湖南省长沙市2017届中考数学第一次模拟试题含答案
- 格式:doc
- 大小:919.50 KB
- 文档页数:11
2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。
2021年湖南省长沙市教科所中考模拟试卷〔一〕数学一、选择题〔在以下各题四个选项中,只有一项为哪一项符合题意.请在答题卡中填涂符合题意选项.本大题共12个小题,每题3分,共36分〕1.以下各组数中,互为相反数是〔〕A.﹣2 与2B.2与2C.3与D.3与32.长城、故宫等是我国第一批胜利入选世界遗产文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为〔〕×106×10﹣6×105×1073.如图,与∠1是内错角是〔〕A.∠2B.∠3C.∠4D.∠54.以下运算正确是〔〕A.B.C.a2•a3=a5D.〔2a〕3=2a35.如图是小强用八块一样小正方体积木搭建几何体,这个几何体左视图是〔〕A.B.C.D.6.如图,点C、D是线段AB上两点,点D是线段AC中点.假设AB=10cm,BC=4cm,那么线段DB长等于〔〕A.2cm B.3cm C.6cm D.7cm7.以下命题中,错误是〔〕A.三角形两边之和大于第三边B.三角形外角和等于360°C.等边三角形既是轴对称图形,又是中心对称图形8.有15位同学参与歌咏竞赛,所得分数互不一样,获得分前8位同学进入决赛.某同学知道自己分数后,要推断自己能否进入决赛,他只需知道这15位同学〔〕A.平均数B.中位数C.众数D.方差9.某人想沿着梯子爬上高4米房顶,梯子倾斜角〔梯子与地面夹角〕不能>60°,否那么就有危急,那么梯子长至少为〔〕A.8米B.米C.米D.米10.如图,要使平行四边形ABCD成为矩形,需添加条件是〔〕A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠211.关于x方程〔a﹣5〕x2﹣4x﹣1=0有实数根,那么a满意〔〕A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠512.如图1,点E为矩形ABCD边AD上一点,点P从点B动身沿BE→ED→DC运动到点C停顿,点Q从点B动身沿BC运动到点C停顿,它们运动速度都是1cm/s.假设点P、Q同时开始运动,设运动时间为t〔s〕,△BPQ面积为y〔cm2〕,y与t之间函数图象如图2所示.给=48cm2;③14<t<22时,出以下结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABEy=110﹣5t;④在运动过程中,使得△ABP是等腰三角形P点一共有3个;⑤当△BPQ与△BEA相像时,t=14.5.其中正确结论序号是〔〕A.①④⑤B.①②④C.①③④D.①③⑤二、填空题〔本大题共6个小题,每题3分,共18分〕13.假设二次根式有意义,那么x取值范围为.14.一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都一样.假设从该布袋里随意摸出1个球,是红球概率为,那么a等于.16.某蔬菜基地圆弧形蔬菜大棚剖面如下图,AB=16m,半径OA=10m,那么蔬菜大棚高度CD=m.17.如图,在△ABC中,BE平分∠ABC,DE∥BC,假如DE=2AD,AE=3,那么EC=.18.如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,那么tan∠DBE值是.三、解答题〔本大题共8个小题,第19、20题每题6分,第21、22题每题6分,第23、24题每题6分,第25、26题每题6分,共66分.解容许写出必要文字说明、证明过程或演算步骤〕19.〔6分〕计算:〔π﹣3.14〕0﹣2﹣|﹣3|=.20.〔6分〕解不等式组,并写出其全部整数解.21.〔8分〕“端午节〞是我国传统佳节,民间历来有吃“粽子〞风俗.我市某食品厂为理解市民对去年销量较好肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽〔以下分别用A、B、C、D表示〕这四种不同口味粽子宠爱状况,在节前对某居民区市民进展了抽样调查,并将调查状况绘制成如下两幅统计图〔尚不完好〕.请根据以上信息答复:〔1〕本次参与抽样调查居民有多少人?〔2〕将两幅不完好图补充完好;〔3〕求扇形统计图中C所对圆心角度数;〔4〕假设有外型完全一样A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图方法,求他第二个吃到恰好是C粽概率.22.〔8分〕如图,AB为圆O直径,点C为圆O上一点,假设∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.〔1〕试推断CD与圆O位置关系,并说明理由;〔2〕假设直线l与AB延长线相交于点E,圆O半径为3,并且∠CAB=30°,求AD长.23.〔9分〕由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工作所需时间比是3:2,两队共同施工6天可以完成.〔1〕求两队单独完成此项工程各需多少天?〔2〕此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元酬劳,假设按各自完成工程量安排这笔钱,问甲、乙两队各应得到多少元?24.〔9分〕如图,边长为1正方形ABCD对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ〔0°<θ<90°〕,PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.〔1〕求四边形OEBF面积;〔2〕求证:OG•BD=EF2;25.〔10分〕在数学上,我们把符合肯定条件动点所形成图形叫做满意该条件点轨迹.例如:动点P坐标满意〔m,m﹣1〕,全部符合该条件点组成图象在平面直角坐标系xOy中就是一次函数y=x﹣1图象.即点P轨迹就是直线y=x﹣1.〔1〕假设m、n满意等式mn﹣m=6,那么〔m,n﹣1〕在平面直角坐标系xOy中轨迹是;〔2〕假设点P〔x,y〕到点A〔0,1〕间隔与到直线y=﹣1间隔相等,求点P轨迹;〔3〕假设抛物线y=上有两动点M、N满意MN=a〔a为常数,且a≥4〕,设线段MN中点为Q,求点Q到x轴最短间隔.26.〔10分〕如图1,二次函数y=ax2﹣2ax﹣3a〔a<0〕图象与x轴交于A、B两点〔点A在点B右侧〕,与y轴正半轴交于点C,顶点为D.〔1〕求顶点D坐标〔用含a代数式表示〕;〔2〕假设以AD为直径圆经过点C.①求抛物线函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN〔点P、M、N分别和点O、B、E对应〕,并且点M、N都在抛物线上,作MF⊥x轴于点F,假设线段MF:BF=1:2,求点M、N坐标;③点Q在抛物线对称轴上,以Q为圆心圆过A、B两点,并且和直线CD相切,如图3,求点Q坐标.参考答案与试题解析一、选择题1.以下各组数中,互为相反数是〔〕A.﹣2 与2B.2与2C.3与D.3与3【分析】根据相反数概念作出推断.【解答】解:A.﹣2与2互为相反数,正确;B.2=2,不是相反数,故错误;×=1,互为倒数,故错误;D.3=3,不是相反数,故错误;应选:A.【点评】此题考察了相反数,解决此题关键是熟记相反数定义.2.长城、故宫等是我国第一批胜利入选世界遗产文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为〔〕×106×10﹣6×105×107【分析】科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数.确定n值时,要看把原数变成a时,小数点挪动了多少位,n肯定值与小数点挪动位数一样.当原数肯定值>1时,n是正数;当原数肯定值<1时,n是负数.【解答】×106,应选:A.【点评】此题考察科学记数法表示方法.科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a值以及n值.3.如图,与∠1是内错角是〔〕A.∠2B.∠3C.∠4D.∠5【分析】根据内错角定义找出即可.应选:B.【点评】此题考察了“三线八角〞问题,确定三线八角关键是从截线入手.对平面几何中概念理解,肯定要紧扣概念中关键词语,要做到对它们正确理解,对不同几何语言表达要留意理解它们所包含意义.4.以下运算正确是〔〕A.B.C.a2•a3=a5D.〔2a〕3=2a3【分析】根据算术平方根定义、二次根式加减运算、同底数幂乘法及积乘方运算法那么逐一计算即可推断.【解答】解:A、=2,此选项错误;B、2+不能进一步计算,此选项错误;C、a2•a3=a5,此选项正确;D、〔2a〕3=8a3,此选项计算错误;应选:C.【点评】此题主要考察二次根式加减和幂运算,解题关键是驾驭算术平方根定义、二次根式加减运算、同底数幂乘法及积乘方运算法那么.5.如图是小强用八块一样小正方体积木搭建几何体,这个几何体左视图是〔〕A.B.C.D.【分析】左视图有2列,从左到右分别是2,1个正方形.【解答】解:这个几何体左视图是,应选:D.【点评】此题主要考察了简洁组合体三视图,关键是驾驭左视图所看位置.6.如图,点C、D是线段AB上两点,点D是线段AC中点.假设AB=10cm,BC=4cm,那么线段DB长等于〔〕A.2cm B.3cm C.6cm D.7cm【分析】先根据线段和差关系求出AC,再根据中点定义求得CD长,再根据BD=CD+BC即可解答.【解答】解:∵AB=10,BC=4,∴AC=AB﹣BC=6,∵点D是AC中点,∴AD=CD=AC=3.∴BD=BC+CD=4+3=7cm,应选:D.【点评】此题考察了两点间间隔,根据是娴熟驾驭线段和差计算,以及中点定义.7.以下命题中,错误是〔〕A.三角形两边之和大于第三边B.三角形外角和等于360°C.等边三角形既是轴对称图形,又是中心对称图形D.三角形一条中线能将三角形分成面积相等两部分【分析】根据三角形性质即可作出推断.【解答】解:A、正确,符合三角形三边关系;B、正确;三角形外角和定理;C、错误,等边三角形既是轴对称图形,不是中心对称图形;D、三角形一条中线能将三角形分成面积相等两部分,正确.应选:C.【点评】此题考察了命题真假推断,属于根底题.根据定义:符合事实真理推断是真命题,不符合事实真理推断是假命题,不难选出正确项.8.有15位同学参与歌咏竞赛,所得分数互不一样,获得分前8位同学进入决赛.某同学知道自己分数后,要推断自己能否进入决赛,他只需知道这15位同学〔〕A.平均数B.中位数C.众数D.方差【分析】由中位数概念,即最中间一个或两个数据平均数;可知15人成果中位数是第8名成果.根据题意可得:参赛选手要想知道自己是否能进入前8名,只须要理解自己成果以及全部成果中位数,比较即可.【解答】解:由于15个人中,第8名成果是中位数,故小方同学知道了自己分数后,想知道自己能否进入决赛,还需知道这十五位同学分数中位数.【点评】此题主要考察统计有关学问,主要包括平均数、中位数、众数意义.反映数据集中程度统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进展合理选择和恰当运用.9.某人想沿着梯子爬上高4米房顶,梯子倾斜角〔梯子与地面夹角〕不能>60°,否那么就有危急,那么梯子长至少为〔〕A.8米B.米C.米D.米【分析】倾斜角取最大,利用最大角正弦值即可求解.【解答】解:如图:AC=4,AC⊥BC.∵梯子倾斜角〔梯子与地面夹角〕不能>60°.∴∠ABC≤60°,最大角为60°.∴AB====4×===.即梯子长至少为米.应选:C.【点评】此题主要考察学生对直角三角形坡度问题驾驭,做此题关键是明白当梯子倾斜角越大时梯子长度要求越短,所以坡角取最大值.10.如图,要使平行四边形ABCD成为矩形,需添加条件是〔〕A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠2【分析】根据一个角是90度平行四边形是矩形进展选择即可.【解答】解:A、是邻边相等,可断定平行四边形ABCD是菱形;B、是对角线互相垂直,可断定平行四边形ABCD是菱形;C、是一内角等于90°,可推断平行四边形ABCD成为矩形;D、是对角线平分对角,可断定平行四边形ABCD是菱形.【点评】此题主要应用学问点为:矩形断定.①对角线相等且互相平分四边形为矩形.②一个角是90度平行四边形是矩形.11.关于x方程〔a﹣5〕x2﹣4x﹣1=0有实数根,那么a满意〔〕A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠5【分析】由于x方程〔a﹣5〕x2﹣4x﹣1=0有实数根,那么分两种状况:〔1〕当a﹣5=0时,方程肯定有实数根;〔2〕当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a 取值范围.【解答】解:分类探讨:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程肯定有实数根;②当a﹣5≠0即a≠5时,∵关于x方程〔a﹣5〕x2﹣4x﹣1=0有实数根∴16+4〔a﹣5〕≥0,∴a≥1.∴a取值范围为a≥1.应选:A.【点评】此题考察了一元二次方程ax2+bx+c=0〔a≠0〕根判别式△=b2﹣4ac:当△>0,方程有两个不相等实数根;当△=0,方程有两个相等实数根;当△<0,方程没有实数根;切记不要忽视一元二次方程二次项系数不为零这一隐含条件.12.如图1,点E为矩形ABCD边AD上一点,点P从点B动身沿BE→ED→DC运动到点C停顿,点Q从点B动身沿BC运动到点C停顿,它们运动速度都是1cm/s.假设点P、Q同时开始运动,设运动时间为t〔s〕,△BPQ面积为y〔cm2〕,y与t之间函数图象如图2所示.给=48cm2;③14<t<22时,出以下结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABEy=110﹣5t;④在运动过程中,使得△ABP是等腰三角形P点一共有3个;⑤当△BPQ与△BEA相像时,t=14.5.其中正确结论序号是〔〕A.①④⑤B.①②④C.①③④D.①③⑤【分析】根据题意,得到P、Q分别同时到达D、C可推断①②,分段探讨PQ位置后可以推断③,再由等腰三角形分类探讨方法确定④,根据两个点相对位置推断点P在DC上时,存在△BPQ与△BEA相像可能性,分类探讨计算即可.【解答】解:由图象可知,点Q到达C时,点P到E那么BE=BC=10,ED=4故①正确那么AE=10﹣4=6t=10时,△BPQ面积等于∴AB=DC=8=故S△ABE故②错误当14<t<22时,y=故③正确;分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线那么⊙A、⊙B及AB垂直平分线与点P运行途径交点是P,满意△ABP是等腰三角形此时,满意条件点有4个,故④错误.∵△BEA为直角三角形∴只有点P在DC边上时,有△BPQ与△BEA相像由,PQ=22﹣t∴当或时,△BPQ与△BEA相像分别将数值代入或解得t=故⑤正确应选:D.【点评】此题是动点问题函数图象探究题,考察了三角形相像断定、等腰三角形断定,应用了分类探讨和数形结合数学思想.二、填空题〔本大题共6个小题,每题3分,共18分〕13.假设二次根式有意义,那么x取值范围为x≥.【分析】函数关系中主要有二次根式.根据二次根式意义,被开方数是非负数.【解答】解:根据题意得:1+2x≥0,解得x≥﹣.故答案为:x≥﹣.【点评】此题主要考察自变量取值范围,函数自变量范围一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式分母不能为0;〔3〕当函数表达式是二次根式时,被开方数为非负数.14.一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都一样.假设从该布袋里随意摸出1个球,是红球概率为,那么a等于1.【分析】设袋中有a个黄球,再根据概率公式求出a值即可.【解答】解:设袋中有a个黄球,∵袋中有红球2个,白球3个,从中随意摸出一个球是红球概率为,∴=,解得:a=1.故答案为:1.【点评】此题考察是概率公式,熟知随机事务A概率P〔A〕=事务A可能出现结果数与全部可能出现结果数商是解答此题关键.15.假设反比例函数y=图象位于第一、三象限,那么正整数k值是1.【分析】由反比例函数性质列出不等式,解出k范围,在这个范围写出k整数解那么可.【解答】解:∵反比例函数图象在一、三象限,∴2﹣k>0,即k<2.又∵k是正整数,∴k值是:1.故答案为:1.【点评】此题考察了反比例函数性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.16.某蔬菜基地圆弧形蔬菜大棚剖面如下图,AB=16m,半径OA=10m,那么蔬菜大棚高度CD=4m.【分析】由垂径定理,可得AD=AB,然后由勾股定理求得OD长,继而求得中间柱CD高度.【解答】解:∵CD是中间柱,即=,∴OC⊥AB,∴AD=BD=AB=×16=8〔m〕,∵半径OA=10m,在Rt△AOD中,OD==6〔m〕,∴CD=OC﹣OD=10﹣6=4〔m〕.故答案为:4【点评】此题考察了垂径定理应用与勾股定理.此题比较简洁,留意数形结合思想应用.17.如图,在△ABC中,BE平分∠ABC,DE∥BC,假如DE=2AD,AE=3,那么EC=6.【分析】由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行线分线段成比例定理,即可求得答案.【解答】解:∵DE∥BC,∴∠DEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD:DB=AE:EC,∴EC=2AE=2×3=6.故答案为:6.【点评】此题考察了平行线分线段成比例定理以及等腰三角形断定与性质.留意驾驭线段对应关系是解此题关键.18.如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,那么tan∠DBE值是2.【分析】求出AD=AB,设AD=AB=5x,AE=3x,那么5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出tan∠DBE=,代入求出即可,【解答】解:∵四边形ABCD是菱形,∴AD=AB,∵cosA=,BE=4,DE⊥AB,∴设AD=AB=5x,AE=3x,那么5x﹣3x=4,x=2,即AD=10,AE=6,在Rt△ADE中,由勾股定理得:DE==8,在Rt△BDE中,tan∠DBE===2,故答案为:2.【点评】此题考察了菱形性质,勾股定理,解直角三角形应用,关键是求出DE长.三、解答题〔本大题共8个小题,第19、20题每题6分,第21、22题每题6分,第23、24题每题6分,第25、26题每题6分,共66分.解容许写出必要文字说明、证明过程或演算步骤〕19.〔6分〕计算:〔π﹣3.14〕0﹣2﹣|﹣3|=﹣1.【分析】此题涉及零指数幂、负指数幂、二次根式化简和特别角三角函数值4个考点.在计算时,须要针对每个考点分别进展计算,然后根据实数运算法那么求得计算结果.【解答】解:原式=1﹣2×+4﹣3,=1﹣3+4﹣3,=﹣1.故答案为:﹣1.【点评】此题主要考察了实数综合运算实力,是各地中考题中常见计算题型.解决此类题目关键是娴熟驾驭负整数指数幂、零指数幂、二次根式、肯定值等考点运算.20.〔6分〕解不等式组,并写出其全部整数解.【分析】先求出不等式组解集,即可求得该不等式组整数解.【解答】解:由①得,x≥1,由②得,x<4.所以不等式组解集为1≤x<4,该不等式组整数解为1,2,3.【点评】此题考察是解一元一次不等式组及求一元一次不等式组整数解,求不等式公共解,要遵循以下原那么:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.〔8分〕“端午节〞是我国传统佳节,民间历来有吃“粽子〞风俗.我市某食品厂为理解市民对去年销量较好肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽〔以下分别用A、B、C、D表示〕这四种不同口味粽子宠爱状况,在节前对某居民区市民进展了抽样调查,并将调查状况绘制成如下两幅统计图〔尚不完好〕.请根据以上信息答复:〔1〕本次参与抽样调查居民有多少人?〔2〕将两幅不完好图补充完好;〔3〕求扇形统计图中C所对圆心角度数;〔4〕假设有外型完全一样A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图方法,求他第二个吃到恰好是C粽概率.【分析】〔1〕根据B类有60人,所占百分比是10%即可求解;〔2〕利用总人数减去其他类型人数即可求得C类型人数,然后根据百分比意义求解;〔3〕利用360°乘以对应百分比即可求解;〔4〕利用列举法即可求解.【解答】解:〔1〕本次参与抽样调查居民人数是:60÷10%=600〔人〕;〔2〕C类人数是:600﹣180﹣60﹣240=120〔人〕,C类所占百分比是:×100%=20%,A类所占百分比是:×100%=30%.;〔3〕扇形统计图中C所对圆心角度数是:360°×20%=72°;〔4〕画树状图如下:那么他第二个吃到恰好是C粽概率是:=.【点评】此题考察是条形统计图和扇形统计图综合运用,读懂统计图,从不同统计图中得到必要信息是解决问题关键.条形统计图能清晰地表示出每个工程数据;扇形统计图干脆反映部分占总体百分比大小.22.〔8分〕如图,AB为圆O直径,点C为圆O上一点,假设∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.〔1〕试推断CD与圆O位置关系,并说明理由;〔2〕假设直线l与AB延长线相交于点E,圆O半径为3,并且∠CAB=30°,求AD长.【分析】〔1〕连接OC,求出OC和AD平行,求出OC⊥CD,根据切线断定得出即可;〔2〕连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.【解答】解:〔1〕CD与圆O位置关系是相切,理由是:连接OC,∵OA=OC,∴∠OCA=∠CAB,∵∠CAB=∠CAD,∴∠OCA=∠CAD,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∵OC为半径,∴CD与圆O位置关系是相切;〔2〕连接BC,∵AB是⊙O直径,∴∠BCA=90°,∵圆O半径为3,∴AB=6,∵∠CAB=30°,∴BC=AB=3,AC=BC=3,∵∠BCA=∠CDA=90°,∠CAB=∠CAD,∴△CAB∽△DAC,∴=,∴=,∴AD=.【点评】此题考察了切线性质和断定,圆周角定理,相像三角形性质和断定,解直角三角形等学问点,能综合运用学问点进展推理是解此题关键.23.〔9分〕由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工作所需时间比是3:2,两队共同施工6天可以完成.〔1〕求两队单独完成此项工程各需多少天?〔2〕此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元酬劳,假设按各自完成工程量安排这笔钱,问甲、乙两队各应得到多少元?【分析】〔1〕设甲队单独完成此项工程须要3x天,那么乙队单独完成此项工程须要2x天,根据两队共同施工6天可以完成该工程,即可得出关于x分式方程,解之经检验即可得出结论;〔2〕根据甲、乙两队单独完成这项工作所需时间比可得出两队每日完成工作量之比,再结合总酬劳为4000元即可求出结论.【解答】解:〔1〕设甲队单独完成此项工程须要3x天,那么乙队单独完成此项工程须要2x 天,根据题意得: +=1,解得:x=5,经检验,x=5是所列分式方程解且符合题意.∴3x=15,2x=10.答:甲队单独完成此项工程须要15天,乙队单独完成此项工程须要10天.〔2〕∵甲、乙两队单独完成这项工作所需时间比是3:2,∴甲、乙两队每日完成工作量之比是2:3,∴甲队应得酬劳为4000×=1600〔元〕,乙队应得酬劳为4000﹣1600=2400〔元〕.答:甲队应得酬劳为1600元,乙队应得酬劳为2400元.【点评】此题考察了分式方程应用,找准等量关系,正确列出分式方程是解题关键.24.〔9分〕如图,边长为1正方形ABCD对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ〔0°<θ<90°〕,PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.〔1〕求四边形OEBF面积;〔2〕求证:OG•BD=EF2;〔3〕在旋转过程中,当△BEF与△COF面积之和最大时,求AE长.【分析】〔1〕由四边形ABCD是正方形,直角∠MPN,易证得△BOE≌△COF〔ASA〕,那么可证得S四边形OEBF =S△BOC=S正方形ABCD;〔2〕易证得△OEG∽△OBE,然后由相像三角形对应边成比例,证得OG•OB=OE2,再利用OB 与BD关系,OE与EF关系,即可证得结论;〔3〕首先设AE=x,那么BE=CF=1﹣x,BF=x,继而表示出△BEF与△COF面积之和,然后利用二次函数最值问题,求得AE长.【解答】解:〔1〕∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,,∴△BOE≌△COF〔ASA〕,∴S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD=×1×1=;〔2〕证明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG•OB=OE2,∵OB=BD,OE=EF,∴OG•BD=EF2;〔3〕如图,过点O作OH⊥BC,∵BC=1,∴OH=BC=,设AE=x,那么BE=CF=1﹣x,BF=x,∴S△BEF +S△COF=BE•BF+CF•OH=x〔1﹣x〕+〔1﹣x〕×=﹣〔x﹣〕2+,∵a=﹣<0,∴当x=时,S△BEF +S△COF最大;即在旋转过程中,当△BEF与△COF面积之和最大时,AE=.【点评】此题属于四边形综合题,主要考察了正方形性质,旋转性质、全等三角形断定与性质、相像三角形断定与性质、勾股定理以及二次函数最值问题.留意驾驭转化思想应用是解此题关键.25.〔10分〕在数学上,我们把符合肯定条件动点所形成图形叫做满意该条件点轨迹.例如:动点P坐标满意〔m,m﹣1〕,全部符合该条件点组成图象在平面直角坐标系xOy中就是一次函数y=x﹣1图象.即点P轨迹就是直线y=x﹣1.〔1〕假设m、n满意等式mn﹣m=6,那么〔m,n﹣1〕在平面直角坐标系xOy中轨迹是y=;〔2〕假设点P〔x,y〕到点A〔0,1〕间隔与到直线y=﹣1间隔相等,求点P轨迹;〔3〕假设抛物线y=上有两动点M、N满意MN=a〔a为常数,且a≥4〕,设线段MN中点为Q,求点Q到x轴最短间隔.【分析】〔1〕先推断出m〔n﹣1〕=6,进而得出结论;〔2〕先求出点P到点A间隔和点P到直线y=﹣1间隔建立方程即可得出结论;〔3〕设出点M,N坐标,进而得出点Q坐标,利用MN=a,得出16〔k2+1〕〔k2+b〕≥16,即可得出结论.【解答】解:〔1〕设m=x,n﹣1=y,∵mn﹣m=6,∴m〔n﹣1〕=6,∴xy=6,∴y=,∴〔m,n﹣1〕在平面直角坐标系xOy中轨迹是y=,故答案为:y=;〔2〕∴点P〔x,y〕到点A〔0,1〕,∴点P〔x,y〕到点A〔0,1〕间隔平方为x2+〔y﹣1〕2,∵点P〔x,y〕到直线y=﹣1间隔平方为〔y+1〕2,∵点P〔x,y〕到点A〔0,1〕间隔与到直线y=﹣1间隔相等,∴x2+〔y﹣1〕2=〔y+1〕2,∴y=x2;〔3〕设直线MN解析式为y=kx+b,M〔x1,y1〕,N〔x2,y2〕,∴线段MN中点为Q纵坐标为,∴x2=kx+b,∴x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,∴=〔kx1+b+kx2+b〕= [k〔x1+x2〕+2b]=2k2+b∴MN2=〔x1﹣x2〕2+〔y1﹣y2〕2=〔k2+1〕〔x1﹣x2〕2=〔k2+1〕[〔x1+x2〕2﹣4x1x2]=16〔k2+1〕〔k2+b〕≥16,∴k2+b≥,∴=k2+k2+b≥k2+=〔k2+1+〕﹣1≥2﹣1=1,∴点Q到x轴最短间隔为1.【点评】此题是二次函数综合题,主要考察了点轨迹定义,两点间间隔公式,中点坐标公式公式,根与系数关系,确定出16〔k2+1〕〔k2+b〕≥16是解此题关键.26.〔10分〕如图1,二次函数y=ax2﹣2ax﹣3a〔a<0〕图象与x轴交于A、B两点〔点A在点B右侧〕,与y轴正半轴交于点C,顶点为D.〔1〕求顶点D坐标〔用含a代数式表示〕;〔2〕假设以AD为直径圆经过点C.①求抛物线函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN〔点P、M、N分别和点O、B、E对应〕,并且点M、N都在抛物线上,作MF⊥x轴于点F,假设线段MF:BF=1:2,求点M、N坐标;③点Q在抛物线对称轴上,以Q为圆心圆过A、B两点,并且和直线CD相切,如图3,求点Q坐标.【分析】〔1〕将二次函数解析式进展配方即可得到顶点D坐标.〔2〕①以AD为直径圆经过点C,即点C在以AD为直径圆圆周上,根据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D坐标可由a表达出来,在得出AC、CD、AD长度表达式后,根据勾股定理列等式即可求出a值,由此得出抛物线解析式.②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N坐标关键是求出点M坐标;首先根据①函数解析式设出M点坐标,然后根据题干条件:BF=2MF作为等量关系进展解答即可.③设⊙Q与直线CD切点为G,连接QG,由C、D两点坐标不难推断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD2=2QG2=2QB2,设出点Q坐标,然后用Q点纵坐标表达出QD、QB长,根据上面等式列方程即可求出点Q坐标.【解答】解:〔1〕∵y=ax2﹣2ax﹣3a=a〔x﹣1〕2﹣4a,∴D〔1,﹣4a〕.〔2〕①∵以AD为直径圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a〔x﹣3〕〔x+1〕知,A〔3,0〕、B〔﹣1,0〕、C〔0,﹣3a〕,那么:AC2=〔0﹣3〕2+〔﹣3a﹣0〕2=9a2+9、CD2=〔0﹣1〕2+〔﹣3a+4a〕2=a2+1、AD2=〔3﹣1〕2+〔0+4a〕2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=﹣1即,抛物线解析式:y=﹣x2+2x+3.②∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M〔x,﹣x2+2x+3〕,那么OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵MF:BF=1:2,即BF=2MF,∴2〔﹣x2+2x+3〕=x+1,化简,得:2x2﹣3x﹣5=0解得:x1=﹣1、x2=∴M〔,〕、N〔,〕.③设⊙Q与直线CD切点为G,连接QG,过C作CH⊥QD于H,如右图;设Q〔1,b〕,那么QD=4﹣b,QB2=QG2=〔1+1〕2+〔b﹣0〕2=b2+4;∵C〔0,3〕、D〔1,4〕,∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;代入数据,得:〔4﹣b〕2=2〔b2+4〕,化简,得:b2+8b﹣8=0,解得:b=﹣4±2;即点Q坐标为〔1,﹣4+2〕或〔1,﹣4﹣2〕.【点评】此题主要考察了二次函数解析式确定、旋转图形性质、圆周角定理以及直线和圆位置关系等重要学问点;后两个小题较难,最终一题中,通过构建等腰直角三角形找出QD和⊙Q半径间数量关系是解题题目关键.。
