. 根据题意,得x x +9=40100,解得x =6,经检验,x=6是原方程的根.答:口袋中的白球约有6个.21.解:(1)三类垃圾随机投入三类垃圾箱的树状图如图所示.由树状图可知,垃圾投放正确的概率为39=13.(2)“厨余垃圾”投放正确的概率为400400+100+100=2 3.22.解:(1)200(2)C项目对应的人数有200-20-80-40=60(人).补充条形统计图如图①所示.(3)画树状图如图②所示:由树状图可知,共有12种等可能的情况,恰好同时选中甲、乙两名同学的情况有2种,所以P (恰好同时选中甲、乙两名同学)=212=16. 23.解:(1)列表略,一共出现16种等可能结果,其中在同一层出电梯的有4种结果,则P (甲、乙二人在同一层出电梯)=416=14.(2)游戏不公平.甲、乙在同一层或相邻楼层出电梯的有10种结果,故P (小亮胜)=1016=58,P (小芳胜)=616=38,∵58>38,∴游戏不公平. 修改规则为:若甲、乙在同一层或相隔两层出电梯,则小亮胜;若甲、乙相隔一层或三层出电梯,则小芳胜(修改规则不唯一).24.解:(1)画树状图如图所示:共有6种选购方案:(高档,精装),(高档,简装),(中档,精装),(中档,简装),(低档,精装),(低档,简装).(2)因为选中甲厂家的高档粽子的方案有2种,即(高档,精装),(高档,简装),所以甲厂家的高档粽子被选中的概率为26=13.(3)由(2)可知,当选用方案(高档,精装)时,设分别购买高档粽子、精装粽子x 1盒、y 1盒,根据题意,得⎩⎨⎧x 1+y 1=32,60x 1+50y 1=1 200.解得⎩⎨⎧x 1=-40,y 1=72.经检验,不符合题意,舍去.当选用方案(高档,简装)时,设分别购买高档粽子、简装粽子x 2盒、y 2盒,根据题意,得⎩⎨⎧x 2+y 2=32,60x 2+20y 2=1 200. 解得⎩⎨⎧x 2=14,y 2=18.经检验,符合题意.故该中学购买了14盒甲厂家的高档粽子.。
初中数学北师大版九年级上学期第三章 3.1 用树状图或表格求概率一、单选题1.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择—个参加活动,两人恰好选择同—场馆的概率是( )A. B. C. D.2.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A. B. C. D.3.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )A. B. C. D.4.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是()A. B. C. D.二、综合题5.箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.6.九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:15 20 10已知前面两个小组的人数之比是.解答下列问题:(1)________.(2)补全条形统计图:(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)7.为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表根据以上信息解决下列问题(1)________,________;(2)扇形统计图中“科学类”所对应扇形圆心角度数为________ ;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.8.现有A、B、C三个不透明的盒子,A盒中装有红球、黄球、蓝球各1个,B盒中装有红球、黄球各1个,C盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C三个盒子中任意摸出一个球. (1)从A盒中摸出红球的概率为;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.9.如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.)答案解析部分一、单选题1. A解:用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆画树状图为:共有9种等可能的结果数,其中两人恰好选择同一场馆的有3种情况,∴两人恰好选择同一场馆的概率=故答案为:A【分析】由题意可知,此事件是抽取放回,列出树状图,根据树状图求出所有等可能的结果数及两人恰好选择同一场馆的可能数,然后利用概率公式求解。
新北师大版九年级数学[上册]第三章检测题(附答案)(时间:120分钟 满分:120分)一、选择题(每小题3分;共30分)1.事件A :打开电视;它正在播广告;事件B :抛掷一个均匀的骰子;朝上的点数小于7;事件C :在标准大气压下;温度低于0 ℃时冰融化.3个事件的概率分别记为P (A )、P (B )、P (C );则P (A )、P (B )、P (C )的大小关系正确的是( )A .P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B )C .P (C )<P (B )<P (A )D .P (A )<P (B )<P (C )2.从1;2;-3三个数中;随机抽取两个数相乘;积是正数的概率是( )1.D 23C. 13B. 0.A 3.如图;2×2的正方形网格中有9个格点;已经取定点A 和B ;在余下的7个点中任取一点C ;使△ABC 为直角三角形的概率是( D)25B. 12A. 47D. 37C. 4.袋子里有4个球;标有2;3;4;5;先抽取一个并记住;放回;然后再抽取一个;问抽取的两个球数字之和大于6的概率是() 34D. 58C. 712B. 12A. 5.掷两枚普通正六面体骰子;所得点数之和为11的概率为( )115D. 112C. 136B. 118A. 6.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘;若其中一个转出红色;另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()12D. 13C. 34B. 14A.,第6题图),第7题图)7.如图所示的两个转盘中;指针落在每一个数上的机会均等;那么两个指针同时落在偶数上的概率是( )525D. 625C. 1025B. 1925A. 8.有三张正面分别写有数字-1;1;2的卡片;它们背面完全相同;现将这三张卡片背面朝上洗匀后随机抽取一张;以其正面的数字作为a 的值;然后再从剩余的两张卡片中随机抽取一张;以其正面的数字作为b 的值;则点(a ;b )在第二象限的概率是( )23D. 12C. 13B. 16A. 9.从长为10 cm;7 cm;5 cm;3 cm 的四条线段中任选三条能够组成三角形的概率是( )34D. 12C. 13B. 14A.其坐标分别为;轴上y 在2B ;1B 点;轴上x 在2A ;1A 点;在平面直角坐标系中;如图.10;为顶点作三角形O 其中的任意两点与点2B ;1B ;2A ;1A 分别以(0;2);2B (0;1);1B (2;0);2A (1;0);1A 所作三角形是等腰三角形的概率是( )12D. 23C. 13B. 34A. 二、填空题(每小题3分;共18分)11.一个布袋中装有3个红球和4个白球;这些除颜色外其他都相同.从袋子中随机摸出一个球;这个球是白球的概率为____.12.一水库里有鲤鱼、鲫鱼、草鱼共2 000尾;小明通过多次捕捞试验;发现鲤鱼、草鱼的概率是51%和26%;则水库里有____尾鲫鱼.13.在一个不透明的袋子中有10个除颜色外均相同的小球;通过多次摸球试验后;发现摸到白球的频率约为40%;估计袋中白球有____个.14.有两把不同的锁和三把钥匙;其中两把钥匙能打开同一把锁;第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁;一次能打开锁的概率是____.15.袋中装有4个完全相同的球;分别标有1;2;3;4;从中随机取出一个球;以该球上的数字作为十位数;再从袋中剩余3个球中随机取出一个球;以该球上的数字作为个位数;所得的两位数大于30的概率为____.16.一天晚上;小伟帮妈妈清洗茶杯;三个茶杯只有颜色不同;其中一个无盖.突然停电了;小伟只好把杯盖与茶杯随机地搭配在一起;则花色完全搭配正确的概率是____.三、解答题(共72分)17.(10分)小明有2件上衣;分别为红色和蓝色;有3条裤子;其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果;并求小明穿的上衣和裤子恰好都是蓝色的概率.18.(10分)在一个不透明的口袋中装有4张相同的纸牌;它们分别标有数字1;2;3;4.随机地摸取出一张纸牌记下数字然后放回;再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏;如果两次摸出纸牌上数字之和为奇数;则甲胜;如果两次摸出纸牌上数字之和为偶数;则乙胜.这是个公平的游戏吗?请说明理由.19.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片;甲袋中的三张卡片上所标有的三个数值为-7;-1;3.乙袋中的三张卡片所标的数值为-2;1;6.先从甲袋中随机取出一张卡片;用x表示取出的卡片上的数值;再从乙袋中随机取出一张卡片;用y表示取出卡片上的数值;把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x;y)的所有情况;(2)求点A落在第三象限的概率.20.(10分)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域;并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏;游戏规则是:同时转动两个转盘;当转盘停止时;若指针所指两区域的数字之积为奇数;则欢欢胜;若指针所指两区域的数字之积为偶数;则乐乐胜;若有指针落在分割线上;则无效;需重新转动转盘.(1)试用列表或画树状图的方法;求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.21.(10分)现有一项资助贫困生的公益活动由你来主持;每位参与者交赞助费5元.活动规则如下:如图是两个可以自由转动的转盘;每个转盘被分成6个相等的扇形;参与者转动这两个转盘;转盘停止后;指针各指向一个数字(若指针在分格线上;则重转一次;直到指针指向某一数字为止).若指针最后所得的数字之和为12;则获一等奖;奖金20元;数字之和为9;则获二等奖;奖金10元;数字之和为7;则获三等奖;奖金5元;其余的均不得奖.此次活动所集到的资助费除支付获奖人员的奖金外;其余全部用于资助贫困生的学习和生活.(1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率;(2)若此项活动有2 000人参加;活动结束后至少有多少赞助费用于资助贫困生.22.(10分)甲、乙、丙3人聚会;每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同);将3件礼物放在一起;每人从中随机抽取一件.(1)下列事件是必然事件的是( )A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A);请列出事件A的所有可能的结果;并求事件A的概率.23.(12分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球放回;混合均匀后再摸出1个球.①求第一次摸到绿球;第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回;再摸出1个球;则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.新北师大版九年级数学上册第三章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分;共30分)1.事件A :打开电视;它正在播广告;事件B :抛掷一个均匀的骰子;朝上的点数小于7;事件C :在标准大气压下;温度低于0 ℃时冰融化.3个事件的概率分别记为P (A )、P (B )、P (C );则P (A )、P (B )、P (C )的大小关系正确的是( B )A .P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B )C .P (C )<P (B )<P (A )D .P (A )<P (B )<P (C )2.从1;2;-3三个数中;随机抽取两个数相乘;积是正数的概率是( B )1.D 23C. 13B. 0.A 3.如图;2×2的正方形网格中有9个格点;已经取定点A 和B ;在余下的7个点中任取一点C ;使△ABC 为直角三角形的概率是( D)25B. 12A. 47D. 37C. 4.袋子里有4个球;标有2;3;4;5;先抽取一个并记住;放回;然后再抽取一个;问抽取的两个球数字之和大于6的概率是( C) 34D. 58C. 712B. 12A. 5.掷两枚普通正六面体骰子;所得点数之和为11的概率为( A )115D. 112C. 136B. 118A. 6.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘;若其中一个转出红色;另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( D)12D. 13C. 34B. 14A.,第6题图),第7题图)7.如图所示的两个转盘中;指针落在每一个数上的机会均等;那么两个指针同时落在偶数上的概率是( C )525D. 625C. 1025B. 1925A. 8.有三张正面分别写有数字-1;1;2的卡片;它们背面完全相同;现将这三张卡片背面朝上洗匀后随机抽取一张;以其正面的数字作为a 的值;然后再从剩余的两张卡片中随机抽取一张;以其正面的数字作为b 的值;则点(a ;b )在第二象限的概率是( B )23D. 12C. 13B. 16A. 9.从长为10 cm;7 cm;5 cm;3 cm 的四条线段中任选三条能够组成三角形的概率是( C )34D. 12C. 13B. 14A.其坐标分别为;轴上y 在2B ;1B 点;轴上x 在2A ;1A 点;在平面直角坐标系中;如图.10;为顶点作三角形O 其中的任意两点与点2B ;1B ;2A ;1A 分别以(0;2);2B (0;1);1B (2;0);2A (1;0);1A 所作三角形是等腰三角形的概率是( D )12D. 23C. 13B. 34A. 二、填空题(每小题3分;共18分)11.一个布袋中装有3个红球和4个白球;这些除颜色外其他都相同.从袋子中随机摸出.__47__这个球是白球的概率为;一个球 12.一水库里有鲤鱼、鲫鱼、草鱼共2 000尾;小明通过多次捕捞试验;发现鲤鱼、草鱼尾鲫鱼.__460__则水库里有26%;和51%的概率是 13.在一个不透明的袋子中有10个除颜色外均相同的小球;通过多次摸球试验后;发现摸个.__4__估计袋中白球有40%;到白球的频率约为 14.有两把不同的锁和三把钥匙;其中两把钥匙能打开同一把锁;第三把钥匙能打开另一.__12__一次能打开锁的概率是;把锁.任意取出一把钥匙去开任意一把锁 15.袋中装有4个完全相同的球;分别标有1;2;3;4;从中随机取出一个球;以该球上的数字作为十位数;再从袋中剩余3个球中随机取出一个球;以该球上的数字作为个位数;所得的两.__12__的概率为30位数大于 16.一天晚上;小伟帮妈妈清洗茶杯;三个茶杯只有颜色不同;其中一个无盖.突然停电了;.__16__则花色完全搭配正确的概率是;地搭配在一起小伟只好把杯盖与茶杯随机 三、解答题(共72分)17.(10分)小明有2件上衣;分别为红色和蓝色;有3条裤子;其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果;并求小明穿的上衣和裤子恰好都是蓝色的概率.解:画树状图:13=26=)都是蓝色(P 18.(10分)在一个不透明的口袋中装有4张相同的纸牌;它们分别标有数字1;2;3;4.随机地摸取出一张纸牌记下数字然后放回;再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏;如果两次摸出纸牌上数字之和为奇数;则甲胜;如果两次摸出纸牌上数字之和为偶数;则乙胜.这是个公平的游戏吗?请说明理由.)B 记为事件(:两次摸出纸牌上数字之和为奇数 理由如下;这个游戏公平)2( 14)1(解: 所以这个游戏;两次摸出纸牌上数字之和为奇数与和为偶数的概率相同;12=816=)B (P ;个8有公平19.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片;甲袋中的三张卡片上所标有的三个数值为-7;-1;3.乙袋中的三张卡片所标的数值为-2;1;6.先从甲袋中随机取出一张卡片;用x 表示取出的卡片上的数值;再从乙袋中随机取出一张卡片;用y 表示取出卡片上的数值;把x 、y 分别作为点A 的横坐标和纵坐标.(1)用适当的方法写出点A (x ;y )的所有情况;(2)求点A 落在第三象限的概率.1)列表:可知;点A 落在第三29=)A (P ∴;两种情况)2-;1-(;)2-;7-(共有)A 事件(象限20.(10分)分别把带有指针的圆形转盘A 、B 分成4等份、3等份的扇形区域;并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏;游戏规则是:同时转动两个转盘;当转盘停止时;若指针所指两区域的数字之积为奇数;则欢欢胜;若指针所指两区域的数字之积为偶数;则乐乐胜;若有指针落在分割线上;则无效;需重新转动转盘.(1)试用列表或画树状图的方法;求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.12=612所以欢欢胜的概率是;种6积为奇数的情况有;种情况12共有)1(解:所以游戏公平;两人获胜的概率相同;12=12-1得乐乐胜的概率为)1(由)2( 21.(10分)现有一项资助贫困生的公益活动由你来主持;每位参与者交赞助费5元.活动规则如下:如图是两个可以自由转动的转盘;每个转盘被分成6个相等的扇形;参与者转动这两个转盘;转盘停止后;指针各指向一个数字(若指针在分格线上;则重转一次;直到指针指向某一数字为止).若指针最后所得的数字之和为12;则获一等奖;奖金20元;数字之和为9;则获二等奖;奖金10元;数字之和为7;则获三等奖;奖金5元;其余的均不得奖.此次活动所集到的资助费除支付获奖人员的奖金外;其余全部用于资助贫困生的学习和生活.(1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率;(2)若此项活动有2 000人参加;活动结束后至少有多少赞助费用于资助贫困生.×)5×16+10×19+20×136)(2( 16=)三等奖(P ;19=)二等奖(P ;136=)一等奖(P )1(解: 2 000=5 000;5×2 000-5 000=5 000;即活动结束后至少有5 000元用于资助贫困生22.(10分)甲、乙、丙3人聚会;每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同);将3件礼物放在一起;每人从中随机抽取一件.(1)下列事件是必然事件的是( A )A .乙抽到一件礼物B .乙恰好抽到自己带来的礼物C .乙没有抽到自己带来的礼物D .只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A );请列出事件A 的所有可能的结果;并求事件A 的概率.解:(2)依题意可画树状图:(直接列举出6种可能结果也可)符合题意的只有两种情况:①乙丙甲;②丙甲乙;∴P (A )13=26=23.(12分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球放回;混合均匀后再摸出1个球.①求第一次摸到绿球;第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回;再摸出1个球;则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.解:(1)①画树状图得:∵共有16种等可能的结果;第一次摸到绿球;第二次摸到红球的有4种情况;∴第一次摸个红球的有1个绿球和1②∵两次摸到的球中有;14=416第二次摸到红球的概率为:;到绿球 23)2( 12=816个红球的概率为:1个绿球和1∴两次摸到的球中有;种情况8。
