浙江省宁波市江北区2018-2019学年七年级上学期数学期末考试试卷
- 格式:pdf
- 大小:817.70 KB
- 文档页数:16
宁波市七年级数学上册期末测试卷及答案一、选择题1.以下选项中比-2小的是( ) A .0B .1C .-1.5D .-2.52.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22B .70C .182D .2063.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b4.在实数:3.14159,35-,π,25,﹣17,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个5.下列调查中,适宜采用全面调查的是() A .对现代大学生零用钱使用情况的调查 B .对某班学生制作校服前身高的调查 C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查6.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上7.点()5,3M 在第( )象限. A .第一象限B .第二象限C .第三象限D .第四象限8.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠49.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是( )A .设B .和C .中D .山10.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60 B .300-0.8x =60 C .300×0.2-x =60 D .300×0.8-x =60 11.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( )A .﹣4B .﹣2C .4D .212.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32bB .a =2bC .a =52b D .a =3b二、填空题13.已知方程22x a ax +=+的解为3x =,则a 的值为__________. 14.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米. 15.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.16.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.17.﹣30×(1223-+45)=_____. 18.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.19.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.20.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 21.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.22.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.23.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.24.钟表显示10点30分时,时针与分针的夹角为________.三、解答题25.解方程组537x y x y +=⎧⎨+=⎩. 26.化简代数式,22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭,并求当24,=3a b =-时该代数式的值. 27.计算(1)()22315a a a a +⋅-⋅.(2)()2232246()x y x y xy -÷.28.解方程(1)3x-1=3-x, (2)3y 23y123+--= 29.在11•11期间,掀起了购物狂潮,现有两个商场开展促销优惠活动,优惠方案如下表所示; 商场 优惠方案 甲全场按标价的六折销售乙单件商品实行“满100元减50元的优惠”(比如:某顾客购买了标价分别为240元和170元的两件商品,她实际付款分别是140元和120元.根据以上信息,解决以下问题(1)两个商场同时出售一件标价290元的上衣和一条标价270元的裤子,小明妈妈想以最少的钱购买这一套衣服,她应该选择哪家商场?完成下表并做出选择. 商场 甲商场 乙商场 实际付款/元(2)小明爸爸发现:在甲、乙商场同时出售的一件标价380的上衣和一条标价300多元的裤子,在两家商场的实际付款钱数是一样的,请问:这条裤子的标价是多少元? 30.化简:3(a 2﹣2ab )﹣2(﹣3ab+b 2)四、压轴题31.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.32.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数33.如图①,点O 为直线AB 上一点,过点O 作射线OC ,使∠AOC=120°,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方. (1)将图①中的三角板OMN 摆放成如图②所示的位置,使一边OM 在∠BOC 的内部,当OM 平分∠BOC 时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO 的延长线OP (如图③所示),试说明射线OP 是∠AOC 的平分线;(3)将图①中的三角板OMN 摆放成如图④所示的位置,请探究∠NOC 与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据有理数比较大小法则:负数的绝对值越大反而越小可得答案. 【详解】 根据题意可得:2.52 1.501-<-<-<<, 故答案为:D. 【点睛】本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.2.D解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案.【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.3.D解析:D 【解析】 【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论. 【详解】解:∵由图可知a <0<b , ∴ab <0,即-ab >0 又∵|a |>|b |, ∴a <﹣b . 