苏教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.............)1. 3-的倒数是( )A. B. 13 C. 13- D. 3-2. 函数y =2x -中自变量x 的取值范围是( )A. x >2B. x ≤2C. x ≥2D. x ≠23. 五边形的内角和是( )A. 180°B. 360°C. 540°D. 600°4. 下列汽车标志中,是中心对称图形是( )A. B. C. D. 5. 如图,直线m ∥n ,∠1=70°,∠2=30°,则∠A 等于( )A. 30°B. 35°C. 40°D. 50°6. 若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( )A. 12B. 10C. 2D. 07. 已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为( )A. 2B. 4C. 6D. 88. 过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A. B. C. D. 9. 对于代数式x 2-10x +24,下列说法:①它是二次三项式; ②该代数式的值可能等于2017;③分解因式的结果是(x -4)(x -6);④该代数式的值可能小于-1.其中正确的有( )A. 1个B. 2个C. 3 个D. 4个10. 在△ABC 中,∠B=45°,AC =4,则△ABC 面积的最大值为( ) A. 42 B. 42+4 C. 8 D. 82+8二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........) 11. 4的平方根是 .12. 人体中红细胞的直径约为0.0000077 m ,数据0.0000077用科学记数法表示为________13. 计算:222222x y x y x y ---=___________. 14. 若点A(-1,a)在反比例函数y =-3x 的图像上,则a 的值为_____________. 15. 如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心,若∠B =25°,则∠C 的度数为_____°.16. 如图,在菱形ABCD 中,AC 、BD 相交于点O ,E 为AB 的中点,若OE=2,则菱形ABCD 的周长是____________17. 一食堂需要购买盒子存放食物,盒子有A 、B 两种型号,单个盒子的容量和价格如表格所示.现有15升食物需要存放且要求每个盒子都要装满,由于A 型号盒子正做促销活动:购买三个及三个以上可一次性每个返还现金1.5元,则该食堂购买盒子所需最少费用是__________.18. 在△ABC 中,AB =42,BC =6,∠B=45°,D 为BC 边上一动点,将△ABC 沿着过点D 的直线折叠使点C 落在AB 边上,则CD 的取值范围是_____________.三、解答题(本大题共10小题,共84分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19. 计算:(1)11128()2---+;(2)(x-1)2-(x +1)(x-3). 20. (1)解方程:2210x x --=;(2)解不等式组:841{13822x x x x +<+≤- 21. 如图,△ABC 中,AB=AC ,点D 、E 分别在AB 、AC 边上∠EBC=∠DCB.求证:BE=CD22. 在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下两幅统计图.请根据相关信息,解答下列问题:(1)扇形统计图中,初赛成绩为1.65m 所在扇形图形的圆心角为_ _°;(2)补全条形统计图;(3)这组初赛成绩的中位数是 m;(4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m 运动员杨强能否进入复赛?为什么?23. 若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个”中高数”.若一个三位数的十位上数字为7,且从4、5、6、8中随机选取两数,与7组成”中高数”,那么组成”中高数”的概率是多少?(请用”画树状图”或”列表”等方法写出分析过程)24. 如图,菱形ABCD 中,(1)若半径为1⊙O 经过点A 、B 、D ,且∠A=60°,求此时菱形的边长;(2)若点P 为AB 上一点,把菱形ABCD 沿过点P 直线a 折叠,使点D 落在BC 边上,利用无刻度的直尺和圆规作出直线a .(保留作图痕迹,不必说明作法和理由)25. “夕阳红”养老院共有普通床位和高档床位共500张.已知今年一月份入住普通床位老人300人,入住高档床位老人90人,共计收费51万元;今年二月份入住普通床位老人350人,入住高档床位老人100人,共计收费58万元.(1)求普通床位和高档床位每月收费各多少元?(2)根据国家养老政策规定,为保障普通居民的养老权益,所有实际入住高档床位数不得超过实际入住普通床位数的三分之一;另外为扶持养老企业发展国家民政局财政对每张入住的床位平均每年都是给予养老院企业2400元的补贴.经测算,该养老院普通床位的运营成本是每月1200元/张,入住率为90%;高档床位的运营成本是每月2000元/张,入住率为70%.问该养老院应该怎样安排500张床的普通床位和高档床位数量,才能使每月的利润最大,最大为多少元?(月利润=月收费-月成本+月补贴)26. 如图,已知抛物线1(1)()2y x x b =-+-(其中1b >)与x 轴交于点A 、B(点A 在点B 的左侧),与y 轴交于点C ,抛物线的对称轴l 与x 轴交于点D ,且点D 恰好在线段BC 的垂直平分线上.(1)求抛物线的关系式;(2)过点()1,0M 的线段MN∥y 轴,与BC 交于点P ,与抛物线交于点N .若点E 是直线l 上一点,且∠BED =∠MNB-∠ACO 时,求点E 的坐标.27. 如图,在平面直角坐标系中,直线y=2x+4分别交x轴,y轴于点A,C,点D(m,2)在直线AC上,点B 在x轴正半轴上,且OB=3OC.点Ey轴上任意一点记点E为(0,n).(1)求直线BC的关系式;(2)连结DE,将线段DE绕点D按顺时针旋转90°得线段DG,作正方形DEFG,是否存在n的值,使正方形DEFG的顶点F落在△ABC的边上?若存在,求出所有的n值并直接写出此时正方形DEFG与△ABC重叠部分的面积;若不存在,请说明理由.28. 在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形.例如,下图中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.(1)已知A(2,3),B(5,0),C(, 2).①当2t=时,点A,B,C的最优覆盖矩形的面积为 ;②若点A,B,C的最优覆盖矩形的面积为40,则t的值为 ;(2)已知点D(1,1),点E(,),其中点E是函数4(0)y xx=>的图像上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.答案与解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑.............)1. 3-倒数是( )A. B. 13C.13- D. 3-【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】∵1313⎛⎫-⨯-=⎪⎝⎭,∴3-的倒数是13-.故选C2.函数y x的取值范围是( )A. x>2B. x≤2C. x≥2D. x≠2【答案】B【解析】【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数2x0x2-≥⇒≤.故选B.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.3. 五边形的内角和是( )A. 180°B. 360°C. 540°D. 600°【答案】C【解析】【分析】利用多边形的内角和为(n﹣2)•180°即可解决问题【详解】解:由多边形的内角和公式当n=5时,五边形内角和为(n﹣2)•180°=(5﹣2)•180°=540°故选C4. 下列汽车标志中,是中心对称图形的是( ) A. B. C. D.【答案】C【解析】试题分析:根据中心对称图形的概念对各项分析判断即可.解:A .不是中心对称,故本项错误,B .不是中心对称,故本项错误,C .是中心对称,故本项正确,D .不是中心对称,故本项错误,故选C .点评:本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 5. 如图,直线m ∥n ,∠1=70°,∠2=30°,则∠A 等于( )A. 30°B. 35°C. 40°D. 50°【答案】C【解析】 试题分析:已知m ∥n ,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD 的一个外角,可得∠3=∠2+∠A.即∠A =∠3-∠2=70°-30°=40°.故答案选C.考点:平行线的性质.6. 若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( )A. 12B. 10C. 2D. 0【答案】A【解析】∵5791113,,,,的平均数是9,方差是8,一组数据2,4,6,8,x的方差比数据5791113,,,,的方差大,∴这组数据可能是x(x<0),2,4,6,8或2,4,6,8,x(x>10),观察只有A选项符合,故选A.7. 已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为()A. 2B. 4C. 6D. 8【答案】D【解析】【分析】根据圆锥侧面展开图的圆心角与半径(即圆锥的母线的长度)求得的弧长,就是圆锥的底面的周长,然后根据圆的周长公式l=2πr解出r的值即可.【详解】试题解析:设圆锥的底面半径为r圆锥的侧面展开扇形的半径为12,∵它的侧面展开图的圆心角是120,∴弧长120π128π180l⨯==,即圆锥底面的周长是8π,8π2πr∴=,解得,r=4,∴底面圆的直径为8.故选:D.【点睛】本题考查了圆锥计算.正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8. 过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为( )A. B. C. D.【答案】B【解析】试题解析:选项,,A C D 折叠后都不符合题意,只有选项折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.9. 对于代数式x 2-10x +24,下列说法:①它是二次三项式; ②该代数式的值可能等于2017;③分解因式的结果是(x -4)(x -6);④该代数式的值可能小于-1.其中正确的有( )A. 1个B. 2个C. 3 个D. 4个【答案】C【解析】代数式x 2-10x +24是二次三项式,故①是正确的;x 2-10x +24=(x+5)2-1,故代数式的值不可能小于-1,当5 时,代数式的值为2017,故②是正确的,④是错误的;x 2-10x +24=(x-6)(x-4),故③是正确的;所以①②③共有3个是正确的;故选C .10. 在△ABC 中,∠B=45°,AC =4,则△ABC 面积的最大值为( )+4 C. 8 +8 【答案】B【解析】:∵∠B=45°,AC=b=4,∴由余弦定理cosB=2222a c b ac +- 得:221622a c ac+-= ,2216216a c ac =+-≥- ,即(216ac ≤ (当且仅当a=c 时取等号),∴8(216=+=+∴△ABC 面积S=11•sin (164222ac B ∠≤+⨯=+ ,则△ABC 面积的最大值为4+,故选B .【点睛】利用余弦定理表示出cosB ,将B 的度数,以及AC ,即b 的值代入,整理后再利用基本不等式求出ac 的最大值,然后利用三角形的面积公式表示出三角形ABC 的面积,将ac 的最大值及sinB 的值代入,即可求出三角形ABC 面积的最大值.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........) 11. 4的平方根是 .【答案】±2. 【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2. 考点:平方根.12. 人体中红细胞的直径约为0.0000077 m ,数据0.0000077用科学记数法表示为________【答案】67.710-⨯【解析】【分析】根据科学记数法的一般形式进行解答即可.【详解】解:0.0000077=67.710-⨯.故答案为67.710-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13. 计算:222222x y x y x y ---=___________. 【答案】2x y+ 【解析】2222222()2()()x y x y x y x y x y x y x y--==--+-+ ; 故答案是:2x y+. 14. 若点A(-1,a)在反比例函数y =-3x的图像上,则a 的值为_____________.【解析】∵陈点A(-1,a)代入在反比例函数y=-3x中,∴a=3;故答案是:3.15. 如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,若∠B=25°,则∠C的度数为_____°.【答案】40°.【解析】【详解】如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故答案为40°.16. 如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=2,则菱形ABCD的周长是____________【答案】16∵在菱形ABCD中,AC、BD相交于点O,E为AB的中点,∴EO是△ABC的中位线,∵OE=2,∴BC=4,则菱形ABCD的周长是:4×4=16;故答案是:16.17. 一食堂需要购买盒子存放食物,盒子有A、B两种型号,单个盒子的容量和价格如表格所示.现有15升食物需要存放且要求每个盒子都要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性每个返还现金1.5元,则该食堂购买盒子所需最少费用是__________.【答案】29.【解析】试题分析:设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为个,①当0≤x<3时,y=5x+=x+30,∵k=1>0,∴y随x的增大而增大,∴当x=0时,y有最小值,最小值为30元;②当3≤x时,y=5x+﹣4=26+x,∵k=1>0,∴y随x的增大而增大,∴当x=3时,y有最小值,最小值为29元;综合①②可得,购买盒子所需要最少费用为29元.故答案为29.考点:一次函数的应用.18. 在△ABC中,AB=2,BC=6,∠B=45°,D为BC边上一动点,将△ABC沿着过点D的直线折叠使点C落在AB边上,则CD的取值范围是_____________.【答案】626-≤CD≤5【解析】如下图所示:设CD=DE=x,则DE=EB=x,∠DEB=90°,DB=2x,∵BC=6,∴x+2x=6∴x=62-6当E与A重合时,作AH⊥CB于H,如下图所示:设CD=DE=x在Rt△AHB中,易知AH=HB=4,∠AHB=90°,HD=x-2,DE=x,∴x2=42+(x-2)2,∴x=5,综上可知,CD的最大值为5,最小值为2-6,即626≤CD≤5.故答案是:626≤CD≤5.【点睛】本题考查三角形综合题、基本作图、角平分线的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用特殊位置确定最值问题,属于中考压轴题.三、解答题(本大题共10小题,共84分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19. 计算:(1)11128()2---+;(2)(x-1)2-(x +1)(x-3). 【答案】(1)12-;(2)4【解析】试题分析:(1)先化简绝对值、二次根式、负指数幂后,再按运算顺序依次计算;(2)利用完全平方式、多项式乘多项式法则去括号,再合并同类项即可;试题解析:解:(1)21222-=12(2)原式=x 2-2x +1-(x 2-2x -3)=x 2-2x +1-x 2+2x +3=4. 20. (1)解方程:2210x x --=;(2)解不等式组:841{13822x x x x +<+≤- 【答案】(1)112x = 212x =;(2)73<x≤4 【解析】试题分析:(1)利用配方法解;(2)先求两个不等式的解集,再求公共部分即可;试题解析:解:(1)2212x x -+= ()212x -=∴112x =212x =(2)由①得 73x >由②得≤4∴73<x≤4 21. 如图,△ABC 中,AB=AC ,点D 、E 分别在AB 、AC 边上∠EBC=∠DCB.求证:BE=CD【答案】证明见解析.【解析】试题分析:由AB=AC 得到∠DBC =∠ECB ,再根据ASA 得到△DBC ≌△ECB ,根据全等三角形的性质即可得到结果;试题解析:证明:∵ AB =AC ,∴∠DBC =∠ECB .在△DBC 和△ECB 中,{DBC ECBBC CBEBC DCB∠∠=∠=∠= ∴△DBC ≌△ECB ,∴DC =EB .22. 在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下两幅统计图.请根据相关信息,解答下列问题:(1)扇形统计图中,初赛成绩为1.65m 所在扇形图形的圆心角为_ _°;(2)补全条形统计图;(3)这组初赛成绩的中位数是 m;(4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m 的运动员杨强能否进入复赛?为什么?【答案】(1)54°;(2)补全图形见解析;(3)1.60;(4)不一定,理由见解析.【解析】试题分析:(1)用整体1减去其它所占的百分比,即可求出a的值;用360°乘以初赛成绩为1.70m所占的百分比即可;(2)根据跳1.50m的人数和所占的百分比求出总人数,再乘以跳170m的人数所占的百分比,求出跳170m的人数,从而补全统计图;(3)根据众数和中位数的定义分别进行解答即可;(4)根据中位数的意义可直接判断出能否进入复赛.试题解析:(1)根据题意得:1-20%-10%-25%-30%=15%;则a的值是15;初赛成绩为1.70m所在扇形图形的圆心角为:360°×20%=72°;(2)跳1.70m的人数是:210%×20%=4(人),补图如下:(3)∵在这组数据中,1.60m出现了6次,出现的次数最多,∴这组数据的众数是1.60m;将这组数据从小到大排列,其中处于中间的两个数都是1.60m,则这组数据的中位数是1.60m.(4)进入复赛.因为中位数为1.60m,可以估计这次初赛中,大约有一半选手的成绩高于1.60m,有一半的选手低于1.60m,杨强的成绩是1.65m,高于中位数1.60m,可以推断他的成绩估计比一半以上选手的成绩好.23. 若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个”中高数”.若一个三位数的十位上数字为7,且从4、5、6、8中随机选取两数,与7组成”中高数”,那么组成”中高数”的概率是多少?(请用”画树状图”或”列表”等方法写出分析过程)【答案】(1)12.【解析】【分析】先画树状图展示所有可能的结果数,再找出任选两个不同的数,与7组成”中高数”的结果数,然后根据概率公式求解.【详解】画树状图为:共有12种可能,其中任选两个不同的数,与7组成”中高数”的结果数共有为6种可能,所以任选两个不同的数,与7组成”中高数”的概率=61 122=.24. 如图,菱形ABCD中,(1)若半径为1的⊙O经过点A、B、D,且∠A=60°,求此时菱形的边长;(2)若点P为AB上一点,把菱形ABCD沿过点P的直线a折叠,使点D落在BC边上,利用无刻度的直尺和圆规作出直线a.(保留作图痕迹,不必说明作法和理由)【答案】(1)3;(2)作图见解析.【解析】试题分析:(1)连接OB、OD和OC,根据菱形、内接圆的性质可得∠DOB=120°,OD=OB=1,CD=BC,∠C=60°,从而得到△COD≌△COB,根据全等三角形的性质,可求得∠COD=∠COB=60o=、∠DCO=∠BCO=30o,根据三角形内角和可得△COD 是Rt△COD,由tan∠DCO=ODCD可求得CD的长度,即为所求;(2)根据题意先作出D在BC上的对应点;作出直线a;试题解析:(1)连接OB 、OD 和OC ,如图所示:∵半径为1的⊙O 经过点A 、B 、D ,且∠A =60°, ∴∠DOB =120°,OD =OB =1, ∵四边形ABCD 是菱形,∠A =60°, ∴CD =BC ,∠C =60°,在△COD 和△COB 中{OD OBCO CO CD CB===∴△COD ≌△COB(SSS),∴∠COD =∠COB ,∠DCO =∠BCO ,∴∠COD =∠COB =111206022o o BOD ∠=⨯= , ∠DCO =∠BCO =11603022o o BCD ∠=⨯= ∴∠ODC =(180-30-60)o =90o ,∴△COD 是Rt △COD ,∵tan ∠DCO=OD CD∴CD=tan30o ·313OD =⨯=∴菱形ABCD 的边长是3 ;(2)如图所示:作出D在BC上的对应点,再作出直线a即可.25. “夕阳红”养老院共有普通床位和高档床位共500张.已知今年一月份入住普通床位老人300人,入住高档床位老人90人,共计收费51万元;今年二月份入住普通床位老人350人,入住高档床位老人100人,共计收费58万元.(1)求普通床位和高档床位每月收费各多少元?(2)根据国家养老政策规定,为保障普通居民的养老权益,所有实际入住高档床位数不得超过实际入住普通床位数的三分之一;另外为扶持养老企业发展国家民政局财政对每张入住的床位平均每年都是给予养老院企业2400元的补贴.经测算,该养老院普通床位的运营成本是每月1200元/张,入住率为90%;高档床位的运营成本是每月2000元/张,入住率为70%.问该养老院应该怎样安排500张床的普通床位和高档床位数量,才能使每月的利润最大,最大为多少元?(月利润=月收费-月成本+月补贴)【答案】(1)普通床位月收费为800元,高档床位月收费为3000元;(2)该安排普通床位350张、高档床位150张,才能使每月的利润最大,最大为63000元.【解析】试题分析:(1)设普通床位和高档床位每月收费为x,y元,根据题意列出方程组解答即可;(2)设安排普通床位a张,根据题意列出不等式解答即可;试题解析:解:(1)设普通床位月收费为x元,高档床位月收费为y元.根据题意得:30090510000 {350100580000 x yx y+=+=解之得:800 {3000 xy==答:普通床位月收费为800元,高档床位月收费为3000元.(2)设:应安排普通床位a张,则高档床位为(500-a)张.由题意:0.7×(500-a)≤0.9×1 3 a解之得:a≥350每张床位月平均补贴=2400÷12=200元设月利润总额为w,根据题意得:w=90%×800a+70%×3000(500-a)-90%×1200a-70%×2000(500-a)+200a×90%+200(500-a)×70% = -1020a+420000∵k=-1020<0∴w 随着a 的增大而减小∴当a =350时,w 有最大值= -1020×350+420000=63000 答:应该安排普通床位350张、高档床位150张,才能使每月的利润最大,最大为63000元(如果设高档床位,相应安步骤给分)26. 如图,已知抛物线1(1)()2y x x b =-+-(其中1b >)与x 轴交于点A 、B(点A 在点B 的左侧),与y 轴交于点C ,抛物线的对称轴l 与x 轴交于点D ,且点D 恰好在线段BC 的垂直平分线上.(1)求抛物线的关系式;(2)过点()1,0M 的线段MN∥y 轴,与BC 交于点P ,与抛物线交于点N .若点E 是直线l 上一点,且∠BED =∠MNB-∠ACO 时,求点E 的坐标.【答案】(1)抛物线的关系式为213222y x x =-++; (2)点E 的坐标为315()22,或315()22-,【解析】 试题分析:(1)由题意可求得点()1,0A -、(),0B b 、10,2C b ⎛⎫ ⎪⎝⎭ 试题解析:(1)求得点()1,0A -、(),0B b 、10,2C b ⎛⎫ ⎪⎝⎭易得∠ACB =90°,由△AOC ∽△COB 可得124,0(b b ==舍去) ∴213222y x x =-++ (2)易证∠ACO =∠CBO ,∠MNB =∠MBN ,所以∠BED =∠CBN连结CN , 由勾股定理得CN 2BC =25BN =32 由勾股定理逆定理证得∠CNB =90°,从而得1tan tan 3BED CBN ∠=∠=然后解Rt △BED 可得DE =152, ∴点E 坐标为315,22⎛⎫ ⎪⎝⎭或315,22⎛⎫- ⎪⎝⎭ 27. 如图,在平面直角坐标系中,直线y =2x+4分别交x 轴,y 轴于点A ,C ,点D(m ,2)在直线AC 上,点B 在x 轴正半轴上,且OB =3OC .点E 是y 轴上任意一点记点E 为(0,n). (1)求直线BC 关系式;(2)连结DE ,将线段DE 绕点D 按顺时针旋转90°得线段DG ,作正方形DEFG ,是否存在n 的值,使正方形DEFG 的顶点F 落在△ABC 的边上?若存在,求出所有的n 值并直接写出此时正方形DEFG 与△ABC 重叠部分的面积;若不存在,请说明理由.【答案】(1)直线BC 关系式为143y x =-+; (2)当F 在BC 边上时求得174n =,214S 重叠=;当F 在AB 边上时求得1n =,53S =重叠; 【解析】解:(1)求出直线BC 关系式为143y x =-+…………(2分) (2)当F 在BC 边上时求得174n =……(4分),214S =重叠……(6分) 当F 在AB 边上时求得1n = ……(7分),53S =重叠……(9分)当F在AC边上时显然不合题意,舍去……(10分)28. 在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形.例如,下图中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.(1)已知A(2,3),B(5,0),C(, 2).①当2t=时,点A,B,C的最优覆盖矩形的面积为 ;②若点A,B,C的最优覆盖矩形的面积为40,则t的值为 ;(2)已知点D(1,1),点E(,),其中点E是函数4(0)y xx=>的图像上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.【答案】(1)①35;②②t =-3或17 2r≤≤【解析】试题分析:(1)①由矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形,得出最优覆盖矩形的长为:2+5=7,宽为3+2=5,即可得出结果;②由定义可知,t=-3或6;(2)OD所在的直线交双曲线于点E,矩形OFEG是点O,D,E的一个面积最小的最优覆盖矩形,OD所在的直线表达式为y=x,得出点E的坐标为(2,2),⊙H的半径最小2,当点E的纵坐标为1时,⊙H的半径最大r=172,即可得出结果;试题解析:解:(1):(1)①∵A(-2,3),B(5,0),C(2,-2),矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形,∴最优覆盖矩形的长为:2+5=7,宽为3+2=5,∴最优覆盖矩形的面积为:7×5=35; ②∵点A ,B ,C 的最优覆盖矩形的面积为40,∴由定义可知,t=-3或6,(2)如图1,OD 所在的直线交双曲线于点E ,矩形OFEG 是点O ,D ,E 的一个面积最小的最优覆盖矩形,∵点D(1,1),∴OD 所在的直线表达式为y =x ,∴点E 的坐标为(2,2),∴OE=22,∴⊙H 的半径r =2,如图2,∵当点E 的纵坐标为1时,1=4x ,解得x =4, ∴OE==, ∴⊙H 的半径17,r≤.2【点睛】本题是圆的综合题目,考查了矩形的性质、勾股定理、待定系数法求直线的解析式、坐标与图形性质、反比例函数等知识;本题综合性强,有一定难度.。
2024年长沙市初中学业水平考试试卷数学注意事项:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.答题时,请考生注意各大题题号后面的答题提示;4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5.答题卡上不得使用涂改液、涂改胶和贴纸;6.本学科试卷共25个小题,考试时量120分钟,满分120分.一、选择题(在下列各题的四个选项中,只有一项是符合题的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查轴对称图形和中心对称图形的识别,熟知定义:轴对称图形:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.据此逐项判断即可.【详解】解:A 中图形轴对称图形,不是中心对称图形,故本选项不符合题意;B 中图形既是轴对称图形又是中心对称图形,故本选项符合题意;C 中图形是轴对称图形,不是中心对称图形,故本选项不符合题意;D 中图形不是轴对称图形,是中心对称图形,故本选项不符合题意,故选:B .2. 我国近年来大力推进国家教育数字化战略行动,截至2024年6月上旬,上线慕课数量超过7.8万门,学习人次达1290000000建设和应用规模居世界第一.用科学记数法将数据1290000000表示为( )A. 81.2910×B. 812.910×C. 91.2910×D. 712910×【答案】C 是【解析】【分析】本题考查科学记数法,科学记数法的一般形式为10n a ×,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:用科学记数法将数据1290000000表示为91.2910×,故选:C .3. “玉兔号”是我国首辆月球车,它和着陆器共同组成“嫦娥三号”探测器.“玉兔号”月球车能够耐受月球表面的最低温度是180−℃、最高温度是150℃,则它能够耐受的温差是( )A. 180−℃B. 150℃C. 30℃D. 330℃【答案】D【解析】【分析】本题考查了温差的概念和有理数的运算,解决本题的关键是气温最高值与最低值之差,计算解决即可. 【详解】解:能够耐受的温差是()150180330−−=℃, 故答案为:D .4. 下列计算正确的是( )A. 642x x x ÷=B.C. 325()x x =D. 222()x y x y +=+【答案】A【解析】【分析】此题主要考查同底数幂的除法、二次根式的加减、幂的乘方、完全平方公式的运算,解题的关键是熟知运算法则.【详解】解:A 、 642x x x ÷=,计算正确;BC 、326()x x =,原计算错误;D 、222()2x y x xy y +=++,原计算错误;故选A .5. 为庆祝五四青年节,某学校举办班级合唱比赛,甲班演唱后七位评委给出的分数为:9.5,9.2,9.6,9.4,9.5,8.8,9.4,则这组数据的中位数是( )A. 9.2B. 9.4C. 9.5D. 9.6【答案】B【解析】 【分析】本题考查了中位数的定义,中位数是一组数据从小到大排列后居于中间的一个数或中间两个数的平均数,根据中位数的定义解题即可.【详解】解:甲班演唱后七位评委给出的分数为:8.8,9.2,9.4,9.4,9.5,9.5,9.6,∴中位数为:9.4,故选B .6. 在平面直角坐标系中,将点()3,5P 向上平移2个单位长度后得到点P ′的坐标为( )A. ()1,5B. ()5,5C. ()3,3D. ()3,7【答案】D【解析】【分析】本题考查坐标与图形变换-平移变换,根据点的坐标平移规则:左减右加,上加下减求解即可.【详解】解:在平面直角坐标系中,将点()3,5P 向上平移2个单位长度后得到点P ′的坐标为()3,52+,即()3,7,故选:D . 7. 对于一次函数21y x =−,下列结论正确的是( ) A. 它的图象与y 轴交于点()0,1−B. y 随x 的增大而减小C. 当12x >时,0y <D. 它的图象经过第一、二、三象限【答案】A【解析】【分析】本题考查一次函数的性质,根据一次函数的性质逐个判断即可得到答案.【详解】解:A.当0x =时,1y =−,即一次函数21y x =−的图象与y 轴交于点()0,1−,说法正确; B.一次函数21y x =−图象y 随x 增大而增大,原说法错误; C.当12x >时,0y >,原说法错误; D.一次函数21y x =−图象经过第一、三、四象限,原说法错误; 故选A .的的8. 如图,在ABC 中,60BAC ∠=°,50B ∠=°,AD BC ∥.则1∠的度数为( )A. 50°B. 60°C. 70°D. 80°【答案】C【解析】 【分析】本题主要考查了三角形内角和定理、平行线的性质等知识点,掌握平行线的性质成为解题的关键. 由三角形内角和定理可得70C ∠=°,再根据平行线的性质即可解答.【详解】解:∵在ABC 中,60BAC ∠=°,50B ∠=°, ∴18070C BAC B ∠∠−∠−=°=°,∵AD BC ∥,∴170C ∠∠==°.故选:C .9. 如图,在O 中,弦AB 的长为8,圆心O 到AB 的距离4OE =,则O 的半径长为( )A. 4B.C. 5D. 【答案】B【解析】 【分析】本题考查垂径定理、勾股定理,先根据垂径定理得到AE ,再根据勾股定理求解即可.【详解】解:∵在O 中,弦AB 的长为8,圆心O 到AB 的距离4OE =,∴OE AB ⊥,142AE AB ==,在Rt AOE △中,OA, 故选:B .10. 如图,在菱形ABCD 中,6AB =,30B ∠=°,点E 是BC 边上的动点,连接AE ,DE ,过点A 作AF DE ⊥于点P .设DE x =,AF y =,则y 与x 之间的函数解析式为(不考虑自变量x 的取值范围)( )A. 9y x =B. 12y x =C. 18y x =D. 36y x= 【答案】C【解析】【分析】本题考查菱形的性质、含30度角的直角三角形的性质、相似三角形的判定与性质,利用相似三角形的性质求解x 、y 的关系式是解答的关键.过D 作DH BC ⊥,交BC 延长线于H ,则90DHE ∠=°,根据菱形的性质和平行线的性质得到6CD AD AB ===,ADF DEH ∠=∠,30DCH B ∠=∠=°,进而利用含30度角的直角三角形的性质132DH CD ==,证明AFD DHE ∽得到AF AD DH DE=,然后代值整理即可求解. 【详解】解:如图,过D 作DH BC ⊥,交BC 延长线于H ,则90DHE ∠=°,∵在菱形ABCD 中,6AB =,30B ∠=°,∴AB CD ∥,AD BC ∥,6CD AD AB ===,∴ADF DEH ∠=∠,30DCH B ∠=∠=°, 在Rt CDH △中,132DH CD ==, ∵AF DE ⊥, ∴90AFD DHE ∠=∠=°,又ADF DEH ∠=∠,∴AFD DHE ∽, ∴AF AD DH DE=, ∵DE x =,AF y =,∴63yx =,∴18yx =,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11. 为了比较甲、乙、丙三种水稻秋苗的长势,每种秧苗各随机抽取40株,分别量出每株高度,计算发现三组秧苗的平均高度一样,并且得到甲、乙、丙三组秧苗高度的方差分别是3.6,10.8,15.8,由此可知____种秧苗长势更整齐(填“甲”、“乙”或“丙”).【答案】甲【解析】【分析】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵3.610.815.8<<,∴甲种秧苗长势更整齐,故答案为:甲.12. 某乡镇组织“新农村,新气象”春节联欢晚会,进入抽奖环节.抽奖方案如下:不透明的箱子里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有3个,蓝球有5个,每次摇匀后从中随机摸一个球,摸到红球获一等奖,摸到黄球获二等奖,摸到蓝球获三等奖,每个家庭有且只有一次抽奖机会,小明家参与抽奖,获得一等奖的概率为______.【答案】15##0.2【解析】【分析】本题考查概率公式,掌握概率的意义是解题的关键.利用概率公式直接进行计算.【详解】解:小明家参与抽奖,获得一等奖的概率为21 2355=++,故答案为:15.13. 要使分式619x−有意义,则x需满足的条件是______.【答案】19x≠【解析】【分析】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.【详解】解:∵分式619x −有意义, ∴190x −≠,解得19x ≠,故答案为:19x ≠.14. 半径为4,圆心角为90°的扇形的面积为______(结果保留π).【答案】4π【解析】 【分析】本题考查扇形的面积公式,根据扇形的面积公式2π360n r S =(n 为圆心角的度数,r 为半径)求解即可.【详解】解:由题意,半径为4,圆心角为90°的扇形的面积为290π44π360×=, 故答案为:4π.15. 如图,在ABC 中,点D ,E 分别是AC BC ,的中点,连接DE .若12DE =,则AB 的长为______.【答案】24【解析】【分析】本题主要考查三角形中位线定理,熟知三角形的中位线平行于第三边且等于第三边的一半是解题的关键.【详解】解:∵D ,E 分别是AC ,BC 的中点,∴DE 是ABC 的中点,∴221224AB DE ==×=,故答案为:24.16. 为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生,其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘以10,再加上4.6,将此时的运算结果再乘以10,然后加上1978,最后减去参与者的出生年份(注:出生年份是一个四位数,比如2010年对应的四位数是2010),得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是______.【答案】2009【解析】【分析】本题考查二元一次方程的解,理解题意是解答的关键.设这位参与者的出生年份是x ,从九个数字中任取一个数字为a ,根据题意列二元一次方程,整理得1001109x a =+,根据a 的取值得到x 的9种可能,结合实际即可求解.【详解】解:设这位参与者的出生年份是x ,从九个数字中任取一个数字为a ,根据题意,得()10 4.6101978915a x +×+−=, 整理,得100461978915a x ++−=∴1001109x a =+, ∵a 是从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,∴x 的值可能为1209,1309,1409,1509,1609,1709,1809,1909,2009,∵是为庆祝中国改革开放46周年,且参与者均为在校中学生,∴x 只能是2009,故答案为:2009.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第2425题每小题10分,共72分解答应写出必要的文字说明、证明过程或演算步骤)17. 计算:()011()π 6.84−−°−. 【答案】3【解析】【分析】本题考查了实数的混合运算,先根据绝对值、零指数幂、负整数指数幂的意义,特殊角的三角函值化简,再算加减即可.【详解】解:原式41=+3=.18. 先化简,再求值:()()()2233m m m m m −−++−,其中52m =. 【答案】49m −;1【解析】【分析】本题考查整式的混合运算及其求值,先根据整式的混合运算法则化简原式,再代值求解即可.【详解】解:()()()2233m m m m m −−++−22229m m m m =−++−49m =−. 当52m =时,原式54910912=×−=−=.19. 如图,在Rt ABC △中,90ACB ∠=°,AB =2AC =,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧分别交于点M 和N ,作直线MN 分别交AB BC ,于点D ,E ,连接CD AE ,.(1)求CD 的长;(2)求ACE 的周长.【答案】(1(2)6【解析】【分析】本题考查了线段垂直平分线的性质:线段垂直平分线的点到线段两个端点的距离相等,斜中半定理:直角三角形中,斜边上的中线等于斜边的一半,以及勾股定理等知识点,熟记相关结论是解题关键. (1)由题意得MN 是线段AB 的垂直平分线,故点D 是斜边AB 的中点.据此即可求解;(2)根据EA EB =、ACE 的周长AC CE EA AC CE EB AC BC =++=++=+即可求解;【小问1详解】解:由作图可知,MN 是线段AB 的垂直平分线,∴在Rt ABC △中,点D 是斜边AB 的中点.∴1122CD AB ==×. 【小问2详解】解:在Rt ABC △中,4BC =.∵MN 是线段AB 的垂直平分线,∴EA EB =.∴ACE 的周长246AC CE EA AC CE EB AC BC =++=++=+=+=.20. 中国新能源产业异军突起.中国车企在政策引导和支持下,瞄准纯电、混动和氢燃料等多元技术路线,加大研发投入形成了领先的技术优势,2023年,中国新能源汽车产销量均突破900万辆,连续9年位居全球第一.在某次汽车展览会上,工作人员随机抽取了部分参展人员进行了“我最喜欢的汽车类型”的调查活动(每人限选其中一种类型),并将数据整理后,绘制成下面有待完成的统计表、条形统计图和扇形统计图 类型人数 百分比 纯电m 54% 混动 n %a氢燃料 3%b 油车 5 %c请根据以上信息,解答下列问题:(1)本次调查活动随机抽取了_____人;表中=a ______,b =______;(2)请补全条形统计图;(3)请计算扇形统计图中“混动”类所在扇形的圆心角的度数;(4)若此次汽车展览会的参展人员共有4000人,请你估计喜欢新能源(纯电、混动、氢燃料)汽车的有多少人?【答案】(1)50;30,6(2)见解析 (3)108°(4)3600人【解析】【分析】本题考查统计表、条形统计图和扇形统计图的综合,理解题意,能从统计图中获取有用信息是解答的关键.(1)用喜欢油车人数除以其所占的百分比可求得调查人数,用喜欢氢燃料人数除以调查人数可求得b ,进而用1减去喜欢其他车型所占的百分比可求解a ;(2)先求得n ,进而可补全条形统计图;(3)用360度乘以喜欢混动所占的百分比即可求解;(4)用总人数乘以样本中喜欢新能源汽车所占的百分比即可求解.