概率练习题1.在一个不透明的布袋中,有大小、形状完全相同,颜色不同的15个球,从中摸出红球的概率为,则袋中红球的个数为( )A.10B.15C.5D.2 2.已知粉笔盒里有4支红色粉笔和n 支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是,则n 的值是( ) A .4 B .6 C .8D .103.为估计某地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.由这些信息,我们可以估计该地区有黄羊( )A 、400只B 、600只C 、800只D 、1000只4.在配紫色游戏中,转盘被平均分成“红”、“黄”、“蓝”、“白”四部分,转动转盘两次,配成紫色的概率为( )A.13B.14C.15D.185.小颖将一枚质地均匀的硬币连续掷了三次,你认为三次都是正面朝上的概率是( )A.12B.13C.14D.186.下列说法中正确的个数是( )①不可能事件发生的概率为0;②一个对象在试验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值; ④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率. A .1 B .2 C .3 D .4257.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是( )A.34B.15C.25D.358.暑假快到了,父母打算带兄妹俩去某个景点旅游一次,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是( ) A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹赢9.某班要从甲、乙、丙、丁四位班干部(两男两女)中任意两位参加学校组织的志愿者服务活动,则恰好选中一男一女的概率是________.10.有30张牌,牌面朝下,每次抽出一张记下花色再放回,洗牌后再抽,经历多次试验后,记录抽到红桃的频率为20%,则红桃大约有张.11.为估计某地区黄羊的只数,先捕捉20只黄羊分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊只。
一、选择题1.甲、乙两名同学在一次用频率去估计概率的试验中,统计了某一结果出现的频率,并绘出了如下折线统计图,则最有可能符合这一结果的试验的是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.任意写一个整数,它能被3整除的概率D.从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率2.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是()A.16B.19C.118D.2153.王老师的讲义夹里放了大小相同的试卷12张,其中语文5张,数学4张,外语3张,他随机从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率是()A.14B.13C.512D.124.一枚质地均匀的正方体骰子,其六个面上分别刻有1, 2, 3, 4, 5, 6六个数字,投掷这个骰子一次,得到的点数与3、4作为三角形三边的长,能构成三角形的概率是( )A.12B.56C.13D.235.小丽书包里准备的3只包装相同的备用口罩中有2只是医用外科口罩,由于感冒她想取一只医用外科口罩去医院就医时佩戴,则她一次取对的概率是()A.0 B.12C.13D.236.如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为()A.1 B.12C.13D.147.在一个不透明的口袋中,装有若干个红球和6个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率稳定在0.6,则估计口袋中大约有红球()A.24个B.10个C.9个D.4个8.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是()A.18B.38C.58D.129.一个不透明的袋子装有除颜色外其余均相同的2个白球和n个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在0.2附近,则n的值为()A.2 B.4 C.8 D.1010.如图为某一试验结果的频率随试验次数变化趋势图,则下列试验中不符合该图的是()A.掷一枚普通正六面体骰子,出现点数不超过2B.掷一枚硬币,出现正面朝上C.从装有2个黑球、1个白球的不透明布袋中随机摸出一球为白球D.从分别标有数字l,2,3,4,5,6,7,8,9的九张卡片中,随机抽取一张卡片所标记的数字不小于711.某市初中学业水平实验操作考试中,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小明和小颖抽到相同学科的概率是()A.13B.14C.16D.1912.如图A是某公园的进口,B,C,D是三个不同的出口,小明从A处进入公园,那么从B,C,D三个出口中恰好在C出口出来的概率为()A.14B.13C.12D.23二、填空题13.四张背面相同的卡片,分别为12,1,2,3,洗匀后背面朝上,先从中抽取一张,把抽到的点数记为a,再在剩余的卡片中抽取一张点数记为b,则点(a,b)恰好落在一次函数y=-2x+4与坐标轴所围成的三角形区域内(含边界)的概率为______________;14.已知数据:12,5,π,4,0,其中无理数出现的频率为_____.15.在一个不透明的袋子中有四个完全相同的小球,分别标号为1,2,3,4.随机摸取一个小球不放回,再随机摸取一个小球,两次摸出的小球的标号的和等于4的概率是____________.16.中缅边境实弹演习期间,空军战斗机随即将炮弹放在如图所示方格地面上(每个小方格都是边长相等的正方形),则炮弹落在阴影方格地面上的概率为_____.17.在单词“BANANA”中随机选择一个字母,选到字母“N”的概率是____.18.一个不透明的盒子里放置三张完全相同的卡片,分别标有数字1,2,3.随机抽取1张,放回后再随机抽取1张,则抽得的第二张卡片上的数字大于第一张卡片上的数字的概率为_____.19.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球5个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有___个白球.20.一个盒中装有4个均匀的球,其中2个白球,2个黑球,今从中任取出2个球,“两球同色”与“两球异色”的可能性分别记为a b、,则a与b的大小关系为__________.三、解答题21.九年级某班要召开一次“走近抗疫英雄,讲好中国故事”主题班会活动,李老师制作了编号为A、B、C、D的4张卡片(如图,除编号和内容外,其余完全相同),并将它们背面朝上洗匀后放在桌面上.(1)小明随机抽取1张卡片,抽到卡片编号为B的概率为;(2)小明从4张卡片中随机抽取1张(不放回),小丽再从余下的3张卡片中随机抽取1张,然后根据抽取的卡片讲述相关英雄的故事,求小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率(请用“画树状图”或“列表”等方法写出分析过程).22.某市合唱团为开展“百人合唱爱国歌”网络“线上云演出”活动,需招收新成员、小霞、小健、小婷、小宇四名学生报名参加了应聘活动,其中小霞、小健来自七年级,小婷、小宇来自八年级.现对这四名学生采取随机抽取的方式进行网络线上面试.(1)若随机抽取一名学生,恰好抽到学生小霞的概率为;(2)若随机抽取两名学生,请用列表法或树状图法求抽中两名学生均来自七年级的概率.23.一个袋子内装有质地大小完全相同的四个小球,分别标记数字1,2,3,4.下图是一个正六边形棋盘,现通过摸球的方式玩跳棋游戏,规则是:从袋子内随机取出一个小球,当计算完袋子内其余三个小球上的数字之和记为n后将小球放回.然后从下图中的A点开始沿着逆时针方向连续跳动n个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.()1随机摸球一次,则棋子跳动到点E处的概率是.()2随机摸球两次,用画树状图或列表的方法,求棋子最终跳动到点D处的概率.24.从2名男生和2名女生中随机抽取上海迪斯尼乐园志愿者.(1)抽取1名,恰好是男生的概率是;(2)抽取2名,用列表法或画树状图法求恰好是1名男生和1名女生的概率.25.小秋打算去某影城看电影.她用手机打开购票页面,座位已选情况如图所示(虚线边框内为黄金区域,其余为普通区域;深色为已售座位,白色为可选座位).求下列事件的概率:(1)小秋独自观影,他选择第4排或第5排的概率是_________;(2)小秋约小叶一同观影,求小秋选择2个同排相邻的座位恰好都在黄金区域的概率.26.问题情景:某校数学学习小组在讨论“随机掷两枚均匀的硬币,得到一正一反的概率是多少”时,小聪说:“随机掷两枚均匀的硬币,可以有‘二正、一正一反、二反’三种情况,所以P(一正一反)13=”小颖反驳道:“这里的‘一正一反’实际上含有‘一正一反,一反一正’这两种情况,所以P(一正一反)1. 2 =”(1)________的说法是正确的.(2)为验证二人的猜想是否正确,小聪与小颖各做了100次试验,得到如下数据:计算:小聪与小颖二人得到的“一正一反”的频率分别是多少?从他们的试验中,你能得到“一正一反”的概率是多少吗?(3)对概率的研究而言,小聪与小颖两位同学的试验说明了什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为16,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C、任意写一个整数,它能被3整除的概率为13,故此选项正确;D、从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率为131524=;故此选项错误.故选:C.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.2.B解析:B【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与掷得面朝上的点数之和是5的情况,再利用概率公式求解即可求得答案.【详解】解:列表得:∴掷得面朝上的点数之和是5的概率是:41369=.故选:B.【点睛】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.3.B解析:B【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学4页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为41123.故选:B.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.4.B解析:B【分析】骰子的六个面上分别刻有数字1,2,3,4,5,6,其中能与3、4构成三角形的有2、3、4、5、6,根据概率公式计算可得.【详解】解:骰子的六个面上分别刻有数字1,2,3,4,5,6,其中能与3、4构成三角形的有2、3、4、5、6,∴能构成等腰三角形的概率是=56,故选:B.【点睛】此题主要考查了概率公式的应用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.5.D解析:D【分析】直接运用概率计算公式求解即可.【详解】解:∵小丽书包里有3只包装相同的备用口罩,2只是医用外科口罩,∴她取一只医用外科口罩的概率为:23,故选:D.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.6.B解析:B【分析】根据题意,先列举所有的可能结果,然后选取能组成等腰三角形的结果,根据概率公式即可求出答案.【详解】解:根据题意,在A,B,C,D四个点中任选三个点,有:△ABC、△ABD、△ACD、△BCD,共4个三角形;其中是等腰三角形的有:△ACD、△BCD,共2个;∴能够组成等腰三角形的概率为:2142P==;故选:B.【点睛】本题考查了列举法求概率,等腰三角形的性质,勾股定理与网格问题,解题的关键是熟练掌握列举法求概率,以及正确得到等腰三角形的个数.7.D解析:D【分析】设口袋中红球有x个,用黄球的个数除以球的总个数等于摸到黄球的频率,据此列出关于x的方程,解之可得答案.【详解】解:设口袋中红球有x个,根据题意,得:66x+=0.6,解得x=4,经检验:x=4是分式方程的解,所以估计口袋中大约有红球4个,故选:D.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.8.B解析:B【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案.【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种,则遇到两次红灯的概率是38,故选:B.【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键.9.C解析:C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:依题意有:22n=0.2,解得:n=8.故选:C.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn是解题关键.10.B解析:B【分析】首先根据折线统计图可得出该事件的概率在30%以上,分别计算各选项概率,即可得出答案.【详解】解:A.掷一枚普通正六面体骰子,出现点数不超过2的概率为13,符合该图;B.掷一枚硬币,出现正面朝上的概率为12,不符合该图;C.从装有2个黑球、1个白球的不透明布袋中随机摸出一球为白球的概率为13,符合该图;D.从分别标有数字l,2,3,4,5,6,7,8,9的九张卡片中,随机抽取一张卡片所标记的数字不小于7概率为13,符合该图.故选:B.【点睛】本题考查的知识点是用频率估计概率,解题的关键是从折线统计图中得出事件的概率值.11.A解析:A【分析】列树状图求出该事件的概率即可.【详解】树状图如下:共有9种等可能的情况,其中小明和小颖抽到相同学科的有3种,∴P(小明和小颖抽到相同学科)=31 93 .故选:A.【点睛】此题考查确定事件概率的大小,求事件的概率时应列表或是树状图将所有可能的结果都列举出来,避免有遗漏的情况或是重复的情况,还需注意事件是属于放回事件还是不放回事件.12.B解析:B【分析】根据概率公式求出该事件的概率即可.【详解】解:根据题意共有3种等情况数,其中“A口进C口出”有一种情况,从“A口进C口出”的概率为1 3故选:B.【点睛】本题考查的是基本的概率计算,熟悉相关概率计算是解题的关键.二、填空题13.【分析】首先画树状图列出所有可能的点(ab)并求得在y=-2x+4与坐标轴所围成的三角形区域内(含边界)上的点最后利用概率公式即可求得【详解】解:画树状图如下:总共有12种等可能结果其中点(ab)恰解析:5 12【分析】首先画树状图列出所有可能的点(a,b),并求得在y=-2x+4与坐标轴所围成的三角形区域内(含边界)上的点,最后利用概率公式即可求得.【详解】解:画树状图如下:总共有12种等可能结果,其中点(a,b)恰好落在一次函数y=-2x+4与坐标轴所围成的三角形区域内(含边界)的可能性有1,12⎛⎫⎪⎝⎭,1,22⎛⎫⎪⎝⎭,1,32⎛⎫⎪⎝⎭,11,2⎛⎫⎪⎝⎭,()1,2,共5种,其概率为5 12,故答案为:5 12.【点睛】本题考查的是用列表法或树状图法求概率,一次函数上点的坐标特征.注意本题为不放回实验.14.【分析】把每个数据进行化简对最简结果进行有理数无理数的甄别后根据频率意义计算即可【详解】∵=2∴0是有理数π是无理数∴无理数出现的频率为故答案为:【点睛】本题考查了频率的意义熟练掌握频率的数学意义是解析:25.【分析】把每个数据进行化简,对最简结果进行有理数,无理数的甄别,后根据频率意义计算即可.【详解】∵4=2,∴12,4,0是有理数,5,π是无理数,∴无理数出现的频率为25.故答案为:25.【点睛】本题考查了频率的意义,熟练掌握频率的数学意义是解题的关键.15.【分析】先画树状图展示所有12种等可能的结果数其中两次摸出的小球标号的和等于4的占3种然后根据概率的概念计算即可【详解】画树状图得:由树状图可知:所有可能情况有12种其中两次摸出的小球标号的和等于4解析:1 6【分析】先画树状图展示所有12种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【详解】画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=21 126,故答案为:16.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.16.【分析】根据几何概率的求法:炮弹落在阴影方格地面上的概率即该区域的面积与总面积的比值【详解】解:设每个小正方形的面积为1因为所有方格的面积为25阴影的面积为9所以炮弹落在阴影方格地面上的概率为;故答解析:9 25【分析】根据几何概率的求法:炮弹落在阴影方格地面上的概率即该区域的面积与总面积的比值.【详解】解:设每个小正方形的面积为1,因为所有方格的面积为25,阴影的面积为9,所以炮弹落在阴影方格地面上的概率为925;故答案为:925.【点睛】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.17.【分析】由单词BANANA中有2个N直接利用概率公式求解即可求得答案【详解】一共有BANANA六种结果其中是N的有2种所以P选到字母N故答案为:【点睛】本题考查概率的计算方法列举出所有可能出现的结果解析:13.【分析】由单词"BANANA"中有2个N,直接利用概率公式求解即可求得答案.【详解】一共有B、A、N、A、N、A六种结果,其中是“N”的有2种,所以P选到字母“N”21 63 ==.故答案为:13.【点睛】本题考查概率的计算方法,列举出所有可能出现的结果是正确解答的前提.18.【分析】根据题意可得基本事件总3×3=9然后再确定抽得的第二张卡片上的数字大于第一张卡片上的数字的事件数最后由概率公式计算即可【详解】解:分别从标有数字123的3张卡片中随机抽取1张放回后再随机抽取解析:1 3【分析】根据题意可得基本事件总3×3=9,然后再确定抽得的第二张卡片上的数字大于第一张卡片上的数字的事件数,最后由概率公式计算即可.【详解】解:分别从标有数字1、2、3的3张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数3×3=9,抽得的第二张卡片上的数字大于第一张卡片上的数字的情况有(1,2)、(1,3)和(2,3)3种情况则抽得的第二张卡片上的数字大于第一张卡片上的数字的概率为:31 93 =.故答案为13.【点睛】本题考查了运用列举法求概率,运用列举法确定所有情况数和所需情况数是解答本题的关键.19.10【分析】先由频率=频数÷数据总数计算出频率再由简单事件的概率公式列出方程求解即可【详解】解:摸了150次其中有50次摸到黑球则摸到黑球的频率是设口袋中大约有x个白球则解得故答案为:10【点睛】考解析:10【分析】先由“频率=频数÷数据总数”计算出频率,再由简单事件的概率公式列出方程求解即可.【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是501 1503=,设口袋中大约有x个白球,则5153x=+,解得10x=.故答案为:10.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.20.【分析】分别求出两球同色与两球异色的可能性然后比较大小即可【详解】根据盒子中有2个白球2个黑球可得从中取出2个球一共有6种可能:2白2黑1白1黑(4种)∴两球同色的可能性为两球异色的可能性为∵∴故答解析:a b<【分析】分别求出“两球同色”与“两球异色”的可能性,然后比较大小即可.【详解】根据盒子中有2个白球,2个黑球可得从中取出2个球,一共有6种可能:2白、2黑、1白1黑(4种)∴“两球同色”的可能性为2163a==“两球异色”的可能性为4263 b==∵1233<∴a b<故答案为:a b<.【点睛】本题考查了概率的问题,掌握“两球同色”与“两球异色”的可能性是解题的关键.三、解答题21.(1)14;(2)图见解析,12.【分析】(1)直接利用概率公式求解即可;(2)根据题意先画树状图列出所有等可能结果数的,根据概率公式求解可得.【详解】解:(1)∵共有4张卡片,∴小明随机抽取1张卡片,抽到卡片编号为B的概率为14,故答案为:14;(2)画树状图如下:共有12种等可能的结果数,其中小明、小丽两人中恰好有一人讲述钟南山抗疫故事的有6种结果,所以小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率为:61 122=.【点睛】本题考查了概率的应用,掌握运用列表法或画树状图法列出所有可能的结果及概率的计算方法是解题的关键.22.(1)14;(2)16.