故选:D . 【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.4.C解析:C 【解析】 【分析】无理数就是无限不循环小数,依据定义即可判断. 【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个, 故选:C . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.B解析:B 【解析】 【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查. 【详解】解:A 、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误; B 、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确; C 、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误; D 、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误. 故选:B . 【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.6.A解析:A 【解析】 【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A . 【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.7.A解析:A 【解析】 【分析】根据平面直角坐标系中点的坐标特征判断即可. 【详解】 ∵5>0,3>0,∴点()5,3M 在第一象限. 故选A. 【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.8.D解析:D 【解析】 【分析】根据平行线的判定方法逐一进行分析即可得. 【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b ,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b ,故不符合题意;C. ∠1+∠4=90°,不能判定a//b ,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b ,故符合题意, 故选D. 【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.9.A解析:A 【解析】 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形, “美”与“设”是相对面, “和”与“中”是相对面, “建”与“山”是相对面. 故选:A . 【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.10.D解析:D 【解析】 【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程【详解】解:设进价为x元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价,可列方程:300×0.8-x=60故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系;(2)打八折的含义.11.C解析:C【解析】【分析】由题意可知3b-3a-(a-b)3=3(b-a)-(a-b)3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b)3=3(b-a)-(a-b)3=-3(a-b)-(a-b)3=3-(-1)=4;故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.12.B解析:B【解析】【分析】从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选B.【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.二、填空题13.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是解析:【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.15.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.16.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】>-,此时就需要将结果返首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.17.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45) =﹣30×12+(﹣30)×(23-)+(﹣30)×45 =﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 18.-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.19.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB =90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a ∥b ,∠2=2∠1,∴∠3=∠1+∠CAB ,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.20.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+ba b a b a b b=1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.21.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键. 22.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得:2(x﹣1)﹣1﹣1=x+1解得:x=5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.26,5,【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若解析:26,5,4 5【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=45;若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−125(负数,舍去);故满足条件的正数x值为:26,5,45.