【小问1详解】解:本次调查活动随机抽取人数为510%50÷=(人), %350100%6%b =÷×=,则6b =,%154%6%10%30%a =−−−=,则30a =,故答案为:50;30,6;【小问2详解】解:∵5030%15n =×=,∴补全条形统计图如图所示:【小问3详解】解:扇形统计图中“混动”36030%108°×=°;【小问4详解】解:()400054%30%6%3600×++=(人). 答:估计喜欢新能源(纯电、混动、氢燃料)汽车的有3600人.21. 如图,点C 在线段AD 上,AB AD =,B D ∠=∠,BC DE =.(1)求证:ABC ADE △≌△;(2)若60BAC ∠=°,求ACE ∠的度数. 【答案】(1)见解析 (2)60ACE ∠=°【解析】【分析】本题考查全等三角形的判定与性质、等边三角形的判定与性质,证明ACE △是等边三角形是解答的关键.(1)直接根据全等三角形的判定证明结论即可;(2)根据全等三角形的性质得到AC AE =,60CAE BAC ∠=∠=°,再证明ACE △是等边三角形,利用等边三角形的性质求解即可.【小问1详解】证明:在ABC 与ADE 中,AB AD B D BC DE = ∠=∠ =, 所以()SAS ABC ADE ≌;【小问2详解】解:因为ABC ADE △≌△,60BAC ∠=°, 所以AC AE =,60CAE BAC ∠=∠=°,所以ACE △是等边三角形.所以60ACE ∠=°.22. 刺绣是我国民间传统手工艺.湘绣作为中国四大刺绣之一,闻名中外,在巴黎奥运会倒计时50天之际,某国际旅游公司计划购买A 、B 两种奥运主题的湘绣作品作为纪念品.已知购买1件A 种湘绣作品与2件B 种湘绣作品共需要700元,购买2件A 种湘绣作品与3件B 种湘绣作品共需要1200元. (1)求A 种湘绣作品和B 种湘绣作品的单价分别为多少元?(2)该国际旅游公司计划购买A 种湘绣作品和B 种湘绣作品共200件,总费用不超过50000元,那么最多能购买A 种湘绣作品多少件?【答案】(1)A 种湘绣作品的单价为300元,B 种湘绣作品的单价为200元(2)最多能购买100件A 种湘绣作品【解析】【分析】本题考查了二元一次方程组的应用以及一元一次不等式的应用.(1)设A 种湘绣作品的单价为x 元,B 种湘绣作品的单价为y 元,根据“购买1件A 种湘绣作品与2件B 种湘绣作品共需要700元,购买2件A 种湘绣作品与3件B 种湘绣作品共需要1200元”,即可得出关于x ,y 的二元一次方程组,解之即可解题;(2)设购买A 种湘绣作品a 件,则购买B 种湘绣作品()200a −件,总费用=单价×数量,结合总费用不超过50000元,即可得出关于a 的一元一次不等式,解之即可得出a 的值,再取其中的最大整数值即可得出该校最大可以购买湘绣的数量.【小问1详解】设A 种湘绣作品的单价为x 元,B 种湘绣作品的单价为y 元.根据题意,得2700231200x y x y += +=, 解得300,200x y = = .答:A 种湘绣作品的单价为300元,B 种湘绣作品的单价为200元.【小问2详解】设购买A 种湘绣作品a 件,则购买B 种湘绣作品()200a −件.根据题意,得()30020020050000a a +−≤,解得100a ≤.答:最多能购买100件A 种湘绣作品.23. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,90ABC ∠=°.(1)求证:AC BD =;(2)点E 在BC 边上,满足CEO COE ∠=∠.若6AB =,8BC =,求CE 的长及tan CEO ∠的值.【答案】(1)见解析 (2)5CE =,tan 3CEO ∠=【解析】【分析】本题考查矩形的判定与性质、勾股定理、等腰三角形的判定与性质、锐角三角函数等知识,熟练掌握矩形的判定与性质是解答的关键.(1)直接根据矩形的判定证明即可;(2)先利用勾股定理结合矩形的性质求得10AC =,OB OC =.进而可得152CO AC ==,再根据等腰三角形的判定得到5CE CO ==,过点O 作OF BC ⊥于点F ,根据等腰三角形的性质,结合勾股定理分别求得4CF =,1EF =,3OF =,然后利用正切定义求解即可.【小问1详解】证明:因为四边形ABCD 是平行四边形,且90ABC ∠=°,所以四边形ABCD 是矩形.所以AC BD =;【小问2详解】解:在Rt ABC △中,6AB =,8BC =,所以10AC =,因为四边形ABCD 是矩形, 所以152CO AC ==,OB OC =. 因为CEO COE ∠=∠,所以5CE CO ==.过点O 作OF BC ⊥于点F ,则142==CF BC ,所以541EF CE CF =−=−=,在Rt COF △中,3OF, 所以tan 3OF CEO EF∠==. 24. 对于凸四边形,根据它有无外接圆(四个顶点都在同一个圆上)与内切圆(四条边都与同一个圆相切),可分为四种类型,我们不妨约定:既无外接圆,又无内切圆的四边形称为“平凡型无圆”四边形;只有外接圆,而无内切圆的四边形称为“外接型单圆”四边形;只有内接圆,而无外接圆的四边形称为“内切型单圆”四边形;既有外接圆,又有内切圆的四边形称为“完美型双圆”四边形.请你根据该约定,解答下列问题:(1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”,①平行四边形一定不是“平凡型无圆”四边形; ( )②内角不等于90°的菱形一定是“内切型单圆”四边形; ( )③若“完美型双圆”四边形的外接圆圆心与内切圆圆心重合,外接圆半径为R ,内切圆半径为r ,则有=R .( ) (2)如图1,已知四边形ABCD 内接于O ,四条边长满足:AB CD BC AD +≠+.①该四边形ABCD 是“______”四边形(从约定的四种类型中选一种填入); ②若BAD ∠的平分线AE 交O 于点E ,BCD ∠的平分线CF 交O 于点F ,连接EF .求证:EF 是O 的直径.(3)已知四边形ABCD 是“完美型双圆”四边形,它的内切圆O 与AB BC CD AD ,,,分别相切于点E ,F ,G ,H .①如图2.连接EG FH ,交于点P .求证:EG FH ⊥.②如图3,连接OA OB OC ,,,,若2OA =,6OB =,3OC =,求内切圆O 的半径r 及OD 的长.【答案】(1)①×;②√;③√(2)①外接型单圆;②见解析(3)r =OD = 【解析】【分析】(1)根据圆内接四边形和切线长定理可得:有外接圆的四边形的对角互补;有内切圆的四边形的对边之和相等,结合题中定义,根据对角不互补,对边之和也不相等的平行四边形无外接圆,也无内切圆,进而可判断①;根据菱形的性质可判断②;根据正方形的性质可判断③;(2)①根据已知结合题中定义可得结论; ②根据角平分线的定义和圆周角定理证明 EBF EDF=即可证得结论; (3)①连接OE 、OF 、OG 、OH 、HG ,根据四边形ABCD 是“完美型双圆”四边形,结合四边形的内角和定理可推导出180A EOH ∠+∠=°,180FOG C ∠+∠=°,180A C∠+∠=°,进而可得EOH C ∠=∠,180FOG EOH∠+∠=°,然后利用圆周角定理可推导出90HPG ∠=°,即可证得结论;②连接OE 、OF 、OG 、OH ,根据已知条件证明OAH COG ∠=∠,进而证明AOH OCG ∽得到32CG r =,再利用勾股定理求得r =,BE =BEO OHD ∽求解OD 即可. 【小问1详解】解:由题干条件可得:有外接圆的四边形的对角互补;有内切圆的四边形的对边之和相等,所以 ①当平行四边形对角不互补,对边之和也不相等时,该平行四边形无外接圆,也无内切圆, ∴该平行四边形是 “平凡型无圆”四边形,故①错误;②∵内角不等于90°的菱形的对角不互补,∴该菱形无外接圆,∵菱形的四条边都相等,∴该菱形的对边之和相等,∴该菱形有内切圆,∴内角不等于90°的菱形一定是“内切型单圆”四边形,故②正确;③由题意,外接圆圆心与内切圆圆心重合的“完美型双圆”四边形是正方形,如图,则OM r =,ON R =,OM MN ⊥,45ONM ∠=°,∴Rt OMN △为等腰直角三角形,∴ON =,即=R ;故③正确,故答案为:①×;②√;③√;【小问2详解】解:①∵四边形ABCD 中,AB CD BC AD +≠+,∴四边形ABCD 无内切圆,又该四边形有外接圆,∴该四边形ABCD 是“外接型单圆”四边形,故答案为:外接型单圆;的②∵BAD ∠的平分线AE 交O 于点E ,BCD ∠的平分线CF 交O 于点F ,∴BAE DAE ∠=∠,BCF DCF ∠=∠, ∴ BEDE =, BF DF =, ∴ BEBF DE DF +=+, ∴ EBF EDF=,即 EBF 和 EDF 均为半圆, ∴EF 是O 的直径.【小问3详解】①证明:如图,连接OE 、OF 、OG 、OH 、HG ,∵O 是四边形ABCD 的内切圆,∴OE AB ⊥,OF BC ⊥,OG CD ⊥,OH AD ⊥,∴90OEA OHA ∠=∠=°,在四边形AEOH 中,3609090180A ∠+∠°−°−°=°,同理可证,180FOG C ∠+∠=°,∵四边形ABCD 是“完美型双圆”四边形,∴该四边形有外接圆,则180A C ∠+∠=°,∴EOH C ∠=∠,则180FOG EOH∠+∠=°, ∵12FHG FOG ∠=∠,12EGH EOH ∠=∠, ∴()1902FHG EGH FOG EOH ∠+∠=∠+∠=°, ∴()18090HPGFHG EGH ∠=°−∠+∠=°, ∴EG FH ⊥;②如图,连接OE 、OF 、OG 、OH ,∵四边形ABCD 是“完美型双圆”四边形,它的内切圆O 与AB BC CD AD ,,,分别相切于点E ,F ,G ,H ,∴∴OE AB ⊥,OF BC ⊥,OG CD ⊥,OH AD ⊥,OE OF OG OH ===,∴180EAH FCG ∠+∠=°,OAH OAE ∠=∠,OCG OCF ∠=∠, ∴90OAH OCG ∠+∠=°,∵90COG OCG ∠+∠=°,∴OAH COG ∠=∠,又90AHO OGC ∠=∠=°,∴AOH OCG ∽, ∴OA OH OC CG=, ∵2OA =,3OC =, ∴23r CG =,则32CG r =, 在Rt OGC △中,由222OG CG OC +=得222332r r +=,解得r = 在Rt OBE 中,6OB =,∴BE 同理可证BEO OHD ∽, ∴BE OB OH OD=,6OD=,∴OD =【点睛】本题主要考查平行四边形的性质、正方形的性质、菱形的性质、圆周角定理、内切圆的定义与性质、外接圆的定义与性质、相似三角形的判定与性质、四边形的内角和定理、勾股定理、角平分线的判定等知识,理解题中定义,熟练掌握这些知识和灵活运用性质和判定是解题的关键.另外还要求学生具备扎实的数学基础和逻辑思维能力,备考时,重视四边形知识的学习,提高解题技巧和速度,以应对中考挑战.25. 已知四个不同的点11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y 都在关于x 的函数2y ax bx c ++(a ,b ,c 是常数,0a ≠)的图象上.(1)当A ,B 两点的坐标分别为()1,4−−,()3,4时,求代数式3202410127a b ++的值; (2)当A ,B 两点的坐标满足212122()40a y y a y y +++=时,请你判断此函数图象与x 轴的公共点的个数,并说明理由;(3)当0a >时,该函数图象与x 轴交于E ,F 两点,且A ,B ,C ,D 四点的坐标满足:222121222()0a y y a y y ++++=,222343422()0a y y a y y −+++=.请问是否存在实数(1)m m >,使得AB ,CD ,m EF ⋅这三条线段组成一个三角形,且该三角形的三个内角的大小之比为1:2:3?若存在,求出m 的值和此时函数的最小值;若不存在,请说明理由(注:m EF ⋅表示一条长度等于EP 的m 倍的线段).【答案】(1)3320241012202477a b ++= (2)此函数图象与x 轴的公共点个数为两个,理由见解析(3)存在两个m 的值符合题意;当m =时,此时该函数的最小值为53a −;当m =此时该函数的最小值为2a −【解析】【分析】本题主要考查了二次函数的性质、二次函数与一元二次方程的关系、二次函数与x 轴交点问题、直角三角形存在性问题等,熟练掌握相关知识和分类讨论是解题关键.(1)将A B 、代入得到关于a 、b 的关系式,再整体代入求解即可;(2)解方程212122()40a y y a y y +++=求解,再根据a 的正负分类讨论即可; (3)由内角之比可得出这是一个3060°°、的直角三角形,再将线段表示出来,利用特殊角的边角关系建立方程即可.【小问1详解】将()1,4A −−,()3,4B 代入2y ax bx c ++得4934a b c a b c −+=− ++=①②, ②-①得848a b +=,即22a b +=. 所以333202*********(2)2024777a ba b ++=++=. 【小问2详解】此函数图象与x 轴的公共点个数为两个. 方法1:由212122()40a y y a y y +++=,得12(2)(2)0a y a y ++=. 可得12a y =−或22a y =−. 当0a >时,<02a −,此抛物线开口向上,而A ,B 两点之中至少有一个点在x 轴的下方,此时该函数图象与x 轴有两个公共点;当0a <时,>02a −,此抛物线开口下,而A ,B 两点之中至少有一个点在x 轴的上方,此时该函数图象与x 轴也有两个公共点.综上所述,此函数图象与x 轴必有两个公共点.方法2:由212122()40a y y a y y +++=,得12(2)(2)0a y a y ++=. 可得12a y =−或22a y =−. 所以抛物线上存在纵坐标为2a −的点,即一元二次方程22a ax bx c ++=−有解. 所以该方程根的判别式24()02ab ac ∆=−+≥,即2242b ac a −≥. 因为0a ≠,所以240b ac −>.所以原函数图象与x 轴必有两个公共点.方法3:由()21212240a y y a y y +++=,可得12a y =−或22a y =−. 当12a y =−时,有2112a ax bx c ++=−,即2112a ax bx c ++=−, 所以2222211144()2(2)02ab ac b a ax bx a ax b ∆=−=+++=++>. 此时该函数图象与x 轴有两个公共点. 当22a y =−时,同理可得0∆>,此时该函数图象与x 轴也有两个公共点.综上所述,该函数图象与x 轴必有两个公共点.【小问3详解】因为0a >,所以该函数图象开口向上.由222121222()0a y y a y y ++++=,得()()22120a y a y +++=,可得12y y a ==−.由222343422()0a y y a y y −+++=,得2234()()0a y a y −+−=,可得34y y a ==. 所以直线AB CD ,均与x 轴平行.由(2)可知该函数图象与x 轴必有两个公共点,设()5,0E x ,()6,0F x . 由图象可知244ac b a a−−>,即2244b ac a −>. 所以2ax bx c a ++=−的两根为1x ,2x,可得12AB x x =−= 同理2ax bx c a ++=的两根为3x ,4x,可得34CD x x =−= 同理20ax bx c ++=的两根为5x ,6x,可得56m EF m x x m ⋅=⋅−= 由于1m >,结合图象与计算可得AB EF m EF <<⋅,<AB CD .若存在实数()1m m >,使得AB CD ,,m EF ⋅这三条线段组成一个三角形,且该三角形的三个内角的大小之比为1:2:3,则此三角形必定为两锐角分别为30°,60°的直角三角形,所以线段AB 不可能是该直角三角形的斜边.①当以线段CD 为斜边,且两锐角分别为30°,60°时,因为m EF AB ⋅>,所以必须同时满足:222()AB m EF CD +⋅=,m EF ⋅. 将上述各式代入化简可得2222288244a a m b ac a =<=−,且22223(44)4b ac a m b ac −−=−, 联立解之得222043a b ac −=,22286245a m b ac ==<−,解得1m =>符合要求.所以m =,此时该函数最小值为2220453443a acb a a a −−==−. ②当以线段m EF ⋅为斜边时,必有222()AB CD m EF +=⋅,同理代入化简可得的2222(4)(4)b ac m b ac −−,解得m =为斜边,且有一个内角为60°,而CD AB >,所以tan 60CD AB =⋅°, 化简得222484b ac a a −=>符合要求.所以m =2824a a a −==−. 综上所述,存在两个m 的值符合题意;当m =时,此时该函数的最小值为53a −;当m =2a −.。
2017年长沙市初中毕业学业水平考试数学试卷一、选择题:1.下列实数中,为有理数的是( ) A.3 B .π C .32 D.12.下列计算正确的是( )A .532=+ B.222a a a =+ C.xy x y x +=+)1(D.632)(mn mn =3.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( )A.610826.0⨯ B .71026.8⨯ C.6106.82⨯ D .81026.8⨯4.在下列图形中,既是轴对称图形,又是中心对称图形的是( )5.一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( )A .锐角三角形 B.之直角三角形 C.钝角三角形 D.等腰直角三角形6.下列说法正确的是( )A .检测某批次灯泡的使用寿命,适宜用全面调查B .可能性是1%的事件在一次试验中一定不会发生C .数据3,5,4,1,2-的中位数是4D.“367人中有2人同月同日生”为必然事件7.某几何体的三视图如图所示,因此几何体是( )A .长方形 B.圆柱 C .球 D .正三棱柱8.抛物线4)3(22+-=x y 的顶点坐标是( )A .)4,3( B.)4,3(- C .)4,3(- D.)4,2(9.如图,已知直线b a //,直线c 分别与b a ,相交,01101=∠,则2∠的度数为( )A.060 B .070 C .080 D.011010.如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A.cm 5B.cm 10 C .cm 14 D .cm 2011.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A.24里 B .12里 C.6里 D.3里12.如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则m n 的值为( ) A.22 B.21 C.215- D .随H 点位置的变化而变化二、填空题13.分解因式:=++2422a a . 14.方程组⎩⎨⎧=-=+331y x y x 的解是 . 15.如图,AB 为⊙O 的直径,弦AB CD ⊥于点E ,已知1,6==EB CD ,则⊙O 的半径。
2017年湖南省长沙市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列实数中,为有理数的是()A.B.πC.D.12.(3分)下列计算正确的是()A.=B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn63.(3分)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107C.82.6×106D.8.26×1084.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形 B.正五边形C.正方形D.平行四边形5.(3分)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形6.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件7.(3分)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱8.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(2,4)9.(3分)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°10.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm11.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里 D.3里12.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H 不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC 交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B.C.D.随H点位置的变化而变化二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:2a2+4a+2=.14.(3分)方程组的解是.15.(3分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.16.(3分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是.17.(3分)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.62=1.2,S乙2=0.5,则在本次测试中,同学的成绩更稳米,方差分别是S甲定(填“甲”或“乙”)18.(3分)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.20.(6分)解不等式组,并把它的解集在数轴上表示出来.21.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B70≤x<8030aC80≤x<90b0.45D90≤x<10080.08请根据所给信息,解答以下问题:(1)表中a=,b=;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.22.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23.(9分)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.24.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.25.(10分)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k ≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c (a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.26.(10分)如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my02﹣12y0﹣50成立,求实数n的最小值.2017年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•长沙)下列实数中,为有理数的是()A.B.πC.D.1【分析】根据有理数是有限小数或无限循环小数,无理数是无限不循环小数,可得答案.【解答】解:,π,是无理数,1是有理数,故选:D.【点评】本题考查了实数,正确区分有理数与无理数是解题关键.2.(3分)(2017•长沙)下列计算正确的是()A.=B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn6【分析】分别利用合并同类项法则以及单项式乘以多项式和积的乘方运算法则化简判断即可.【解答】解:A、+无法计算,故此选项错误;B、a+2a=3a,故此选项错误;C、x(1+y)=x+xy,正确;D、(mn2)3=m3n6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及单项式乘以多项式和积的乘方运算等知识,正确掌握运算法则是解题关键.3.(3分)(2017•长沙)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107C.82.6×106D.8.26×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将82600000用科学记数法表示为:8.26×107.故选B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•长沙)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形 B.正五边形C.正方形D.平行四边形【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)(2017•长沙)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【分析】根据三角形内角和等于180°计算即可.【解答】解:设三角形的三个内角的度数之比为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则3x=90°,∴这个三角形一定是直角三角形,故选:B.【点评】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.6.(3分)(2017•长沙)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件【分析】根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,﹣2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选:D.【点评】本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.7.(3分)(2017•长沙)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.【解答】解:从正面看,是一个矩形;从左面看,是一个矩形;从上面看,是圆,这样的几何体是圆柱,故选B.【点评】本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.8.(3分)(2017•长沙)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(2,4)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【解答】解:y=2(x﹣3)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,4).故选A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.9.(3分)(2017•长沙)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°【分析】直接根据平行线的性质即可得出结论.【解答】解:∵直线a∥b,∴∠3=∠1=110°,∴∠2=180°﹣110°=70°,故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.10.(3分)(2017•长沙)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm【分析】根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选D.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.11.(3分)(2017•长沙)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里 D.3里【分析】设第一天走了x里,则第二天走了x里,第三天走了×x…第六天走了()5x里,根据路程为378里列出方程并解答.【解答】解:设第一天走了x里,依题意得:x+x+x+x+x+x=378,解得x=192.则()5x=()5×192=6(里).故选:C.【点评】本题考查了一元一次方程的应用.根据题意得到()5x里是解题的难点.12.(3分)(2017•长沙)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B.C.D.随H点位置的变化而变化【分析】设CH=x,DE=y,则DH=﹣x,EH=﹣y,然后利用正方形的性质和折叠可以证明△DEH∽△CHG,利用相似三角形的对应边成比例可以把CG,HG分别用x,y分别表示,△CHG的周长也用x,y表示,然后在Rt△DEH中根据勾股定理可以得到x﹣x2=y,进而求出△CHG的周长.【解答】解:设CH=x,DE=y,则DH=﹣x,EH=﹣y,∵∠EHG=90°,∴∠DHE+∠CHG=90°.∵∠DHE+∠DEH=90°,∴∠DEH=∠CHG,又∵∠D=∠C=90°,△DEH∽△CHG,∴==,即==,∴CG=,HG=,△CHG的周长为n=CH+CG+HG=,在Rt△DEH中,DH2+DE2=EH2即(﹣x)2+y2=(﹣y)2整理得﹣x2=,∴n=CH+HG+CG===.∴=.故选:B.【点评】本题考查翻折变换及正方形的性质,正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•长沙)分解因式:2a2+4a+2=2(a+1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2+2a+1)=2(a+1)2,故答案为:2(a+1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)(2017•长沙)方程组的解是.【分析】根据加减消元法,可得答案.【解答】解:两式相加,得4x=4,解得x=1,把x=1代入x+y=1,解得y=0,方程组的解为,故答案为:.【点评】本题考查了解二元一次方程组,利用加减消元法是解题关键.15.(3分)(2017•长沙)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为5.【分析】连接OC,由垂径定理知,点E是CD的中点,AE=CD,在直角△OCE 中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.【点评】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.16.(3分)(2017•长沙)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是(1,2).【分析】根据位似变换的性质进行计算即可.【解答】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2),故答案为:(1,2).【点评】本题考查的是位似变换的性质,掌握平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k是解题的关键.17.(3分)(2017•长沙)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S甲2=1.2,S乙2=0.5,则在本次测试中,乙同学的成绩更稳定(填“甲”或“乙”)【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.2,S乙2=0.5,∴S甲>S乙,∴甲、乙两名同学成绩更稳定的是乙;故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18.(3分)(2017•长沙)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为4.【分析】作MN⊥x轴于N,得出M(x,x),在Rt△OMN中,由勾股定理得出方程,解方程求出x=2,得出M(2,2),即可求出k的值.【解答】解:作MN⊥x轴于N,如图所示:设M(x,y),∵点M是函数y=x与y=的图象在第一象限内的交点,∴M(x,x),在Rt△OMN中,由勾股定理得:x2+(x)2=42,解得:x=2,∴M(2,2),代入y=得:k=2×2=4;故答案为:4.【点评】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点M的坐标是解决问题的关键.三、解答题(本大题共8小题,共66分)19.(6分)(2017•长沙)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3+1﹣1+3=6.【点评】此题考查了实数的运算,绝对值,以及零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.20.(6分)(2017•长沙)解不等式组,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x≥﹣9﹣x,得:x≥﹣3,解不等式5x﹣1>3(x+1),得:x>2,则不等式组的解集为x>2,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2017•长沙)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B70≤x<8030aC80≤x<90b0.45D90≤x<10080.08请根据所给信息,解答以下问题:(1)表中a=0.3,b=45;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)列树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【解答】解:(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人),故答案为:0.3,45;(2)360°×0.3=108°,答:扇形统计图中B组对应扇形的圆心角为108°;(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,列树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)(2017•长沙)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【分析】(1)在△ABP中,求出∠PAB、∠PBA的度数即可解决问题;(2)作PH⊥AB于H.求出PH的值即可判定;【解答】解:(1)∵∠PAB=30°,∠ABP=120°,∴∠APB=180°﹣∠PAB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BPA=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.23.(9分)(2017•长沙)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.【分析】(1)连接OC,由切线的性质可知∠ACO=90°,由于=,所以∠AOC=∠BOC,从而可证明∠A=∠B,从而可知OA=OB;(2)由(1)可知:△AOB是等腰三角形,所以AC=2,从可求出扇形OCE的面积以及△OCB的面积【解答】解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,由于=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴sin∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2∴S=2﹣π阴影【点评】本题考查切线的性质,解题的关键是求证OA=OB,然后利用等腰三角形的三线合一定理求出BC与OC的长度,从而可知扇形OCE与△OCB的面积,本题属于中等题型.24.(9分)(2017•长沙)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A 型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润=两种商品的利润之和,列出式子即可解决问题;(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,分三种情形讨论即可解决问题.【解答】解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.由题意:=×2,解得x=150,经检验x=150是分式方程的解,答:一件B型商品的进价为150元,则一件A型商品的进价为160元.(2)因为客商购进A型商品m件,所以客商购进B型商品(250﹣m)件.由题意:v=80m+70(250﹣m)=10m+17500,∵80≤m≤250﹣m,∴80≤m≤125,(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,①当10﹣a>0时,w随m的增大而增大,所以m=125时,最大利润为(18750﹣125a)元.②当10﹣a=0时,最大利润为17500元.③当10﹣a<0时,w随m的增大而减小,所以m=80时,最大利润为(18300﹣80a)元.【点评】本题考查分式方程的应用、一次函数的应用等知识,解题的关键是理解题意,学会构建方程或一次函数解决问题,属于中考常考题型.25.(10分)(2017•长沙)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k ≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c (a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.【分析】(1)由和谐三组数的定义进行验证即可;(2)把M、N、R三点的坐标分别代入反比例函数解析式,可用t和k分别表示出y1、y2、y3,再由和谐三组数的定义可得到关于t的方程,可求得t的值;(3)①由直线解析式可求得x1=﹣,联立直线和抛物线解析式消去y,利用一元二次方程根与系数的关系可求得x2+x3=﹣,x2x3=,再利用和谐三数组的定义证明即可;②由条件可得到a+b+c=0,可得c=﹣(a+b),由a>2b>3c可求得的取值范围,令m=,利用两点间距离公式可得到OP2关于m的二次函数,利用二次函数的性质可求得OP2的取值范围,从而可求得OP的取值范围.【解答】解:(1)不能,理由如下:∵1、2、3的倒数分别为1、、,∴+≠1,1+≠,1+≠∴实数1,2,3不可以构成“和谐三组数”;(2)∵M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k ≠0)的图象上,∴y1、y2、y3均不为0,且y1=,y2=,y3=,∴=,=,=,∵y1,y2,y3构成“和谐三组数”,∴有以下三种情况:当=+时,则=+,即t=t+1+t+3,解得t=﹣4;当=+时,则=+,即t+1=t+t+3,解得t=﹣2;当=+时,则=+,即t+3=t+t+1,解得t=2;∴t的值为﹣4、﹣2或2;(3)①∵a、b、c均不为0,∴x1,x2,x3都不为0,∵直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),∴0=2bx1+2c,解得x1=﹣,联立直线与抛物线解析式,消去y可得2bx+2c=ax2+3bx+3c,即ax2+bx+c=0,∵直线与抛物线交与B(x2,y2),C(x3,y3)两点,∴x2、x3是方程ax2+bx+c=0的两根,∴x2+x3=﹣,x2x3=,∴+===﹣=,∴x1,x2,x3构成“和谐三组数”;②∵x2=1,∴a+b+c=0,∴c=﹣a﹣b,∵a>2b>3c,∴a>2b>3(﹣a﹣b),且a>0,整理可得,解得﹣<<,∵P(,)∴OP2=()2+()2=()2+()2=2()2+2+1=2(+)2+,令m=,则﹣<m<且m≠0,且OP2=2(m+)2+,∵2>0,∴当﹣<m<﹣时,OP2随m的增大而减小,当m=﹣时,OP2有最大值,当m=﹣时,OP2有最小值,当﹣<m<时,OP2随m的增大而增大,当m=﹣时,OP2有最小值,当m=时,OP2有最大值,∴≤OP2<且OP2≠1,∵P到原点的距离为非负数,∴≤OP<且OP≠1.【点评】本题为二次函数的综合应用,涉及新定义、函数图象的交点、一元二次方程根与系数的关系、勾股定理、二次函数的性质、分类讨论思想及转化思想等知识.在(1)中注意利用和谐三数组的定义,在(2)中由和谐三数组得到关于t的方程是解题的关键,在(3)①中用a、b、c分别表示出x1,x2,x3是解题的关键,在(3)②中把OP2表示成二次函数的形式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.26.(10分)(2017•长沙)如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my02﹣12y0﹣50成立,求实数n的最小值.。