【分析】(1)共有4种可能出现的结果,抽到小霞的只有1种,即可利用概率公式求出恰好抽到学生小霞的概率;(2)用树状图表示所有可能出现的结果,进而求出两个同学均来自七年级的概率.【详解】解:(1)∵共有4种可能出现的结果,抽到小霞的只有1种, ∴恰好抽到小霞的概率为:P (小霞)=14, 故答案为:14; (2)用树状图表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是七年级,即抽到小霞、小健的有2种, ∴P (小霞、小健)=212=16. 【点睛】本题考查了概率的应用,运用列表法或树状图法列举出所有可能出现的结果情况是正确解答的前提.23.()114;()214【分析】(1)当数字和为8时,可以到达点E ,根据概率公式计算即可; (2)利用列表法统计即可; 【详解】解:(1)随机取出-个小球,剩余三个小球之和为1+2+3=6,1+2+4=7,1+3+4=8,2+3+4=9, ∴有6,7,8,9四种等可能的情况∵从 A 点开始沿着逆时针方向连续跳动(2+6N)个顶点才能达到点 E ,其中 N 为正整数. ∴当和为8时棋子跳到E 处 则棋子跳到点E 处的概率为14故答案为:14()2列表如下:6 7 8 96()6,6 ()7,6 ()8,6 ()9,67()6,7 ()7,7 ()8,7 ()9,78()6,8 ()7,8()8,8 ()9,89()6,9()7,9()8,9()9,915,有4种情况,所以棋子最终落在点D 处的概率,P (落在D 处)41164== 【点睛】本题考查列表法与树状图,概率公式等知识,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 24.(1)12;(2)图表见解析,P=23【分析】(1)根据题意,抽取1名志愿者总共有4种可能,男生有2人,利用概率公式即可求解抽取1名恰好是男生的概率;(2)根据题意列表,可分别得到总共有多少种等可能的结果与符合条件的结果,根据概率公式即可求解. 【详解】(1)抽取1名,恰好是男生的概率为:2142P ==, (2)列表得:由表格可知:总共有12种等可能的结果,其中恰好是1名男生和1名女生的结果有8种结果,所以抽取2名,恰好是1名男生和1名女生的概率为:82123P ==. 【点睛】本题考查了概率的求解,解题关键是准确列出表格,得到所有的等可能结果,再从中选取符合条件的结果,然后利用概率公式计算. 25.(1)12;(2)12【分析】(1)由概率公式求解即可;(2)由概率公式求解即可.【详解】解:(1)由题意知:白色为可选座位,共2+2+1+3=8(个)其中,第4排1个空位,第5排3个空位,共4个空位,小秋独自观影,他选择第4排或第5排的概率是41 82 ,故答案为:12;(2)小秋选择2个同排相邻的座位共有4个结果,其中小秋选择2个同排相邻的座位恰好都在黄金区域的结果有2个,∴小秋选择2个同排相邻的座位恰好都在黄金区域的概率为21 =42.【点睛】.此题考查的是概率的应用与计算.用到的知识点为:概率=所求情况数与总情况数之比.26.(1)小颖;(2)0.50;0.47;12;(3)对概率的研究不能仅仅通过有限次试验得出结果,而是要通过大量的重复试验得出事件发生的频率,从而去估计该事件发生的概率.【分析】(1)要判断谁说的正确只要看他们说的情况有没有漏掉的即可.(2)根据频率=所求情况数与总情况数之比,即可得出结果.(3)在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.【详解】解:(1)“一正一反”实际上含有“一正一反,一反一正”二种情况,共四种,所以小颖的说法是正确的;故答案为:小颖;(2)小明得到的“一正一反”的频率是50÷100=0.50,小颖得到的“一正一反”的频率是47÷100=0.47,据此,我得到“一正一反”的概率是12;(3)对概率的研究不能仅仅通过有限次实验得出结果,而是要通过大量的实验得出事物发生的频率去估计该事物发生的概率.我认为小聪与小颖的实验都是合理的,有效的.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.。
北师大版数学九年级上册第三章《概率的进一步认识》单元检测卷[检测内容:第三章 满分:120分 时间:120分钟]一、选择题(每小题3分,共30分)1. 在一个不透明的布袋中,红色、黑色、白色的球共有120个,这些球除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在15%和45%,则布袋中白色球的个数很可能是( )A. 48个B. 60个C. 18个D. 54个2. 在0,1,2三个数字中任取两个,组成两位数,则组成的两位数是奇数的概率为( )A. B. C. D. 141612343. 在用摸球试验来模拟6人中有2人生肖相同的概率的过程中,有如下不同的观点,其中正确的是( )A. 摸出的球不能放回B. 摸出的球一定放回C. 可放回,可不放回D. 不能用摸球试验来模拟此事件4. 如图所示,有以下3个条件:①AC =AB ,②AB ∥CD ,③∠1=∠2.从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( )A. 0B.C.D. 11323第4题第5题5. 让如图所示的两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或是3的倍数的概率等于( )A.B.C.D. 316385813166. 在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.B.C.D. 121314167. 小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:抛出两个正面,小明赢1分,抛出其他结果,小刚赢1分,谁先到10分,谁就获胜.这是一个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是( )A. 把“抛出两个正面”改为“抛出两个同面”B. 把“抛出其他结果”改为“抛出两个反面”C. 把“小明赢1分”改为“小明赢3分”D. 把“小刚赢1分”改为“小刚赢3分”8. 如图,一个质地均匀的正四面体上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M (a ,b )落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)的概率是( )A. B.C.D. 38716129169.在平面直角坐标系中,作△OAB ,其中三个顶点分别是O (0,0),B (1,1),A (x ,y )(-2≤x ≤2,-2≤y ≤2,x ,y 均为整数),则所作△OAB 为直角三角形的概率是( )A.B.C.D. 2535151210. 如图所示,有一电路AB 由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A.B.C.D. 25353412二、填空题(每小题3分,共24分)11. 在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是 .12. 向一个装有很多黄豆的袋子里放入100粒绿豆,每次倒出10粒记下所倒出的绿豆的数目,再把它们放回去,做相同的试验100次,共倒出绿豆240粒,则袋中原有黄豆约粒.13. 在分别写有数字-1,0,1,2的四张卡片中,随机抽取一张后放回,再随机抽取一张,以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标的点落在第一象限的概率是 .14. 有四条线段,长度分别为3,5,7,9,从中任取三条,能构成三角形的概率为 .15. 有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意一把锁,一次打开锁的概率是 .16. 某人设摊“摸彩”,只见他手持一袋,内装大小、质地完全相同的3个红球、2个白球,每次让顾客“免费”从袋中摸出两球,若两球的颜色相同,则顾客获得10元钱,否则顾客付给这个人10元钱.请你判断一下,该活动对顾客(填“合算”或“不合算”).17. 对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是 .18. 如图,小华和小明做转盘游戏,当两个转盘所转到的数字之积为奇数时,小华得2分,当两个转盘所转到的数字之积为偶数时,小明得1分,这个游戏.(填“公平”或“不公平”)三、解答题(共66分)19. (8分)某校九年级(1)、(2)班联合举行毕业晚会,组织者为了使气氛热烈、有趣,策划时计划整场晚会以转盘游戏的方式进行,每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负责表演一个节目,(1)班和(2)班的文娱委员利用分别标着数字1,2,3和4,5,6,7的两个转盘(如图)设计一种游戏方案,两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时,(1)班代表胜,否则(2)班代表胜,你认为该方案对双方是否公平?为什么?20. (8分)在一个不透明的口袋里装有只有颜色不同的黑白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m68109136345568701摸到白球的频率0.680.730.680.690.710.70(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑、白两种颜色的球各有多少个.21. (9分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.22. (9分)大课间活动时,有两个同学做了一个数字游戏:有三张正面写有数字-1,0,1的卡片,它们背面完全相同,将这三张卡片背面朝上洗匀后,其中一个同学随机抽取一张,将其正面的数字作为p的值,然后将卡片放回并洗匀,另一个同学再从这三张卡片中随机抽取一张,将其正面的数字作为q的值,两次结果记为(p,q).(1)请你帮他们用画树状图或列表的方法表示(p,q)所有可能出现的结果;(2)求满足关于x的方程x2+px+q=0没有实数解的概率.23. (10分)试验探究:有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有整数1和2.B布袋中有三个完全相同的小球,分别标有整数-1,-2和-3.平平从A布袋中随机取出一个小球,记录其标有的整数为x,再从B布袋中随机取出一个小球,记录其标有的整数为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x-3上的概率.24. (10分)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红心、方块、黑桃、梅花,其中红心、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.A B C D(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);(2)求摸出的两张牌同为红色的概率.25. (12分)珊珊与静静设计了A,B两种游戏:游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则珊珊获胜;若两数字之和为奇数,则静静获胜.游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,珊珊先随机抽出一张牌,抽出的牌不放回,静静从剩下的牌中再随机抽出一张牌.若珊珊抽出的牌面上的数字比静静抽出的牌面上的数字大,则珊珊获胜;否则静静获胜.请你帮静静选择其中一种游戏,使她获胜的可能性较大,并说明理由.参考答案1. A2. A3. B4. D5. C6. A7. D8. B9. A 10. B11. Error!12. 31713. Error!14. Error!15. Error!16. 不合算17. Error!18. 公平19. 解:公平.理由:利用树状图法得出所有可能结果如下:所有可能结果有12种,其中数字之和为偶数的有6种,数学之和为奇数的也有6种.所以(1)班代表胜的概率为Error!,(2)班代表胜的概率也为Error!,所以该游戏方案对双方是公平的.20. 解:(1)0.70(2)0.700.30(3)白球有20×0.70=14(个),黑球有20-14=6(个).21. 解:(1)方法1:画树状图,如图所示.共有12种等可能的结果,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=Error!.方法2:列表格如下:甲乙丙丁甲甲、乙甲、丙甲、丁乙乙、甲乙、丙乙、丁丙丙、甲丙、乙丙、丁丁丁、甲丁、乙丁、丙共有12种等可能的结果,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=Error!. (2)P(恰好选中乙同学)=Error!.22. 解:(1)画树状图如下:由图可知共有9种等可能的结果.(2)若方程x2+px+q=0没有实数解,则Δ=p2-4q<0.由(1)可得满足Δ=p2-4q<0的有(-1,1),(0,1),(1,1),∴满足关于x的方程x2+px+q=0没有实数解的概率为Error!=Error!.23. 解:(1)列表为:y-1-2-3x1(1,-1)(1,-2)(1,-3)2(2,-1)(2,-2)(2,-3)∴点Q的坐标有(1,-1),(1,-2),(1,-3),(2,-1),(2,-2),(2,-3)六种可能情况. (2)“点Q落在直线y=x-3上”记为事件A,则有(1,-2)和(2,-1)两点满足条件,∴P(A)=Error!=Error!,即点Q落在直线y=x-3上的概率为Error!.24. 解:(1)画树状图如图所示:列表法:第二次A B C D第一次A AB AC ADB BA BC BDC CA CB CDD DA DB DC(2)P(摸出的两张牌同为红色)=Error!=Error!.25. 解:对游戏A:画树状图如图所示:或用列表法:第二次234第一次2(2,2)(2,3)(2,4)3(3,2)(3,3)(3,4)4(4,2)(4,3)(4,4)所有可能出现的结果共有9种,其中两数字之和为偶数的有5种,所以游戏A珊珊获胜的概率为Error!,而静静获胜的概率为Error!.即游戏A对珊珊有利,获胜的可能性大于静静.对游戏B:画树状图如图所示:或用列表法:静静5688珊珊5-(5,6)(5,8)(5,8)6(6,5)-(6,8)(6,8)8(8,5)(8,6)-(8,8)8(8,5)(8,6)(8,8)-所有可能出现的结果共有12种,其中珊珊抽出的牌面上的数字比静静大的有5种:根据游戏B的规则,当静静抽出的牌面上的数字与珊珊抽到的数字相同或比珊珊抽到的数字大时,则静静获胜.所以游戏B珊珊获胜的概率为Error!,而静静获胜的概率为Error!.即游戏B对静静有利,获胜的可能性大于珊珊.综上所述,静静应选择游戏B.。
3.2 用频率估计概率同步测试题(满分120分;时间:120分钟)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!题号一二三总分得分一、选择题(本题共计10 小题,每题 3 分,共计30分,)1. 在一个不透明的口袋中,装有红色、黑色、白色的玻璃球共个,除颜色外其余都相同,小明通过许多次摸球实验后发现,其中摸到红色球、黑色球的频率稳定在和,则口袋中白色球的个数可能是()A. B. C. D.2. 在一个不透明的纸箱中放入个除颜色外其他都完全相同的球,这些球中有个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出的值大约是()A. B. C. D.3. 从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了次,其中有次摸到黑球,已知口袋中有黑球个和若干个白球,由此估计口袋中大约有多少个白球()A.个B.个C.个D.无法确定4. 一个不透明的口袋里装有除颜色外都相同的个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了次,其中有次摸到白球,因此小亮估计口袋中的红球大约为()A.个B.个C.个D.个5. 一个不透明的口袋里装有除颜色外都相同的个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了次,其中有次摸到白球,因此小亮估计口袋中的红球大约有()个.A.个B.个C.个D.个6. 做重复试验,抛掷同一枚啤酒瓶盖,经过统计得“凸面朝上”的频率约为,则可以估计抛掷这枚啤酒瓶盖出现“凸面朝上”的概率约为()A. B. C. D.7. 在一个不透明的口袋中装有个白球、个黄球、个红球、个绿球,除颜色其余都相同,小明通过多次摸球实验后发现,摸到某种颜色的球的频率稳定在左右,则小明做实验时所摸到的球的颜色是()A.白色B.黄色C.红色D.绿色8. 一个口袋中装有个红球和若干个黄球,在不允许将求倒出来数的前提下,为估计袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出个球,求出其中红球数与的比值,再把球放回口袋中摇匀,不断重复上述过程次,得到红球与的比值的平均数为,根据上述数据,估计口袋中大约有()个黄球.A. B. C. D.9. 一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球次,其中次摸到黑球,估计盒中大约有白球()A.个B.个C.个D.个10. 一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.位同学进行摸球游戏,每位同学摸次(摸出球后放回,摇匀后再继续摸),其中摸到红球数依次为,,,,,则估计盒中红球和白球的个数是()A.红球比白球多B.白球比红球多C.红球,白球一样多D.无法估计二、填空题(本题共计10 小题,每题 3 分,共计30分,)11. 一池塘里有鲤鱼、鲫鱼、鲢鱼共尾,一渔民通过多次捕捞实验后发现,鲤鱼、鲫鱼出现的频率是和,则这个池塘里有鲢鱼________尾.12. 在一个暗箱里放有若干个除颜色外其它完全相同的球,其中红球有个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在,那么可以推算出红球以外的球数大约是________个.13. 在一个不不透明的口袋中装有个白球,若干个黑球,它们除颜色外其他完全相同,经过多次实验发现摸到白球的频率稳定在附近,则黑球大约有________个.14. 一个不透明的口袋中只有若干个白球,小颖往袋中又放入个黑球,它们与袋中白球只有颜色不同,每次从袋中摸出一球后放回摇匀.经过多次摸球实验,她发现摸到黑球的频率稳定在,则此口袋中原有白球________个.15. 某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:移植总数成活数成活的频率根据表中数据,估计这种幼树移植成活率的概率为________(精确到).16. 在一个不透明的布袋中装有红色、白色玻璃球共个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在左右,则口袋中红色球可能有________个.17. 有一箱规格相同的红、黄两种颜色的小塑料球共个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后.发现摸到红球的频率约为,据此可以估计红球的个数约为________.18. 某射击运动员在同一条件下练习射击,结果如下表所示:射击次数击中靶心次数击中靶心频率试估计这个运动员射击一次,击中靶心的概率约是________(结果保留两位小数).19. 在投掷一枚硬币的试验中,共投掷了次,其中“正面朝上”的频率为,则“正面朝上”的概率估计值为________.20. 小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在附近波动,据此可以估计黑球的个数约是________个.三、解答题(本题共计6 小题,共计60分,)21. 一只箱子中装有红、黑两种圆珠笔共支,为了估计出其中红色圆珠笔的数量,随机抽出支圆珠笔,记下其中红色圆珠笔的数量再放回,作为一次试验,重复上述试验多次,发现平均每支圆珠笔中有支红色圆珠笔,请你由此估计箱子中红色圆珠笔的数量.22. 一只不透明的袋子中装有个相同小球,分别标有不等的自然数、、、,小丽每次从袋中同时摸出个小球,并计算摸出的这个小球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:摸球总次数“和为”出现的频数“和为”出现的频率(1)如果实验继续进行下去,出现“和为”的频率将稳定在它的概率附近.试估计出现“和为”的概率;(2)根据(1)中结论,求出自然数的值.23. 一个口袋中装有个红色的小正方块和若干个黄色的小正方块,小正方块除了颜色外其他都相同.从口袋中随机摸出一球,记下颜色,再把它放回口袋中,不断重复上述过程,共摸了次,其中次摸到红色的正方块.请问口袋大约有多少黄色小正方块?24. 某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”、“花开富贵”、“吉星高照”,就可以分别获得元、元、元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券元.小明购买了元的商品,他看到商场公布的前张奖券的抽奖结果如下:奖券种类紫气东来花开富贵吉星高照谢谢惠顾出现张数(张)(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由.25. 对某工厂生产的大批同类产品进行合格率检查,分别抽取件、件、件、件、件、件、件、件,检查结果如下表所示:抽取的件数合格件数合格频率求该厂产品的合格率.26. 小明和小亮两位同学做投掷骰子(质地均匀的正方体)实验,他们共做了次实验,实验的结果如下:朝上的点数出现的次数(1)计算“点朝上”的频率和“点朝上”的频率.(2)小明说:“根据实验,一次实验中出现点朝上的概率最大”.小亮说:“如果投掷次,那么出现点朝上的次数正好是次.”小明和小亮的说法正确吗?为什么?(3)小明投掷一枚骰子,计算小明投掷点数不小于的概率.。