【点睛】本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.24.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°. 解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°. 解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°. 故答案为:135°. 三、解答题25.14x y =⎧⎨=⎩. 【解析】【分析】利用加减消元法进行求解即可得.【详解】537x y x y +=⎧⎨+=⎩①②, ②-①,得2x=2,解得x=1,把x=1代入①,得1+y=5,解得:y=4,所以14x y =⎧⎨=⎩. 【点睛】本题考查了解二元一次方程组,根据方程组的特征灵活选用恰当的方法进行求解是解题的关键.26.221122a ab b -+-,值为:799- 【解析】【分析】 根据题意先进行化简,然后把24,=3a b =-分别代入化简后的式子,得出最终结果即可. 【详解】 解:22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭=222273222a ab b a ab b ---++ =22122a ab b -+-, 然后把24,=3a b =-代入上式得: 221122a ab b -+- 1124=16+42239⎛⎫-⨯⨯⨯-- ⎪⎝⎭ =44839--- =799-. 故答案为:221122a ab b -+-,值为:799-. 【点睛】本题考查化简求值,解题关键在于对整式加减的理解.27.(1)32a a -;(2)46x -【解析】【分析】(1)原式利用单项式乘以多项式,以及单项式乘以单项式法则计算,合并即可得到结果; (2)原式先计算乘方运算,再利用多项式除以单项式法则计算即可求出值.【详解】解:(1) 原式3335a a a =+-32a a =-;(2)原式()22322246x y x yx y =-÷46x =-. 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.28.(1)x=1;(2)y=611. 【解析】【分析】(1)移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1计算可得.【详解】解:()13x x 31+=+, 4x 4=,x 1=;()()()233y 2623y +-=-,9y 6662y +-=-,9y 2y 666+=-+,11y 6=,6y 11=. 【点睛】 本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 的形式转化.29.(1)336,360;(2)这条裤子的标价是370元.【解析】【分析】(1)按照两个商场的优惠方案进行计算即可;(2)设这条裤子的标价是x 元,根据两种优惠方案建立方程求解即可.【详解】解:(1)甲商场实际付款:(290+270)×60%=336(元);乙商场实际付款:290﹣2×50+270﹣2×50=360(元);故答案为:336,360;(2)设这条裤子的标价是x 元,由题意得:(380+x )×60%=380﹣3×50+x ﹣3×50,解得:x =370,答:这条裤子的标价是370元.【点睛】本题考查一元一次方程的应用,理解两种优惠方案的价格计算方式是解题的关键. 30.3a 2﹣2b 2.【解析】【分析】原式去括号合并即可得到结果.【详解】原式=()()223a -6ab --6ab+2b22=3a 6ab 6ab 2b -+-223a -2b =【点睛】本题考查了整式的加减运算,熟练掌握整式加减运算法则是解题的关键.四、压轴题31.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=- =1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠, ∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+ =()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.32.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣4834【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.33.(1)60°;(2)射线OP是∠AOC的平分线;(3)30°.【解析】整体分析:(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的定义判断;(3)根据∠AOC,∠AON,∠NOC,∠MON,∠AOM的和差关系即可得到∠NOC 与∠AOM之间的数量关系.解:(1)如图②,∠AOC=120°,∴∠BOC=180°﹣120°=60°,又∵OM平分∠BOC,∴∠BOM=30°,又∵∠NOM=90°,∴∠BOM=90°﹣30°=60°,故答案为60°;(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,∴∠AOP=12∠AOC,∴射线OP是∠AOC的平分线;(3)如图④,∵∠AOC=120°,∴∠AON=120°﹣∠NOC,∵∠MON=90°,∴∠AON=90°﹣∠AOM,∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.。