湖南省长沙市2024年中考模拟数学试题一、单选题1.3-的倒数为( ) A .3B .3-C .13D .13-2.苏州地铁4号线,2017年上半年通车试运营,主线全程长约为42000m ,北起相城区荷塘月色公园,南至吴江同津大道站,共设31站.将42000用科学记数法表示应为( ) A .0.42×105B .4.2×104C .44×103D .440×1023.下列等式成立的是( ) A .1232a a a+=B .11111a a a a a ++=--- C .1111x x x +=++ D .()()()222112222m m m m m ---=---4.下列图形中,不是轴对称图形的是( ) A .B .C .D .5.下列长度的三根木棒首尾相接,不能做成三角形框架的是( ) A .5cm ,7cm ,10cm B .5cm ,7cm ,13cm C .7cm ,10cm ,13cmD .5cm ,10cm ,13cm6.某市教育体育局想要了解本市初二年级8万名学生的期中数学成绩,从中抽取了2000名学生的数学成绩进行统计分析,以下说法正确的是( ) A .2000名学生是总体的一个样本 B .每位学生的数学成绩是个体 C .8万名学生是总体D .2000名学生是样本的容量7.如图所示,已知正方形ABCD 的面积是8平方厘米,正方形EFGH 的面积是62平方厘米,BC 落在EH 上,ACG V 的面积是4.9平方厘米,则ABE V 的面积是( )A .0.5平方厘米B .2平方厘米CD .0.9平方厘米8.如图,在V ABC 中,∠B =30°,若AB ∥CD ,CB 平分∠ACD ,则∠ACD 的度数为( )A .30°B .40°C .60°D .90°9.一次函数y kx b =+与正比例函数y kbx =(k ,b 为常数,且0kb ≠)在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.张浩有红牌和蓝牌各75张,已知张浩能在一个摊位上用2张红牌换1张银牌和1张蓝牌,还能在另一个摊位上用3张蓝牌换1张银牌和1张红牌,若他按照上述方法继续换下去,直到手中的牌无法交换为止,则张浩手中最后有银牌( )张A .62B .26C .102D .103二、填空题11.因式分解:21x -=.12.若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2009()a b +=.13.在x 2+( )+4=0的括号中添加一个关于x 的一次项...,使方程有两个相等的实数根. 14.如图,双曲线ky (k 0)x=>与⊙O 在第一象限内交于P 、Q 两点,分别过P 、Q 两点向x 轴和y 轴作垂线,已知点P 坐标为(1,3),则图中阴影部分的面积为.15.如图,OA 是O e 的半径,BC 是O e 的弦,OA BC ⊥于点D ,AE 是O e 的切线,AE 交OC 的延长线于点E .若45AOC ∠=︒,2BC =,则线段AE 的长为.16.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为150°,AB 的长为32cm ,BD的长为14cm ,则»DE的长为cm .三、解答题17.(1)计算:())121--+﹣sin30°(2)化简:2a 11a a a++-. 18.(1)计算:()()21122x x x ⎛⎫--+- ⎪⎝⎭;(2)先化简,再求值:()()()23366a a a a +---+,其中1a =-.19.位于河南省郑州市的炎黄二帝巨型塑像,是为代表中华民族之创始、之和谐、之统一.塑像由山体CD 和头像AD 两部分组成.某数学兴趣小组在塑像前50米处的B 处测得山体D 处的仰角为45°,头像A 处的仰角为70.5°,求头像AD 的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)20.为了加强对青少年防溺水安全教育,5月底某校开展了“远离溺水,珍爱生命”的防溺水安全知识比赛.下面是从参赛学生中随机收集到的20名学生的成绩(单位:分): 87 99 86 89 91 91 95 96 87 97 91 97 96 86 96 89 100 91 99 97 整理数据:分析数据:解决问题:(1)直接写出上面表格中的a ,b ,c ,d 的值;(2)若成绩达到95分及以上为“优秀”等级,求“优秀”等级所占的百分率; (3)请估计该校1500名学生中成绩达到95分及以上的学生人数.21.如图,已知点B E C F ,,,在一条直线上,BE CF =,AC DE ∥,A D ∠=∠. 求证:ABC DFE △≌△.22.某游船先顺流而下,然后逆流返回.已知水流速度是每小时3千米,游船在静水中的速度是每小时18千米.为使游船在4小时内(含4小时)返回出发地,则游船顺流最远可行多少千米?23.如图,在ABC V 中,AB AC =,30B ∠=︒,线段AB 的垂直平分线MN 交BC 于D ,连接AD .(1)求DAC ∠的度数; (2)若2BD =,求BC 的长.24.在平面直角坐标系xOy 中,对于直线l 及点P 给出如下定义:过点P 作y 轴的垂线交直线l 于点Q ,若PQ ≤1,则称点P 为直线l 的关联点,当PQ =1时,称点P 为直线l 的最佳关联点,当点P 与点Q 重合时,记PQ =0.例如,点P (1,2)是直线y =x 的最佳关联点.根据阅读材料,解决下列问题.如图,在平面直角坐标系xOy 中,已知直线1l :y =﹣x +3,2l :y =2x +b .(1)已知点A (0,4),3(,1)2B ,C (2,3),上述各点是直线1l 的关联点是;(2)若点D (﹣1,m )是直线1l 的最佳关联点,则m 的值是;(3)点E 在x 轴的正半轴上,点A (0,4),以OA 、OE 为边作正方形AOEF .若直线l 2与正方形AOEF 相交,且交点中至少有一个是直线1l 的关联点,则b 的取值范围是.25.如图,⊙O为△ABC的外接圆,AC=BC,D为OC与AB的交点,E为线段OC延长线上一点,且∠EAC=∠ABC.(1)求证:直线AE是⊙O的切线.(2)若D为AB的中点,CD=6,AB=16,求⊙O的半径;(3)在(2)的基础上,点F在⊙O上,且»»,△ACF的内心点G在AB边上,求BGBC BF的长.。
专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12C . 16D .18【答案】B .【解析】试题分析:设多边形的边数为n ,则有(n -2)×180°=n ×150°,解得:n =12.故选B .考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C .AC BD = D .12∠=∠【答案】C .考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20【答案】D【解析】试题分析:根据菱形的对角线互相垂直,可知OA =3,OB =4,根据勾股定理可知AB =5,所以菱形的周长为4×5=20.故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m =8a ,设CM =x ,DE =y ,则DM =2a -x ,EM =2a -y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME +∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG , ∴CG CM MG DM DE EM ==,即22CG x MG a x y a y==-- ∴CG =(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM +CG +MG =24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a -x )2+y 2=(2a -y )2整理得4ax -x 2=4ay∴CM +MG +CG =2444ax x ay a y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( )A .四边形B .五边形C .六边形D .八边形【答案】C【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n -2)·180°=720°,解得n =6,故是六边形.故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形【答案】D【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形.若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误;若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误;若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则tan BDE ∠的值是 ( )A .24B .14C .13D .23【答案】A .【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DF EB EF BF== ,因点E 是边BC 的中点且AD =BC ,所以AD AF DF EB EF BF ===2,设EF =x ,可得AF =2x ,在Rt △ABE 中,由射影定理可得BF =2x ,再由AD AF DF EB EF BF ===2可得DF =22x ,在Rt △DEF 中,tan BDE ∠=2422EF x DF x == ,故选A . 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283B .243C .323D .3238-【答案】A .【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点 423,3AF EF EL ∴==∴=,P 是F E 的中点,32PK ∴= 43DH = 1373322PP CD ∴-= 高为4 7382832S ∴=⨯=L K H故答案选A .考点:平行四边形的面积,三角函数. 10.(2017江苏苏州第7题)如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36C .54D .72【答案】B .【解析】试题分析:∠ABE =3601=3652︒⨯︒ 故答案选B . 考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题) 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE BF =,将,AEH CFG ∆∆分别沿,EH FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB 为 ( )A . 53B .2C . 52D .4 【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题)二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【答案】5.【解析】试题分析:连结AC ,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC =FG =2,AC =32,即可得AE =22,因P 为AE 的中点,可得PE =AP =2,再由正方形的性质可得GM =EM =22,FG 垂直于AC ,在Rt △PGM 中,PM =322,由勾股定理即可求得PG =5.2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD =∠ODC =180°-108°=72°,∴∠COD =36°,∴∠AOB =360°-108°-108°-36°=108°.D C3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④453OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)137A C B OB ∴= ,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODF BDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠ ,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40)17,F CF OC CFO COF ∴=<∴∠>∠ ,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似.则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1137,22FG OB FG OB ∴== D E 、 是OB 的三等分点,1373DE ∴= 1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯= 解得:1162AN OB= ,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确 113733OD OB == ,故④错误. 综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70°【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70°考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA =OC ,OB =OD =12BD =5,CD =AB =4,由sin ∠BDC =35,证出AC ⊥CD ,OC =3,AC =2OC =6,得出▱ABCD 的面积=CD •AC =24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD =32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH =EH ,设AH =x ,则DH =EH =8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x =3,即可得AH =3,EH =5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EH BE BF EF == ,即3452BF EF ==,解得BF =83 ,EF =103,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA +PE 的最小值是 .【答案】10.9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】3105. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB =BG =EF =CD =5,AD =GF =3,在Rt △BCG 中,根据勾股定理求得CG =4,再由1122BCG S BC CG BG CM =⋅=⋅ ,即可求得CM =125 ,在Rt △BCM 中,根据勾股定理求得BM =22221293()55BC CM -=-=,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE =MN =3,BM =EN =95,所以CN =MN -CM =3-125=35,在Rt △ECN 中,根据勾股定理求得EC =22223990310()()55255CN EN +=+==.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】745. 【解析】试题分析:连接AG ,设DG =x ,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC =='254974'55CC BB +∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB ,已知菱形的周长为cm 24,根据菱形的性质可得AB =6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE =33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 ,∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 . 考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(2)3. 【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.本题解析:(1)证明:∵E 为AD 中点,A D =2BC ,∴BC =ED , ∵AD ∥BC , ∴四边形ABCD 是平行四边形,∵AD =2BE , ∠ABD =90°,AE =DE ∴BE =ED , ∴四边形ABCD 是菱形.(2)∵AD ∥BC ,AC 平分∠BAD ∴∠BAC =∠DAC =∠BCA ,∴BA =BC =1, ∵AD =2BC =2,∴sin ∠ADB =12,∠ADB =30°, ∴∠DAC =30°, ∠ADC =60°.在RT △ACD 中,AD =2,CD =1,AC = 3 .考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ’的坐标为(2,1);(2)1;(3)3333(,)22--或2333(,)22- . 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得OA =3 ,OB =1,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’=OA =3,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB =2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B , ∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A ’OP ≌△AOP .∴OA ’=OA =3,由OB B A ⊥',得∠A ’BO =90°.在Rt △A ’OB 中,22''2A B OA OB =-=, ∴点A ’的坐标为(2,1). (2) 在Rt △AOB 中,OA =3 ,OB =1, ∴222AB OA OB =+= ∵当P 为AB 中点, ∴AP =BP =1,OP =12AB =1. ∴OP =OB =BP , ∴△BOP 是等边三角形 ∴∠BOP =∠BPO =60°, ∴∠OPA =180°-∠BPO =120°. 由(1)知,△A ’OP ≌△AOP ,∴∠OPA ’=∠OPA =120°,P ’A =PA =1,又OB =PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B =OP =1. (3)3333(,)22--或2333(,)22- .4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长; (Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF =324【解析】试题分析:(Ⅰ)分情况CP =CD 、PD =PC 、DP =DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由AP =2 ,从而可得CF =324. 试题解析:(Ⅰ)在矩形ABCD 中,AB =6,AD =8,∠ADC =90°,∴DC =AB =6, AC =22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP =CD 时,CP =6,∴AP =AC -CP =4 ;(2)当PD =PC 时,∠PDC =∠PCD ,∵∠PCD +∠PAD =∠PDC +∠PDA =90°,∴∠PAD =∠PDA ,∴PD =PA ,∴PA =PC ,∴AP =2AC,即AP =5;(3)当DP =DC 时,过D 作DQ ⊥AC 于Q ,则PQ =CQ ,∵S △ADC =12 AD ·DC =12AC ·DQ ,∴DQ =245AD DC AC = ,∴CQ =22185DC DQ -= ,∴PC =2CQ =365 ,∴AP =AC -PC =145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC =∠PDF =90°,即∠ADP +∠PDC =∠PDC +∠CDF ,∴∠ADP =∠CDF ,∵∠BCD =90°,OE =OD ,∴OC =12 ED ,在矩形PEFD 中,PF =DE ,∴OC =12PF ,∵OP =OF =12PF ,∴OC =OP =OF ,∴∠OCF =∠OFC ,∠OCP =∠OPC ,又∵∠OPC +∠OFC +∠PCF =180°,∴2∠OCP +2∠OCF =180°,∴∠PCF =90°,即∠PCD +∠FCD =90°,在Rt △ADC 中,∠PCD +∠PAD =90°,∴∠PAD =∠FCD ,∴△ADP ∽△CDF ,∴34CF CD AP AD == ,∵AP =2 ,∴CF =324.5. (2017广东广州第24题)如图13,矩形ABCD 的对角线AC ,BD 相交于点O ,COD ∆关于CD 的对称图形为CED ∆.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =,5BC cm =. ①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1/cm s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.【答案】(1)详见解析;(2)①2sin 3EAD ∠= ②32AP =和Q 走完全程所需时间为32s 【解析】(2)①连接OE ,直线OE 分别交AB 于点F ,交DC 于点GCOD ∆ 关于CD 的对称图形为CED ∆,OE DC DC AB ∴⊥ ,OF AB EF AD ∴⊥在矩形ABCD 中,G 为DC 的中点,且O 为AC 的中点OG ∴ 为CAD ∆ 的中位线 52OG GE ∴==同理可得:F 为AB 的中点,532OF AF ==, 22223593()22AE EF AF ∴=+=+= 32sin sin 932EAD AEFEAD AEF ∠=∠∴∠=∠==②过点P 作PM AB ⊥ 交AB 于点MQ ∴ 由O 运动到P 所需的时间为3s由①可得,23AM AP = ∴ 点O 以1.5/cm s 的速度从P 到A 所需的时间等于以 1/cm s 从M 运动到A 即:11OP PA OP MA t t t OP MA =+=+=+ Q ∴ 由O 运动到P 所需的时间就是OP +MA 和最小.如下图,当P 运动到1P ,即1PO AB 时,所用时间最短. 3t OP MA ∴=+=在11Rt APM ∆ 中,设112,3AM x APx == 2222211115(3)=(2)+()22AP AM PM x x =+∴ 解得:12x = 32AP ∴= 32AP ∴=和Q 走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。
湖南省益阳市2017年中考数学模拟试卷(5)(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖南省益阳市2017年中考数学模拟试卷(5)(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖南省益阳市2017年中考数学模拟试卷(5)(含解析)的全部内容。
2017年湖南省益阳市中考数学模拟试卷(5)一、选择题(本大题共8小题,每小题5分,共40分)1.在﹣3,0,﹣2,四个数中,最小的数是()A.﹣3 B.0 C.﹣2D.2.如图,C、B是线段AD上的两点,若AB=CD,BC=2AC,那么AC与CD的关系是为()A.CD=2AC B.CD=3AC C.CD=4BD D.不能确定3.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:颜色黄色绿色白色紫色红色学生人数10018022080750学校决定采用红色,可用来解释这一现象的统计知识是()A.平均数 B.中位数 C.众数D.方差4.如图所示,数轴上表示2,的对应点分别为C,B,点C是AB的中点,则点A表示的数是( )A.﹣B.2﹣C.4﹣D.﹣25.若不等式组的解集是x<2,则a的取值范围是( )A.a<2 B.a≤2 C.a≥2 D.无法确定6.如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC绕点A顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有( )①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.A.1个B.2个C.3个D.4个7.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有( )A.1个B.2个C.3个D.4个8.我们将1×2×3×…×n记作n!(读作n的阶乘),如:2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是( )A.0 B.1 C.1008 D.2016二、填空题(本大题共6小题,每小题5分,共30分)9.计算:12﹣7×(﹣4)+8÷(﹣2)的结果是.10.对于实数x,规定(x n)′=nx n﹣1,若(x2)′=﹣2,则x= .11.已知在等腰三角形ABC中,BC=8,AB,AC的长为方程x2﹣10x+m=0的根,则m= .12.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标为.13.已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为米.14.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P 作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是.三、解答题(本大题共3小题,每小题8分,共24分)15.先化简,再求值:,其中x=6tan30°﹣2.16.已知一次函数的图象过A(﹣3,﹣5),B(1,3)两点.(1)求这个一次函数的表达式;(2)试判断点P(﹣2,1)是否在这个一次函数的图象上.17.如图,已知E是平行四边形ABCD的边AB上的点,连接DE.(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)的条件下,求证:△ADE≌△CBF.四、解答题(本大题共3小题,每小题10分,共30分)18.据某市2016年国民经济和社会发展统计公报显示,2016年该市新开工的住房有商品房.廉租房、经济适用房和公共租赁房四种类型,老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2016年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果计划2017年新开工廉租房建设的套数比2016年增长10%,那么2017年新开工廉租房有多少套?19.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?20.如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为4℃,加热一段时间使材料温度达到28℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系,已知当第12分钟时,材料温度是14℃.(1)分别求出该材料加热和停止加热过程中y与x的函数关系式(写出x的取值范围);(2)根据该食品制作要求,在材料温度不低于12℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?五、解答题(本题满分12分)21.如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN 是等边三角形.(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立,请证明,若不成立,请说明理由;(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.六、解答题(本题满分14分)22.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.2017年湖南省益阳市中考数学模拟试卷(5)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分)1.在﹣3,0,﹣2,四个数中,最小的数是()A.﹣3 B.0 C.﹣2D.【考点】实数大小比较.【分析】先确定2与3的大小关系,再比较﹣2与﹣3的大小,因为这四个数中,正数大于0,0大于负数.【解答】解:∵2=,3=,∵,∴2<3,∴﹣2>﹣3,∴﹣3<0,∴最小的数是﹣3,故选A.2.如图,C、B是线段AD上的两点,若AB=CD,BC=2AC,那么AC与CD的关系是为()A.CD=2AC B.CD=3AC C.CD=4BD D.不能确定【考点】比较线段的长短.【分析】由AB=CD,可得,AC=BD,又BC=2AC,所以,BC=2BD,所以,CD=3AC;【解答】解:∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC;故选B.3.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:颜色黄色绿色白色紫色红色学生人数10018022080750学校决定采用红色,可用来解释这一现象的统计知识是()A.平均数 B.中位数 C.众数D.方差【考点】统计量的选择.【分析】根据平均数、中位数、众数及方差的有关知识判断即可.【解答】解:喜欢红色的学生最多,是这组数据的众数,故选C.4.如图所示,数轴上表示2,的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A.﹣B.2﹣C.4﹣D.﹣2【考点】实数与数轴.【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【解答】解:∵表示2,的对应点分别为C,B,∴CB=﹣2,∵点C是AB的中点,则设点A的坐标是x,则x=4﹣,∴点A表示的数是4﹣.故选C.5.若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定【考点】解一元一次不等式组.【分析】解出不等式组的解集,与已知解集x<2比较,可以求出a的取值范围.【解答】解:由(1)得:x<2由(2)得:x<a因为不等式组的解集是x<2∴a≥2故选:C.6.如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC 绕点A顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有( )①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.A.1个B.2个C.3个D.4个【考点】相似三角形的判定与性质;等腰直角三角形;旋转的性质.【分析】根据旋转的性质得出∠ABF=∠C,求出∠ABC=∠C=30°,即可判断①;根据三角形外角性质求出∠ADC=∠BAE,根据相似三角形的判定即可判断②;求出∠EAC大于30°,而∠DAE=30°,即可判断③;求出△AFD是直角三角形,但是不能推出是等腰三角形,即可判断④.