2019-2019学年度第一学期北师大版九年级数学第三章概率的进一步认识单元过关检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 9 小题,每小题 3 分,共 27 分)1.甲、乙两盒中各放入分别写有数字,,的三张卡片,每张卡片除数字外其他完全相同.从甲盒中随机抽出一张卡片,再从乙盒中随机摸出一张卡片,摸出的两张卡片上的数字之和是的概率是()A. B. C. D.2.一个不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有个,黄、白色小球的数目相同、为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,再次搅匀…多次试验发现摸到红球的频率是,则估计黄色小球的数目是()A.个B.个C.个D.个3.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是()A. B. C. D.4.某人在做抛掷硬币试验中,抛掷次,正向朝上有次(正面朝上的频率是),则下列说法正确的是()A.(正面朝上)一定等于B.(正面朝上)一定不等于C.多投一次,(正面朝上)更接近D.投掷次数逐渐增加,(正面朝上)稳定在附近5.连续两次抛掷一枚硬币,第一次正面朝上,第二次反面朝上的概率是()A. B. C. D.6.假定鸡蛋孵化后,鸡雏为雌或雄的羝概率相同,如果两个鸡蛋全部成功孵化,则两只鸡雏均为雄鸡的槪率是()A. B. C. D.7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球次,其中次摸到黑球,估计盒中大约有白球()A.个B.个C.个D.个8.如图,两个转盘分别被分成等份和等份,分别标有数字、、和、、、,转动两个转盘各一次(假定每次都能确定指针所指的数字),两次指针所指的数字之和为或的概率是()A. B. C. D.9.小王家新锁的密码是位数,他记得前两位数是,后两位数是,中间两位数忘了,那么他一次按对的概率是()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)10.在一个不透明的口袋中有个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在左右,则口袋中的白球大约有________个.11.一个不透明的文具袋装有型号完全相同的支红笔和支黑笔,小明、小红两人先后从袋中随机取出一支笔(不放回),两人所取笔的颜色相同的概率是________.12.两个装有乒乓球的盒子,其中一个装有个白球个黄球,另一个装有个白球个黄球.现从这两个盒中随机各取出一个球,则取出的两个球一个是白球一个是黄球的概率为________;至少有一个是白球的概率为________.13.一水塘里有鲤鱼、鲢鱼共尾,一渔民通过多次捕捞实验后发现,鲤鱼出现的频率为,则水塘有鲢鱼________尾.14.在一个不透明的盒子中装有个小球,他们只有颜色上的区别,其中有个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后发现,摸到红球的频率稳定于,那么可以推算出大约是________.15.一个布袋里装有只有颜色不同的个球,其中个红球,个白球.从中任意摸出个球,记下颜色后放回,搅匀,再任意摸出个球,摸出的个球都是红球的概率是________.16.分别从、、、四个数中随机取两个数,第一个作为十位数字,第二个作为个位数字,组成一个两位数,则这个两位数是的倍数的概率是________.17.一个口袋里有个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验次,其中有次摸到黄球,由此估计袋中的黄球有________个.18.从下面的张牌中,任意抽取两张.其点数和是奇数的概率是________.第 1 页19.小红、小明、小芳在一起做游戏时,需要确定做游戏的先后顺序,他们约定用“剪刀、布、锤子”的方式确定,则在一回合中三个人都出“剪刀”的概率是________. 三、解答题(共 7 小题 ,每小题 10 分 ,共 70 分 )20.把 张形状、大小相同但画面不同的风景图片全部从中间剪断,然后将四张形状相同的小图片混合在一起.现从这四张图片中随机的一次抽出 张.请用列表或画树状图的方法表示出上述实验所有可能结果. 求这 张图片恰好组成一张完整风景图概率. 21.对一批西装质量的抽检情况如下:从这批西装中任选一套是正品的概率是多少? 若要销售这批西装 件,为了方便购买次品西装的顾客前来调换,至少应该进多少件西装? 22.小华有 张卡片,小明有 张卡片,卡片上的数字如图所示.小华和小明分别从自己的卡片中随机抽取一张.请用画树状图(或列表)的方法,求抽取的两张卡片上的数字和为 的概率. 23.在一个袋子中装有大小相同的 个小球,其中 个蓝色, 个红色. 从袋中随机摸出 个,求摸到的是蓝色小球的概率; 从袋中随机摸出 个,用列表法或树状图法求摸到的都是红色小球的概率; 在这个袋中加入 个红色小球,进行如下试验:随机摸出 个,然后放回,多次重复这个试验,通过大量重复试验后发现,摸到红色小球的频率稳定在 ,则可以推算出 的值大约是多少? 24.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共 只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:“摸到白球”的概率的估计值是________(精确到 );试估算口袋中黑、白两种颜色的球各有多少只?25.小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验. 他们在一次实验中共掷骰子 次,试验的结果如下: ②小红说:“根据实验,出现 点朝上的概率最大.”她的说法正确吗?为什么?小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.26.甲乙两人玩数字游戏,先由甲写一个数,再由乙猜甲写的数:要求:他们写和猜的数字只在 , 、 、 , 这五个数字中:请用列表法或树状图表示出他们写和猜的所有情况;如果他们写和猜的数字相同,则称他们“心灵相通”:求他们“心灵相通”的概率; 如果甲写的数字记为 ,把乙猜的数字记为 ,当他们写和猜的数字满足 ,则称他们“心有灵犀”,求他们“心有灵犀”的概率. 答案 1.B 2.B 3.C 4.D 5.D 6.C 7.A 8.C 9.D 10. 11.12.13. 14.15.16.17.18.19.20.解:用、表示一张风景图片被剪成的两半,用、表示另一张风景图片被剪成的两半,画树状图为:共有种等可能的结果数,其中张图片恰好组成一张完整风景图的结果数为,所以张图片恰好组成一张完整风景图的概率.21.解:答案为:;;;;;;从这批西装中任选一套是正品的概率是;为了方便购买次品西装的顾客前来调换,所进西装的件数(件).22.解:或∴ (抽取的两张卡片上的数字和为).23.解: ∵ 个小球中,有个蓝色小球,∴ (蓝色小球);画树状图如下:共有种情况,摸到的都是红色小球的情况有种,(摸到的都是红色小球); ∵大量重复试验后发现,摸到红色小球的频率稳定在,∴摸到红色小球的概率等于,∴,解得:.24.由摸到白球的概率为,所以可估计口袋中白种颜色的球的个数(个),黑球(个).答:黑球个,白球个.25.解: ① ;②说法是错误的.在这次试验中,“ 点朝上”的频率最大并不能说明“ 点朝上”这一事件发生的概率最大.因为当试验的次数较大时,频率稳定于概率,但并不完全等于概率..26.解:如图所示:则他们“心灵相通”的概率为:.根据甲写的数字记为,把乙猜的数字记为,当他们写和猜的数字满足,则称他们“心有灵犀”,满足条件的事件是,可以列举出所有的满足条件的事件,第 3 页①若,则,;②若,则,,;③若,则,,;④若,则,,;⑤若,则,;总上可知共有种结果,∴他们“心有灵犀”的概率为:.。
概率的进一步认识单元检测题(典型题汇总)一、选择题1. A、B、C、D四名选手参加50米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道,若A首先抽签,则A抽到1号跑道的概率是()A.1 B. C. D.2. 在一次质量抽测中,随机抽取某摊位20袋食盐,测得各袋的质量如下(单位:g):492 496 494 495 498 497 501502 504 496 497 503 506 508507 492 496 500 501 499根据以上抽测结果,任买一袋该摊位的食盐,质量在497.5~501.5g之间的概率为()A. B. C. D.3. 下列词语所描述的事件是随机事件的是( )A.守株待兔 B.拔苗助长 C.刻舟求剑 D.竹篮打水4. 在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是()A. B. C.D.5. 在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A.4个 B.6个 C.34个 D.36个6. 将100个数据分成8个组,如下表:则第六组的频数为()A.12 B.13 C.14 D.157. 下列说法正确的是( )A.随机事件概率值不可能为1 B.随机事件概率值可能为1C.随机事件概率一定是0 D.以上说法都不对8. 下列说法中正确的个数是()①不可能事件发生的概率为0;②一个对象在实验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1 B.2 C.3 D.4二、填空题9. 从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1 000 2 000 5 000发芽种子粒数85 398 652 793 1 604 4 005发芽频率0.850 0.745 0.851 0.793 0.802 0.80110. 在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为.11. 在一个不透明的布袋子中有只有颜色不同的10个球,连续10次从中任意摸出1个球,放回搅匀再摸.在连续10次试验中,摸到红球的频率是30%,在连续500次试验中摸到红球的频率是40%,那么袋中很可能有红球________个.12. 某个地区从某年起几年内的新生婴儿数及其中男婴数如下表:时间范围1年内2年内3年内4年内新生婴儿数5544 9013 13520 17191男婴数2716 4899 6812 8590男婴出生频率这一地区男婴出生的概率约是_______.13. 某射手在同一条件下进行射击,结果如下表所示:射击次数n 击中靶心数m 击中靶心频率10 9 0.920 19 0.9550 44 0.88100 91 0.91200 178 0.89500 451 0.90214. 投掷一枚正六面体的骰子,每个面上依次有数字1,2,3,4,5,6.(2)掷得的数不是“ 1” 的概率是__________,意思是__________.三、解答题15. 在硬币还没有抛出前,你能否预测每次抛出的结果?假如你已经抛掷了1 000次,你能否预测第1 001次抛掷的结果?16. 某种彩票的中奖概率是1%,买1张就不会中奖吗?买100张就一定会中奖吗?谈谈你的看法.17. 小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共做了60次试验,试验的结果如下:朝上的点数 1 2 3 4 5 6出现的次数7 9 6 8 20 10(1)计算“3点朝上”(2)小颖说:“根据试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树形图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.18. 某彩票的中奖机会是,买1张彩票一定不会中奖吗?买1000张彩票一定会中奖吗?参考答案一、选择题DBACB DBC二、填空题9、0.810、11、412、(1)0.49,0.54,0.50,0.50;(2)0.5013、0.914、(1)投掷次数较多时,平均每6次就有1次“ 1” 出现(2)投掷次数较多时,平均每6次就有5次不出现“1”三、解答题15、解:因为每次抛出前,出现的结果是不确定事件,故不能预测每次抛出后的结果.假如已经抛掷了1 000次,也不能预测第1 001次抛掷的结果.16、解:买1张可能中奖,买100张也有可能不中奖,因为中奖是一个随机事件,每次试验都可能发生,也可能不发生.17、解:(1)“3点朝上”出现的频率是=;“5点朝上”出现的频率是=.(2)小颖的说法是错误的.这是因为,“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当试验的次数足够多时,该事件发生的频率稳定在事件发生的概率附近.小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次.(3)列表如下:P(点数之和为3的倍数)= = .18、买1张彩票有可能中奖,买1000张彩票不一定会中奖.概率的进一步认识单元检测题(典型题汇总)(120分,90分钟) 题 号一 二 三 总 分 得 分 一、选择题(每题3分,共30分)1.小明制作了十张卡片,上面分别标有1~10这十个数.从这十张卡片中随机抽取一张恰好能被4整除的概率是( )A.110B.25C.15D.3102.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是( )A .盖面朝下的频数是55B .盖面朝下的频率是0.55C .盖面朝下的概率不一定是0.55D .同样的试验做200次,落地后盖面朝下的有110次3.两道单选题都含A ,B ,C ,D 四个选项,瞎猜这两道题,恰好全部猜对的概率是( )A.12B.14C.18D.1164.事件A :打开电视,它正在播广告;事件B :抛掷一枚均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P (A ),P (B ),P (C ),则P (A ),P (B ),P (C )的大小关系正确的是( )A .P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B )C .P (C )<P (B )<P (A )D .P (A )<P (B )<P (C )(第5题)5.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开.小明从入口1进入并从出口A 离开的概率是( )A.12B.13C.14D.166.王阿姨在网上看中了一款防雾霾口罩,付款时需要输入11位的支付密码,她只记得密码的前8位,后3位由1,7,9这3个数字组成,但具体顺序忘记了,她第一次就输入正确密码的概率是( )A.12B.14C.16D.187.同时抛掷A ,B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两个小立方体朝上的数字分别为x ,y ,并以此确定点P (x ,y ),那么点P 落在函数y =-2x +9的图象上的概率为( )A.118B.112C.19D.168.在一个不透明的盒子里装有只颜色不同的黑、白两种球共40个.小亮做摸球试验,他将盒子内的球搅匀后从中随机摸出一个球,记下颜色后放回,不断重复上述过程,对试验结果进行统计后,小亮得到下表中的数据:则下列结论中正确的是( )A .n 越大,摸到白球的概率越接近0.6B .当n =2 000时,摸到白球的次数m =1 200C .当n 很大时,摸到白球的频率将会稳定在0.6附近D .这个盒子中约有28个白球9.让图中的两个转盘分别自由转动一次(两个转盘均被分成4等份),当转盘停止转动时,两个指针分别落在某两个数所表示的区域内,则这两个数的和是5的倍数或3的倍数的概率等于( )A.316B.38C.916D.1316(第9题) (第10题) (第14题) (第18题)10.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为( )A.14B.25C.23D.59二、填空题(每题3分,共24分)11.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面朝上的概率是________.12.在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n =________.13.从8,12,18,32中随机抽取一个根式,化简后与2的被开方数相同的二次根式的概率是________.14.如图,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C 都可以使小灯泡发光,任意闭合其中两个开关,使小灯泡发光的概率为________.15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他第一次就能走出迷宫的概率是________.16.某市举办“体彩杯”中学生篮球赛,初中男子组有市区学校的A ,B ,C 三个队和县区学校的D,E,F,G,H五个队.如果从A,B,D,E四个队与C,F,G,H四个队中各抽取一个队进行首场比赛,那么参加首场比赛的两个队都来自县区学校的概率是________.17.在一个暗盒中放有若干个白色球和2个黑色球(这些球除颜色外无其他区别),若从中随机取出1个球是白色球的概率是35,则在暗盒中随机取出2个球都是白色球的概率是________.18.如图,一个质地均匀的正四面体的四个面上依次标有数-2,0,1,2,连续抛掷两次,朝下一面的数分别是a,b,将其作为点M的横、纵坐标,则点M(a,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是________.三、解答题(19题8分,20题10分,其余每题12分,共66分)19.如图,小明做了A,B,C,D四张同样规格的硬纸片,它们的背面完全相同,正面分别画有等腰三角形、圆、平行四边形、正方形.小明将它们背面朝上洗匀后,随机抽取两张.请你用列表或画树状图的方法,求小明抽到的两张硬纸片上的图形既是轴对称图形又是中心对称图形的概率.(第19题)20.一个瓶中装有一些幸运星,小王为了估计这个瓶中幸运星的颗数,他是这样做的:先从瓶中取出20颗幸运星做上记号,然后把这些幸运星放回瓶中,充分摇匀,再从瓶中取出30颗幸运星,发现有6颗幸运星带有记号,请你帮小王估算出原来瓶中幸运星的颗数.21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.求:(1)取出纸币的总额是30元的概率;(2)取出纸币的总额可购买一件51元的商品的概率.22.学校实施新课程改革以来,学生的学习能力有了很大的提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图①②).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了________名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.(第22题)23.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.端午节吃粽子是中华民族的传统习俗,今年某商场销售甲厂家的高档、中档、低档三个品种及乙厂家的精装、简装两个品种的盒装粽子.现需要在甲、乙两个厂家中各选购一个品种.(1)写出所有选购方案(利用树状图或表格求选购方案).(2)如果(1)中各种选购方案被选中的可能性相同,那么甲厂家的高档粽子被选中的概率是多少?(3)现某中学准备购买两个品种的粽子共32盒(价格如下表)发给学校的“留守儿童”,让他们过一个愉快的端午节,其中指定购买了甲厂家的高档粽子,再从乙厂家购买一个品种.