宁波市七年级上学期期末数学试题题及答案一、选择题1.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( ) A .49 B .59 C .77D .1392.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠3.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=4.在实数:3.14159,35-,π,25,﹣17,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个 B .2个C .3个D .4个5.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .22B .22﹣1C .22+1D .16.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( )A .13或﹣1 B .1或﹣1C .13或73D .5或737.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣78.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cm B .2cm C .8cm 或2cm D .以上答案不对 10.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=111.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm12.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .150二、填空题13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.14.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.15.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.16.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____. 17.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.18.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;19.将520000用科学记数法表示为_____. 20.五边形从某一个顶点出发可以引_____条对角线.21.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.22.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.23.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.24.单项式()26a bc -的系数为______,次数为______.三、解答题25.如图,O 为直线AB 上一点,130BOC ∠=︒,OE 平分BOC ∠,DO OE ⊥.(1)求BOD ∠的度数.(2)试判断OD 是否平分AOC ∠,并说明理由.26.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).27.已知x ay b=⎧⎨=⎩是方程组2025x yx y-=⎧⎨+=⎩的解,则3a b-=_____.28.化简:4(m+n)﹣5(m+n)+2(m+n).29.解方程:2112 233x x-+=.30.O为数轴的原点,点A、B在数轴上表示的数分别为a、b,且满足(a﹣20)2+|b+10|=0.(1)写出a、b的值;(2)P是A右侧数轴上的一点,M是AP的中点.设P表示的数为x,求点M、B之间的距离;(3)若点C从原点出发以3个单位/秒的速度向点A运动,同时点D从原点出发以2个单位/秒的速度向点B运动,当到达A点或B点后立即以原来的速度向相反的方向运动,直到C点到达B点或D点到达A点时运动停止,求几秒后C、D两点相距5个单位长度?四、压轴题31.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.32.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.问题解决:(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;②若0<t≤3时,点A到点B的d追随值d[AB]≤6,求b的取值范围.33.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】 【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b )与ab 表示的形式,然后把已知代入即可求解. 【详解】解:∵(5ab+4a+7b )+(3a-4ab ) =5ab+4a+7b+3a-4ab =ab+7a+7b =ab+7(a+b ) ∴当a+b=7,ab=10时 原式=10+7×7=59. 故选B .2.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.3.C解析:C 【解析】 【分析】方程两边都乘以2,再去括号即可得解. 【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x , 故选:C. 【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.4.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.D解析:D【解析】【分析】根据题意列出算式,计算即可得到结果.【详解】解:∵A,B﹣1,∴A,B﹣1)=1;故选:D.【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.6.A解析:A【解析】【分析】先求出方程的解,把x的值代入方程得出关于m的方程,求出方程的解即可.【详解】解:(x+3)2=4,x﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x=﹣1代入方程mx+3=2(m﹣x)得:﹣m+3=2(1+m),解得:m=﹣1,故选:A.【点睛】本题考查了解一元一次方程的解的应用,能得出关于m的方程是解此题的关键.7.A解析:A【解析】【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.8.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.9.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.10.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.11.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.12.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C.