【解答】解:∵在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=∠C=30°,∵将△AEC绕点A顺时针旋转120°后,得到△AFB,∴△AEC≌△AFB,∴∠ABF=∠C=30°,∴∠FBD=30°+30°=60°,∴①正确;∵∠ABC=∠DAE=30°,∴∠ABC+∠BAD=∠DAE+∠BAD,即∠ADC=∠BAE,∵∠ABC=∠C,∴△ABE∽△DCA,∴②正确;∵∠C=∠ABC=∠DAE=30°,∠BAC=120°,∴∠BAD+∠EAC=120°﹣∠DAE=90°,∴∠ABC+∠BAD<90°,∴∠ADC<90°,∴∠DAC>60°,∴∠EAC>30°,即∠DAE≠∠EAC,∴③错误;∵将△AEC绕点A顺时针旋转120°后,得到△AFB,∴AF=AE,∠EAC=∠BAF,∵∠BAC=120°,∠DAE=30°,∴∠BAD+∠EAC=90°,∴∠DAB+∠BAF=90°,即△AFD是直角三角形,∵在△DAE中,∠ADE=∠BAC+∠BAD,∠AED=∠C+∠EAC,∠ABC=∠C,但是根据已知不能推出∠BAD=∠EAC,∴∠ADE和∠AED不相等,∴AD和AE不相等,即△AFD是直角三角形,但是不一定是等腰三角形,∴④错误;故选B.7.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有( )A.1个B.2个C.3个D.4个【考点】二次函数的性质.【分析】若y1=y2,记M=y1=y2.首先求得抛物线与直线的交点坐标,利用图象可得当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;然后根据当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;即可求得答案.【解答】解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y2>y1;当M=2,﹣x2+4x=2,x1=2+,x2=2﹣(舍去),∴使得M=2的x值是1或2+,∴④错误;∴正确的有②③两个.故选:B.8.我们将1×2×3×…×n记作n!(读作n的阶乘),如:2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是()A.0 B.1 C.1008 D.2016【考点】规律型:数字的变化类;有理数的除法.【分析】由(n+1)!=1×2×3×…×n×(n+1)=(n+1)×n!=n×n!+n!知,可将原式两边都加上1!+2!+3!+…+2016!,即可得S=2017!﹣1,从而得出答案.【解答】解:∵(n+1)!=1×2×3×…×n×(n+1)=(n+1)×n!=n×n!+n!,∴S+1!+2!+3!+…+2016!=1×1!+2×2!+3×3!+…+2016×2016!+1!+2!+3!+…+2016!,即S+1!+2!+3!+…+2016!=1!+2!+3!+…+2017!,则S=2017!﹣1,∴==2016!…1,故选:B.二、填空题(本大题共6小题,每小题5分,共30分)9.计算:12﹣7×(﹣4)+8÷(﹣2)的结果是36 .【考点】有理数的混合运算.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=12+28﹣4=40﹣4=36,故答案为:3610.对于实数x,规定(x n)′=nx n﹣1,若(x2)′=﹣2,则x= ﹣1 .【考点】解一元一次方程.【分析】根据规定,得:当n=2时,则(x2)′=2x,解方程即可.【解答】解:根据题意得:2x=﹣2,x=﹣1.故答案为:﹣1.11.已知在等腰三角形ABC中,BC=8,AB,AC的长为方程x2﹣10x+m=0的根,则m= 25或16 .【考点】等腰三角形的性质;一元二次方程的解;根的判别式.【分析】讨论:根据等腰三角形性质当AB=BC=8,把x=8代入方程可得到m=16,此时方程另一根为2,满足三角形三边关系;当AB=AC,根据根与系数得关系得AB+AC=10,所以AB=AC=5,所以m=5×5=25.【解答】解:当AB=BC=8,把x=8代入方程得64﹣80+m=0,解得m=16,此时方程为x2﹣10x+16=0,解得x1=8,x2=2;当AB=AC,则AB+AC=10,所以AB=AC=5,则m=5×5=25.故答案为:25或16.12.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标为(3,﹣1).【考点】菱形的性质;坐标与图形性质.【分析】首先连接AB交OC于点D,由菱形OACB中,点C的坐标是(6,0),点A的纵坐标是1,即可求得点B的坐标.【解答】解:∵连接AB交OC于点D,∵四边形ABCD是菱形,∴AB⊥OC,OD=CD,AD=BD,∵点C的坐标是(6,0),点A的纵坐标是1,∴OC=6,BD=AD=1,∴OD=3,∴点B的坐标为:(3,﹣1).故答案为:(3,﹣1).13.已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26 米.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】首先根据题意画出图形,根据坡度的定义,由勾股定理即可求得答案.【解答】解:如图,由题意得:斜坡AB的坡度:i=1:2.4,AE=10米,AE⊥BD,∵i==,∴BE=24米,∴在Rt△ABE中,AB==26(米).故答案为:26.14.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是 2 .【考点】切线的性质.【分析】作直径AC,连接CP,得出△APC∽△PBA,利用=,得出y=x2,所以x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.【解答】解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴,∵PA=x,PB=y,半径为4,∴=,∴y=x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.三、解答题(本大题共3小题,每小题8分,共24分)15.先化简,再求值:,其中x=6tan30°﹣2.【考点】分式的化简求值;特殊角的三角函数值.【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当x=6tan30°﹣2=2﹣2时,原式=.16.已知一次函数的图象过A(﹣3,﹣5),B(1,3)两点.(1)求这个一次函数的表达式;(2)试判断点P(﹣2,1)是否在这个一次函数的图象上.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)设一次函数解析式为y=kx+b,将A(﹣3,﹣5),B(1,3)代入解得k、b可得解析式;(2)将x=﹣2代入一次函数解析式可判断结果.【解答】解:(1)设一次函数解析式为y=kx+b,将A(﹣3,﹣5),B(1,3)代入得,,解得,,∴一次函数解析式为:y=2x+1;(2)把x=﹣2代入y=2x+1,解得y=﹣3,∴点P(﹣2,1)不在一次函数图象上.17.如图,已知E是平行四边形ABCD的边AB上的点,连接DE.(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)的条件下,求证:△ADE≌△CBF.【考点】作图—复杂作图;全等三角形的判定;平行四边形的性质.【分析】(1)作∠CBM=∠ADE,其中BM交CD于F;(2)根据平行四边形的性质可得∠A=∠C,AD=BC,由ASA可证△ADE≌△CBF.【解答】(1)解:如图所示.(2)证明:∵四边形ABCD是平行四边形∴∠A=∠C,AD=BC,∵∠ADE=∠CBF,∴△ADE≌△CBF(ASA).四、解答题(本大题共3小题,每小题10分,共30分)18.据某市2016年国民经济和社会发展统计公报显示,2016年该市新开工的住房有商品房.廉租房、经济适用房和公共租赁房四种类型,老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2016年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果计划2017年新开工廉租房建设的套数比2016年增长10%,那么2017年新开工廉租房有多少套?【考点】概率公式;用样本估计总体;频数(率)分布直方图;扇形统计图.【分析】(1)根据扇形统计图中公租房所占比例以及条形图中公租房数量即可得出,新开工的住房总数,进而得出经济适用房的套数;(2)根据申请购买经济适用房共有950人符合购买条件,经济适用房总套数为475套,得出老王被摇中的概率即可;(3)根据2016年廉租房共有6250×8%=500套,得出500(1+10%)=550,即可得出答案.【解答】解:(1)根据题意得:住房总数为1500÷24%=6250(套),则经济适用房的数量为6250×7。
2024年湖南省各地市中考数学一模压轴题精选温馨提示:1.本卷共50题,题目均选自2024年湖南省各地市一模试题。
2.本卷分为几何和代数两部分,解答题留有足够答题空间,试题部分可直接打印出来练习。
3.本卷难度较大,适合基础较好的同学。
第一部分代数部分1.(2024·湖南省衡阳市珠晖区·一模)已知三角形的两条边分别是3和8,第三边是方程x2−13x+42=0的根,则这个三角形的周长为( )A. 17或18B. 17C. 18D. 不能确定2.(2024·湖南省长沙市长沙县·一模)对于二次函数y=x2−12x+42,有以下结论:①当x>5时,y随x的增大而增大;②当x=6时,y有最小值6:③图象与x轴有两个交点;④图象是由抛物线y=x2向左平移6个单位长度,再向上平移6个单位长度得到的.其中结论错误的有( )A. ①②③B. ①③④C. ②③④D. ①②③④3.(2024·湖南省益阳市·一模)在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式x4−y4,因式分解的结果是(x−y)(x+y)(x2+y2),若取x=9,y=9,则各个因式的值是:x−y=0,x+y=18,x2+y2=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x3−xy2,取x=50,y=20,用上述方法产生的密码不可能是( )A. 503070B. 507030C. 307040D. 7030504.(2024·湖南省常德市·一模)将抛物线y=−x2+2x+3中x轴上方的部分沿x轴翻折到x轴下方,图象的其余部分不变,得到的新图象与直线y=x+m有4个交点,则m的取值范围是( )A. m≤−5B. −214≤m<−5 C. −214<m<−3 D. m≥−35.(2024·湖南省株洲二中·一模)若一个点的坐标满足(k,2k),我们将这样的点定义为“倍值点”.若关于x的二次函数y=(t+1)x2+(t+2)x+s(s,t为常数,t≠−1)总有两个不同的倍值点,则s的取值范围是( )A. s<−1B. s<0C. 0<s<1D. −1<s<06.(2024·湖南省株洲市石峰区·一模)如图,一次函数y 1=k 1x +b 的图象与反比例函数y 2=k2x (k 2>0)的图象交于点A(4,n)与点B(−1,−4).连接BO 并延长交反比例函数于另一点C ,过点C 作y 轴的平行线交直线AB 于点D ,连接OD ,则CD 的长为( )A. 3B. 6C. 8D. 107.(2024·湖南省益阳市大通湖区·一模)如图所示,已知二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,OA =OC ,对称轴为直线x =1,则下列结论:①abc <0;②a +12b +14c =0;③ac −b +1=0;④2+c 是关于x 的一元二次方程ax 2+bx +c =0的一个根.其中正确的有( )A. 1个B. 2个C. 3个D. 4个8.(2024·湖南省益阳市大通湖区·一模)如图,二次函数y =ax 2+bx +c 的图象经过点(3,0),对称轴为直线x =1,下列结论:①abc >0;②9a −3b +c =0;③3b +2c =0;④若A(a +1,y 1),B(a +2,y 2)两点在该二次函数的图象上,则y 1−y 2<0.其中正确的有( )A. 1个B. 2个C. 3个D. 4个9.(2024·湖南省张家界市桑植县·一模)已知二次函数y =ax 2−2ax +c(a ≠0)的图象与x 轴的一个交点为(−2,0),则关于x 的一元二次方程ax 2−2ax +c =0的两根之积是______.10.(2024·湖南省株洲市石峰区·一模)反比例函数y =−6x 的图象与直线y =kx(k <0)相交于A(x 1,y 1),B(x 2,y 2)两点,则x 1y 2+x 2y 1的值是______.11.(2024·湖南省常德市·一模)已知a ,b ,c 满足a −2b =c ,b +c =−4a ,则二次函数y =ax 2+bx +c(a ≠0)的图象的对称轴为直线______.12.(2024·湖南省益阳市大通湖区·一模)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =6x 在第一象限的图象经过点B ,则OA 2−AB 2=______.13.(2024·湖南省长沙市长沙县·一模)如图,已知一次函数y =kx +b 的图象经过点P(4,6),与反比例函数y =2x的图象在第一象限交于点Q(m,n).若一次函数y 的值随x 值的增大而增大,则m 的取值范围是______.14.(2024·湖南省株洲市石峰区·一模)如图,直线y =13x +4与反比例函数y =k x(x >0)的图象交于点A ,与y 轴正半轴交于点B ,过点A 作x 轴的垂线,垂足为点C ,已知OB :OC =4:3,则k 的值为______.15.(2024·湖南省株洲市石峰区·一模)已知直线l:y=kx+b(k≠0)与双曲线y=−1x交于点A(m1,n1),B(m2, n2).(1)若m1+m2=0,则n1+n2=______;(2)若m1+m2>0时,n1+n2>0,则k______0,b______0(填“>”“=”或“<”).16.(2024·湖南省张家界市桑植县·一模)已知关于x的一元二次方程x2−(2m−1)x−3m2+m=0.(1)求证:无论m为何值,方程总有实数根;(2)若x1,x2是方程的两个实数根,且x2x1+x1x2=−52,求m的值.17.(2024·湖南省张家界市桑植县·一模)某校运动会需购买A,B两种奖品,若购买A种奖品2件和B种奖品1件,共需35元;若购买A种奖品1件和B种奖品2件,共需40元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A,B两种奖品共100件,购买费用不超过1135元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.(x>0)经过点B交CD于点E,延长OB至点C.使OB=BC,过点C作CD//BA交x轴于点D,反比例函数y1=k1x(x>0)经过点C.反比例函数y2=k2x(1)求反比例函数y1,y2的解析式;(2)连接BE,BD,计算△BED的面积.(k>0)的图象交于点A(1,m),19.(2024·湖南省衡阳市珠晖区·一模)如图,直线y=2x+6与反比例函数y=kx与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的解析式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?(k>0,x>0)的图象经过点D,上,OA=4,OC=2,点D是BC边上的动点(不与B,C重合),反比例函数y=kx且与AB交于点E,连接OD,OE,DE.(1)若点D的横坐标为1.①求k的值;②点P在x轴上,当△ODE的面积等于△ODP的面积时,试求点P的坐标;(2)延长ED交y轴于点F,连接AC,判断四边形AEFC的形状,并说明理由.x+c的图象与x轴交于点A(3,0),与y轴交于点B(0,−21.(2024·湖南省常德市·一模)如图,二次函数y=ax2−432).(1)求二次函数的解析式;(2)若点P为抛物线上一动点(直线AB上方),且S△PBA=4,求点P的坐标.22.(2024·湖南省益阳市大通湖区·一模)如图,已知抛物线y=ax2+bx+3与x轴交于A(−1,0)、B(3,0)两点,与y轴交于点C,连接BC.(1)求抛物线的解析式;(2)若点P为线段BC上的一动点(不与B、C重合),PM//y轴,且PM交抛物线于点M,交x轴于点N,当△BCM 的面积最大时,求点P的坐标.23.(2024·湖南省永州市祁阳市·一模)已知:抛物线C1:y=ax2+bx+c(a>0).(1)若顶点坐标为(1,1),求b和c的值(用含a的代数式表示);(2)当c<0时,求函数y=−2024|ax2+bx+c|−1的最大值;(3)若不论m为任何实数,直线y=m(x−1)−m2与抛物线C1有且只有一个公共点,求a,b,c的值;此时,若4k≤x≤k+1时,抛物线的最小值为k,求k的值.x2+bx+c与x轴交于A,24.(2024·湖南省长沙市长沙县·一模)如图,在平面直角坐标系中,已知抛物线y=12B两点,与y轴交于C点,且OB=OC=2OA.(1)求该抛物线的解析式;(2)抛物线上是否存在点M,使∠ABC=∠BCM,如果存在,求点M的坐标,如果不存在,说明理由;(3)若点D是抛物线第二象限上一动点,过点D作DF⊥x轴于点F,过点A,B,D的圆与DF交于点E,连接AE,BE,求△ABE的面积.25.(2024·湖南省株洲二中·一模)如图所示,抛物线y=x2+bx+c与x轴相交于A、B两点,与y轴相交于点C(0,−3),其对称轴x=1与x轴相交于点D,点M为抛物线的顶点.(1)求抛物线的表达式.(2)若直线CM交x轴于点E,求证:BC=EC.(3)若点P是线段EM上的一个动点,是否存在以点P、E、O为顶点的三角形与△ABC相似.若存在,求出点P的坐标;若不存在,请说明理由.26.(2024·湖南省长沙市望城区·一模)如图,二次函数y=x2+bx+c的对称轴是直线x=1,图象与x轴相交于点A(−1,0)和点B,交y轴于点C.(1)求此二次函数的解析式;(2)点P是对称轴上一点,当△BOC∽△APB时,求点P的坐标(请在图1中探索);(3)二次函数图象上是否存在点M,使△ABC的面积S1与△ABM的面积S2相等?若存在,请求出所有满足条件的点M的坐标;若不存在,请说明理由(请在图2中探索).27.(2024·湖南省长沙市望城区·一模)定义:在平面直角坐标系xOy 中,当点N 在图形M 的内部,或在图形M 上,且点N 的横坐标和纵坐标相等时,则称点N 为图形M 的“梦之点”.(1)如图①,矩形ABCD 的顶点坐标分别是A(−1,2),B(−1,−1),C(3,−1),D(3,2),在点N 1(1,1),N 2(2,2),N 3(3,3)中,是矩形ABCD “梦之点”的是______;(2)如图②,已知点A ,B 是抛物线y =−12x 2+x +92上的“梦之点”,点C 是抛物线的顶点.连接AC ,AB ,BC ,判断△ABC 的形状并说明理由.(3)在(2)的条件下,点P 为抛物线上一点,点Q 为平面内一点,是否存在点P 、Q ,使得以AB 为对角线,以A 、B 、P 、Q 为顶点的四边形是菱形?若存在,求出P 点坐标;若不存在,请说明理由.28.(2024·湖南省怀化市·一模)如图1,在平面直角坐标系中,抛物线y=−x2+bx+c与x轴交于A,B两点(点A 在点B的左侧),与y轴交于点C,OB=OC=5,顶点为D,对称轴交x轴于点E.(1)求抛物线的解析式、对称轴及顶点D的坐标;(2)如图2,点Q为抛物线对称轴上一动点,当Q在什么位置时QA+QC最小,求出Q点的坐标,并求出此时△QAC的周长;(3)如图3,在对称轴左侧的抛物线上有一点M,在对称轴右侧的抛物线上有一点N,满足∠MDN=90°.求证:直线MN恒过定点,并求出定点坐标.29.(2024·湖南省益阳市大通湖区·一模)已知抛物线y=a(x+2)(x−4)(a为常数,且a<0)与x轴交于A,B两点x+b与抛物线的另一交点为点D,与y轴的交点为(点A在点B的右侧),与y轴交于点C,经过点B的直线y=12点E.(1)如图1,若点D的横坐标为3,试求抛物线的函数表达式;(2)如图2,若DE=BE,试确定a的值;(3)如图3,在(1)的情形下,连接AC,BC,点P为抛物线在第一象限内的点,连接BP交AC于点Q,当S△APQ−S△BCQ取最大值时,试求点P的坐标.第二部分几何部分30.(2024·山东省济南市·一模)如图,AB为⊙O的直径,C为⊙O上一点,过点C作CD⊥AB交⊙O于点D,交AB于点E,连接AC,BD,过点C作CF⊥BD于点F,交AB于点G,若CD=8,OG=1,则⊙O的半径为( ) A. 4B. 133C. 265D. 631.(2023·湖南省益阳市大通湖区·一模)如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C 重合),下列结论:①∠ADB=∠BDC;②DA=DC;③当DB最长时,DB=2DC;④DA+DC=DB,其中一定正确的结论有( )A. 1个B. 2个C. 3个D. 4个32.(2024·湖南省常德市·一模)如图,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD//AC交⊙O 于点D,连接CD,OC,且OC交DB于点E.若∠CDB=30°,DB=23cm.则图中阴影部分的面积为______.33.(2024·湖南省益阳市大通湖区·一模)如图,正方形ABCD的边长为16,线段CE绕着点C逆时针方向旋转,AM,当线段FM的长最小时,且CE=6,连接BE,以BE为边作正方形BEFG,M为AB边上的点,且BM=13tan∠ECB=______.34.(2024·湖南省永州市祁阳市·一模)如图,在矩形ABCD中,连接BD,分别以B,D为圆心,大于1BD的长为2半径画弧,两弧交于P,Q两点,作直线PQ,分别与AD,BC交于点M,N,连接BM,DN.若AD=6,AB=3.则四边形MBND的周长为______.35.(2024·湖南省长沙市望城区·一模)如图,在△ABC中,∠ACB=90°,AC=BC=3,以BC为直径作半圆O,过点A作半圆O的切线,切点为D,过点D作DE//BC交BC于点E,则DE=______.36.(2024·四川省内江市·一模)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=7,F为DE的中点,若△CEF的周长为32,则OF的长为______.37.(2024·湖南省衡阳市珠晖区·一模)如图,在△ABC中,AC=BC,∠ACB=90°,以点A为圆心,AB长为半的值为______.径画弧,交AC延长线于点D,过点C作CE//AB,交BD于点E,连接BE,则CEBE38.(2024·衡阳市珠晖区·一模)如图,点D在以AB为直径的⊙O上,AD平分∠BAC,DC⊥AC,过点B作⊙O的切线交AD的延长线于点E.(1)求证:直线CD是⊙O的切线.(2)求证:CD⋅BE=AD⋅DE.39.(2024·湖南省怀化市·一模)如图,在圆内接四边形ABCD中,AB=BC,AD=CD,四边形ABCD的对角线AC,BD交于点E.(1)求∠BCD的度数;(2)过点C作CF//AD交AB的延长线于点F,若∠ABC=120°,求证:CF是圆的切线.40.(2024·湖南省永州市祁阳市·一模)如图,以AB为直径的⊙O上有两点E,F,E是BF弧的中点,过点E作直线CD⊥AF交AF的延长线于点D,交AB的延长线于点C,过C作CM平分∠ACD交AE于点M,交BE于点N.(1)求证:CD是⊙O的切线;(2)求证:EM=EN;(3)如果N是CM的中点,且AB=75,求EN的长.41.(2024·湖南省常德市·一模)如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作⊙A,交AB 于点D,交CA延长线于点E,BF是⊙A的切线,连接EF,DF.(1)求证:EF//AB;(2)若⊙A的半径为2,当四边形ADFE为菱形时,求BF的长.42.(2024·湖南省长沙市望城区·一模)如图,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过C作∠DCE,使∠DCE=2∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)如图2,点F是⊙O上一点,且满足∠FCE=2∠ABC,连接AF并延长交EC的延长线于点G.①试探究线段CF与CD之间满足的数量关系;②若CD=4,tan∠BCE=1,求线段AF的长.243.(2024·湖南省株洲二中·一模)如图,已知AB是⊙O的直径,直线DC是⊙O的切线,切点为C,AE⊥DC,垂足为E.连接AC.(1)求证:AC平分∠BAE;(2)若AC=5,tan∠ACE=3,求⊙O的半径.444.(2024·湖南省长沙市长沙县·一模)定义:对角线互相垂直的圆内接四边形叫做圆的“奇妙四边形”.(1)若▱ABCD是圆的“奇妙四边形”,则▱ABCD是______(填序号);①矩形;②菱形;③正方形(2)如图1,已知⊙O的半径为R,四边形ABCD是⊙O的“奇妙四边形”.求证:AB2+CD2=4R2;(3)如图2,四边形ABCD是“奇妙四边形”,P为圆内一点,∠APD=∠BPC=90°,∠ADP=∠PBC,BD=4,且AB=3DC,当DC的长度最小时,求APDP的值.45.(2024·湖南省张家界市桑植县·一模)如图,⊙O的直径AB垂直于弦CD于点E,AB=10,CD=6,点P是CD延长线上异于点D的一个动点,连结AP交⊙O于点Q,连结CQ交AB于点F,则点F的位置随着点P位置的改变而改变.(1)如图1,当DP=4时,求tan∠P的值;(2)如图2,连结AC,DQ,在点P运动过程中,设DP=x,S△QACS△QDC=y.①求证:∠ACQ=∠CPA;②求y与x之间的函数关系式.46.(2024·湖南省长沙市望城区·一模)如图,已知AB是⊙O的直径,弦CD⊥AB于点E,点M是线段DC延长线上的一点,连结MA交⊙O于点F,连结DF交AB于点G,连结AD,BD,CF.(1)求证:△MAD∽△DAF.(2)若AD=25BE,求tan∠AFD的值.(3)在(2)的条件下,设tan∠M=x,AG=y.GB①求y关于x的函数表达式;②若E为BG的中点,求S△CFD的值.S△AFD47.(2024·湖南省益阳市大通湖区·一模)已知:如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,过点A作BE的垂线交BE于点F,交BC于点G,连接EG,CF.(1)求证:四边形ABGE是菱形;(2)若∠ABC=60°,AB=4,AD=5,求CF的长.48.(2024·湖南省长沙市长沙县·一模)如图1,在矩形ABCD中,已知AB=3,BC=4,点E是线段BC上的一个动点,连接AE并延长,交射线DC于点F.点B与点B′关于直线AF对称,延长AB′交CD于点M,连接B′E.(1)求证:AM=FM;(2)如图2,若点B′恰好落在对角线AC上,求tan∠F的值;(3)若BECE =53,求线段AM的长.49.(2024·湖南省常德市·一模)已知Rt△ABC,∠ACB=90°,∠BAC=30°,D是AC边上一点,过点D作DE⊥AB于点E,连接BD,F是BD中点,连接EF,CF.(1)如图①,线段EF,CF之间的数量关系为______,∠EFC的度数为______;(2)如图②,将△AED绕点A按顺时针方向旋转α(0°<α<30°),请判断线段EF,CF之间的数量关系及∠EFC 的度数,并说明理由;(3)在△AED绕点A旋转的过程中,当点D落到直线AB边上时,连接BE,若BC=3,AD=2,请直接写出BE 的长度.50.(2024·湖南省怀化市·一模)已知正方形ABCD和正方形EFGH按图1所示叠放在一起,其中AB=4,EF=2,点O为AB和EF的中点.(1)图2中正方形EFUV为图1中正方形EFGH关于直线AB的轴对称图形,求点D和点U的连结线段DU的长度;(2)将图1中的正方形EFGH绕点O旋转,如图3所示,求运动过程中点D和点G之间距离的最大值和最小值.参考答案1.【答案】A【解析】解:∵三角形的两条边分别是3和8,设第三边为a,∴8−3<a<6+3,即5<a<11,解方程x2−13x+42=0,得:x1=6,x2=7,∴该方程的两个根都在a的取值范围内,∴当x=6时,该三角形的周长为:3+8+6=17,当x=7时,该三角形的周长为:3+8+7=18.故选:A.首先设第三边为a,根据三角形三边之间的关系得5<a<11,再解方程x2−13x+42=0,得:x1=6,x2=7,由此可得出该三角形的周长.此题主要考查了三角形三边之间的关系,解一元二次方程,三角形的周长等,理解三角形三边之间的关系,熟练掌握解一元二次方程是解决问题的关键.2.【答案】B【解析】解:∵二次函数y=x2−12x+42=(x−6)2+6,∴该函数的对称轴为直线x=6,函数图象开口向上,当5<x<6时,y随x的增大而减小,当x>6时,y随x的增大而增大,故①符合题意;当x=6时,y有最小值6,故②不符合题意;当y=0时,无实数根,即图象与x轴无交点,故③符合题意;图象是由抛物线y=x2向右平移6个单位长度,再向上平移6个单位长度得到的,故④符合题意;故选:B.将题目中的函数解析式化为顶点式,然后根据二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查抛物线与x轴的交点,二次函数的性质、二次函数图象与几何变换,解答本题的关键是明确题意,利用二次函数的性质解答.3.【答案】C【解析】解:∵x3−xy2=x(x2−y2)=x(x+y)(x−y),∵x=50,y=20,则各个因式的值为x=50,x+y=70,x−y=30,∴产生的密码不可能是307040,故选:C.先提公因式x,然后根据平方差公式因式分解,进而代入字母的值即可求解.本题主要考查提公因式法分解因式、平方差公式分解因式,熟记公式结构是解题的关键.4.【答案】C【解析】解:令y=0,则−x2+2x+3=0,解得x1=−1,x2=3,∴抛物线与x轴的交点为(−1,0)、(3,0),∵将抛物线y=−x2+2x+3中x轴上方的部分沿x轴翻折到x轴下方,图象的其余部分不变,∴新图象中当−1≤x≤3时,解析式为y=x2−2x−3,如图,当直线y=x+m.经过(3,0)时,此时直线y=x+m与新函数图象有3个交点,把(3,0)代入直线y=x+m,解得m=−3,直线y=x+m再向下平移时,有4个交点;当y=x2−2x−3与直线y=x+m有一个交点时,此时直线y=x+m与新函数图象有3个交点,联立方程组{y=x+my=x2−2x−3,整理得x2−3x−3−m=0,∴Δ=b2−4ac=21+4m=0,,解得m=−214<m<−3.综上所述,新图象与直线y=x+m有4个交点时,m的取值范围是−214故选:C.先求出抛物线y=−x2+2x+3与x轴的交点坐标,再根据抛物线y=−x2+2x+3中x轴上方的部分沿x轴翻折到x轴下方,图象的其余部分不变,得到的新图象的解析式为y=x2−2x−3(−1≤x≤3),画出图象,结合图象求出满足题意的m的取值范围.本题考查了二次函数图象与几何变换,二次函数图形上点的坐标特征,正确的理解题意是解题的关键.5.【答案】D【解析】解:将(k,2k)代入二次函数,得2k=(t+1)k2+(t+2)k+s,整理得(t+1)k2+tk+s=0.∵(t+1)k2+tk+s=0是关于k的二次方程,总有两个不同的实根,∴Δ=t2−4s(t+1)>0.令f(t)=t2−4s(t+1)=t2−4st−4s∵f(t)>0,∴Δ=(4s)2+16s=16s2+16s<0,即Δ=s(s+1)<0,解得−1<s<0.故选:D.根据根与系数的关系解答即可.本题主要考查二次函数图象上点的坐标特征.根与系数的关系是二次函数部分非常重要的关系式,这里进行了反复运用,一定要牢牢掌握并灵活运用.6.【答案】B(k2>0)的图象交于点A(4,n)与点B(−1,−4),【解析】解:∵反比例函数y2=k2x∴k2=4n=−1×(−4),∴k2=4,n=1,∴A(4,1),把A、B的坐标代入y1=k1x+b得{4k1+b=1−k1+b=−4,解得{k1=1b=−3,∴直线AB为y=x−3,∵B(−1,−4),∴C(1,4),∵CD//y轴,∴D(1,−2),∴CD=4+2=6,故选:B.利用待定系数法求得反比例函数的解析式即可求得点A的坐标,进一步求得直线AB的解析式,利用反比例函数的中心对称性求得C 的坐标,即可求得D 点的坐标,从而求得CD 的长度.本题是反比例函数与一次函数的交点问题,考查了待定系数法求函数的解析式,反比例函数图象上点的坐标特征,反比例函数的对称性,求得直线AB 的解析式以及C 点的坐标是解题的关键.7.【答案】C【解析】解:∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x =−b 2a=1,∴b =−2a >0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以①正确;∵点A 到直线x =1的距离大于1,∴点B 到直线x =1的距离大于1,即点B 在(2,0)的右侧,∴当x =2时,y >0,即4a +2b +c >0,∴a +12b +14c >0,所以②错误;∵C (0,c ),OA =OC ,∴A (−c ,0),∴ac 2−bc +c =0,即ac −b +1=0,所以③正确;∵点A 与点B 关于直线x =1对称,∴B (2+c ,0),∴2+c 是关于x 的一元二次方程ax 2+bx +c =0的一个根,所以④正确.故选:C .利用抛物线开口方向得到a <0,利用对称轴方程得到b =−2a >0,利用抛物线与y 轴的交点位置得到c >0,则可对①进行判断;利用对称性可判断点B 在(2,0)的右侧,则当x =2时,4a +2b +c >0,则可对②进行判断;利用C (0,c ),OA =OC 得到A (−c ,0),把A (−c ,0)代入抛物线解析式可对③进行判断;利用抛物线的对称性得到B (2+c ,0),则根据抛物线与x 轴的交点问题可对④进行判断.本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.8.【答案】B【解析】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=1,∴−b=1,2a∴b=−2a<0,∵抛物线与y轴的交点在y轴的负半轴,∴c<0,∴abc>0,所以①正确;∵抛物线与x轴的一个交点坐标为(3,0),对称轴为直线x=1,∴抛物线与x轴的一个交点坐标为(−1,0),∴当x=−3时,y>0,∴9a−3b+c>0,所以②错误;∵x=−1时,y=0,∴a−b+c=0,而b=−2a,∴a+2a+c=0,即c=−3a,∴3b+2c=−6a−6a=−12a<0,所以③错误;∵a>0,∴A(a+1,y1),B(a+2,y2)两点在对称轴的右侧,而a+1<a+2,∴y1<y2,即y1−y2<0,所以④正确.故选:B.利用抛物线开口方向得到a>0,利用对称轴方程得到b=−2a<0,利用抛物线与y轴的交点在y轴的负半轴得到c<0,则可对①进行判断;根据抛物线的对称性得到抛物线与x轴的一个交点坐标为(−1,0),则当x=−3时,y>0,所以9a−3b+c>0,从而可对②进行判断;由于x=−1时,y=0,则a−b+c=0,利用b=−2a得到c=−3a,所以3b+2c=−12a<0,则可对③进行判断;由于a>0,所以A(a+1,y1),B(a+2,y2)两点在对称轴的右侧,然后根据二次函数的性质可对④进行判断.本题考查了二次函数与不等式(组):利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,从而比较两函数值的大小确定不等式的解集.也考查了二次函数的性质.9.【答案】−8=1,【解析】解:∵二次函数y=ax2−2ax+c的对称轴为直线x=−−2a2a二次函数的图象与x轴的一个交点为(−2,0),∴二次函数的图象与x轴的另一个交点为(4,0),∴关于x的一元二次方程ax2−2ax+c=0的两根为x1=−2,x2=4,∴关于x的一元二次方程ax2−2ax+c=0的两根之积为−8.故答案为:−8.先利用抛物线的对称轴方程得到二次函数y=ax2−2ax+c的对称轴为直线x=1,则利用抛物线的对称性得到二次函数的图象与x轴的另一个交点为(4,0),然后根据抛物线与x轴的交点问题得到关于x的一元二次方程ax2−2ax+c=0的两根为x1=−2,x2=4,从而得到关于x的一元二次方程ax2−2ax+c=0的两根之积.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.10.【答案】12【解析】解:∵A(x1,y1),B(x2,y2)两点关于原点对称,∴x1=−x2,y1=−y2,把A(x1,y1)代入反比例函数解析式得:x1⋅y1=−6,∴x1y2+x2y1=−x1y1−x2y2=6+6=12.故答案为:12.根据反比例函数图象上点的坐标特征解答即可.本题考查了反比例函数图象上点的坐标特征,熟练掌握得到坐标特征是关键.11.【答案】x=−52【解析】解:由题意,∵a−2b=c,b+c=−4a,∴c=−4a−b=a−2b.∴5a=b.∴二次函数y=ax2+bx+c(a≠0)的图象的对称轴为直线x=−b2a =−5a2a=−52.故答案为:x=−52.