若恰好用了1 200元,请问:购买了多少盒甲厂家的高档粽子?参考答案一、1.C 2.D 3.D 4.B 5.C6.C 点拨:因为后3位由1,7,9这3个数字组成,所以后3位可能的结果有:179,197,719,791,917,971.所以她第一次就输入正确密码的概率是16.故选C.7.B 点拨:列表如下:∴有36种等可能情况,点P(x,y)落在y=-2x+9的图象上的有(2,5)(3,3)(4,1)共3种情况,故其概率为336=1 12.8.C9.C点拨:列表如下:所有等可能的情况有16种,其中两个数的和是5的倍数或3的倍数的情况有9种,则P=916,故选C.(第10题)10.B点拨:如图,正六边形中连接任意两点可得15条线段,其中AC,AE,BD,BF,CE,DF这6条线段的长度为3,∴所求概率为615=2 5.二、11.34 点拨:随机掷一枚质地均匀的硬币两次,可能出现的结果有(正,正)、(正,反)、(反,正)、(反,反)4种,且每种结果出现的可能性相同,至少有一次正面朝上的结果有3种,故所求概率是34.12.10 13.34 14.12 15.1816.38点拨:列表如下:由表格可知共有16种等可能情况,参加首场比赛的两个队都来自县区学校的有6种情况,所以概率为616=38.17.31018.716 点拨:列表如下:(第18题)由表格知共有16种等可能的结果,而落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)的点有(-2,0),(0,0),(1,0),(2,0),(0,1),(1,1),(0,2),共7种,如图,所以点M 落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)的概率是716.三、19.解:列表如下:由表格可看出,所有可能出现的结果共有12种,每种结果出现的可能性都相同,其中抽到的两张硬纸片上的图形既是轴对称图形又是中心对称图形的结果共有2种,故所求概率P =212=16.20.解:设原来瓶中幸运星大约有x 颗,则有20x =630.解得x =100.经检验,符合题意.∴原来瓶中幸运星大约有100颗.21.解:某人从钱包内随机取出2张纸币,可能出现的结果有3种,即10元与20元,10元与50元,20元与50元,并且它们出现的可能性相等.(1)取出纸币的总额是30元(记为事件A )的结果有1种,即10元与20元,所以P (A )=13.(2)取出纸币的总额可购买一件51元的商品(记为事件B )的结果有2种,即10元与50元,20元与50元,所以P (B )=23.22.解:(1)20 (2)补图如图所示.(第22题)(3)列表如下,A 类学生中的两名男生分别记为男A 1和男A 2,共有6种等可能的结果,其中,一男一女的有3种,所以恰好选中一名男生和一名女生的概率为36=12.23.解:(1)所求概率P =36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果, ∴P (小亮胜)=936=14,P (小丽胜)=936=14.∴该游戏是公平的.24.解:(1)画树状图如图所示:(第24题)或列表如下: 共有6种选购方案:(高档,精装)、(高档,简装)、(中档,精装)、(中档,简装)、(低档,精装)、(低档,简装).(2)因为选中甲厂家的高档粽子的方案有2种,即(高档,精装)、(高档,简装),所以甲厂家的高档粽子被选中的概率为26=13. (3)由(2)可知,当选用方案(高档,精装)时,设分别购买高档粽子、精装粽子x 1盒、y 1盒,根据题意,得⎩⎪⎨⎪⎧x 1+y 1=32,60x 1+50y 1=1 200. 解得⎩⎪⎨⎪⎧x 1=-40,y 1=72.经检验,不符合题意,舍去. 当选用方案(高档,简装)时,设分别购买高档粽子、简装粽子x 2盒、y 2盒,根据题意,得⎩⎪⎨⎪⎧x 2+y 2=32,60x 2+20y 2=1 200. 解得⎩⎪⎨⎪⎧x 2=14,y 2=18.经检验,符合题意. 故该中学购买了14盒甲厂家的高档粽子.19、。
北师大版九年级数学上册第3章概率的进一步认识综合章节测试题第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是()A.1B.23C.13D.122.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图如图,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一枚正六面体的骰子,出现3点朝上C.将一副去掉大、小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球、1个黑球的袋子中任取1个球,取到的是黑球3.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.12B.13C.23D.164.将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A.25B.12C.35D.无法确定5.在物理课上,某实验的电路图如图1所示,其中S 1,S 2,S 3表示电路的开关,L 表示小灯泡,R 为保护电阻.若闭合开关S 1,S 2,S 3中的任意两个,则小灯泡L 发光的概率为 ( )A .16 B .13 C .12 D .23图1 图26.如图2,分别自由转动两个转盘各一次,当它们都停止转动时,两个转盘的指针都指向2的概率为( )A .12 B .14 C .18 D .1167.在一个不透明的口袋里装了只有颜色不同的黄球、白球若干只.某小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复这一过程.下表是活动中的一组数据,则摸到黄球的概率约是( )摸球的次数n 100 150 200 500 800 1000 摸到黄球的次数m 52 6996266 393507 摸到黄球的频率mn0.520.46 0.48 0.53 0.490.51A .0.4B .0.5C .0.6D .0.78.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下表格,则符合这一结果的试验最有可能的是( )试验次数 100 200 400 500 800 1000 2000 频率0.365 0.328 0.330 0.3340.3360.3320.333A .一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C .抛一个质地均匀的正六面体骰子,向上的面的点数是5D .抛一枚硬币,反面朝上9.从-1,2,3,-6这四个数中任取两数,分别记为m ,n ,那么点(m ,n )在函数y=6x 的图象上的概率是 ( )A .12 B .13 C .14 D .1810.有A,B 两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),小王掷骰子A,朝上的数字记作x ;小张掷骰子B,朝上的数字记作y.在平面直角坐标系中有一矩形,四个顶点的坐标分别为(0,0),(6,0),(6,4)和(0,4),小王、小张各掷一次,所确定的点P (x ,y )落在矩形内(不含矩形的边)的概率是( )A .23B .512C .12D .712第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共18分)11.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是 .12.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .13.小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方 .(填“公平”或“不公平”).14.点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是 .15.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取到白色棋子的概率是25.若再往盒中放进3颗黑色棋子,则取到白色棋子的概率变为14,原来围棋盒中有白色棋子 颗.16.如果任意选择一对有序整数(m ,n ),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x 的方程x 2+nx+m=0有两个相等实数根的概率是 .三、解答题(共72分)17.(6分)不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支.(1)从文具袋中随机抽取1支笔芯,求恰好抽到的是红色笔芯的概率;(2)从文具袋中随机抽取2支笔芯,求恰好抽到的都是黑色笔芯的概率(请用画树状图法或列表法求解).18.(6分)研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球和黄球.怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验.摸球试验的要求:先搅拌均匀,每次摸出1个球,放回盒中再继续.活动结果:摸球试验一共做了50次,统计结果如下表:无记号有记号球的颜色红色黄色红色黄色摸到的次数18 28 2 2 由上述摸球试验可推算:(1)盒中红球、黄球占总球数的百分比分别是多少?(2)盒中有红球多少个?19.(8分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲、乙两队每局获胜的机会相同.(1)若前四局双方战成2∶2,则甲队最终获胜的概率是;(2)现甲队在前两局比赛中已取得2∶0的领先,那么甲队最终获胜的概率是多少?20.(8分)九年级某班组织全班活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买圆珠笔和铅笔两种奖品,已知圆珠笔的单价为2元/支,铅笔的单价为1元/支,且每种笔至少买一支.(1)有多少种购买方案?请列举所有可能的结果;(2)从上述方案中任选一种方案购买,求买到的圆珠笔与铅笔数量相等的概率.21.(10分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一道题不使用“求助”,那么小明答对第一道题的概率是;(2)如果小明将“求助”留在第二道题使用,请用画树状图或者列表的方法来分析小明顺利通关的概率;(3)从概率的角度分析,你建议小明在第几道题使用“求助”?22.(10分)如图3,在正方形网格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将1粒米随机地抛在这个正方形网格中,那么米粒落在阴影部分的概率是多少?(2)现将网格内空白的小正方形(A,B,C,D,E,F)任取两个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.图323.(12分)一个暗箱中有大小相同的1个黑球和n个白球(记为白1、白2、…、白n),每次从中取出1个球,取到白球得1分,取到黑球得2分,甲从暗箱中有放回地依次取出2个球,而乙从暗箱中一次性取出2个球.(1)若n=2,分别求甲得3分的概率和乙得3分的概率;(请用“画树状图”或“列表”等方式给出分析过程),则白球至少有多少个?(请直接写出结果)(2)若乙得3分的概率小于12024.(12分)五一假期,某公司组织部分员工分别到A,B,C,D四地旅游,公司按定额购买了前往各地的车票.图4是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D地的车票占全部车票的10%,求去D地车票的数量,并补全条形统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),则员工小胡抽到去A地的车票的概率是多少?(3)若有一张车票,小王、小李都想要,最后决定采取抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李.”试用列表或画树状图的方法分析这个规则对双方是否公平.图4答案1.C2.D .3.B .4.B5.B6.D .7.B8.B .9.B 10.B 11.12 12.16 13.公平 . 14.15 . 15.2 16.1717.解:(1)∵不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支,∴恰好抽到的是红色笔芯的概率为33+2=35.(2)画树状图如下:∵共有20种等可能的结果,恰好抽到的都是黑色笔芯的结果只有2种, ∴恰好抽到的都是黑色笔芯的概率为220=110.18.解:(1)由题意可知,50次摸球试验中,出现红球20次,黄球30次,所以红球所占百分比为20÷50×100%=40%,黄球所占百分比为30÷50×100%=60%. 答:盒中红球占总球数的40%,黄球占总球数的60%.(2)由题意可知,50次摸球试验中,出现有记号的球4次,所以总球数为8÷450=100,所以红球有40%×100=40(个).答:盒中有红球40个. 19.解:(1)12(2)画树状图如图所示:由图可知,剩下的三局比赛共有8种等可能的结果,其中甲至少胜一局的结果有7种, 所以P (甲队最终获胜)=78. 答:甲队最终获胜的概率为78.20.解:(1)设买圆珠笔x 支,铅笔y 支, 则2x+y=15,所以y=15-2x. 当x=1时,y=13;当x=2时,y=11;当x=3时,y=9;当x=4时,y=7;当x=5时,y=5;当x=6时,y=3;当x=7时,y=1.所以共有7种购买方案.(2)在这7种方案中,买到的圆珠笔与铅笔数量相等的只有1种,所以P(买到的圆珠笔与.铅笔数量相等)=1721.解:(1)∵第一道单选题有3个选项,∴如果小明第一道题不使用“求助”,那么小明答对第一道题的概率是1.3.故答案为13(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示第二道单选题剩下的3个选项.画树状图如下:∵共有9种等可能的结果,小明顺利通关的结果只有1种,.∴小明顺利通关的概率为19(3)∵如果在第一道题使用“求助”,小明顺利通关的概率为1,如果在第二道题使用“求8,助”,小明顺利通关的概率为19∴建议小明在第一道题使用“求助”.22.解:(1)∵阴影部分有3个小正方形,而正方形网格中共有9个小正方形,∴P (米粒落在阴影部分)=39=13.即米粒落在阴影部分的概率是13.(2)用列表法表示任取两个小正方形涂黑的所有情况如下:A B C D E F A (A,B) (A,C) (A,D) (A,E) (A,F) B (B,A) (B,C) (B,D) (B,E) (B,F) C (C,A) (C,B) (C,D) (C,E) (C,F) D (D,A) (D,B) (D,C) (D,E) (D,F) E (E,A) (E,B) (E,C) (E,D) (E,F) F(F,A)(F,B)(F,C)(F,D)(F,E)共有30种等可能的结果,而能够构成轴对称图形的结果有10种,所以P (任取两个涂黑能构成轴对称图形)=1030=13.即任取两个涂黑,得到的新图案是轴对称图形的概率是13.23.解:(1)得3分,即为取到黑球、白球各1个. 甲从暗箱中有放回地依次取出2个球,画树状图如下:∴甲得3分的概率为49;乙从暗箱中一次性取出2个球,画树状图如下:∴乙得3分的概率=46=23.(2)若乙得3分的概率小于120,则2n+1<120, ∴n>39.∴白球至少有40个.24.解:(1)设去D 地的车票有x 张,则x=(x+20+40+30)×10%,解得x=10. 答:去D 地的车票有10张. 补全条形统计图如图所示.(2)小胡抽到去A 地的车票的概率为2020+40+30+10=15. 答:员工小胡抽到去A 地的车票的概率是15. (3)列表如下:小李掷得的数字小王掷得的数字12341(1,1)(1,2)(1,3)(1,4)2 (2,1) (2,2) (2,3) (2,4)3 (3,1) (3,2) (3,3) (3,4) 4(4,1)(4,2)(4,3)(4,4)由此可知,共有16种等可能的结果,其中小王掷得着地一面的数字比小李掷得着地一面的数字小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),∴小王掷得着地一面的数字比小李掷得着地一面的数字小的概率为616=38.则小王掷得着地一面的数字不小于小李掷得着地一面的数字的概率为1-38=58.∵58≠38,∴这个规则对双方不公平.。
2023-2024学年第一学期九年级数学上册第3章【概率的进一步认识】复习测试卷一.选择题1.某中学初三年级四个班,四个数学老师分别任教不同的班.期末考试时,学校安排统一监考,要求同年级数学老师交换监考,那么安排初三年级数学考试时可选择的监考方案有()种.A.8B.9C.10D.122.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,当三辆汽车经过这个十字路口时,至少有两辆汽车向左转的概率是()A.B.C.D.3.小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是()A.B.C.D.4.现有4根木棒,长度分别为4cm、6cm、8cm、10cm,从中任取三根木棒,能够组成三角形的概率是()A.B.C.D.5.如图,随机闭合开关S1,S2,S3中的两个,则能让两盏灯泡同时发光的概率为()A.B.C.D.6.从﹣4,﹣1,2,3四个数中随机选取两个不同的数,分别记为a,c,则关于x的方程ax2+4x+c=0有两个不相等的实数根的概率是()A.B.C.D.7.从1,2,3三个数中取出一个数作为点P的横坐标,从4,5,6,7四个数中取出一个数作为点P的纵坐标,则点P落在直线y=﹣x+6上的概率是()A.B.C.D.8.一个盒子里有完全相同的三个小球,球上分别标上数字﹣1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是()A.B.C.D.9.将一枚六个面编号分别为1、2、3、4、5、6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a,第二次掷出的点数为c,则使关于x的一元二次方程ax2﹣6x+c=0有实数解的概率为()A.B.C.D.10.在一个不透明的袋子里装有红球,黄球共36个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.9C.15D.2411.甲、乙两名同学在一次用频率去估计概率的试验中,统计了某一结果出现的频率,并绘出了如下折线统计图,则最有可能符合这一结果的试验的是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.任意写一个整数,它能被3整除的概率D.从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率二.填空题12.如图,有A、B、C三类长方形(或正方形)卡片(a>b),其中甲同学持有A、B类卡片各一张,乙同学持有B、C类卡片各一张,丙同学持有A、C类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是.13.如图所示的电路图中,当随机闭合S1,S2,S3,S4中的两个开关时,能够让灯泡发光的概率为.14.将如图所示的两个转盘(A转盘被分成三等份,B转盘被分成四等份)各转动一次,当转盘停止后,指针所在区域(指针指向区域分界线时,需重新转动转盘)的数字之和为偶数概率是.15.一水库里有鲤鱼、鲫鱼、草鱼共2000尾,小明捕捞了100尾鱼,发现鲫鱼有35尾,估计水库里有尾鲫鱼.16.某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有条鱼.三.解答题17.三人相互传球,由甲开始发球,并作为第一次传球.(1)用列表或画树状图的方法求经过3次传球后,球仍回到甲手中的概率是多少?(2)由(1)进一步探索:经过4次传球后,球仍回到甲手中的不同传球的方法共有多少种?18.某大学为了解大学生对中国共产党党史知识的学习情况,在大学一年级和二年级举行有关党史知识测试活动.现从一、二两个年级中各随机抽取20名学生的测试成绩(满分50分,30分及30分以上为合格;40分及40分以上为优秀)进行整理、描述和分析,给出了下面的部分信息.大学一年级20名学生的测试成绩为:39,50,39,50,49,30,30,49,49,49,43,43,43,37,37,37,43,43,37,25.大学二年级20名学生的测试成绩条形统计图如图所示;两个年级抽取的学生的测试成绩的平均数、众数、中位数、优秀率如下表所示:年级平均数众数中位数优秀率大一a b43m大二39.544c n请你根据上面提供的所有信息,解答下列问题:(1)上表中a=,b=,c=,m=,n;根据样本统计数据,你认为该大学一、二年级中哪个年级学生掌握党史知识较好?