【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.15.【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键.16.-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3解析:-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.17.3【解析】【分析】把x 与y 的值代入方程组得到关于a 和b 的方程组,然后整体求出a +b 的值即可.【详解】解:把代入方程组得:,①+②得:3(a +b )=9,则a +b =3,故答案为:3.【解析:3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把12xy=⎧⎨=⎩代入方程组得:2722a bb a+=⎧⎨+=⎩,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.19.2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数解析:2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.21.6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM :BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm .BM=12cm ,根据线段中点的定义得到AP=12AM=2cm ,AQ=12AB=8cm ,从而得到答案. 【详解】 解:∵AB=16cm ,AM :BM=1:3,∴AM=4cm .BM=12cm ,∵P ,Q 分别为AM ,AB 的中点,∴AP=12AM=2cm ,AQ=12AB=8cm , ∴PQ=AQ-AP=6cm ;故答案为:6cm .【点睛】 本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.22.40【解析】【分析】由OA 恰好是COD 的三等分线可得或,旋转角为,求出其度数取最小值即可. 【详解】解:因为,OC 、OD 是AOB 的两条三分线,所以 因为OA 恰好是COD 的解析:40【解析】【分析】由OA 恰好是∠COD 的三等分线可得'10AOD ︒∠=或'20AOD ︒∠=,旋转角为'DOD ∠,求出其度数取最小值即可.【详解】解:因为90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,所以30AOD ︒∠=因为OA 恰好是∠COD 的三等分线,所以'10AOD ︒∠=或'20AOD ︒∠=,当'10AOC ︒∠=时,''301040DOD AOD AOD ︒︒︒∠=∠+∠=+=当'20AOD ︒∠=时,''302050DOD AOD AOD ︒︒︒∠=∠+∠=+=,综上所述将∠COD 顺时针最少旋转40︒.故答案为:40︒【点睛】本题考查了角的平分线,熟练掌握角平分线的相关运算是解题的关键.23.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm 时水位变化记作﹣3c m .故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm 时水位变化记作﹣3cm . 故答案为:﹣3cm .【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.24.【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式的系数为;次数为2+1+1=4;故答案为;4.【点睛】此 解析:16- 【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式()26a bc -的系数为16-;次数为2+1+1=4; 故答案为16-;4. 【点睛】此题主要考查对单项式系数和次数的理解,熟练掌握,即可解题.三、解答题25.(1)155°;(2)OD 平分AOC ∠,理由见详解.【解析】【分析】(1)由题意先根据角平分线定义求出∠BOE ,进而求出BOD ∠的度数;(2)由题意判断OD 是否平分AOC ∠即证明AOD DOC ∠=∠,以此进行分析求证即可.【详解】解:(1)∵130BOC ∠=︒,OE 平分BOC ∠,∴∠BOE =65°,∵DO OE ⊥,∴BOD ∠=90°+65°=155°.(2)OD 平分AOC ∠,理由如下:∵由(1)知BOD ∠=155°,∴AOD ∠=180°-155°=25°,∵130BOC ∠=︒,OE 平分BOC ∠,DO OE ⊥,∴DOC ∠=90°-65°=25°,∴AOD DOC ∠=∠=25°,即有OD 平分AOC ∠.【点睛】本题考查角的运算,利用角平分线定义以及垂直定义结合题意对角进行运算即可.26.(1)A款瓷砖单价为80元,B款单价为60元.(2)买了11块A款瓷砖,2块B款;或8块A款瓷砖,6块B款.(3)B款瓷砖的长和宽分别为1,34或1,15.【解析】【分析】(1)设A款瓷砖单价x元,B款单价y元,根据“一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等”列出二元一次方程组,求解即可;(2)设A款买了m块,B款买了n块,且m>n,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米,根据图形以及“A款瓷砖的用量比B款瓷砖的2倍少14块”可列出方程求出a的值,然后由92bb-+是正整教分情况求出b的值.【详解】解: (1)设A款瓷砖单价x元,B款单价y元,则有14034x yx y+=⎧⎨=⎩,解得8060 xy=⎧⎨=⎩,答: A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:7997 22114 22b ba ab a b a--⎛⎫⨯⨯=+⨯-⎪++⎝⎭,解得a=1.由题可知,92bb-+是正整教.设92bkb-=+(k为正整数),变形得到921kbk-=+,当k=1时,77(122b=>,故合去),当k=2时,55(133b=>,故舍去),当k=3时,34b =, 当k=4时,15b =, 答: B 款瓷砖的长和宽分别为1,34或1,15. 【点睛】 本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.27.