依据题意,由a−2b=c,b+c=−4a,从而可得c=−4a−b=a−2b,进而可得5a=b,再结合抛物线的对称轴是直线x=−b2a进行计算可以得解.本题主要考查了二次函数的图象与性质,解题时要熟练掌握二次函数的对称轴为直线x=−b2a是关键.12.【答案】12【解析】解:设OC=a,BD=b,则点A的坐标为(a,a),点B的坐标为(a+b,a−b).∵反比例函数y=6x在第一象限的图象经过点B,∴(a+b)(a−b)=6,即a2−b2=6,∴OA2−AB2=2a2−2b2=2(a2−b2)=12.故答案为:12.设OC=a,BD=b,则点A的坐标为(a,a),点B的坐标为(a+b,a−b),利用反比例函数图象上点的坐标特征可得出a2−b2=6,再由勾股定理可得出OA2−AB2=2a2−2b2=12,此题得解.本题考查了反比例函数图象上点的坐标特征、等腰直角三角形以及勾股定理,利用反比例函数图象上点的坐标特征找出a2−b2=6是解题的关键.13.【答案】13<m<6【解析】解:过点P作PA//x轴,交双曲线于点A,过点P作PB//y轴,交双曲线于点B,如图,∵P(4,6),反比例函数y=2x,∴A (13,6),B (4,12).∵一次函数y 的值随x 值的增大而增大,∴点Q (m ,n )在A ,B 之间,∴13<m <6.故答案为:13<m <6.过点P 分别作x 轴,y 轴的平行线,与双曲线分别交于点A ,B ,利用解析式分别求得A ,B 坐标,依据题意确定点Q 的移动范围,从而得出结论.本题主要考查了反比例函数与一次函数图象的交点问题,待定系数法,反比例函数的性质,一次函数的性质,一次函数图象上点的坐标的特征,确定点Q 的移动范围是解题的关键.14.【答案】15【解析】解:∵直线y =13x +4与反比例函数y =k x (x >0)的图象交于点A ,与y 轴正半轴交于点B ,∴B (0,4),∵OB :OC =4:3,∴OC =3,即C (3,0),当x =3时,y =13x +4=5,∴A (3,5),∵点A 在反比例函数图象上,∴k =3×5=15.故答案为:15.根据反比例函数图象上点的坐标特征进行解答即可.本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标特征是关键.15.【答案】0 < >【解析】解:(1)由m 1+m 2=0可知,m 1=−m 2,点A (m 1,n 1),B (m 2,n 2)在反比例函数图象上,∴n 1=1m 1=−1−m 2=1m 2,n 2=−1m 2,∴n 1+n 2=0,故答案为:0.(2)∵反比例函数图象在第二、四象限,且m 1+m 2>0时,n 1+n 2>0,∴点A (m 1,n 1),B (m 2,n 2)在不同的象限,设A(m1,n1)在第二象限,B(m2,n2)在第四象限,则m1<0,n1>0,n2<0,且丨m2丨>丨m1丨,丨n1丨>丨n2丨,∴直线y=kx+b(k≠0)经过第一、二、四象限,∴k<0,b>0.故答案为:<;>.(1)根据题意可知m1=−m2,将点A、B坐标代入反比例函数解析式即可得到结果;(2)根据题意得到点A(m1,n1),B(m2,n2)在不同的象限,设A(m1,n1)在第二象限,B(m2,n2)在第四象限,则m1<0,n1>0,n2<0,且丨m2丨>丨m1丨,丨n1丨>丨n2丨,则直线y=kx+b(k≠0)经过第一、二、四象限,据此得到结果.本题考查了一次函数与反比例函数的交点问题,交点坐标满足两个函数解析式.16.【答案】(1)证明:∵Δ=[−(2m−1)]2−4×1×(−3m2+m)=4m2−4m+1+12m2−4m=16m2−8m+1=(4m−1)2≥0,∴方程总有实数根;(2)解:由题意知,x1+x2=2m−1,x1x2=−3m2+m,∵x2x1+x1x2=x21+x22x1x2=(x1+x2)2x1x2−2=−52,∴(2m−1)2−3m2+m −2=−52,整理得5m2−7m+2=0,解得m=1或m=25.【解析】(1)由判别式Δ=(4m−1)2≥0,可得答案;(2)根据根与系数的关系知x1+x2=2m−1,x1x2=−3m2+m,由x2x1+x1x2=−52进行变形直接代入得到5m2−7m+2=0,求解可得.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba,x1x2=ca.也考查了根的判别式.17.【答案】解:(1)设A种奖品的单价为a元,B种奖品的单价为b元,由题意可得:{2a+b=35a+2b=40,解得{a=10b=15,答:A 种奖品的单价为10元,B 种奖品的单价为15元;(2)由题意可得,W =10m +15(100−m )=−5m +1500,∴W 随m 的增大而减小,∵购买费用不超过1135元,且A 种奖品的数量不大于B 种奖品数量的3倍,∴{−5m +1500≤1135m ≤3(100−m ),解得73≤m ≤75,∴当m =75时,W 取得最小值,此时W =1125,答:W (元)与m (件)之间的函数关系式是W =−5m +1500(73≤m ≤75),最少费用W 的值为1125. 【解析】(1)根据题意可以写出相应的二元一次方程组,然后求解即可;(2)根据题意和题目中的数据,可以写出W (元)与m (件)之间的函数关系式.本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式组的应用,解答本题的关键是明确题意,列出相应的方程和不等式组,写出相应的函数解析式,利用一次函数的性质求最值.18.【答案】解:(1)过点B 作BF ⊥OA ,垂足为F ,如图:∵等边△AOB 的边长为2,∴OF =AF =1,BF = 3,∴B (1, 3),∵OB =BC ,∴C (2,2 3),把点B (1, 3),C (2,2 3)分别代入y 1=k 1x(x >0)和y 2=k 2x(x >0)得: 3=k 11,2 3=k 22,解得k 1= 3,k 2=4 3;∴y 1=3x ,y 2=43x;(2)连接AE ,如图:。
2024年湖南省长沙市中考数学模拟试卷一、选择题(在下列各题的四个选项中,只有一项符合题意的。
请在答题卡中填涂符合题意的选项。
本大题共10小题,每小题3分,共30分)1.(3分)下列实数中,为有理数的是()A.B.πC.D.12.(3分)若分式在实数范围内有意义,则x的取值范围是()A.x≠0B.x≠1C.x>1D.x<13.(3分)下列立体图形中,俯视图与主视图不同的是()A.B.C.D.4.(3分)下列说法正确的是()A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为75.(3分)2023年前三季度全国GDP30强城市排名已经揭晓,长沙GDP约为10800亿名列第十五,同比增速为6.32%,数据10800用科学记数法表示为()A.0.108×105B.10.8×103C.1.08×104D.1.08×103 6.(3分)下列运算正确的是()A.a2•a3=a6B.a2+a3=a5C.(a+b)2=a2+b2D.(a3)2=a6 7.(3分)在直角坐标系中,点A(2,﹣3)关于原点对称的点位于()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,E、F、G、H分别是四边形ABCD四条边的中点,则四边形EFGH一定是()A.平行四边形B.矩形C.菱形D.正方形9.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°10.(3分)我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何”,翻译过来就是:有五尺厚的墙,两只老鼠从墙的两边相对分别打洞穿墙,大、小鼠第一天都进一尺,以后每天,大鼠加倍,小鼠减半,则几天后两鼠相遇,这个问题体现了古代对数列问题的研究,现将墙的厚度改为20尺,则需要几天时间才能打穿(结果取整数)()A.4B.5C.6D.7二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)分解因式:1﹣x2=.12.(3分)如图,在⊙O中,圆心角∠AOB=70°,那么圆周角∠C=.13.(3分)睡眠管理作为“五项管理”中重要的内容之一,也是学校教育重点关注的内容.某老师了解到某班40位同学每天睡眠时间(单位:小时)如下表所示,则该班级学生每天的平均睡眠时间是小时.睡眠时间8小时9小时10小时人数6241014.(3分)已知关于x的方程x2+3x﹣m=0的只有一个解,则m的值是.15.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.16.(3分)若一次函数y=x+1与y=﹣x﹣1交于A点,则A点的坐标为.三、解答题(本大题共9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分。
2023年湖南省长沙市中考数学模拟试卷(一)一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.(3分)﹣2023的倒数是()A.2023B.﹣2023C.D.2.(3分)下列立体图形中,三视图都一样的是()A.B.C.D.3.(3分)为起草党的二十大报告,党中央开展了深入的调查研究,有关部门组织了党的二十大相关工作网络征求意见活动,收到留言约8542000条.数据8542000用科学记数法表示为()A.854.2×104B.8.542×106C.85.24×106D.0.8542×107 4.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=4a2D.5a2÷a2=5a 5.(3分)在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)某班六名同学体能测试成绩(分)如下:80,90,75,75,80,80,对这组数据表述错误的是()A.众数是80B.方差是25C.平均数是80D.中位数是75 7.(3分)我国明代数学读本《算法统宗》中有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,还差8两.问客人有几人?设客人有x人,则可列方程为()A.7x+4=9x﹣8B.7x﹣4=9x+8C.D.8.(3分)如图,把一个直角三角尺的直角顶点放在直尺的一边上.若∠1=56°,则∠2的度数为()A.14°B.28°C.30°D.34°9.(3分)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=30°,AB=12,则BD的长为()A.6B.C.10D.10.(3分)如图,在△ABC中,∠BAC=90°,以点A为圆心、AC长为半径作弧交BC于点D,再分别以点C,D为圆心、大于的长为半径作弧,两弧交于点F,作射线AF 交BC于点E.若AC=6,AB=8,连接AD,则△ABD的面积为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)若代数式有意义,则x的取值范围是.12.(3分)当x=时,分式的值等于.13.(3分)兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为m.14.(3分)如果关于x的方程x2﹣6x+k=0有两个相等的实数根,那么实数k的值为.15.(3分)生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉50只雀鸟,给它们做上标记后放回山林;一段时间后,再从山林中随机捕捉100只,其中有标记的雀鸟有2只.请你帮助工作人员估计这片山林中雀鸟的数量为只.16.(3分)有四张卡片,每张卡片上分别写了一个代数式:①a2+2ab+b2;②﹣x2+6x﹣10;③;④2a3b﹣5ab+3.甲、乙、丙、丁四位同学每人拿到一张卡片并作如下描述:甲:我拿到的是个四次三项式;乙:不管字母取何值,我拿到的这个式子的值总是负数;丙:我拿到的式子的值为整数时,字母有6个不同的值;丁:我拿到的式子可以写成一个整式的平方.请问甲、乙、丙、丁对应的卡片序号分别是.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:.18.(6分)先化简,再求值:(x+y)(x﹣y)+(4x3y﹣2xy3)÷2xy,其中x=2,y=﹣1.19.(6分)如图,AB,CD为两栋建筑物,两建筑物底部之间的水平距离BD的长度为18m,从建筑物AB的顶部A点测得建筑物CD的顶部C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求建筑物AB的高度;(2)求建筑物CD的高度(结果保留根号).20.(8分)我市某校准备成立四个活动小组:A.声乐,B.体育.c.舞蹈,D.书画.为了解学生对四个活动小组的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中必须选择而且只能选择一个小组,根据调查结果绘制如图所示两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次抽样调查共抽查了名学生,扇形统计图中的m值是.(2)请补全条形统计图.(3)喜爱“书画”的学生中有2名男生和2名女生表现特别优秀,现从这4人中随机选取2人参加比赛,请用列表或叫树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.21.(8分)如图,在四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.(1)求证:四边形ABCD是平行四边形;(2)若AC=BD=10,AD=6,求四边形ABCD的面积.22.(9分)如图,在△ABC中,D是BC延长线上一点,满足CD=BA,过点C作CE∥AB,且CE=BC,连接DE并延长,分别交AC,AB于点F,G.(1)求证:△ABC≌△DCE;(2)若BD=12,AB=8,求BC的长度.23.(9分)近年来,湖南省积极推进农村危房改造工作,帮助农村地区脱贫攻坚.某地区2022年共完成危房改造1.2万户,地方财政拨款6000万元用于补贴危房改造,加上国家专项拨款后,危房改造户每户可获得补贴12000元,已知地方财政和国家专项拨款按一定标准补贴到每户.(1)判断:正确的打“√”,错误的打“×”.①国家专项拨款标准为每户5000元.;②2022年该地区用于危房改造的国家专项拨款共8400万元.;(2)预计2023年该地区用于危房改造的地方财政拨款可增加20%,国家专项拨款增加10%,如果每户补贴金额不变,2023年该地区最多能完成危房改造多少万户?24.(10分)定义:有一个内角等于另外两个内角之和的四边形称为“和谐四边形”.(1)已知∠A=100°,∠B=60°,∠C=α,请直接写出一个α的值,使四边形ABCD为“和谐四边形”.(2)如图1,在△ABC中,D,E分别是边AB,AC上的点,AE=DE.求证:四边形DBCE为“和谐四边形”.(3)在(2)的条件下,如图2,过D,E,C三点作⊙O,与边AB交于点F,与边BC 交于点G,连接FG,EG是⊙O的直径.①求证:BF=FC;②若AE=1,,∠BGF﹣∠B=45°,求“和谐四边形”DBCE的面积.25.(10分)如图,抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(3,﹣2).(1)请直接写出A,B两点的坐标及直线l的函数解析式;(2)若点P是抛物线上的点,点P的横坐标为m,过点P作直线PM⊥x轴,垂足为M,PM与直线l交于点N,当P,M,N其中一点是另外两点所连线段的中点时,求点P的坐标;(3)若点Q是对称轴上的点,且△ADQ为直角三角形,求点Q的坐标.2023年湖南省长沙市中考数学模拟试卷(一)参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.【分析】根据倒数的定义解答即可.【解答】解:﹣2023的倒数是﹣.故选:D.【点评】此题考查的是倒数的定义,乘积是1的两数互为倒数.2.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答即可.【解答】解:A、圆柱的主视图和左视图是矩形,俯视图是圆,故本选项不合题意;B、圆锥的主视图和左视图是三角形,俯视图是带有圆心的圆,故本选项不合题意;C、球的三视图都是圆,故本选项符合题意;D、三棱柱的主视图和俯视图是矩形,左视图是三角形,故本选项不合题意.故选:C.【点评】本题考查的是几何体的三视图,理解主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形是解题的关键.3.【分析】科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法,由此即可得到答案.【解答】解:8542000用科学记数法表示为8.542×106.故选:B.【点评】本题考查科学记数法—表示较大的数,关键是掌握用科学记数法表示数的方法.4.【分析】根据同底数幂的乘法的运算方法,幂的乘方与积的乘方的运算方法,以及整式的除法的运算方法,逐项判断即可.【解答】解:∵a2•a3=a5,∴选项A不符合题意;∵(a2)3=a6,∴选项B不符合题意;∵(2a)2=4a2,∴选项C符合题意;∵5a2÷a2=5,∴选项D不符合题意.故选:C.【点评】此题主要考查了同底数幂的乘法的运算方法,幂的乘方与积的乘方的运算方法,以及整式的除法的运算方法:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.5.【分析】根据各象限内点的坐标特征解答.【解答】解:点P(2,﹣3)在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.【分析】根据众数,方差、平均数,中位数的概念逐项分析即可.【解答】解:A、80出现的次数最多,所以众数是80,正确,不符合题意;B、方差是:×[3×(80﹣80)2+(90﹣80)2+2×(80﹣75)2]=25,正确,不符合题意;C、平均数是(80+90+75+75+80+80)÷6=80,正确,不符合题意;D、把数据按大小排列,中间两个数都为80,80,所以中位数是80,错误,符合题意.故选:D.【点评】本题为统计题,考查方差、众数、平均数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.【分析】若每人7两,还剩4两,则银子共有(7x+4)两;若每人9两,还差8两,则银子共有(9x﹣8)两.根据银子数量不变,即可得出关于x的一元一次方程,此题得解.【解答】解:根据题意,得7x+4=9x﹣8.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.8.【分析】利用平行线的性质可得∠3的度数,再利用平角定义可得答案.【解答】解:如图,∵AB∥CD,∴∠1=∠3=56°,∴∠2=180°﹣90°﹣56°=34°,故选:D.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.9.【分析】连接AD,如图,先根据切线的性质得到∠OAC=90°,再利用互余计算出∠AOC =60°,接着根据圆周角定理得到∠B=30°,∠ADB=90°,然后根据含30度角的直角三角形三边的关系计算BD的长度.【解答】解:连接AD,如图,∵OC交⊙O于点D,∴OA⊥AC,∴∠OAC=90°,∵∠C=30°,∴∠AOC=90°﹣∠C=60°,∵∠B=AOC=30°,∵AB为直径,∴∠ADB=90°,在Rt△ABD中,∵∠B=30°,∴AD=AB=×12=6,∴BD=AD=6.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.10.【分析】根据题意可知AF垂直平分CD,然后根据勾股定理可以得到BC的长,再根据等面积法可以求得AE的长,再根据勾股定理即可得到CE的长,从而可以得到CD的长,进而得到BD的长,然后即可求得△ABD的面积.【解答】解:由题意可得,AF垂直平分CD交CD于点E,∴AD=AC,∵∠BAC=90°,AC=6,AB=8,∴BC===10,∵,∴,解得AE=,∵∠AEC=90°,AC=6,∴CE===,∴CD=2CE=,∴BD=BC﹣CD=10﹣=,∴△ABD的面积为==,故选:C.【点评】本题考查勾股定理、等面积法,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】根据二次根式中的被开方数是非负数,可得:3﹣x≥0,据此求出x的取值范围即可.【解答】解:∵代数式有意义,∴3﹣x≥0,∴x≤3.故答案为:x≤3.【点评】此题主要考查了二次根式有意义的条件,解答此题的关键是要明确:二次根式中的被开方数是非负数.12.【分析】根据题意得出分式方程,再方程两边都乘2(5+x)得出2(7﹣x)=5+x,求出方程的解,再进行检验即可.【解答】解:根据题意得=,方程两边都乘2(5+x),得2(7﹣x)=5+x,解得:x=3,检验:当x=3时,2(5+x)≠0,所以x=3是所列方程的解.故答案为:3.【点评】本题考查了分式方程,能把分式方程转化成整式方程是解此题的关键.13.【分析】根据图可知OC⊥AB,由垂径定理可知∠ADO=90°,AD=AB=8,在Rt△AOD中,利用勾股定理可求OD,进而可求CD.【解答】解:∵OC⊥AB,∴∠ADO=90°,AD=AB=8,在Rt△AOD中,OD2=OA2﹣AD2,∴OD==6,∴CD=10﹣6=4(m).故答案是4.【点评】本题考查了垂径定理、勾股定理,解题的关键是先求出OD.14.【分析】由方程根的个数,根据根的判别式可得到关于k的方程,则可求得k的值.【解答】解:∵关于x的方程x2﹣6x+k=0有两个相等的实数根,∴Δ=0,即(﹣6)2﹣4×1×k=0,解得k=9.故答案为:9.【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.15.【分析】由题意可知:随机捕捉100只,其中带标记的有2只,可以知道,在样本中,有标记的占到.而在总体中,有标记的共有50只,根据比例即可解答.【解答】解:根据题意得:50÷=2500(只),答:估计这片山林中雀鸟的数量为2500只.故答案为:2500.【点评】本题考查了用样本估计总体的知识,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.16.【分析】根据完全平方公式,配方法,分式的值,多项式的含义即可确定答案.【解答】解:①a2+2ab+b2=(a+b)2,是一个整式的平方;②﹣x2+6x﹣10=﹣(x2﹣6x+9)﹣1=﹣(x﹣3)2﹣1,∵(x﹣3)2≥0,∴﹣(x﹣3)2﹣1<0,∴不管字母取何值,﹣x2+6x﹣10的值总是负数;③为整数时,x+1=±1或x+1=±2或x+1=±4,∴x=0或﹣2或1或﹣3或3或﹣5,x有6个不同的取值;④2a3b﹣5ab+3是四次三项式,故答案为:④②③①.【点评】本题考查了完全平方式,配方法,分式的值,多项式等,熟练掌握这些知识是解题的关键.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17.【分析】首先计算乘方、负整数指数幂和特殊角的三角函数值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:=1+3﹣2×+2=1+3﹣1+2=5.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.18.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:(x+y)(x﹣y)+(4x3y﹣2xy3)÷2xy=x2﹣y2+2x2﹣y2=3x2﹣2y2,当x=2,y=﹣1时,原式=3×22﹣2×(﹣1)2=12﹣2=10.【点评】本题考查了整式的混合运算﹣化简求值,准确熟练地进行计算是解题的关键.19.【分析】(1)过点C作CF⊥AB于点F,由题意可知:∠EAD=∠ADB=45°,从而可知AB=18(m).(2)由题可知:∠EAC=∠ACF=30°,在Rt△ACF中,所以tan∠ACF=,从而可求出AF的长度,再根据BF=AB﹣AF的长度.【解答】解:(1)过点C作CF⊥AB于点F,由题意可知:∠EAD=∠ADB=45°,∴BD=AB=18m.答:建筑物AB的高度是18m.(2)∵四边形BFCD是矩形,∴BD=CF=18m,CD=BF,由题可知:∠EAC=∠ACF=30°,在Rt△ACF中,tan∠ACF=,∴AF=18×=6m,∴BF=AB﹣AF=(18﹣6)m,∴CD=(18﹣6)m.答:建筑物CD的高度(18﹣6)m,【点评】本题考查解直角三角形的应用,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.20.【分析】(1)用D小组的人数除以对应的百分数,可求出调查的总人数,用C组的人数除以总人数,再乘100%就是C小组对应的百分数,由此解答;(2)用调查的总人数减去其余三个小组的人数,得出B小组人数,从而补全条形统计图;(3)用列表法列出所有可能的情况,再用所选的2人恰好是1名男生和1名女生的情况数除以总情况数即可求出概率.【解答】解:(1)共抽查的学生人数为:10÷20%=50,×100%=32%,所以m=32.故答案为:50,32;(2)喜爱活动小组B的学生人数为:50﹣6﹣16﹣10=18.补全条形统计图为:(3)记2名女生为A1,A2,2名男生为B1,B2,根据题意列表如下:A1A2B1B2 A1(A2,A1)(B1,A1)(B2,A1)A2(A1,A2)(B1,A2)(B2,A2)B1(A1,B1)(A2,B1)(B2,B1)B2(A1,B2)(A2,B2)(B1,B2)由表格可知,共有12种结果,且每种结果出现的可能性相同,其中所选的2人恰好是1名男生和1名女生的结果共有8种,所以P(1名男生和1名女生)==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果数n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.【分析】(1)证△AOD≌△COB(AAS),由全等三角形的性质得OD=OB,即可解决问题;(2)证明四边形ABCD是矩形,即可解决问题.【解答】(1)证明:∵AD∥BC,∴∠ADO=∠CBO,∵O是AC的中点,∴OA=OC,在△AOD和△COB中,∵,∴△AOD≌△COB(AAS),∴OD=OB,又∵OA=OC,∴四边形ABCD是平行四边形;(2)解:由(1)得:四边形ABCD是平行四边形,又∵AC=BD,∴平行四边形ABCD是矩形.∴∠DAB=90°.在直角△DAB中,BD=10,AD=6,由勾股定理知:AB===8.=AD•AB=48.则S四边形ABCD即四边形ABCD的面积是48.【点评】本题考查平行四边形的判定和性质、全等三角形的判定与性质、矩形的判定与性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)根据SAS证明△ABC与△DCE全等即可;(2)根据全等三角形的性质解答即可.【解答】(1)证明:∵CE∥AB,∴∠B=∠ECD,在△ABC与△DCE中,,∴△ABC≌△DCE(SAS);(2)解:∵△ABC≌△DCE,∴AB=CD=8,∴BC=BD﹣CD=12﹣8=4.【点评】此题考查全等三角形的判定和性质,关键是根据SAS证明△ABC与△DCE全等解答.23.【分析】(1)①危房改造户每户可获得补贴﹣地方财政每户可获得补贴=国家专项拨款每户标准,依此计算即可求解;②2022年该地区用于危房改造的国家专项拨款=2022年该地区用于危房改造的地方财政和国家专项拨款﹣地方财政拨款,依此计算即可求解;(2)先求出2023年该地区用于危房改造的地方财政和国家专项拨款,再除以危房改造户每户可获得补贴即可求解.【解答】解:(1)①12000﹣6000÷1.2=12000﹣5000=7000(元).故国家专项拨款标准为每户7000元.题干的说法是错误的.故答案为:×;②12000×1.2﹣6000=14400﹣6000=8400(万元).故2022年该地区用于危房改造的国家专项拨款共8400万元.题干的说法是正确的.故答案为:√;(2)[6000×(1+20%)+8400×(1+20%)]÷12000=(7200+10080)÷12000=17280÷12000=1.4(万户).故2023年该地区最多能完成危房改造1.4万户.【点评】本题考查了有理数的混合运算,关键是理解题意,正确得到地方财政和国家专项拨款的标准.24.【分析】(1)先根据四边形的内角和为360°表示∠D的度数,根据“和谐四边形”的定义分8种情况列方程可得结论;(2)根据条件证明∠BDE=∠B+∠C,由“和谐四边形”的定义可得结论;(3)①根据圆周角定理及直角三角形的性质推出,∠ACF+∠BCF=90°,∠A+∠B=90°,根据圆内接四边形的性质和等腰三角形的性质推出∠ADE=∠FGE,∠ADE=∠A,进而得出∠A=∠ACF,根据等式的性质求解即可;②如图3,作辅助线,构建相似三角形,证明△AHE∽△ACB,根据勾股定理和相似三角形的性质求解即可.【解答】(1)解:∵∠A=100°,∠B=60°,∠C=α,∴∠D=360°﹣100°﹣60°﹣α=200°﹣α,若∠A=∠B+∠D,则100°=50°+(200°﹣α),解得:α=150°,若∠A=∠C+∠B,则100°=α+60°,解得:α=40°,若∠A=∠C+∠D,则100°=α+(200°﹣α),无解,若∠B=∠D+∠C,则60°=200°﹣α+α,无解,若∠C=∠B+∠A,则α=160°,若∠C=∠B+∠D,则α=60°+(200°﹣α),α=130°,综上,α的值是150°或40°或160°或130°(写一个即可),故答案为:150°或40°或160°或130°(写一个即可);(2)证明:设∠A=x,∠C=y,则∠B=180°﹣x﹣y,∵AE=DE,∴∠ADE=∠A=x,∴∠BDE=180°﹣x,在四边形DBCE中,∠BDE=∠B+∠C,∴四边形DBCE为“和谐四边形”;(3)①证明:∵EG是⊙O的直径,∴∠GCE=90°,∴∠ACF+∠BCF=90°,∠A+∠B=90°,∵AE=DE,∴∠ADE=∠A,∵D、F、G、E四点都在⊙O上,∴∠ADE=∠FGE,∴∠FGE=∠A,∵∠FGE=∠ACF,∴∠A=∠ACF,∴∠B=∠BCF,∴BF=CF;②解:连接DE、DG、FG,过E作EH⊥AB于H,连接DG,∵BF=CF,∴∠B=∠BCF=∠BDG,∴BG=DG,∵EG是⊙O的直径,∴∠GDE=90°,∵DE=AE=1,EG=5,∴DG==7=BG,∵∠BGF﹣∠B=45°,∠BGF﹣∠BCF=∠CFG,∴∠CFG=∠CEG=45°,∴△ECG是等腰直角三角形,∴CE=CG=EG=5,∴BC=7+5=12,AC=5+1=6,∴AB===6,∵∠AHE=∠ACB=90°,∠A=∠A,∴△AHE∽△ACB,∴=,=,∵==,∴AH=,=,∴EH==,=AH•EH=××=,∴S△AHE==36,∴S△ACB∵DE=AE,EH⊥AD,=2S△AHE=,∴S△ADE﹣S△ADE=36﹣=.∴“和谐四边形”DBCE的面积=S△ACB【点评】本题是圆的综合题,考查圆周角定理,圆内接四边形的性质,相似三角形的性质和判定,新定义:“和谐四边形”的理解和运用,勾股定理等知识,解题的关键是学会理解新定义,正确作辅助线解决问题,属于中考压轴题.25.【分析】(1)在y=x2﹣x﹣2中,令y=0可得A(﹣1,0),B(4,0);设直线l的函数解析式为y=kx+b,用待定系数法得直线l的函数解析式为y=﹣x﹣;(2)由点P的横坐标为m,知P(m,m2﹣m﹣2),N(m,﹣m﹣),M(m,0),①若P为MN中点,则2(m2﹣m﹣2)=﹣m﹣+0,②若N为PM的中点,则2(﹣m﹣)=m2﹣m﹣2+0,③若M为PN中点,则m2﹣m﹣2﹣m﹣=0,分别解方程可得答案;(3)由y=x2﹣x﹣2得抛物线对称轴为直线x=,设Q(,t),有AQ2=+t2,DQ2=+(t+2)2,AD2=20,①若AQ为斜边,则+t2=+(t+2)2+20,②若DQ为斜边,则+t2+20=+(t+2)2,③若AD为斜边,则+t2++(t+2)2=20,分别解方程可得答案.【解答】解:(1)在y=x2﹣x﹣2中,令y=0得:x2﹣x﹣2=0,解得x=﹣1或x=4,∴A(﹣1,0),B(4,0);设直线l的函数解析式为y=kx+b,将A(﹣1,0),D(3,﹣2)代入得:,解得,∴直线l的函数解析式为y=﹣x﹣;(2)∵点P的横坐标为m,∴P(m,m2﹣m﹣2),N(m,﹣m﹣),M(m,0),①若P为MN中点,则2(m2﹣m﹣2)=﹣m﹣+0,解得m=或m=﹣1(三点重合,舍去),∴P(,﹣);②若N为PM的中点,则2(﹣m﹣)=m2﹣m﹣2+0,解得m=2或m=﹣1(舍去),∴P(2,﹣3);③若M为PN中点,则m2﹣m﹣2﹣m﹣=0,解得m=5或m=﹣1(舍去),∴P(5,3);综上所述,P的坐标为(,﹣)或(2,﹣3)或(5,3);(3)由y=x2﹣x﹣2得抛物线对称轴为直线x=,设Q(,t),又A(﹣1,0),D(3,﹣2),∴AQ2=+t2,DQ2=+(t+2)2,AD2=20,①若AQ为斜边,则+t2=+(t+2)2+20,解得t=﹣5,∴Q (,﹣5);②若DQ 为斜边,则+t2+20=+(t+2)2,解得t=5,∴Q (,5);③若AD为斜边,则+t2++(t+2)2=20,解得t =或t =,∴Q (,)或(,);综上所述,Q 的坐标为(,﹣5)或(,5)或(,)或(,).【点评】本题考查二次函数综合应用,涉及待定系数法,中点坐标公式,直角三角形性质等知识,解题的关键是用含字母的代数式表示相关点坐标和相关线段的长度。
一、选择题1.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是( ) A .16B .19C .118D .2152.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。