并说明理由(写出一条理由即可);(2)已知该大学一、二年级共1240名学生参加了此次测试活动,通过计算,估计参加此次测试活动成绩合格的学生人数能否超过1000人;(3)从样本中测试成绩为满分的一、二年级的学生中随机抽取两名学生,用列举法求两人在同一年级的概率.19.如图,甲、乙两个转盘均被分成3个面积相等的扇形,每个扇形中都标有相应的数字,同时转动两个转盘(当指针指在边界线上时视为无效,需重新转动转盘),当转盘停止后,把甲、乙两个转盘中指针所指数字分别记为x,y.请用树状图或列表法求点(x,y)落在平面直角坐标系第一象限内的概率.20.“共和国勋章”获得者钟南山院士说:按照疫苗保护率达到70%计算,中国的新冠疫苗覆盖率需要达到近80%,才有可能形成群体免疫.本着自愿的原则,18至60周岁符合身体条件的中国公民均可免费接种新冠疫苗.居民甲、乙准备接种疫苗,其居住地及工作单位附近有两个大型医院和两个社区卫生服务中心均可免费接种疫苗,提供疫苗种类如下表:接种地点疫苗种类医院A新冠病毒灭活疫苗B重组新冠病毒疫苗(CHO细胞)社区卫生服务中心C新冠病毒灭活疫苗D重组新冠病毒疫苗(CHO细胞)若居民甲、乙均在A、B、C、D中随机独立选取一个接种点接种疫苗,且选择每个接种点的机会均等.(提示:用A、B、C、D表示选取结果)(1)求居民甲接种的是新冠病毒灭活疫苗的概率;(2)请用列表或画树状图的方法求居民甲、乙接种的是相同种类疫苗的概率.21.现有分别标有1,2,3,4的四张扑克:(1)同时从中任取两张,猜测两数和为奇数的机会;(2)先从中任取一张,放回后搅匀再取一张,猜测两数和为奇数的机会.小明说(1)(2)中和为奇数的机会均等;小刚说(1)(2)中和为奇数的机会不均等,你认为他们俩谁的判断正确?请用画树状图或列表的方法说理.22.小杰和小明玩扑克牌游戏,各出一张牌比输赢.游戏的规则是:谁的牌数字大谁赢,同样大就平:A 遇2就输,遇其他牌(除A外)都赢.目前小杰手中A、K、J,小明手中有2、Q、J.(1)求出小明抽到的牌恰好是“2”的概率;(2)小杰、小明两人谁获胜的机会大?画出树状图,通过计算说明理由.23.将5个完全相同的小球分别装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2、3、4;乙袋中有2个球,分别标有2、4.从甲、乙两个口袋中各随机摸出一个球.用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.24.在一个不透明的箱子中装有2个红球、n个白球和1个黄球,这些球除颜色外无其他差别.(1)若每次摸球前先将箱子里的球摇匀,任意摸出一个球记下颜色后再放回箱子里,通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么估计箱子里白球的个数n为;(2)如果箱子里白球的个数n为1,小亮随机从箱子里摸出1个球不放回,再随机摸出1个球,请用画树状图或列表法求两次均摸到红球的概率.25.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共30只,某小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000…摸到白球的次数m5896116295484601…摸到白球的频率0.580.640.580.590.6050.601…(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑、白两种颜色的球各有多少只?26.一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复试验后,发现摸到红色小球的频率稳定于0.75左右.(1)请你估计箱子里白色小球的个数;(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).参考答案一.选择题1.解:设4个班级分别为A、B、C、D,相对应的4个老师分别为a,b,c,d.由图中可以看出,共有9种情况.故选:B.2.解:根据题意画图如下:一共有27种等可能的情况;至少有两辆车向左转的有7种,则至少有两辆车向左转的概率为:.故选:D.3.解:画树状图如图:,共有6个等可能的结果,恰好取到红色帽子和红色围巾的结果有1个,∴恰好取到红色帽子和红色围巾的概率为,故选:C.4.解:从中任取三根木棒所有可能的情况为(4、6、8),(4、6、10),(6、8、10),(4、8、10)4种情况,其中(4、6、8),(6、8、10),(4、8、10)这3种能构成三角形,所以能够构成三角形的概率是,故选:C.5.解:根据题意画图如下:∵共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴能让两盏灯泡同时发光的概率为:P==.故选:C.6.解:画树状图如图:共有12个等可能的结果,关于x的方程ax2+4x+c=0有两个不相等的实数根(16﹣4ac>0,即ac<4)的结果有8个,∴关于x的方程ax2+4x+c=0有两个不相等的实数根的概率为=,故选:D.7.解:根据题意画图如下:共有12种等可能的情况数,其中点P落在直线y=﹣x+6上的有2种,则点P落在直线y=﹣x+6上的概率是=.故选:D.8.解:画树状图得:∵x2+px+q=0有实数根,∴Δ=b2﹣4ac=p2﹣4q≥0,∵共有6种等可能的结果,满足关于x的方程x2+px+q=0有实数根的有(1,﹣1),(2,﹣1),(2,1)共3种情况,∴满足关于x的方程x2+px+q=0有实数根的概率是:=.故选:A.9.解:列表得:∴一共有36种情况,∵b=﹣6,当b2﹣4ac≥0时,有实根,即36﹣4ac≥0有实根,∴ac≤9,∴方程有实数根的有17种情况,∴方程有实数根的概率=,故选:D.10.解:设袋子中红球有x个,根据题意,得:=0.25,解得x=9,∴袋子中红球的个数最有可能是9个,故选:B.11.解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;B、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;C、任意写一个整数,它能被3整除的概率为,故此选项符合题意;D、从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率,故此选项不符合题意;故选:C.二.填空题12.解:由题可得,随机选取两位同学,可能的结果如下:甲乙、甲丙、乙丙,∵a2+2ab+b2=(a+b)2,∴选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,∴能拼成一个正方形的概率为,故答案为:.13.解:设S1、S2、S3、S4分别用1、2、3、4表示,画树状图得:∵共有12种等可能的结果,能够让灯泡发光的有6种结果,∴能够让灯泡发光的概率为:=,故答案为:.14.解:根据题意画图如下:共有12个等可能的结果,指针所在区域(指针指向区域分界线时,需重新转动转盘)的数字之和为3的倍数偶数的结果有6个,则指针所在区域(指针指向区域分界线时,需重新转动转盘)的数字之和为偶数的概率为=.故答案为:.15.解:由题意可得,2000×=700(尾),即估计水库里有700尾鲫鱼,故答案为:700.16.解:∵100条鱼,带记号的鱼有10条,∴估计鱼塘中带记号的鱼的概率==,而鱼塘中带记号的鱼有100条,∴估计该鱼塘里约有鱼的条数=100÷=1000.故答案为1000.三.解答题17.解:(1)画树状图得:∵共有8种等可能的结果,经过3次传球后,球仍回到甲手中的有2种情况,∴经过3次传球后,球仍回到甲手中的概率是:=;(2)画树状图得:则经过4次传球后,球仍回到甲手中的不同传球的方法共有6种.18.解:(1)将一年级20名同学成绩整理如下表:成绩25303739434950人数1242542∴a=(25×1+30×2+37×4+39×2+43×5+49×4+50×2)=41.1,b=43,c==42.5,m=(5+4+2)÷20×100%=55%,n=(3+5+2+3)÷20×100%=65%,故答案为:41.1,43,42.5,55%,=65%;从表中优秀率看,二年级样本优秀率达到65%高于一年级的55%,因此估计二年级学生的优秀率高,所以用优秀率评价,估计二年级学生掌握党史知识较好.(2)∵样本合格率为:=92.5%,∴估计总体的合格率大约为92.5%,∴估计参加测试的两个年级合格学生约为:1240×92.5%=1147(人),∴估计参加此次测试活动成绩合格的学生人数能超过1000人;(3)一年级满分有2人,记为A,B,二年级满分有3人,记为C,D,E,画树状图如图:共有20种等可能的结果,两人在同一年级的结果有8种,∴两人在同一年级的概率为=.19.解:画树状图如图:共有9种等可能的结果,点(x,y)落在平面直角坐标系第一象限内的结果有4种,∴点(x,y)落在平面直角坐标系第一象限内的概率为.20.解:(1)居民甲接种的是新冠病毒灭活疫苗的概率为=;(2)画树状图如图:共有16种等可能的结果,居民甲、乙接种的是相同种类疫苗的结果有8种,∴居民甲、乙接种的是相同种类疫苗的概率为=.21.解:小刚的判断正确.(1)列表如下:第一张第二张12341(2,1)(3,1)(4,1)2(1,2)(3,2)(4,2)3(1,3)(2,3)(4,3)4(1,4)(2,4)(3,4)由上表可知,共有12种结果,每种结果出现的可能性相同,其中两数和为奇数的结果有8种.∴P(和为奇数)=;(2)列表如下:第一次第二次12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)由上表可知,其16种结果,每种结果出现的可能性相同,其中两数和为奇数的结果共有8种.∴P(和为奇数)=,∵,∴小刚的判断正确.22.解:(1)小明抽到的牌恰好是“2”的概率=;(2)他们获胜的机会一样大.理由如下:画树状图为:共有9种等可能的结果,其中小杰获胜的结果数为4,小明获胜的结果数为4,所以小杰获胜的概率=;小明获胜的概率=,而=,所以小杰、小明两人获胜的机会一样大.23.解:画图如下:共有6种等可能的结果数,其中摸出的两个球上数字之和为5的有1种,则摸出的两个球上数字之和为5的概率为.故答案为:.24.解:(1)根据题意知,=0.25,解得:n=5,经检验n=5是分式方程的解,即估计箱子里白球的个数n为5,故答案为:5;(2)列表得红1红2白黄红1(红2,红1)(白,红1)(黄,红1)红2(红1,红2)(白,红2)(黄,红2)白(红1,白)(红2,白)(黄,白)黄(红1,黄)(红2,黄)(白,黄)摸球的结果共有12种等可能结果,其中两次均摸到红球的有2种结果,∴P(两次均摸到红球)==.25.答:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.60;(2)因为当n很大时,摸到白球的频率将会接近0.60;所以摸到白球的概率是0.6;摸到黑球的概率是0.4;(3)因为摸到白球的概率是0.6,摸到黑球的概率是0.4,所以口袋中黑、白两种颜色的球有白球是30×0.6=18个,黑球是30×0.4=12个;故答案为:(1)0.60;(2)0.6,0.4;26.解:(1)∵通过多次摸球试验后发现,摸到红球的频率稳定在0.75左右,∴估计摸到红球的概率为0.75,设白球有x个,根据题意,得:=0.75,解得x=1,经检验x=1是分式方程的解,∴估计箱子里白色小球的个数为1;(2)画树状图为:共有16种等可能的结果数,其中两次摸出的球恰好颜色不同的结果数为6,∴两次摸出的小球颜色恰好不同的概率为=.。
第三章 概率的进一步认识1、在抛一枚质地均匀的硬币的实验中,如果没有硬币,则下列实验不能作为替代物的是( )A 、一枚均匀的骰子,B 、瓶盖,C 、两张相同的卡片,D 、两张扑克牌2、如右图,在这三张扑克牌中任意抽取一张,抽到“红桃7” 的概率是 .3、密码锁的密码是一个四位数字的号码,每位上的数字都可以是0到9中的任一个,某人忘了密码的最后一位号码, 此人开锁时,随意拔动最后一位号码正好能把锁打开的概率是______.若此人忘了中间两位号码,随意拔动中间两位号码正好能把锁打开的概率是______.4、某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是 .5、从一个装有2黄2黑的袋子里有放回地两次摸到的都是黑球的概率是 .6、如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是……( )A .1925 ;B .1025 ;C .625 ;D .5257、为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计出这个湖里有______条鱼.8、在一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为了估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( )A 、28个B 、30个C 、36个D 、42个9、有一个抛两枚硬币的游戏,规则是:若出现两个正面,则甲赢;若出现一正一反,则乙赢;若出现两个反面,则甲、乙都不赢。
(1)这个游戏是否公平?请说明理由;(2)如果你认为这个游戏不公平,那么请你改变游戏规则,设计一个公平的游戏;如果你认为这个游戏公平,那么请你改变游戏规则,设计一个不公平的游戏。
不要慌张,要仔细做题 呦!《概率的进一步认识》检测题黑神庙中学九年级( )班 姓名 学号 得分 一.选择题(每小题3分,共30分)1.“任意买一张电影票,座位号是3的倍数”,此事件是( ) A.不可能事件 B.不确定事件 C.必然事件 D.以上都不是2.下列说法中正确的是 ( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定会发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列事件为确定事件的是( )A.掷一枚质地均匀的骰子,骰子停止转动后偶数点朝上B.从一副扑克牌中任意抽取一张牌,抽到的牌是红桃C.任意选择电视的某一频道,正在播放动画片D.在同一年出生的367名学生中,至少有两人的生日在同一天4.一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是 ( ) A . B . C . D .5.掷两枚硬币,正面都朝上的概率为( )A.21 B.31 C.41 D.51213141616.有木条4根,分别为10cm ,8cm ,4cm ,2cm,从中任取三根能组成三角形的概率是( )A.21B.31C.41D.51 7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同。
小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( ) A.6 B.16 C.18 D.248.如图是从一副扑克牌中取出的两组牌,分别是黑桃1、2、3、4和方块1、2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,则摸出的两张牌的牌面数字之和等于5的概率是( ) A.21 B.31 C.41 D.53 9.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( )A. 25B. 310C.320D.1510.一个均匀的立方体六个面上分别标有1,2,3,4,5,6,如图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的2倍的概率是( )A .61B .C .D .312132二.填空题(每题4分,共20分)11.如果当一次试验要涉与两个因素(例如掷两骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,我们通常采用 求概率;当一次试验要涉与3个或3个以上的因素(例如从3个口袋中取球)时,为了不重不漏地列出所有可能结果,通常采用 求概率.12.不透明的袋子中有五个球,三红二白,从中摸一个球,记下颜色,放回去再摸一个球,则摸到二红的机会是 .13.小王手里拿着黑桃1和黑桃2两张牌,小亮手里拿着梅花1和梅花2两张牌,他们各出一张,共有 种不同的出牌方式,其中牌面数之和为4的概率是 .14.密码锁的密码是一个5位密码,每个密码的数字都可以从0到9的任何一个.某人忘了后2位号码,随意拨动后2位号码正好能开锁的概率是 .15.为了估计湖里有多少条鱼,有如下方案:从湖里捕上100条做上标记,然后放回湖里,经过一段时间,第二次再捕上200条,若其中有标记的鱼有32条,则估计湖里大约有 条鱼. 三.解答题(共50分)12345348916.(6分)小明和小亮用如图的同一个转盘进行“配紫色”游戏.游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),则小明胜,否则小亮胜.你认为这个游戏对双方公平吗?请说明理由.17.(6分)某人有红、白、蓝三件衬衫,红、白、蓝三条长裤,该人任意拿一件衬衫和一条长裤,正好是一套白的概率为多少?18.(8分)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球2个,黄球1个,蓝球1个,第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.19.(10分)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.20.(10分)掷两枚质地均匀的骰子,用列表法求下列事件的概率:(1)两枚骰子点数和不小于9的概率;(2)两枚骰子点数和是4的倍数的概率.21.(10分)我校安排两辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小明、小强与小军都可以从这两辆车中任选一辆搭乘,用画树状图求小明与小强同车的概率.。
北师大版九年级上册数学第三章测试题及答案(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分)1.有一新娘去商店买新婚礼服,购买了不同款式的上衣2件,不同颜色的裙子3条,则搭配衣服所有可能出现的结果为( D )A .2种B .3种C .5种D .6种2.某人将一枚均匀的硬币抛掷了10次,正面朝上的情况出现了6次,若用A 表示正面朝上这一事件,则A 的( B )A .概率是0.6B .频率是0.6C .频率是6D .概率接近0.63.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( C )A.15B.14C.13D.124.在数据1,-1,4,-4中,任选两个数据,均是一元二次方程x 2-3x -4=0的根的概率是( A )A.16B.13C.12D.14 5.书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是( A ) A.310B.625C.925D.356.小红上学要经过3个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( C )A.12B.13C.18D.38第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分)7.分别从数-5,-2,1,3中,任取两个不同的数,则所取两数的和为正数的概率为 13. 8.做任意抛掷一只纸杯的重复试验,记录杯口朝上的次数,获得如下数据:杯口朝上的概率约是 0.22 .9.★从数-2,-12,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,若k =mn ,则正比例函数y =kx 的图象经过第一、第三象限的概率是 16 .10.某学校举行物理实验操作测试,共准备了三项不同的实验,要求每位学生只参加其中的一项实验,由学生自己抽签确定做哪项实验.在这次测试中,小亮和大刚恰好做同一项实验的概率是 13.11.★某市举办“体彩杯”中学生篮球赛,初中男子组有市直学校的A ,B ,C 三个队和县区学校的D ,E ,F ,G ,H 五个队,如果从A ,B ,D ,E 四个队与C ,F ,G ,H 四个队中各抽取一个队进行首场比赛,那么首场比赛出场的两个队都是县区学校队的概率是 38. 12.某口袋中有20个球,其中白球x 个,绿球2x 个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x =__4__时,游戏对甲、乙双方公平.三、(本大题共5小题,每小题6分,共30分)13.(南京中考)从3名男生和2名女生中随机抽取2017年南京青奥会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生;(2)抽取2名,恰好是1名男生和1名女生.