【解析】【详解】解:∵x a y b=⎧⎨=⎩是方程组2025x y x y -=⎧⎨+=⎩的解, ∴2025a b a b -=⎧⎨+=⎩①②, ①+②得,3a ﹣b =5.故答案为5.28.m +n .【解析】【分析】把(m +n )看着一个整体,根据合并同类项法则化简即可.【详解】解:4()5()2()m n m n m n +-+++(425)()m n =+-+m n =+.【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.29.12x =. 【解析】【分析】 根据解一元一次方程的步骤依次计算可得.【详解】解:去分母,得:3(21)24x x -+=,去括号,得:6324x x -+=,移项,得:6432x x -=-,合并同类项,得:21x =,系数化为1,得:12x =. 【点睛】 本题主要考查解一元一次方程,解题的关键是熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x a =形式转化.30.(1)a =20,b =﹣10;(2)20+2x ;(3)1秒、11秒或13秒后,C 、D 两点相距5个单位长度【解析】【分析】(1)利用绝对值及偶次方的非负性,可求出a ,b 的值;(2)由点A ,P 表示的数可找出点M 表示的数,再结合点B 表示的数可求出点M 、B 之间的距离;(3)当0≤t≤203时,点C 表示的数为3t ,当203<t≤503时,点C 表示的数为20﹣3(t ﹣203)=40﹣3t ;当0≤t≤5时,点D 表示的数为﹣2t ,当5<t≤20时,点D 表示的数为﹣10+2(t ﹣5)=2t ﹣20.分0≤t≤5,5<t≤203及203<t≤503,三种情况,利用CD =5可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:(1)∵(a ﹣20)2+|b+10|=0,∴a ﹣20=0,b+10=0,∴a =20,b =﹣10.(2)∵设P 表示的数为x ,点A 表示的数为20,M 是AP 的中点.∴点M 表示的数为202x +. 又∵点B 表示的数为﹣10,∴BM =202x +﹣(﹣10)=20+2x . (3)当0≤t≤203时,点C 表示的数为3t ; 当203<t≤503时,点C 表示的数为:20﹣3(t ﹣203)=40﹣3t ; 当0≤t≤5时,点D 表示的数为﹣2t ;当5<t≤20时,点D 表示的数为:﹣10+2(t ﹣5)=2t ﹣20.当0≤t≤5时,CD =3t ﹣(﹣2t )=5,解得:t =1;当5<t≤203时,CD=3t﹣(2t﹣20)=5,解得:t=﹣15(舍去);当203<t≤503时,CD=|40﹣3t﹣(2t﹣20)|=5,即60﹣5t=5或60﹣5t=﹣5,解得:t=11或t=13.答:1秒、11秒或13秒后,C、D两点相距5个单位长度.【点睛】本题考查了一元一次方程的应用、数轴、绝对值及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a,b的值;(2)根据各点之间的关系,用含x的代数式表示出BM的长;(3)找准等量关系,正确列出一元一次方程.四、压轴题31.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-443或4;(3) 当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8,理由见解析【解析】【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;(2)分两种情况讨论可求点P的对应的数;(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.【详解】(1)∵|a+24|+|b+10|+(c-10)2=0,∴a+24=0,b+10=0,c-10=0,解得:a=-24,b=-10,c=10;(2)-10-(-24)=14,①点P在AB之间,AP=14×221=283,-24+283=-443,点P的对应的数是-443;②点P在AB的延长线上,AP=14×2=28,-24+28=4,点P的对应的数是4;(3)∵AB=14,BC=20,AC=34,∴t P=20÷1=20(s),即点P运动时间0≤t≤20,点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=623>20(舍去),当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.32.(1)1+a或1-a;(2)12或52;(3)1≤b≤7.【解析】【分析】(1)根据d追随值的定义,分点N在点M左侧和点N在点M右侧两种情况,直接写出答案即可;(2)①分点A在点B左侧和点A在点B右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N在点M右侧时,点N表示的数是1+a;点N在点M左侧时,点N表示的数是1-a;(2)①b=4时,AB相距3个单位,当点A在点B左侧时,t=(3-2)÷(3-1)=12,当点A在点B右侧时,t=(3+2)÷(3-1)=52;②当点B在点A左侧或重合时,即d≤1时,随着时间的增大,d追随值会越来越大,∵0<t≤3,点A到点B的d追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d≥1,∴d=1,当点B在点A右侧时,即d>1时,在AB重合之前,随着时间的增大,d追随值会越来越小,∵点A到点B的d追随值d[AB]≤6,∴d≤7∴1<d≤7,综合两种情况,d的取值范围是1≤d≤7.故答案为(1)1+a或1-a;(2)①12或52;②1≤b≤7.【点睛】本题考查了数轴上两点之间的距离和动点问题.33.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.。