若从盒子里随机摸取一个球,有三种可能性相等的结果,设摸到的红球的概率为P ,则P 的值为( ) A .13B .12C .13或12D .13或233.一个袋子里装有一双红色、一双绿色手套,两双手套除颜色外,其他完全相同,随机地从袋中摸出两只,恰好是一双的概率( ) A .12B .13C .14D .164.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中红球约有( ) A .12个 B .14个C .18个D .20个5.下列一元二次方程中无实数根的是( )A .22x x =B .(1)(3)0x x ++=C .2(2)5x -=D .210x x -+= 6.若关于x 的方程2210mx x +-=有两个不相等的实数根,则m 的取值范围是( ) A .1m <- B .1m >-且0m ≠ C .1m >-D .1m ≥-且0m ≠7.方程220x x -=的根是( ) A .120x x ==B .122x x ==C .120,2x x ==D .120,2x x ==- 8.在某种病毒的传播过程中,每轮传染平均1人会传染x 个人,若最初2个人感染该病毒,经过两轮传染,共有y 人感染.则y 与x 的函数关系式为( ) A .()221y x =+B .()22y x =+C .222y x =+D .()212y x =+9.下列说法中正确的是( ) A .对角线互相垂直的四边形是菱形 B .有一个角是直角的平行四边形是正方形 C .有两个角相等的四边形是平行四边形 D .平移和旋转都不改变图形的形状和大小10.如图,正方形ABCD 中,6AB =,G 是BC 的中点.将ABG 沿AG 对折至AFG ,延长GF 交DC 于点E ,则DE 的长是( )A.2 B.2.5 C.3.5 D.411.下列四个命题中真命题是()A.对角线互相垂直平分的四边形是正方形B.对角线垂直且相等的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.四边都相等的四边形是正方形12.如图,菱形ABCD的边长是5,O是两条对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分,若菱形的一条对角线的长为4,则阴影部分的面积为()A.221B.421C.12 D.24二、填空题13.在一个不透明的袋子中有四个完全相同的小球,分别标号为1,2,3,4.随机摸取一个小球不放回,再随机摸取一个小球,两次摸出的小球的标号的和等于4的概率是____________.14.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是_____15.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程__________________________.16.若x=2是一元二次方程x2+x+c=0的一个解,则c2=__.17.已知﹣2是关于x的方程x2﹣4x﹣m2=0的一个根,则m=______.18.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(13,则点C的坐标为______.19.如图,正方形ABCD中,AB=2,AC,BD交于点O.若E,F分别是边AB,BC上的动 ,则△OFF周长的最小值是________________;点,且OE OF20.如图所示,在正方形ABCD中,E是AC上的一点,且AB=AE,则∠BEC的度数是_____度.三、解答题21.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(指针指在分界线时取指针右侧扇形的数).(1)小王转动一次转盘指针指向3所在扇形的概率是______________.(2)请你用树状图或列表的方法求一次游戏结束后两数之和是5的概率.22.九年级某班要召开一次“走近抗疫英雄,讲好中国故事”主题班会活动,李老师制作了编号为A、B、C、D的4张卡片(如图,除编号和内容外,其余完全相同),并将它们背面朝上洗匀后放在桌面上.(1)小明随机抽取1张卡片,抽到卡片编号为B 的概率为 ;(2)小明从4张卡片中随机抽取1张(不放回),小丽再从余下的3张卡片中随机抽取1张,然后根据抽取的卡片讲述相关英雄的故事,求小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率(请用“画树状图”或“列表”等方法写出分析过程).23.龙岩市某村2017年的人均收入为7500元,落实精准扶贫工作后,2019年人均收入为14700元.求人均收入的年平均增长率.24.文文以0.2元/支的价格购进一批铅笔,以0.4元/支的价格售出,每天销售量为400支,销售了两天后他决定降价,尽早销售完毕经调查得知铅笔单价每降0.01元,每天的销售量增加20支.(1)为了使笔每天的利润达到原利润的75%,文文应把铅笔定价多少元合适? (2)如果这批铅笔恰好一共在五天内全部销售完毕,请问这批铅笔有多少支? 25.如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE =DF .(1)如图1,求证:∠BAF =∠DAE ;(2)如图2,若∠ABC =45°,AE ⊥BC ,连接BD 分别交AE ,AF 于G ,H ,在不添加任何辅助线的情况下,直接写出图中所有的只含有一个3∠ABD 的三角形. 26.某数学活动小组在一次活动中,对一个数学问题作如下研究: (问题呈现)(1)如图1,ABC 中分别以,AB AC 为边向外作等腰ABE △和等腰ACD △,使AE AB =,AD AC =,BAE CAD ∠=∠,连结,BD CE ,试猜想BD 与CE 的大小关系,并说明理由. (问题再探)(2)如图2,ABC 中分别以,AB AC 为边向外作等腰Rt ABE △和等腰Rt ACD △,90EAB CAD ∠=∠=︒,连结,BD CE ,若4,2,45AB BC ABC ==∠=︒,求BD 的长. (问题拓展)(3)如图3,四边形ABCD 中,连结AC ,CD BC =,60BCD ∠=︒,30BAD ∠=︒,15AB =,25AC =,请直接写出AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与掷得面朝上的点数之和是5的情况,再利用概率公式求解即可求得答案.【详解】解:列表得:123456 1234567 2345678 3456789 45678910 567891011 6789101112∵共有36种等可能的结果,掷得面朝上的点数之和是5的有4种情况,∴掷得面朝上的点数之和是5的概率是:41 369.故选:B.【点睛】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.2.D解析:D【分析】分情况讨论后,直接利用概率公式进行计算即可.【详解】解:当白球1个,红球2个时:摸到的红球的概率为:P=2 3当白球2个,红球1个时:摸到的红球的概率为:P=1 3故摸到的红球的概率为:13或23故选:D【点睛】本题考查了概率公式,掌握概率公式及分类讨论是解题的关键.3.B解析:B【分析】列举出所有情况,让恰好是一双的情况数除以总情况数即为所求的概率.【详解】列表得:∴恰好是一双的概率41123.故选B.【点睛】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.4.B解析:B【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解:设盒子中有红球x 个, 由题意可得:66x +=0.3, 解得:x=14,经检验,x=14是分式方程的解. 估计口袋中红球约有14个. 故选:B 【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的频率得到相应的等量关系.5.D解析:D 【分析】由因式分解法、偶次方的非负性和根的判别式依次判断即可; 【详解】解:A.由22x x =可得(2)0x x -=,由因式分解法可知有两个实数根,故不符合题意; B.(1)(3)0x x ++=,由因式分解法可知有两个实数根,故不符合题意; C. 2(2)5x -=,50>,有两个实数根,故不符合题意;D. 224(1)41130b ac ∆=-=--⨯⨯=-<,没有实数根,符合题意. 故选:D . 【点睛】本题主要考查了根的判别式Δ=b 2−4ac 以及配方法和因式分解法解一元二次方程,牢记Δ<0时,方程有两个相等的实根是解题的关键.6.B解析:B 【分析】利用判别式大于零和二次项系数不为零求解即可. 【详解】∵方程2210mx x +-=有两个不相等的实数根, ∴m≠0,且△>0, ∴m≠0,且224m +>0, ∴1m >-且0m ≠, 故选B . 【点睛】本题考查了一元二次方程根的判别式,熟练运用判别式并保证二次项系数不能为零是解题的关键.7.C【分析】本题可用因式分解法,提取x后,变成两个式子相乘为0的形式,让每个式子都等于0,即可求出x.【详解】解:∵x2-2x=0∴x(x-2)=0,可得x=0或x-2=0,解得:x=0或x=2.故选:C.【点睛】本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用8.A解析:A【分析】用含有x的代数式分别表示出每轮传染的人数和总人数即可得解.【详解】∵每轮传染平均1人会传染x个人,∴2人感染时,一轮可传染2x人,∴一轮感染的总人数为2x+2=2(1+x)人;∵每轮传染平均1人会传染x个人,∴2(1+x)人感染时,二轮可传染2(1+x)x人,∴二轮感染的总人数为[2(1+x)+ 2(1+x)x]= ()2+人;21x∴()2=+,21y x故选A.【点睛】本题考查了平均增长问题,准确表示每一轮传染的人数是解题的关键.9.D解析:D【分析】根据平行四边形,菱形,正方形的判定,依据平移旋转的性质一一判断即可.【详解】解:A、对角线互相垂直的四边形是菱形,错误.应该是对角线互相垂直平分的四边形是菱形,本选项不符合题意.B、有一个角是直角的平行四边形是正方形,错误.应该是有一个角是直角且邻边相等的平行四边形是正方形,本选项不符合题意.C、有两个角相等的四边形是平行四边形,错误,可能是等腰梯形.本选项不符合题意.D、平移和旋转都不改变图形的形状和大小,正确,故选:D.【点睛】本题考查平行四边形的判定,菱形的判定,正方形的判定,平移变换,旋转变换的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.A解析:A【分析】连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【详解】解:连接AE,∵正方形ABCD中,6AB=∴AB=AD=BC=CD6=,∠B=∠D=90°,由折叠的性质得:AB =AF6=,∠B=∠AFG=90°,BG=GF∴AD=AF,∠AFE=180°-∠AFG=90°=∠D在Rt△AFE和Rt△ADE中,∵AE AE AF AD=⎧⎨=⎩∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,EC=6−x.∵G是BC的中点∴BG=CG=12BC=3,∴GF=BG=3在Rt△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2故选A.【点睛】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,勾股定理的应用.证明Rt △AFE ≌Rt △ADE 是解答本题的关键.11.C解析:C 【分析】根据正方形、菱形、矩形的判定分别判断得出即可. 【详解】A 、对角线互相垂直平分且相等的四边形是正方形,故原命题是假命题;B 、对角线垂直平分的四边形是菱形,故原命题是假命题;C 、对角线相等且互相平分的四边形是矩形,故原命题是真命题;D 、四边都相等的四边形是菱形,故原命题是假命题; 故选:C . 【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定定理、矩形的判定定理、菱形的判定定理.12.A解析:A 【分析】连接AC 、BD ,由菱形的性质得出5AB =,122OB OD BD ===,OA OC =,AC BD ⊥,由勾股定理求出OA ,得出221AC =,求出菱形的面积,再由中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答. 【详解】解:连接AC 、BD ,如图所示:菱形ABCD 的边长是5,O 是两条对角线的交点,4BD =,5AB ∴=,122OB OD BD ===,OA OC =,AC BD ⊥,22225221OA AB OB ∴=-- 2221AC OA ∴==∴菱形ABCD 的面积11221442122AC BD =⨯=⨯=O 是菱形两条对角线的交点,∴阴影部分的面积12=菱形ABCD 的面积221;故选:A . 【点睛】本题考查了菱形的性质,中心对称,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.二、填空题13.【分析】先画树状图展示所有12种等可能的结果数其中两次摸出的小球标号的和等于4的占3种然后根据概率的概念计算即可【详解】画树状图得:由树状图可知:所有可能情况有12种其中两次摸出的小球标号的和等于4解析:1 6【分析】先画树状图展示所有12种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【详解】画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=21 126=,故答案为:16.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.14.【分析】数出黑色瓷砖的数目和瓷砖总数求出二者比值即可【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值进而转化为黑色瓷砖个数与总数的比值即故答案为:【点睛】本题考查解析:1 4【分析】数出黑色瓷砖的数目和瓷砖总数,求出二者比值即可.【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值,进而转化为黑色瓷砖个数与总数的比值即41 164=故答案为:14. 【点睛】 本题考查几何概率的求法:根据题意将面积比表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.15.【分析】设道路的宽为将6块草地平移为一个长方形长为宽为根据长方形面积公式即可列方程【详解】设道路的宽为由题意得:故答案为:【点睛】本题主要考查了一元二次方程的应用掌握长方形的面积公式求得6块草地平移 解析:(302)(20)786x x --=⨯【分析】设道路的宽为xm ,将6块草地平移为一个长方形,长为()302-x m ,宽为()20x m -.根据长方形面积公式即可列方程(302)(20)786x x --=⨯.【详解】设道路的宽为xm ,由题意得:(302)(20)786x x --=⨯,故答案为:(302)(20)786x x --=⨯.【点睛】本题主要考查了一元二次方程的应用,掌握长方形的面积公式,求得6块草地平移为一个长方形的长和宽是解决本题的关键.16.36【分析】根据一元二次方程的解的定义把x=2代入方程x2+x+c=0即可求得c 的值进而求得c2的值【详解】解:依题意得22+2+c=0解得c=-6则c2=(-6)2=36故答案为:36【点睛】本题解析:36【分析】根据一元二次方程的解的定义,把x=2代入方程x 2+x+c=0即可求得c 的值,进而求得c 2的值.【详解】解:依题意,得22+2+c=0,解得,c=-6,则c 2=(-6)2=36.故答案为:36.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.【分析】利用方程的根的性质把x=-2代入方程得到关于m 的方程解这个方程即可【详解】解:∵是方程的一个根∴有解得:故答案为:【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造参解析:23±【分析】利用方程的根的性质把x=-2代入方程得到关于m的方程,解这个方程即可.【详解】解:∵2x=-是方程2240x x m--=的一个根,∴有()()222420m--⨯--=,解得:23m=±,故答案为:23±.【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键.18.【分析】如图作AF⊥x轴于FCE⊥x轴于E先证明△COE≌△OAF推出CE=OFOE=AF由此即可解决问题【详解】解:如图作AF⊥x轴于FCE⊥x轴于E∵四边形ABCO是正方形∴OA=OC∠AOC=解析:()3,1-【分析】如图作AF⊥x轴于F,CE⊥x轴于E,先证明△COE≌△OAF,推出CE=OF,OE=AF,由此即可解决问题.【详解】解:如图作AF⊥x轴于F,CE⊥x轴于E.∵四边形ABCO是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,CEO AFOCOE OAFOC OA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COE≌△OAF,∴CE =OF ,OE =AF ,∵A (1∴CE =OF =1,OE =AF∴点C坐标(),故答案为:().【点睛】 本题考查全等三角形的判定与性质,作出辅助线构造全等三角形是解题的关键. 19.2+【分析】根据正方形的对角线互相平分且相等可得AO=BO ∠AOB=90°对角线平分一组对角可得∠OAE=∠OBF 再根据AE=BF 然后利用SAS 证明△AOE 和△BOF 全等根据全等三角形对应角相等可得解析:【分析】根据正方形的对角线互相平分且相等可得AO=BO ,∠AOB=90°,对角线平分一组对角可得∠OAE=∠OBF ,再根据AE=BF ,然后利用“SAS”证明△AOE 和△BOF 全等,根据全等三角形对应角相等可得∠AOE=∠BOF ,可得∠EOF=90°,然后利用勾股定理列式计算即可得解.【详解】解:在正方形ABCD 中,AO=BO ,∠AOB=90°,∠OAE=∠OBF=45°,∵点E 、F 的速度相等,∴AE=BF ,在△AOE 和△BOF 中,OA BO OAE OBF AE BF =⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△BOF (SAS ),∴∠AOE=∠BOF ,∴∠AOE+∠BOE=90°,∴∠BOF+∠BOE=90°,∴∠EOF=90°,在Rt △BEF 中,设AE=x ,则BF=x ,BE=2-x ,∴,∴当x=1时,EF .由勾股定理得,OE=OF=2EF =1. ∴△OEF 周长的最小值.故答案为:.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,同角的余角相等的性质,以及勾股定理等知识,熟记正方形的性质,找出三角形全等的条件是解题的关键.20.5【分析】根据正方形的性质AC 平分∠BAD 可得∠BAE =45°再根据AB =AE 由等腰三角形的性质即可求出∠BEC 的度数【详解】解:在正方形ABCD 中AC 平分∠BAD ∴∠BAE =45°而AB =AE ∴∠解析:5.【分析】根据正方形的性质,AC 平分∠BAD ,可得∠BAE =45°,再根据AB =AE ,由等腰三角形的性质即可求出∠BEC 的度数.【详解】解:在正方形ABCD 中,AC 平分∠BAD ,∴∠BAE =45°,而AB =AE ,∴∠ABE =∠AEB =180452︒-︒=67.5°, 又∵∠AEB +∠BEC =180°,∴∠BEC =180°﹣67.5°=112.5°,故答案为112.5.【点睛】 本题考查正方形的性质,等腰三角形的性质.熟记正方形的对角线平分线一组对角,并且将这组对角分成四个45°的角是解决此题的关键.三、解答题21.(1)13;(2)29 【分析】(1)利用概率公式计算可得;(2)先画树状图展示所有9个等可能的结果数,再找出两个数字之和为5的结果数,由概率公式求解即可.【详解】解:(1)∵转盘被平均分成3个扇形,分别标有1、2、3三个数字,转盘中有3的数字为1个,∴小王转动一次转盘指针指向3所在扇形的概率是13, 故答案为:13; (2)画树状图为:共有9个等可能的结果数,其中两个数字之和为5的结果数为2个,∴两个数字之和为5的概率=29.【点睛】本题考查了列表法与树状图,树状图法适合两步或两步以上完成的事件;画出树状图是解题的关键.22.(1)14;(2)图见解析,12.【分析】(1)直接利用概率公式求解即可;(2)根据题意先画树状图列出所有等可能结果数的,根据概率公式求解可得.【详解】解:(1)∵共有4张卡片,∴小明随机抽取1张卡片,抽到卡片编号为B的概率为14,故答案为:14;(2)画树状图如下:共有12种等可能的结果数,其中小明、小丽两人中恰好有一人讲述钟南山抗疫故事的有6种结果,所以小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率为:61 122.【点睛】本题考查了概率的应用,掌握运用列表法或画树状图法列出所有可能的结果及概率的计算方法是解题的关键.23.40%【分析】设人均收入的年平均增长率为x ,结合题意,通过列一元二次方程并求解,即可得到答案.【详解】解:设人均收入的年平均增长率为x根据题意得:()275001+14700x =解得:0.4x =或 2.4x =-(舍去)∴人均收入的年平均增长率为40% .【点睛】本题考查了一元二次方程的知识,解题的关键是熟练掌握一元二次方程的性质,从而完成求解.24.(1)0.3元;(2)2600支【分析】(1)首先求出原利润,再由现在利润=销量×(销售单价-批发价),进而得出等式方程即可解答.(2)利用(1)中所求得出单价,进而求出销量,即可得出总销量.【详解】解:(1)设铅笔的单价降了x 元,则 ()()0.40.2400200.40.240075%0.01x x ⎛⎫--+⨯=-⨯⨯ ⎪⎝⎭ 解之,得:1110x =,2110x =-(舍去), ∴定价:0.40.10.3-=(元);(2)0.14002400203800180026000.01⎛⎫⨯++⨯⨯=+= ⎪⎝⎭(支). 答:这批铅笔有2600支.【点睛】此题主要考查了一元二次方程的应用,利用利润=销量×(销售单价-批发价)得出是解题关键.25.(1)见解析;(2)△BEG ,△ADG ,△DFH, △ABH【分析】(1)根据菱形的性质可得∠B=∠D ,AB=AD ,再证明△ABE ≌△ADF ,得∠BAE=∠DAF ,从而得出结论;(2)根据菱形的性质和∠ABC =45°,得出∠ABD=22.5°,则3∠ABD=67.5°,找出含有67.5°的角的三角形即可.【详解】(1)证明:∵四边形ABCD 是菱形,∴∠B=∠D ,AB=AD ,在△ABE 和△ADF 中,AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ADF (SAS ),∴∠BAE=∠DAF .∴∠BAF =∠DAE ;(2)∵四边形ABCD 是菱形,∠ABC =45°,∴∠ABD=∠CBD= 22.5°,∴3∠ABD=67.5°,∵AE ⊥BC ,∴∠AEB= 90°,∴∠BGE=67.5°,∵△ABE ≌△ADF∴∠AFD= 90°,∴△BEG 只含有一个3∠ABD ;同理可得:∠DHF=67.5°,△DFH 只含有一个3∠ABD ;∵四边形ABCD 是菱形,∴AD//BC ,AB//CD∵AE ⊥BC ,∠AFD= 90°,∴∠DAG=∠BAH= 90°,∵∠DHF=∠AH B=67.5°,∠BGE=∠ AGD=67.5°,∴△ADG 只含有一个3∠ABD ;△ABH 只含有一个3∠ABD ;【点睛】本题考查了菱形的性质、全等三角形的判定与性质,解决本题的关键是掌握菱形的性质. 26.(1)BD CE =,理由见解析;(2)6;(3)20【分析】(1)首先证明EAC BAD ∠=∠,再证明()AEC ABD SAS △≌△,然后根据全等三角形的性质即可证明;(2)根据等腰直角三角形的性质可得到AE AB =,AC AD =,BAE CAD ∠=∠,证明()EAC BAD SAS △≌△,得到CE BD =,再根据勾股定理计算即可;(3)连接BD ,把△ABD 绕点D 逆时针旋转60︒得到△ECD ,连接AE ,由旋转的性质得到EC=AB=15,△ADE 是等边三角形,由勾股定理可求得AE 的长,即可得解;【详解】解:(1)BD CE =,理由如下:∵BAE CAD ∠=∠,∴EAC BAD ∠=∠,又∵AB AE =,AD AC =,∴()AEC ABD SAS △≌△,∴BD CE =;(2)∵等腰Rt ABE 和等腰Rt ACD ,∴AE AB =,AC AD =,BAE CAD ∠=∠, ∴EAC BAD ∠=∠,∴()EAC BAD SAS △≌△,∴CE BD =,∵45ABC EBA ∠=∠=︒,∴90EBC ∠=︒,∵4AB AE ==, ∴224432EB =+=在Rt EBC 中,22(32)26EC =+=,∴6BD =;(3)∵CD BC =,60BCD ∠=︒, ∴△BCD 是等边三角形,连接BD ,把△ABD 绕点D 逆时针旋转60°得到△ECD ,连接AE ,则EC=AB=15,△ADE 是等边三角形,∴AE AD =,60DEA ∠=︒,∵30BAD ∠=︒,∴306090CEA ∠=︒+︒=︒,在Rt △AEC 中,2222251540020AE AC CE =--==, ∴20AD AE ==.【点睛】本题主要考查了四边形综合,准确结合勾股定理和旋转的性质计算是解题的关键.。
一、选择题1.(2014年,湖南省长沙市,3分)函数y=ax与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是()【考点】1.二次函数的图象;2.反比例函数的图象.2.(2014年湖南省株洲市,3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)3.(2016年湖南省娄底市,3分)如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小【答案】C.考点:锐角三角函数的增减性.4.(2016年湖南省永州市,4分)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:3根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 2=﹣1.其中正确的是( ) A .①② B .①③ C .②③ D .①②③ 【答案】B. 【解析】试题分析:根据表格中的规律可得:①因为24=16,此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=21,所以此选项正确;故答案选B . 考点:实数的运算.5. (2016年湖南省岳阳市,3分)对于实数a ,b ,我们定义符号max{a ,b}的意义为:当a ≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b]=b ;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y=max{x+3,﹣x+1},则该函数的最小值是( ) A .0B .2C .3D .4【答案】B 【解析】考点:分段函数6.(2016年湖南省长沙市,3分)已知抛物线y=ax 2+bx+c (b >a >0)与x 轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y 轴左侧; ②关于x 的方程ax 2+bx+c+2=0无实数根; ③a ﹣b+c ≥0; ④的最小值为3.其中,正确结论的个数为( ) A .1个 B .2个 C .3个 D .4个 【答案】D .考点:二次函数的图象与系数的关系.1.(2014年,湖南省衡阳市,3分)如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为▲ .2.(2015·湖南常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1。
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题 1.-15的倒数是( ) A. 15 B. -15 C. -5 D. 52.下列”QQ 表情”中属于轴对称图形的是( )A. B. C. D.3. 下列计算正确的是A. 4312a a a ⋅=B. 93=C. ()02x 10+=D. 若x 2=x ,则x=1 4.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A. 32︒B. 58︒C. 138︒D. 148︒5.如图,△ABC 内接于⊙O ,AD 是⊙O 直径,∠ABC =25°,则∠CAD 的度数是( )A. 25°B. 60°C. 65°D. 75°6.某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)18 19 20 21 22 人数2 4 4 5 1则这12名队员年龄的众数、中位数分别是()A. 5,20岁B. 5,21岁C. 20岁,20岁D. 21岁,20岁7.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上下坡的速度仍然保持不变,那么他从学校回到家需要的时间是().A. 8.6分钟B. 9分钟C. 12分钟D. 16分钟8.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC =∠ABF;④AD2=FQ·AC,其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个二.填空题9.因式分解:xy3﹣x=_____.10.在函数y=3x+中,自变量x的取值范围是_____.11.新冠肺炎疫情发生以来,我国人民上下齐心,共同努力抗击疫情,逐渐取得了胜利.截止3月13日,我国各级财政安排的疫情防控投入已经达到了1169亿元,1169亿元用科学记数法表示为_____元.12.不等式组2340x xx+<⎧⎨-≤⎩解集为_____.13.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是_____.14.甲、乙两名射击运动员在某场测试中各射击10次,两人的测试成绩如下:甲7 7 8 8 8 9 9 9 10 10乙7 7 7 8 8 9 9 10 10 10这两人10次射击命中的环数的平均数x甲=x乙=8.5,则测试成绩比较稳定的是.(填”甲”或”乙”)15.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平上),某工程师乘坐热气球从B 地出发,垂直上升100m到达A处,在A处观测C地的俯角为30°,则B、C两地之间的距离为__________m.16.如图,直角梯形OABC的直角顶点是坐标原点,边OA,OC分别在x轴,y轴的正半轴上.OA∥BC,D是BC上一点,BD=14OA=2,AB=3,∠OAB=45°,E,F分别是线段OA,AB上的两个动点,且始终保持∠DEF=45°.设OE=x,AF=y,则y与x的函数关系式为_____.三.解答题17.计算:13-﹣(3.14﹣π)0+(1﹣cos30°)×(12)﹣2.18.计算22a b11. ab a b-⎛⎫÷-⎪⎝⎭19.如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P320千米处.(1)说明本次台风会影响B市;(2)求这次台风影响B市的时间.20.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D 四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)求出D级学生的人数占全班总人数的百分比;(2)求出扇形统计图中C级所在的扇形圆心角的度数;(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?21.如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3.(1) 求sin∠BAC的值;(2) 如果OE⊥AC, 垂足为E,求OE的长;(3) 求tan∠ADC的值.(结果保留根号)22.某地2015年为做好”精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?23. 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x值.24.平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线解析式;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△OC′D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时;△AMA′的面积最大?最大面积是多少?并求出此时点M的坐标.答案与解析一.选择题 1.-15的倒数是( ) A. 15 B. -15 C. -5 D. 5【答案】C【解析】 试题分析:根据倒数的定义即若两个数的乘积是1,我们就称这两个数互为倒数,即可得出答案. 试题解析:-15的倒数是-5; 故选C .考点:倒数.2.下列”QQ 表情”中属于轴对称图形的是( )A. B. C. D. 【答案】C【解析】【分析】根据轴对称图形的概念,一一判断四个选项即可得到答案.【详解】解:A 、B 、D 都不关于某一条直线对称,故不是轴对称图形,C 关于直线对称,故是轴对称图形.故选:C .【点睛】本题考查了轴对称图形的概念(如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形),掌握轴对称图形的概念是解题的关键.3. 下列计算正确的是A. 4312a a a ⋅=93= C. ()02x 10+= D. 若x 2=x ,则x=1 【答案】B【解析】试题分析:根据同底数幂的乘法,算术平方根,零指数幂运算法则和解一元二次方程逐一计算作出判断: A 、43437a a a a +⋅==,故本选项错误;B 29333===,故本选项正确;C 、∵x 2+1≠0,∴()02x 11+=,故本选项错误;D 、由题意知,x 2﹣x=x(x ﹣1)=0,则x=0或x=1.故本选项错误.故选B .4.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A. 32︒B. 58︒C. 138︒D. 148︒【答案】D【解析】【分析】 根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【详解】如图,由三角形的外角性质得:∠3=90°+∠1=90°+58°=148°.∵直尺的两边互相平行,∴∠2=∠3=148°.故选D .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°,则∠CAD 的度数是( )A. 25°B. 60°C. 65°D. 75°【答案】C【解析】【分析】首先根据直径所对的圆周角是直角,可求得∠ACD=90°,又由圆周角定理的推论可得∠D=∠ABC=25°,继而求得答案.【详解】解:∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠ABC=25°,∴∠CAD=90°﹣∠D=65°.故选:C.【点睛】本题主要考查圆周角定理的推论,掌握圆周角定理的推论是解题的关键.6.某社区青年志愿者小分队年龄情况如下表所示:则这12名队员年龄的众数、中位数分别是()A. 5,20岁B. 5,21岁C. 20岁,20岁D. 21岁,20岁【答案】D【解析】【分析】根据众数和中位数的概念求解可得.【详解】这组数据中出现次数最多的是21,所以众数为21岁,第8、9个数据分别是20岁、20岁,所以这组数据的中位数为20220=20(岁),故选:D.【点睛】本题考查中位数和众数,熟练掌握中位数的求法是解答本题关键.7.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上下坡的速度仍然保持不变,那么他从学校回到家需要的时间是().A. 8.6分钟B. 9分钟C. 12分钟D. 16分钟【答案】C【解析】【分析】根据图象可知:小明从家骑车上学,上坡的路程是1千米,用5分钟,则上坡速度是0.2千米/分钟;下坡路长是2千米,用4分钟,因而速度是0.5千米/分钟,由此即可求出答案.【详解】解:把上下坡的速度求出来是解题的关键,根据图象可知:小明从家骑车上学,上坡的路程是1千米,用5分钟,则上坡速度是0.2千米/分钟;下坡路长是2千米,用4分钟,因而下坡速度是0.5千米/分钟,回家时下坡是1千米,上坡路程是2千米,所以他从学校回到家需要的时间是120.50.2=12分钟.故选C.【点睛】读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.8.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】D【解析】试题解析:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°, ∴∠CAD=∠AFG ,在△FGA 和△ACD 中,{G CAFG CAD AF AD∠∠∠∠===,∴△FGA ≌△ACD(AAS),∴AC=FG ,①正确;∵BC=AC ,∴FG=BC ,∵∠ACB=90°,FG ⊥CA , ∴FG ∥BC ,∴四边形CBFG 是矩形,∴∠CBF=90°,S △FAB =12FB•FG=12S 四边形CBFG ,②正确; ∵CA=CB ,∠C=∠CBF=90°, ∴∠ABC=∠ABF=45°,③正确; ∵∠FQE=∠DQB=∠ADC ,∠E=∠C=90°, ∴△ACD ∽△FEQ ,∴AC :AD=FE :FQ ,∴AD•FE=AD 2=FQ•AC ,④正确;故选D .【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.二.填空题9.因式分解:xy 3﹣x =_____.【答案】x (y +1)(y ﹣1)【解析】【分析】原式提取x ,再利用平方差公式分解即可.【详解】解:原式=x (y 2﹣1)=x (y +1)(y ﹣1),故答案为:x (y +1)(y ﹣1) .【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.10.在函数y x的取值范围是_____.【答案】x≥﹣3【解析】【分析】因为二次根式的被开方数要为非负数,即x+3≥0,解此不等式即可.【详解】解:根据题意得:x+3≥0,解得:x≥﹣3.【点睛】本题考查了求自变量的取值范围,解题的关键是掌握当函数表达式是二次根式时,被开方数为非负数.11.新冠肺炎疫情发生以来,我国人民上下齐心,共同努力抗击疫情,逐渐取得了胜利.截止3月13日,我国各级财政安排的疫情防控投入已经达到了1169亿元,1169亿元用科学记数法表示为_____元.【答案】1.169×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:1169亿=116900000000用科学记数法表示为:1.169×1011.故答案为:1.169×1011.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.不等式组2340x xx+<⎧⎨-≤⎩的解集为_____.【答案】1<x≤4【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式x+2<3x,得:x>1,解不等式x﹣4≤0,得:x≤4,则不等式组的解集为:1<x≤4,故答案为:1<x≤4.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是_____.【答案】AC⊥BD【解析】【分析】根据三角形的中位线定理,可以证明所得四边形的两组对边分别和两条对角线平行,所得四边形的两组对边分别是两条对角线的一半,再根据平行四边形的判定就可证明该四边形是一个平行四边形;所得四边形要成为矩形,则需有一个角是直角,故对角线应满足互相垂直.