解:(1)抽取1名,恰好是女生的概率是25;(2)分别用男1、男2、男3、女1、女2表示这五位同学,从中任意抽取2名,所有可能出现的结果有:(男1,男2),(男1,男3),(男1,女1),(男1,女2),(男2,男3),(男2,女1),(男2,女2),(男3,女1),(男3,女2),(女1,女2),共10种,它们出现的可能性相同,所有结果中,满足抽取2名,恰好是1名男生和1名女生(记为事件A)的结果共6种,所以P(A)=610=35.14.(湘潭中考)从-2,1,3这三个数中任取两个不同的数,作为点的坐标. (1)写出该点所有可能的坐标; (2)求该点在第一象限的概率. 解:(1)列表如下:∴该点可能的坐标为(-2,1),(-2,3),(1,-2), (1,3),(3,-2),(3,1).(2)由(1)可知,共有6种等可能的结果,其中点在第一象限的结果有2种, ∴该点在第一象限的概率为26=13.15.儿童节期间,某公园游戏场举行一场活动.活动规则是:在一个装有8个红球和若干个白球(每个球除颜色外,其他都相同)的袋中,随机摸一个球,如果是红球就得到一个世博会吉祥物海宝玩具.已知参加这种游戏的儿童有40 000人,公园游戏场发放海宝玩具8 000个.(每人只参加一次)(1)求参加此次活动得到海宝玩具的频率; (2)请你估计袋中白球的数量接近多少?解:(1)参加此次活动得到海宝玩具的频率为8 00040 000=15.(2)设袋中共有x 个球,则摸到红球的概率P(摸到红球)=8x .∴8x =15,解得x =40, ∴白球接近40-8=32个.16.某人的钱包内有10元、20元和50元的纸币各1张.从中随机取出2张纸币. (1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.解:某人从钱包内随机取出2张纸币,可能出现的结果有3种,即(10,20),(10,50),(20,50),并且它们出现的可能性相等.(1)取出纸币的总额是30元(记为事件A)的结果有1种,即(10,20),∴P(A)=13.(2)取出纸币的总额可购买一件51元的商品(记为事件B)的结果有2种,即(10,50),(20,50),∴P(B)=23.17.近几年“密室逃脱俱乐部”风靡全球.下图是俱乐部的通路俯视图,小明进入入口后,任选一条通道.(1)他进A 密室或B 密室的可能性哪个大?请说明理由(利用树状图或列表来求解); (2)求小明从中间通道进入A 密室的概率. 解:(1)画出树状图如下:∴由图可知,小明进入游戏区后一共有6种不同的可能路线. ∵小 明是任选一条道路,∴走各种路线的可能性认为是相等的,而其中进入A 密室有2种可能,进入B 密室有4种可能,∴进入B 密室可能性较大;(2)由(1)可知小明从中间通道进入A 密室的概率为16.四、(本大题共3小题,每小题8分,共24分)18.如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等. (1)现随机转动转盘一次,停止后,指针指向2的概率为 13.(2)小明和小华利用这个转盘做游戏,若随机转动转盘两次,停止后,指针各指向一个数字,若两数之积为偶数,则小明胜;否则小华胜.你认为游戏规则对双方公平吗?如果不公平,请你修改游戏规则,使游戏公平.解:(1)13.(2)共有4种, ∴P(小明获胜)=59,P(小华获胜)=49,∵59> 49,∴该游戏不公平.修改规则:若积为2(或2的倍数)小明胜,若积为3(或3的倍数)小华胜等,若积为1或2和3的公倍数,则为平局.19.在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上数字之和小于6,那么小王去,否则就是小李去.(1)用画树状图法或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.解:(1)画树状图:由上图可知,一共有12种等可能的结果,其中摸出的球上的数字之和小于6的结果有9种,∴P(小王去)=912=34; (2)我认同小李的说法,理由如下: ∵P(小王去)=34,P(小李去)=14,34≠14,∴这种规则不公平.20.(苏州中考)如图,在方格纸中,△ABC 的三个顶点及D ,E ,F ,G ,H 五个点分别位于小正方形的顶点上.(1)现以D ,E ,F ,G ,H 中的三个点为顶点画三角形,在所画的三角形中与△ABC 不全等但面积相等的三角形是__△DFG (或△DHF )__.(只需要填一个三角形)(2)先从D ,E 两个点中任意取一个点,再从F ,G ,H 三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,求所画三角形与△ABC 面积相等的概率(用画树状图或列表法求解).解:画树状图如图. 由树状图可知,共有6种等可能的结果,其中与△ABC 面积相等的有3种,即△DHF ,△DGF ,△EGF ,∴所画三角形与△ABC 面积相等的概率P =36=12.五、(本大题共2小题,每小题9分,共18分)21.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.(1)求袋子中白球的个数(请通过列式或列方程解答);(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率(请结合树状图或列表解答).解:(1)设袋子中白球有x 个,根据题意得x x +1=23,解得x =2,经验证,x =2是原分式方程的解, ∴袋子中白球有2个;(2)画树状图如下:∵共有9种等可能的结果,两次都摸到相同颜色的小球有5种情况,∴两次都摸到相同颜色的小球的概率为59.22.(广州中考)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?解:(1)P(不合格品)=11+3=14.(2)设1件不合格品为A,3件合格品分别为B1,B2,B3.任意抽取2件产品,所有可能出现的结果有(A,B1),(A,B2),(A,B3),(B1,B2),(B1,B3),(B2,B3),共有6种,它们出现的可能性相同.所有的结果中,满足抽取2件,都是合格品的结果有3种.∴P(都是合格品)=36=12.(3)∵抽到合格品的频率稳定在0.95,∴抽到合格品的概率为0.95.根据题意得3+x1+3+x=0.95,解这个方程得x=16.经检验,x=16是原方程的解且符合题意.答:可以推算x的值大约是16.六、(本大题共12分)23.(广元中考)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”“绘画类”“舞蹈类”“音乐类”“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为__7__人,参加球类活动的人数的百分比为__30%__;(2)请把图②(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为__105__;(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),现准备从中选取2名同学组成舞伴,请用列表法或画树状图的方法求恰好选中一男一女的概率.解:(2)补全条形统计图略.(4)画树状图:由图可知共有12种等可能的结果,其中选出的2人恰好是一男一女的情况有6种,所6 12=1 2.以选出的2人恰好是一男一女的概率为。
北师版数学九年级上册第三章概率的进一步认识 单元测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A.19 B.16 C.13 D.232. 如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是( ) A.112 B.110 C.16 D.253. 如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A.1925B.1025C.625D.5254. 小明有2件上衣,分别为红色和蓝色;有3条裤子,其中2条为蓝色,1条为棕色.小明任意拿出1件上衣和1条裤子穿上,则小明穿的上衣和裤子恰好都是蓝色的概率是( ) A.13 B.12 C.23 D.345. 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a ,b ,c ,则以a ,b ,c 为边长正好构成等边三角形的概率是( ) A.19 B.127 C.59 D.136. 用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( ) A.12 B.13 C.59 D.497. 如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( ) A.34 B.13 C.23 D.128.一个盒子里有完全相同的三个小球,球上分别标有数-1,1,2.随机摸出一个小球(不放回),其数记为p ,再随机摸出另一个小球,其数记为q ,则满足关于x 的方程x 2-px +q =0有实数根的概率是( )A.12B.13C.23D.569.小兰和小潭分别用掷A ,B 两枚正六面体骰子的方法来确定P(x ,y)的位置,她们规定:小兰掷得的点数为x ,小潭掷得的点数为y ,那么,她们各掷一次所确定的点落在已知直线y =-2x +6上的概率为( )A.16B.118C.112D.1910. 如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是( ) A.12 B.13 C.14 D.15第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是________.12. 有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其它都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为________.13. 如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”,“2”,“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为_________.14. 在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_______.15.2018年10月14日,韵动中国·2018广安国际红色马拉松赛激情开跑.上万名跑友在小平故里展开激烈的角逐.某校从两名男生和三名女生中选出两名同学作为红色马拉松赛的志愿者,则选出一男一女的概率是_______.16.从如图所示的四个带圆圈的数字中,任取两个数字(既可以是相邻也可以是相对的两个数字)相互交换它们的位置,交换一次后能使①,②两数在相对位置上的概率是_______.17.如图所示的两个圆盘中,指针落在每一个数所在的区域上的机会均等,则两个指针同时落在数“1”所在的区域上的概率是_________18.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是________三.解答题(共8小题,66分)19.(6分) 一个不透明的口袋中有一个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.20.(6分) 某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用画树状图或列表的方法给出分析过程)21.(8分)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2,3,4,5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙同学的方案公平吗?(只回答,不用说明理由).22.(8分)有2部不同的电影A ,B ,甲、乙、丙3人分别从中任意选择1部观看. (1)求甲选择A 部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).23.(8分) 随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程ax 2+3x +b4=0有实数根的概率.24.(8分) 在四张背面完全相同的纸牌A ,B ,C ,D 中,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张(不放回),再从余下的3张纸牌中摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A,B,C,D表示);(2)求摸出两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.25.(10分) 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.26.(12分) 小明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为14.(1)求袋中黄球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?参考答案:1-5CACAA 6-10DDABB11. 2312.41513. 4914. 100 15. 3516. 1317.12518. 2919. 解:列表如下:所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种,则P =39=1320. 解:列表如下:由表可知共有4种等可能的结果,其中恰好抽到由男生甲、女生丙和这位班主任一起上场比赛的情况只有1种,∴其概率为1421. 解:(1)甲同学的方案不公平.理由:列表如下:所有出现的等可能结果共有12种,其中抽出的牌面上的数字之和为奇数的有8种,故小明获胜的概率为812=23,则小刚获胜的概率为13,故此游戏两人获胜的概率不相同,即甲同学的方案不公平(2)不公平22. 解:(1)甲选择A 部电影的概率=12(2)画树状图为:共有8种等可能的结果,其中甲、乙、丙3人选择同1部电影的结果有2种,所以甲、乙、丙3人选择同1部电影的概率为28=1423. 解:(1)画树状图略,总共有20种结果,每种结果出现的可能性相同,正四面体着地的数字与转盘指针所指区域的数字之积为4的有3种情况,故正四面体着地的数字与转盘指针所指区域的数字之积为4的概率为:320(2)∵方程ax 2+3x +b4=0有实数根的条件为:9-ab≥0,∴满足ab≤9的结果共有14种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),∴关于x 的方程ax 2+3x +b4=0有实数根的概率为:1420=71024. 解:(1)画树状图如图所示:则共有12种等可能的结果(2)∵既是轴对称图形又是中心对称图形的只有B ,C ,∴既是轴对称图形又是中心对称图形的有2种情况,∴既是轴对称图形又是中心对称图形的概率为212=1625. 解:(1)12(2)画树状图得:则共有12种等可能的结果.列表得:∴乙获胜的概率为51226. 解:(1)1个(2)画树状图如图,所以两次摸到不同颜色球的概率为:P =1012=56(3)设小明摸到红球x 次,摸到黄球y 次,则摸到红球有(6-x -y)次,由题意得5x +3y +(6-x -y)=20,即2x +y =7,y =7-2x.因为x 、y 、(6-x -y)均为自然数,所以当x =1时,y =5,6-x -y =0;当x =2时,y =3,6-x -y =1;当x =3时,y =1,6-x -y =2;综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为1次、5次、0次;或2次、2次、1次;或3次、1次、2次。
一、选择题1.小明在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则最可能符合这一结果的实验是()A.掷一枚骰子,出现3点的概率B.抛一枚硬币,出现反面的概率C.任意写一个整数,它能被3整除的概率D.从一副扑克中任取一张,取到“大王”的概率2.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.15B.25C.35D.453.张老师对本班40名学生的血型作了统计,列出如下的统计表,则本班AB型血的人数是()组别A型B型AB型O型频率0.40.350.10.15A.16人B.14人C.6人D.4人4.有三个质地、大小一样的纸条上面分别写着三个数,其中两个正数,一个负数,任意抽取一张,记下数的符号后,放回摇匀,再重复同样的操作一次,试问两次抽到的数字之积是正数的概率为()A.13B.49C.59D.235.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()A.59B.49C.56D.136.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是()A.13B.49C.19D.237.在四张完全相同的卡片上.分别画有等腰三角形、矩形、菱形、圆,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A.14B.12C.34D.18.如图中的小正方形的大小都相同,随意选取图中的虚线小正方形a b c d e、、、、五个中的一个并将其转化成实线小正方形后,六个实线小正方形恰好是一个小正方体的侧面展开图的概率是()A.15B.25C.35D.459.从一个装有3个红球、2个白球的盒子里(球除颜色外其他都相同),先摸出一个球,不再放进盒子里,然后又摸出一个球,两次摸到的都是红球的概率是()A.12B.35C.16D.31010.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A.13B.14C.16D.13611.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。
一、选择题1.有四根长度分别为2cm、3cm、4cm、5cm的木棒,从中任取三根,并将它们首尾相连,能组成三角形的概率为()A.14B.23C.34D.122.王老师的讲义夹里放了大小相同的试卷12张,其中语文5张,数学4张,外语3张,他随机从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率是()A.14B.13C.512D.123.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.164.如图所示,一个大正方形的面上,编号为1,2,3,4的地块,是四个全等的等腰直角三角形空地,中间是小正方形绿色草坪,一名训练有素的跳伞运动员,每次跳伞都能落在大正方形地面上,则跳伞运动员一次跳伞落在草坪上的概率是()A.12B.14C.16D.185.将分别标有“走”“向”“伟”“大”“复”“兴”汉字的小球装在一个不透明的口袋中,这些球除汉字外完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是()A.16B.115C.18D.1126.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.14B.12C.35D.347.连续掷两次骰子,出现点数之和等于4的概率为()A.136B.118C.112D.198.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )A.12B.13C.23D.169.典典、诺诺、悦悦三人参加学校的“幸运就是我”节目.幸运的是,她们都得到了一件精美的礼物.其过程是这样的:墙上挂着两串礼物(如下图),每次只能从其中一串的最下端取一件,直到礼物取完为止.典典第一个取得礼物,然后诺诺、悦悦依次取得第2件、第3件礼物.事后她们打开这些礼物品仔细比较发现礼物B最精美,那么取得礼物B可能性最大的是()A.典典B.诺诺C.悦悦D.无法确定10.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.611.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A.13B.14C.16D.13612.已知数据:117,4,5-,2π1-,0.其中无理数出现的频率为()A.0.2B.0.4C.0.6D.0.8二、填空题13.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是__________.14.同时掷两枚质地均匀的骰子;两枚骰子点数之和为10的概率为__________.15.一个不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同.搅匀后从中任意摸出2个球,摸出两个颜色不同的小球的概率为_____.16.李老师想从小明、小红、小丽和小亮四个人中用抽签的方式抽取两个人做流动值周生,则小红和小丽同时被抽中的概率是______.17.有六张大小形状相同的卡片,分别写有1~6这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则a的值使得关于x的分式方程26122 axx x--=--有整数解的概率为_____.18.