【详解】解:如图,∵E,F分别是边AB,BC的中点,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形;要使四边形EFGH是矩形,则需EF⊥FG,即AC⊥BD;故答案为:AC⊥BD.【点睛】此题主要考查了三角形的中位线定理的运用.同时熟记此题中的结论:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形.14.甲、乙两名射击运动员在某场测试中各射击10次,两人的测试成绩如下:甲7 7 8 8 8 9 9 9 10 10乙7 7 7 8 8 9 9 10 10 10这两人10次射击命中的环数的平均数x甲=x=8.5,则测试成绩比较稳定的是.(填”甲”或”乙乙”)【答案】甲【解析】【分析】分别计算出两人的方差,方差较小的成绩比较稳定.=(7×2+9×3+10×2+3×8)÷10=8.5,【详解】解:x甲S2甲=[(7-8.5)2+(7-8.5)2+(8-8.5)2+(8-8.5)2+(8-8.5)2+(9-8.5)2+(9-8.5)2+(9-8.5)2+(10-8.5)2+(10-8.5)2]÷10=1.05,x=8.5,乙S2乙=[(7-8.5)2+(7-8.5)2+(7-8.5)2+(8-8.5)2+(8-8.5)2+(9-8.5)2+(9-8.5)2+(10-8.5)2+(10-8.5)2+(10-8.5)2]÷10=1.45,∵S2甲<S2乙,∴甲组数据稳定.故答案为:甲.【点睛】此题主要考查了方差公式的应用,方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.15.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平上),某工程师乘坐热气球从B 地出发,垂直上升100m到达A处,在A处观测C地的俯角为30°,则B、C两地之间的距离为__________m.【答案】3【解析】【分析】利用题意得到∠C=30°,AB=100,然后根据30°正切可计算出BC .【详解】根据题意得∠C=30°,AB=100,∵tanC=AB BC , ∴BC=0100tan 30=0100tan 30=100=100333=1003(m ). 故答案为1003.【点睛】本题考查了解直角三角形的应用-仰角俯角:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.16.如图,直角梯形OABC 的直角顶点是坐标原点,边OA ,OC 分别在x 轴,y 轴的正半轴上.OA ∥BC ,D 是BC 上一点,BD =14OA =2,AB =3,∠OAB =45°,E ,F 分别是线段OA ,AB 上的两个动点,且始终保持∠DEF =45°.设OE =x ,AF =y ,则y 与x 的函数关系式为_____.【答案】21233y x x =+ 【解析】【分析】 首先过B 作x 轴的垂线,设垂足为M ,由已知易求得OA 2,在Rt △ABM 中,已知∠OAB 的度数及AB 的长,即可求出AM 、BM 的长,进而可得到BC 、CD 的长,再连接OD ,证△ODE ∽△AEF ,通过得到的比例线段,即可得出y 与x 的函数关系式.【详解】解:过B 作BM ⊥x 轴于M .在Rt △ABM 中,∵AB =3,∠BAM =45°,∴AM =BM 32,∵BD =14OA ,OA ∴=,∴BC =OA ﹣AM =CD =BC ﹣BD =2,∴D ),32OD ∴== . 连接OD ,则点D 在∠COA 的平分线上,所以∠DOE =∠COD =45°.又∵在梯形DOAB 中,∠BAO =45°,∴由三角形外角定理得:∠ODE =∠DEA ﹣45°,又∠AEF =∠DEA ﹣45°,∴∠ODE=∠AEF ,∴△ODE ∽△AEF ,OE OD AF AE∴= 即x y =∴y 与x 解析式为:2133y x x =-+.故答案为:2133y x x =-+.【点睛】本题主要考查二次函数的应用,掌握相似三角形的判定及性质是解题的关键.三.解答题17.计算:13-﹣(3.14﹣π)0+(1﹣cos30°)×(12)﹣2.【答案】1023 3-【解析】【分析】分别计算绝对值、零指数幂,特殊角的三角形函数值,及负整数指数幂,然后得出各部分的最简值,继而合并可得出答案.【详解】解:13-﹣(3.14﹣π)0+(1﹣cos30°)×(12)﹣2=13114 3⎛-+⨯⎝⎭=11423 3-+-=1023 3-【点睛】本题主要考查了绝对值的计算、零指数幂,特殊角的三角形函数值、及负整数指数幂的计算,熟练掌握各知识点是解题的关键.18.计算22a b11. ab a b-⎛⎫÷-⎪⎝⎭【答案】a b--.【解析】【分析】先计算括号内分式的减法,再将除法转化为乘法,约分即可得.【详解】解:原式()()a b a b b a ab ab+--=÷, ()()()a b a b ab ab a b +-=⋅--, ()a b =-+,a b =--.【点睛】考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.19.如图,台风中心位于点P ,并沿东北方向PQ 移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B 市位于点P 的北偏东75°方向上,距离点P 320千米处.(1)说明本次台风会影响B 市;(2)求这次台风影响B 市的时间.【答案】(1)会;(2)8小时【解析】分析】(1)作BH ⊥PQ 于点H ,在Rt △BHP 中,利用特殊角的三角函数值求出BH 的长与200千米相比较即可.(2)以B 为圆心,以200为半径作圆交PQ 于P 1、P 2两点,根据垂径定理即可求出P 1P 2的长,进而求出台风影响B 市的时间.【详解】(1)如图所示:∵台风中心位于点P ,并沿东北方向PQ 移动,B 市位于点P 的北偏东75°方向上,∴∠QPG=45°,∠NPB=75°,∠BPG=15°,∴∠BPQ=30°作BH ⊥PQ 于点H ,在Rt △BHP 中,由条件知,PB=320,得 BH=320sin30°=160<200,∴本次台风会影响B市.(2)如图,若台风中心移动到P1时,台风开始影响B市,台风中心移动到P2时,台风影响结束.由(1)得BH=160,由条件得BP1=BP2=200,∴所以P1P2 = 222200160=240∴台风影响的时间t =24030= 8(小时).20.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D 四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)求出D级学生的人数占全班总人数的百分比;(2)求出扇形统计图中C级所在的扇形圆心角的度数;(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?【答案】(1)4%;(2)72°;(3)落在B等级内;(4)380人【解析】【分析】(1)先求出总人数,再求D成绩的人数占的比例;(2)C成绩的人数为10人,占的比例=10÷50=20%,表示C的扇形的圆心角=360°×20%=72°,(3)根据中位数的定义判断;(4)该班占全年级的比例=50÷500=10%,所以,这次考试中A级和B级的学生数=(13+25)÷10%=380人,【详解】(1)总人数为25÷50%=50人,D成绩的人数占的比例:2÷50=4%;(2)表示C的扇形的圆心角360°×(10÷50)=360°×20%=72°;(3)由于A成绩人数为13人,C成绩人数为10人,D成绩人数为2人,而B成绩人数为25人,故该班学生体育测试成绩的中位数落在B等级内;(4)这次考试中A级和B级的学生数:(13+25)÷(50÷500)=(13+25)÷10%=380(人).【点睛】本题主要考查统计图和用样本估计总体,提取统计图中的有效信息是解答此题的关键.21.如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3.(1) 求sin∠BAC的值;(2) 如果OE⊥AC, 垂足为E,求OE的长;(3) 求tan∠ADC的值.(结果保留根号)【答案】(1)35(2)32(3)43【解析】【分析】(1)根据圆周角定理可得到∠ACB是直角,再根据三角函数求解即可;(2)首先根据垂径定理得出E是AC中点.再根据中位线定理求解即可;(3)根据同弧或等弧所对的圆周角相等可得∠ADC=∠ABC,在RtACB中求出tan∠ABC即可.【详解】解:(1)∵AB⊙O直径∴∠ACB=90°∵AB=5,BC=3∴sin∠BAC==35;(2)∵OE⊥AC,O是⊙O的圆心∴E是AC中点.又∵O是AB的中点.∴OE=12BC=32;(3)在RtACB中,∠ACB=90°∵AB=5,BC=3∴=4 ∵∠ADC=∠ABC∴tan∠ADC=tan∠ABC=43 ACBC=.【点睛】此题主要考查锐角三角函数的定义,综合运用了圆周角定理、中位线定理、勾股定理等知识点.求出OE是△ACB的中位线和得出tan∠ADC=tan∠ABC是解题的关键.22.某地2015年为做好”精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【答案】(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.【解析】【分析】(1)设年平均增长率为x,根据”2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据”前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.【详解】(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.5(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.考点:一元二次方程的应用;一元一次不等式的应用.23.正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.BM=时,四边形ABCN面积最大为10;(3)当点M运动到BC的中点时,【答案】(1)证明见解析;(2)当2∽,此时2ABM AMNx=.【解析】试题分析:(1)、根据AM⊥MN得出∠CMN+∠AMB= 90°,根据Rt△ABM得出∠CMN=∠MAB,从而得出三角形相似;(2)、根据三角形相似得出CN与x的关系,然后根据梯形的面积计算法则得出函数解析式;(3)、根据要使三角形相似则需要满足,结合(1)中的条件得出BM=CM,即M为BC的中点. 试题解析:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C =90°,∵AM⊥MN ∴∠AMN= 90°. ∴∠CMN+∠AMB= 90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠CMN=∠MAB.∴Rt△AMN∽Rt△MCN;(2)∵Rt△ABM∽Rt△MCN,∴∴∴CN=∴y===当x=2时,y取最大值,最大值为10;故当点肘运动到BC的中点时,四边形ABCN的面积最大,最大面积为10;(3)∵∠B=∠AMN= 90°,∴要使Rt△ABM∽Rt△AMN,必须有由(1)知∴BM=MC∴当点M运动到BC的中点时,Rt△ABM∽Rt△AMN,此时x=2考点:(1)、相似三角形的应用;(2)、二次函数的应用24.平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C 、A 、A′,求此抛物线的解析式;(2)求平行四边形ABOC 和平行四边形A′B′OC′重叠部分△OC′D 的周长;(3)点M 是第一象限内抛物线上的一动点,问:点M 在何处时;△AMA′的面积最大?最大面积是多少?并求出此时点M 的坐标.【答案】(1)y=-x 2+2x+3;(2)2101+;(3)当点M 的坐标为(32,154)时,△AMA′的面积有最大值,且最大值为278. 【解析】【分析】(1)根据旋转的性质,可得A′点,根据待定系数法,可得答案;(2)根据相似三角形的判定与性质,可得答案;(3)根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【详解】解:(1)∵▱A′B′O′C′由▱ABOC 旋转得到,且A 的坐标为(0,3),得点A′的坐标为(3,0).设抛物线的解析式为y=ax 2+bx+c ,将A ,A′C 的坐标代入,得03930a b c c a b c -+⎧⎪⎨⎪++⎩===,解得123a b c -⎧⎪⎨⎪⎩===, 抛物线的解析式y=-x 2+2x+3;(2)∵AB ∥OC ,∴∠OAB=∠AOC=90°, ∴22=10OA AB +又∠OC′D=∠OCA=∠B ,∠C′OD=∠BOA ,∴△C′OD ∽△BOA ,又OC′=OC=1,∴1010C OD OCBOA OB''==的周长的周长,又△ABO的周长为4+10,∴△C′OD的周长为4+1010210=1+105().(3)作MN⊥x轴交AA′于N点,设M(m,-m2+2m+3),AA′的解析式为y=-x+3,N点坐标为(m,-m+3),MN的长为-m2+3m,S△AMA′=12MN•x A′=12(-m2+3m)×3=-32(m2-3m)=-32(m-32)2+278,∵0<m<3,∴当m=32时,-m2+2m+3=154,M(32,154),△AMA′的面积有最大值278.点睛:本题考查了二次函数综合题,解(1)的关键是待定系数法,解(2)的关键是利用相似三角形的判定与性质;解(3)的关键是利用面积的很差得出二次函数.。
2017年中考数学一模试卷一、选择题1.的平方根是()A.±3 B.3 C.±9 D.92.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b34.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.87.不等式组的解集在数轴上表示正确的是()A. B.C.D.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b二、填空题11.分解因式:ab2﹣4ab+4a=.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是.15.用科学计算器计算:cos32°≈.(精确到0.01)三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.17.解分式方程:﹣=1.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF= AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)2016年陕西省西安市XX中学中考数学一模试卷参考答案与试题解析一、选择题1.的平方根是()A.±3 B.3 C.±9 D.9【考点】平方根;算术平方根.【分析】根据平方运算,可得平方根、算术平方根.【解答】解:∵,9的平方根是±3,故选:A.2.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【解答】解:所给图形的左视图为C选项说给的图形.故选C.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减进行分析即可.【解答】解:A、b3+a3=2b6,计算错误;B、(﹣3pq)2=﹣9p2q2,计算错误;C、5y3+3y5=15y8,计算错误;D、b9÷b3=b3,计算正确;故选:D.4.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°【考点】平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限【考点】一次函数图象与系数的关系;反比例函数图象上点的坐标特征.【分析】首先利用反比例函数图象上点的坐标特征可得k的值,再根据一次函数图象与系数的关系确定一次函数y=kx﹣k的图象所过象限.【解答】解:∵反比例函数y=的图象过点(﹣2,1),∴k=﹣2×1=﹣2,∴一次函数y=kx﹣k变为y=﹣2x+2,∴图象必过一、二、四象限,故选:A.6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.8【考点】等腰三角形的判定;坐标与图形性质.【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点M,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.【解答】解:如图,满足条件的点M的个数为6.故选C.分别为:(﹣2,0),(2,0),(0,2),(0,2),(0,﹣2),(0,).7.不等式组的解集在数轴上表示正确的是()A. B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集再求出其公共解集.【解答】解:该不等式组的解集为1<x≤2,故选C.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【考点】坐标与图形变化﹣旋转.【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA 绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.【解答】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【考点】菱形的性质.【分析】连接BF,利用SAS判定△BCF≌△DCF,从而得到∠CBF=∠CDF,根据已知可注得∠CBF的度数,则∠CDF也就求得了.【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b【考点】二次函数图象与系数的关系.【分析】由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;又由对称轴为x=﹣,即可求得a=b;由当x=1时,a+b+c<0,即可判定C错误;然后由抛物线与x轴交点坐标的特点,判定D正确.【解答】解:A、∵开口向上,∴a>0,∵抛物线与y轴交于负半轴,∴c<0,∵对称轴在y轴左侧,∴﹣<0,∴b>0,∴abc<0,故A选项错误;B、∵对称轴:x=﹣=﹣,∴a=b,故B选项错误;C、当x=1时,a+b+c=2b+c<0,故C选项错误;D、∵对称轴为x=﹣,与x轴的一个交点的取值范围为x1>1,∴与x轴的另一个交点的取值范围为x2<﹣2,∴当x=﹣2时,4a﹣2b+c<0,即4a+c<2b,故D选项正确.故选D.二、填空题11.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.【考点】反比例函数系数k的几何意义.【分析】由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=2,然后根据反比例函数中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.【解答】解:设反比例函数的解析式为.∵△AOB的面积=△ABP的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第一象限,∴k>0.∴k=4.∴这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为2.【考点】平行四边形的性质;三角形的面积.【分析】由已知条件可知AC=2,AB=,应该是当AB、AC是直角边时三角形的面积最大,根据AB⊥AC即可求得.【解答】解:由已知条件可知,当AB⊥AC时▱ABCD的面积最大,∵AB=,AC=2,==,∴S△ABC∴S▱ABCD=2S△ABC=2,∴▱ABCD面积的最大值为2.故答案为:2.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是15.【考点】多边形内角与外角.【分析】根据多边形内角和定理列出方程,解方程即可.【解答】解:由题意得,=156°,解得,n=15,故答案为:15.15.用科学计算器计算:cos32°≈ 2.68.(精确到0.01)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方.【分析】熟练应用计算器,对计算器给出的结果,根据精确度的概念用四舍五入法取近似数.【解答】解:cos32°=3.1623×0.8480≈2.68,故答案为2.68.三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】涉及绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+,=|2﹣|﹣1+4+,=2﹣﹣1+4+,=5.17.解分式方程:﹣=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).【考点】三角形的外接圆与外心.【分析】要使三棵树都在花坛的边上则应使花坛为△ABC的外接圆,故只要作出三角形两边垂直平分线的交点即为△ABC的外接圆圆心,再以此点为圆心,以此点到点A的长度为半径画圆,此圆即为花坛的位置.【解答】解:①分别以A、B为圆心,以大于AB为半径画圆,两圆相交于D、E两点,连接DE;②分别以A、C为圆心,以大于AC为半径画圆,两圆相交于G、F两点,连接GF;③直线DE与GF相交于点O,以O为圆心,以OA的长为半径画圆,则此圆即为花坛的位置.19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可.【解答】解:(1)样本容量是:30÷20%=150;(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75(人).;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;(4)12000×=9600(人).20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)由四边形ABCD为正方形,得到AB=AD,∠B=∠D=90°,DC=CB,由E、F分别为DC、BC中点,得出DE=BF,进而证明出两三角形全等;=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF得(2)首先求出DE和CE的长度,再根据S△AEF出结果.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠D=∠B=90°,DC=CB,∵E、F为DC、BC中点,∴DE=DC,BF=BC,∴DE=BF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF=×4=2,CE=CF=×4=2,=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF∴S△AEF=4×4﹣×4×2﹣×4×2﹣×2×2=6.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)【考点】解直角三角形的应用﹣方向角问题.【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【解答】解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×≈108.25(米)>100米.答:消防车不需要改道行驶.22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.【考点】一次函数的应用.【分析】(1)设出一次函数解析式,代入图象上的两个点的坐标,即可解答;(2)把x=6代入(1)中的函数解析式,求得路程(甲、乙距A城的距离),进一步求得速度即可解答.【解答】解:(1)设甲车返回过程中y与x之间的函数解析式y=kx+b,∵图象过(5,450),(10,0)两点,∴, 解得,∴y=﹣90x +900.函数的定义域为5≤x ≤10;(2)当x=6时,y=﹣90×6+900=360,(千米/小时).23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x ,小敏从剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(x ,y ).(1)请你运用画树状图或列表的方法,写出点P 所有可能的坐标;(2)求点P (x ,y )在函数y=﹣x +5图象上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】(1)首先根据题意画出表格,即可得到P 的所以坐标;(2)然后由表格求得所有等可能的结果与数字x 、y 满足y=﹣x +5的情况,再利用概率公式求解即可求得答案【解答】解:列表得:(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.【考点】切线的判定.【分析】(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA ⊥PA,从而得出结论;(2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵,∴.∴⊙O的直径为.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.【考点】二次函数综合题.【分析】(1)根据平移规律写出抛物线解析式,再求出M、A、B坐标即可.(2)首先证明△ABE∽△AMF,推出的值,∠BAM=90°,根据tan∠ABM=即可解决问题.(3)分点P在x轴上方或下方两种情形解决问题.【解答】解:(1)∵抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3,∴顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,∴点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,∴点B(3,1),(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==,(3)过点P作PH⊥x轴于H,∵y=(x﹣1)2﹣3=x2﹣2x﹣2,∴设点P(x,x2﹣2x﹣2),①点P在x轴的上方时,=,整理得,3x2﹣7x﹣6=0,解得x1=﹣(舍去),x2=3,∴点P的坐标为(3,1);②点P在x轴下方时,=,整理得,3x2﹣5x﹣6=0,解得x1=(舍去),x2=,x=时,y=x2﹣2x﹣2=,∴点P的坐标为(,),综上所述,点P的坐标为(3,1)或(,).26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF= AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)【考点】作图—应用与设计作图.【分析】(1)根据等边三角形的性质得出∠BAD=30°,得出EF=AE;(2)根据题意得出C,M,N在一条直线上时,此时最小,进而求出即可;(3)作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求,在Rt△ABD中,求出AD的长,在Rt△MBD中,得出MD的长,即可得出答案.【解答】解:(1)如图①,作EF⊥AB,垂足为点F,点F即为所求.理由如下:∵点E是正△ABC高AD上的一定点,∴∠BAD=30°,∵EF⊥AB,∴EF=AE;(2)如图②,作CN⊥AB,垂足为点N,交AD于点M,此时最小,最小为CN的长.∵△ABC是边长为2的正△ABC,∴CN=BC•sin60°=2×=,∴MN+CM=AM+MC=,即的最小值为.(3)如图③,作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求.在Rt△ABD中,AD===480(km),在Rt△MBD中,∠MBD=∠MAF=30°,得MD=BD•tan30°=(km),所以AM=km.2017年3月19日。
保密 ★ 启用前2017年中考题数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2(1)⨯-的结果是( )A 、12- B 、2- C 、1 D 、22、若∠α的余角是30°,则cos α的值是( )A 、12 B 、 32 C 、22 D 、 333、下列运算正确的是( ) A 、21a a -= B 、22a a a +=C 、2a a a ⋅=D 、22()a a -=-4、下列图形是轴对称图形,又是中心对称图形的有( )A 、4个B 、3个C 、2个D 、1个5、如图,在平行四边形ABCD 中,∠B=80°,AE平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( ) A 、40° B 、50° C 、60° D 、80°6、已知二次函数2y ax =的图象开口向上,则直线1y ax =-经过的象限是( ) A 、第一、二、三象限 B 、第二、三、四象限 C 、第一、二、四象限 D 、第一、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是( )8、如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是( ) A 、28℃,29℃ B 、28℃,29.5℃ C 、28℃,30℃ D 、29℃,29℃9、已知拋物线2123y x =-+,当15x ≤≤时,y 的最大值是( )A 、2B 、23C 、 53D 、 7310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大ABCD小与原来一致的镜面,则这个镜面的半径是( ) A 、2 B 、5C 、22D 、3 11、如图,是反比例函数1k y x=和2ky x =(12k k <)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若2AOB S ∆=,则21k k -的值是( ) A 、1 B 、2 C 、4 D 、812、一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,…按照这种倒水的方法,倒了10次后容器内剩余的水量是( )A 、1011升B 、19升C 、110升D 、111升二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上)13、2011-的相反数是__________14、近似数0.618有__________个有效数字. 15、分解因式:39a a -= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为__________17、如图,等边△ABC 绕点B 逆时针旋转30°时,点C 转到C ′的位置,且BC ′与AC 交于点D ,则'C DCD的值为__________18、如图,AB 是半圆O 的直径,以0A 为直径的半圆O ′与弦AC 交于点D ,O ′E ∥AC ,并交OC 于点E .则下列四个结论: ①点D 为AC 的中点;②'12O OE AOC S S ∆∆=;③2A C A D = ;④四边形O'DEO 是菱形.其中正确的结论是 __________.(把所有正确的结论的序号都填上) 三、解答题(本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤).19、计算:101()(5)342π-----+.20、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC 的长为10米,小强的身高AB 为1.55米,请你帮小强画出测量示意图,并计算出风筝离地16题图17题图18题图面的高度.(结果精确到1米,参考数据 2≈1.41,3≈1.73 )21、如图,△OAB 的底边经过⊙O 上的点C ,且OA=OB ,CA=CB ,⊙O 与OA 、OB 分别交于D 、E 两点. (1)求证:AB 是⊙O 的切线;(2)若D 为OA 的中点,阴影部分的面积为33π-,求⊙O 的半径r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A 、白B 、白C 表示),若从中任意摸出一个棋子,是白色棋子的概率为34.(1)求纸盒中黑色棋子的个数;(2)第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元? (利润率=100% 利润进价)24、如图,点G 是正方形ABCD 对角线CA 的延长线上任意一点,以线段AG 为边作一个正方形AEFG ,线段EB 和GD 相交于点H . (1)求证:EB=GD ;(2)判断EB 与GD 的位置关系,并说明理由; (3)若AB=2,AG=2,求EB 的长.25、已知抛物线223 (0)=--<与x轴交于A、B两点(点A在点B的y ax ax a a左侧),与y轴交于点C,点D为抛物线的顶点.(1)求A、B的坐标;(2)过点D作DH丄y轴于点H,若DH=HC,求a的值和直线CD的解析式;(3)在第(2)小题的条件下,直线CD与x轴交于点E,过线段OB的中点N 作NF丄x轴,并交直线CD于点F,则直线NF上是否存在点M,使得点M到直线CD的距离等于点M到原点O的距离?若存在,求出点M的坐标;若不存在,请说明理由.中考数学试题答案一、选择题1 2 3 4 5 6 7 8 9 10 11 12 题号B AC C BD B A C B C D 答案二、填空题-18. ①13. 2011 14. 3 15. (3)(3)a a a+-16. 144°17. 23③④三、解答题19. 解:原式=2-1-3+2,=0.故答案为:0.20. 解:∵一元二次方程x2-4x+1=0的两个实数根是x1、x2,∴x1+x2=4,x1•x2=1,∴(x1+x2)2÷()=42÷=42÷4=4.21. 解:在Rt△CEB中,sin60°= ,∴CE=BC•sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.2≈10m,答:风筝离地面的高度为10m.22. (1)证明:连OC,如图,∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线;(2)解:∵D为OA的中点,OD=OC=r,∴OA=2OC=2r,∴∠A=30°,∠AOC=60°,AC= r,∴∠AOB=120°,AB=2 r,∴S阴影部分=S△OAB-S扇形ODE= •OC•AB- = - ,∴•r•2 r- r2= - ,∴r=1,即⊙O的半径r为1.23. 解:(1)3÷-3=1.答:黑色棋子有1个;(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为.24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依据题意得:,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700,答:这两批水果功够进700千克;(2)设售价为每千克a元,则:,630a≥7500×1.26,∴,∴a≥15,答:售价至少为每千克15元.25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB,∴EB=GD;(2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则在△BDH中,∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD;(3)设BD与AC交于点O,第11 页共13 页∵AB=AD=2在Rt△ABD中,DB= ,∴EB=GD= .26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得x1=-1,x2=3,∴点A的坐标(-1,0),点B的坐标(3,0);(2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a-(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4),设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得,,解得,∴直线CD的解析式为y=x+3;(3)存在.由(2)得,E(-3,0),N(- ,0)∴F(,),EN= ,作MQ⊥CD于Q,第12 页共13 页设存在满足条件的点M(,m),则FM= -m,EF== ,MQ=OM=由题意得:Rt△FQM∽Rt△FNE,∴= ,整理得4m2+36m-63=0,∴m2+9m= ,m2+9m+=+(m+ )2=m+ =±∴m1= ,m2=- ,∴点M的坐标为M1(,),M2(,- ).第13 页共13 页。