小刚和小亮用图中的转盘做“配紫色”游戏:分别转动两个转盘各一次,若其中的一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小刚赢,否则小亮赢.若用P1表示小刚赢的概率,用P2 表示小亮赢概率,则两人赢的概率P1________P2(填写>,=或<)19.小丽在4张同样的纸片上各写了一个正整数,从中随机抽取2张,并将它们上面的数相加.重复这样做,每次所得的和都是5,6,7,8中的一个数,并且这4个数都能取到.猜猜看,小丽在4张纸片上各写下的数是__________.20.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为__________.三、解答题21.小明和小华想利用抽取扑克牌游戏决定谁去参加市里举办的“创建全国文明城市,争做文明学生”的演讲比赛,游戏规则是:将4张除了数字2、3、4、5不同外,其余均相同的扑克牌,数字朝下随机平铺于桌面,一人先从中随机取出1张,另一人再从剩下的3张扑克牌中随机取出一张,若取出的2张扑克牌上数字和为偶数,则小明去参赛,否则小华去参赛.(1)用列表法或画树状图法,求小明参赛的概率;(2)你认为这个游戏公平吗?请说明理由.22.为加强素质教育,某学校自主开设了A书法、B阅读、C足球、D器乐四门选修课程供学生选择,每门课程被选到的机会均等.(1)学生小明计划选修两门课程,请写出所有可能的选法;(用树状图或列表法表示选法)(2)若学生小明和小刚各计划选修一门课程,则他们两人恰好同时选修书法或足球的概率是多少?23.森林防火,人人有责.前不久,华蓥市公安局结合华蓥山竹林风景线建设,在华蓥山国家森林公园、石林景区,以“严防森林火灾、保护绿水青山”为主题,开展了森林防灭火知识宣传.广安市某校为了解九年学生对森林防灭火知识的了解程度,在九年级学生中做了一次抽样调查,并将结果分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调査结果绘制了如下两幅尚不完整的统计图.请根据两幅统计图中的信息解答下列问题:(1)这次参与调查的学生一共有______人,并补全条形统计图.(2)若该校九年级共有1000名学生,请你估计该校九年级学生中“基本了解”森林防灭火知识的学生有多少人?(3)九(2)班被调查的学生中A等级的有5人,其中3名男生2名女生.现打算从这5名学生中任意抽取2名进行电话采访,请用列表或画树状图的方法求恰好抽到一男一女的概率.24.为弘扬开州传统文化,某校开展“言子儿进课堂”的活动,该校随机抽取部分学生,按四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对言子儿的喜欢情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取_______名学生进行统计调查,扇形统计图中,D类所对应的扇形圆心角的度数为_________;(2)将条形统计图补充完整;(3)若调查的A类学生中有2名男生,其余为女生,现从中抽2人进行采访,请画树状图或列表法求刚好选中2名恰好是1男1女的概率.25.在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是奇数的概率.26.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为A、B、C、D四个等次,绘制成如图所示的不完整的统计图,请你依图解答下列(1)a=,b=,c=;(2)请将条形统计图补充完整,并计算表示C等次的扇形所对的圆心角的度数为°;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出任取三根木棒的所有情况,再求出能组成三角形的所有情况,利用概率公式直接计算即可.【详解】解:2cm、3cm、4cm、5cm的根木棒中,共有以下4种组合:2,3,4;2,3,5;2,4,5;3,4,5;其中共有以下方案可组成三角形:①取2cm,3cm,4cm;由于4﹣2<3<4+2,能构成三角形;②取2cm,4cm,5cm;由于5﹣2<4<5+2,能构成三角形;③取3cm,4cm,5cm;由于5﹣3<4<5+3,能构成三角形;所以有3种方案符合要求.故能组成三角形的概率是P=3 4故答案选:C【点睛】本题考查了三角形的三边关系和概率公式,正确找到所有组成三角形的情况是解题的关2.B解析:B【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学4页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为41123=.故选:B.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.3.C解析:C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:2163=.故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.4.A解析:A【分析】设大正方形的边长为2a,从而可得大正方形的面积为24a,先求出小正方形绿色草坪的面积,再根据简单事件的几何概率公式即可得.【详解】设大正方形的边长为2a ,则大正方形的面积为22(2)4a a =, 编号为1,2,3,4的地块是四个全等的等腰直角三角形空地,∴等腰直角三角形的直角边均相等,且长为a ,由勾股定理得:等腰直角三角形的斜边长为22a a 2a +=, 即小正方形绿色草坪的边长为2a ,∴小正方形绿色草坪的面积为22(2)2a a =,则跳伞运动员一次跳伞落在草坪上的概率是222142a P a ==, 故选:A . 【点睛】本题考查了简单事件的几何概率计算公式、全等三角形的性质、勾股定理等知识点,根据全等三角形的性质和勾股定理求出小正方形绿色草坪的边长是解题关键.5.B解析:B 【分析】根据题意列表得出所有等情况数和两次摸出的球上的汉字是“复”“兴”的情况数,再根据概率公式即可得出答案. 【详解】解:根据题意画图如下:共有30种等情况数,其中两次摸出的球上的汉字是“复”“兴”的有2种, 则随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是213015; 故选:B . 【点睛】此题考查了树状图法或列表法求概率.树状图法适合两步或两步以上完成的事件;列表法适合两步完成的事件,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.B解析:B【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从长度分别为2、4、6、7的四条线段中任选三条有如下4种情况:2、4、6;2、4、7;2、6、7;4、6、7;其中能构成三角形的有2、6、7;4、6、7这两种情况,所以能构成三角形的概率是21 42 =,故选:B.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.构成三角形的基本要求为两小边之和大于最大边.7.C解析:C【分析】列举出所有情况,看点数之和等于4的情况数占总情况数的多少即可.【详解】解:如图所示:4的情况为13,22,31共3种,于是P(点数之和等于4)=31= 3612.故选:C.【点睛】本题考查概率的求法与运用,由于两次实验出现的情况较多,用列表法较好.用到的知识点为:概率=所求情况数与总情况数之比.8.A解析:A 【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可. 【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为61122=. 故答案为A . 【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.9.C解析:C 【分析】因为数量不多,所以可直接列举出所有情况,比较得到B 的可能性即可. 【详解】解:∵取得礼物共有三种情况:(1)典典A ,诺诺B ,悦悦C ;(2)典典C ,诺诺A ,悦悦B ;(3)典典A ,诺诺C ,悦悦B .∴典典取得礼物B 的概率=0;诺诺取得礼物B 的概率1=3;悦悦取得礼物B 的概率2=3∴悦悦取得礼物B 可能性最大 故选:C . 【点睛】本题考查随机事件发生的可能性,当数量不大时可直接列举出所有的情况,当数量比较大时通常都会用列表法或是树状图来列举.10.D解析:D 【分析】直接利用概率公式进行求解,即可得到答案. 【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个. ∴1张抽奖券中奖的概率是:102030100++=0.6,故选:D.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.11.C解析:C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:∴两个骰子的点数相同的概率为:61=366故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比12.B解析:B【分析】根据无理数的定义和“频率=频数÷总数”计算即可.【详解】-,共2个解:共有5个数,其中无理数有,2π1所以无理数出现的频率为2÷5=0.4.故选B.【点睛】此题考查的是无理数的判断和求频率问题,掌握无理数的定义和频率公式是解决此题的关键.二、填空题13.【分析】根据题意把所有可能出现的结果用表格表示出来即可求解【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果其中两人恰好选中同一根绳子的结果共有3种∴两人恰好选中同一根绳子的概率为:故解析:1 3【分析】根据题意,把所有可能出现的结果用表格表示出来,即可求解.【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果,其中两人恰好选中同一根绳子的结果共有3种,∴两人恰好选中同一根绳子的概率为:3193,故答案为:13.【点睛】本题考查用列表法或画树状图法求概率,解题的关键是根据题意列出所有可能出现的结果.14.【分析】利用列表法确定所有可能的情况确定两枚骰子点数之和为10的情况的数量根据概率公式计算得出答案【详解】解:列表:1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7解析:1 12【分析】利用列表法确定所有可能的情况,确定两枚骰子点数之和为10的情况的数量,根据概率公式计算得出答案.【详解】解:列表:12345612345672345678 3456789 45678910 567891011 6789101112∴P(两枚骰子点数之和为10)=336=1 12,故答案为:1 12.【点睛】此题考查利用列举法求事件的概率,正确列出所有等可能的情况,熟记概率的计算公式是解题的关键.15.【分析】用列表法列举出所有等可能出现的情况从中找出两个球颜色不同的结果数进而求出概率【详解】解:用列表法表示所有可能出现的结果如下:共有12种不同的结果数其中两个球颜色不同的有6种∴摸出两个颜色不同解析:1 2【分析】用列表法列举出所有等可能出现的情况,从中找出两个球颜色不同的结果数,进而求出概率.【详解】解:用列表法表示所有可能出现的结果如下:共有12种不同的结果数,其中两个球颜色不同的有6种,∴摸出两个颜色不同的小球的概率为61122,故答案为:12.【点睛】本题考查随机事件的概率,可用列表法和树状图法来解,属于中考常考题型.16.【分析】首先根据题意画出树状图然后由树状图求得所有等可能的结果与小红和小丽同时被抽中的情况再利用概率公式即可求得答案【详解】画树状图得:∵共有12种等可能的结果小红和小丽同时被抽中的有2种情况∴小红解析:1 6【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小红和小丽同时被抽中的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有12种等可能的结果,小红和小丽同时被抽中的有2种情况,∴小红和小丽同时被抽中的概率是:P =16.故答案为1 6【点睛】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17.【分析】先把分式方程化为整式方程解整式方程得到x=且x≠2利用有理数的整除性得到a=2或3然后根据概率公式求解【详解】把分式方程去分母得ax﹣2﹣(x﹣2)=6∴(a﹣1)x=6∵分式方程有整数解∴解析:13.【分析】先把分式方程化为整式方程,解整式方程得到x=61a-且x≠2,利用有理数的整除性得到a=2或3,然后根据概率公式求解.【详解】把分式方程26122axx x--=--去分母得ax﹣2﹣(x﹣2)=6,∴(a﹣1)x=6,∵分式方程有整数解,∴x =61a -且x ≠2, ∴a =2或3,∴a 的值使得关于x 的分式方程26122ax x x --=--有整数解的概率=13.故答案为13. 【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.分式方程的增根是令分母等于0的未知数的值,不是原分式方程的解.也考查了概率公式.18.<【分析】由于第二个转盘红色所占的圆心角为120°则蓝色部分为红色部分的两倍即相当于分成三个相等的扇形(红蓝蓝)再列出表根据概率公式计算出小刚赢的概率和小亮赢的概率即可得出结论【详解】解:用列表法将解析:< 【分析】由于第二个转盘红色所占的圆心角为120°,则蓝色部分为红色部分的两倍,即相当于分成三个相等的扇形(红、蓝、蓝),再列出表,根据概率公式计算出小刚赢的概率和小亮赢的概率,即可得出结论. 【详解】解:用列表法将所有可能出现的结果表示如下:所以小刚赢的概率是131124P ==;则小亮赢的概率是213144P =-= 所以12P P <; 故答案为:< 【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.19.2335或2344【分析】首先假设这四个数字分别为:ABCD 且A≤B≤C≤D 进而得出符合题意的答案【详解】解:四个数只能是2335或2344理由:设这四个数字分别为:ABCD且A≤B≤C≤D故A+B解析:2,3,3,5或2,3,4,4【分析】首先假设这四个数字分别为:A,B,C,D且A≤B≤C≤D,进而得出符合题意的答案.【详解】解:四个数只能是2,3,3,5或2,3,4,4理由:设这四个数字分别为:A,B,C,D且A≤B≤C≤D,故A+B=5,C+D=8,(1)当A=1时,得B=4,∵A≤B≤C≤D,∴B=C=D=4,不合题意舍去,所以A≠1,(2)当A=2时,得B=3,(I)当C=B=3时,D=5,(II)当C>B时,∵A≤B≤C≤D,∴C=D=4,故综上所述:这四个数只能是:2,3,3,5或2,3,4,4.故答案为:2,3,3,5或2,3,4,4.【点睛】此题主要考查了应用类问题,利用分类讨论得出是解题关键.20.22【分析】袋中黑球的个数为利用概率公式得到然后利用比例性质求出即可【详解】解:设袋中黑球的个数为根据题意得解得即袋中黑球的个数为个故答案为:22【点睛】本题主要考查概率的计算问题关键在于根据题意对解析:22【分析】袋中黑球的个数为x,利用概率公式得到5152310x=++,然后利用比例性质求出x即可.【详解】解:设袋中黑球的个数为x,根据题意得5152310x=++,解得22x=,即袋中黑球的个数为22个.故答案为:22.【点睛】本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.三、解答题21.(1)13;(2)不公平,理由见解析【分析】(1)先列出表格,展示出所有等可能的结果,数出符合条件的结果数,利用概率公式,即可求解;(2)分别求出小明和小华去参赛的概率,进而即可求解.【详解】解:(1)列表如下P∴(小明参赛)41 123 ==;(2)游戏不公平,理由:P(小明参赛)13 =,P∴(小华参赛)12133 =-=,1233≠,∴这个游戏不公平.【点睛】本题主要考查概率和游戏的公平性,掌握列树状图和列表格展示等可能的结果,是解题的关键.22.(1)树状图见解析,共有6种可能的选法;(2)18.【分析】(1)利用直接列举得到所有6种等可能的结果数;(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.【详解】解:(1)画树状图如下:共有12种等可能的结果数,不重复的选法有6种:AB、AC、AD、BC、BD、CD.(2)画树状图如下:共有16种等可能的结果数,其中他们两人恰好修书法或足球的结果数为2,所以他们两人恰好选修书法或足球的概率为21 168=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.(1)200,补图见解析;(2)估计该校九年级学生中“基本了解”森林防灭火知识的学生有400人;(3)35.【分析】(1)由“不了解”的人数及其所占的百分比即可求出总人数.根据总人数可求出C等级的人数,即可补全统计图.(2)利用C等级的人数所占的百分比乘以该校九年级的人数即可估算.(3)利用列表法列举出所有事件发生的情况,再找出抽到一男一女的情况,最后根据概率公式计算即可.【详解】(1)2010%=200÷人.C等级的人数为200(406020)80-++=(人),补全条形统计图如下:(2)801000400200⨯=(人),故估计该校九年级学生中“基本了解”森林防灭火知识的学生有400人.(3)列表如下:男1男2男3女1女2男1男1,男2男1,男3男1,女1男1,女2男2男2,男1男2,男3男2,女1男2,女2男3男3,男1男3,男2男3,女1男3,女2女1女1,男1女1,男2女1,男3女1,女2女2女2,男1女2,男2女2,男3女2,女1故恰好抽到一男一女的概率为123 205=.【点睛】本题考查条形和扇形统计图相关联,列表法或树状图法求概率.掌握条形和扇形统计图的特点和能够正确列出表格是解答本题的关键.24.(1)50,72°;(2)补全图形见解析;(3)3 5【分析】(1)根据选择C的人数和所占的百分比,可以求得本次抽取的学生人数,再求得D类占总体的比例乘以360即为圆心角的度数;(2)用总人数减去其它的人数即为A类的人数,据此可以补充条形统计图;(3)画树状图展示所有20种等可能的结果数,找出被抽到的两个学生恰好是1男1女的结果数,然后根据概率公式计算.【详解】解:(1)这次共抽取:12÷24%=50(人),D类所对应的扇形圆心角的大小103607250︒⨯=︒,故答案为50,72°;(2)A类学生:50-23-12-10=5(人),条形统计图补充如下(3)A类学生中有2名男生,则有3名女生,画树状图为:共有20种等可能的结果数,其中被抽到的两个学生恰好是1男1女的结果数为12,所以被抽到的两个学生性别相同的概率123 205 ==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.25.(1)34;(2)23【分析】(1)根据口袋中数字不大于3的小球有3个,即可确定概率;(2)通过列表或画树状图写出所有的等可能结果,然后数出两次摸出小球上的数字和恰好是奇数的结果,即可得到概率.【详解】解:(1)34;(2)列表得:1234 1——(1,2)(1,3)(1,4)2(2,1)——(2,3)(2,4)3(3,1)(3,2)——(3,4)4(4,1)(4,2)(4,3)——两次摸出小球上的数字和恰好是奇数的情况有8种:即:(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3).∴P(两次摸出小球上的数字和恰好是奇数)=82123=.【点睛】本题考查了概率的计算,熟练掌握画树状图或列表法求概率是解题的关键.26.(1)2,45,20;(2)图见解析,72;(3)1 6【分析】(1)用A 等次的人数除以它所占的百分比得到调查的总人数,再分别求出a 和B 等次的人数,然后计算出b 、c 的值;(2)先补全条形统计图,然后用360°乘以C 等次所占的百分比得到C 等次的扇形所对的圆心角的度数;(3)画树状图展示所有12种等可能的结果数,再找出甲、乙两名男生同时被选中的结果数,然后根据概率公式求解. 【详解】解:(1)1230%40÷=, 405%2a =⨯=; 401282%100%45%40b ---=⨯=,即45b =; 8%100%20%40c =⨯=,即20c =; 故答案为:2,45,20;(2)B 等次人数为40128218---=, 条形统计图补充为:C 等次的扇形所对的圆心角的度数20%36072=⨯︒=︒; 故答案为72︒; (3)画树状图为:共有12种等可能的结果数,其中甲、乙两名男生同时被选中的结果数为2, 所以甲、乙两名男生同时被选中的概率21126==. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.也考查了统计图.。