七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.2018的相反数是()A. B. C. 2018 D.2.下列各式中,是一元一次方程的是()A. B. C. D.3.2018年全回高考报名总人数是975万人,用科学记数法表示为()A. 人B. 人C. 人D. 人4.数轴上A、B两点表示的数分别是-3和3.则π,-4,,表示的点位于A、B两点之间的是()A. B. C. D.5.宁波市2018年上半年地方财政收入约837.90亿元,这个数精确到()A. 百万位B. 百分位C. 千万位D. 十分位6.下列各数中:0,,,,,0.010010001,是无理数的有()A. 1个B. 2个C. 3个D. 4个7.若2x2-x=4,则代数式6+4x2-2x的值为()A. B. 2 C. 10 D. 148.规定新运算“⊗“:对于任意实数a、b都有a⊗b=a-3b,例如:2⊗4=2-3×4=-10,则x⊗1+2⊗x=1的解是()A. B. 1 C. 5 D.9.实数a,b在数轴上的位量如图所示,则下列结论正确的是()A. B. C. D.10.如图,在长为a,宽为b的长方形(其中a>b>>0)中放置如图所示的两个相同的正方形,恰好构成三个形状、大小完全一样的小长方形(阴影部分),则放置的正方形的边长为()A. B. C. D.二、填空题(本大题共8小题,共24.0分)11.64的平方根是______,立方根是______,算术平方根是______.12.单项式-的系数是______,次数是______,多项式5x2y-3y2的次数是______.13.若-2x1-2m y4与3x3y2n是同类项,则m=______,n=______;合并以后的结果是______.14.如图所示,如果用20米长的铝合金做一个长方形的窗框,设长方形窗框的三根横条长均为a米,则长方形窗框的竖条长均为______米(用含a的代数式表示)15.某工程,甲单独完成需4天,乙单独完成需8天,现甲先工作1天后和乙加入合作,问甲、乙合作几天才能完成这项工程.设甲、乙合做x天才能完成这项工程,列一元一次方程______.16.如图,线段AB=10.点C在直线AB上,BC=4,M、N分别是线段AB、BC的中点,则MN的长为______.17.按下面的程序计算,若开始输入的值x为正整数,规定:程序运行到“判断结果是否大于10”为一次运算,当x=2时,输出结果=______.若经过2次运算就停止,则x可以取的所有值是______.18.设,,,,,……,,,……,……,在这列数中,第50个数是______.三、计算题(本大题共1小题,共6.0分)19.先化简,再求值求当x=3,y=-时,代数式2(-3xy-y2)-(2x2-5xy-2y2)的值.四、解答题(本大题共5小题,共40.0分)20.计算:(1)2+(-3)2×4(2)-12018+-24÷.21.解方程(1)-(3x+1)+2x=2(1.5x-1)(2)1-.22.如图所示,点A、B、C分别代表三个村庄,根据下列条件画图.(1)画射线AC,画线段AB,画直线BC;(2)若线段AB是连结A村和B村的一条公路,现C村庄也要修一条公路与A、B两村庄之间的公路连通,为了使修建的路程最短,C村庄应该如何修路?请在同一图上用三角板面出示意图,井说明这样修路的理由.23.寒假将至,某班家委会组织学生到北京旅游,现联系了一家旅社,这家旅行杜报价为4000元/人,但根据具体报名情况推出了优惠举措:(1)如果一开始参加旅游的人数为13人,则预计总费用为______元:(2)在(1)问前提下,后来又有部分同学要求参加,设这分同学加入后总共参与旅游的人数为x人,若总人数x还是不超过20人,则总费用为______元;若总人数x超过了20人,则总费用为______元;(结果均用含x的代数式表示)(3)若最后家委会支付给旅行社人均费用为原价的九折,问共有多少人参加了本次旅游?24.已知O是直AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);(3)在(1)问前提下∠COD绕顶点O顺时针旋转一周.①当旋转至图②的位置,写出∠AOC和∠DOE的度数之间的关系,并说明理由;②若旋转的速度为每秒10°,几秒后∠BOD=30°?(直接写出答案).答案和解析1.【答案】A【解析】解:2018的相反数是-2018,故选:A.根据相反数的意义,可得答案.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:A.是一元二次方程,不符合一元一次方程的定义,即A项错误,B.符合一元一次方程的定义,是一元一次方程,即B项正确,C.是二元一次方程,不符合一元一次方程的定义,即C项错误,D.是分式方程,不符合一元一次方程的定义,即D项错误,故选:B.依次分析各个选项,选出符合一元一次方程定义的选项即可.本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.3.【答案】C【解析】解:975万=9.75×106,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:∵4<5<9,∴2<<3,而3.14<π<3.15,3.3<,则位于A、B两点之间的是.故选:C.估算确定出各无理数的范围,判断即可.此题考查了实数与数轴,以及算术平方根,熟练掌握运算法则是解本题的关键.5.【答案】A【解析】解:宁波市2018年上半年地方财政收入约837.90亿元,这个数精确到百万位;故选:A.根据近似数精确到哪一位,应当看末位数字实际在哪一位,从而得出答案.本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.6.【答案】B【解析】解:在所列实数中,无理数有,这2个,故选:B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.此题考查了无理数与有理数的定义,解答此题的关键是熟知无理数的概念.初中常见的无理数有三类:①π类;②开方开不尽的数,如;③有规律但无限不循环的数,如0.8080080008…(每两个8之间依次多1个0).7.【答案】D【解析】解:当2x2-x=4时,6+4x2-2x=6+2(2x2-x)=6+2×4=6+8=14,故选:D.将2x2-x=4代入6+4x2-2x=6+2(2x2-x)计算可得.本题考查了代数式的求值,解决本题的关键是应用整体代入法.8.【答案】A【解析】解:∵2⊗4=2-3×4=-10,∴x⊗1+2⊗x=1可变为:x-3+2-3x=1,解得:x=-1.故选:A.直接根据题意将原式变形进而解方程得出答案.此题主要考查了实数运算以及解一元一次方程,正确将原式变形是解题关键.9.【答案】D【解析】解:根据数轴上点的位置得:-1<a<0<1<b,∴a+b>0,a-b<0,则|a+b|=a+b,|a-b|=b-a,故选:D.根据数轴上点的位置判断出a+b与a-b的正负,利用绝对值的代数意义化简即可.此题考查了实数与数轴,以及绝对值,熟练掌握运算法则是解本题的关键.10.【答案】B【解析】解:放置的正方形的边长为:,故选:B.根据题意和图形可以用相应的代数式表示即可.本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.11.【答案】±8 4 8【解析】解:64的平方根是±8,立方根是4,算术平方根是8;故答案为:±8;4;8.根据平方根、立方根和算术平方根的概念解答即可.此题考查立方根,关键是根据平方根、立方根和算术平方根的概念解答.12.【答案】 5 3【解析】解:单项式-的系数是,次数是5,多项式5x2y-3y2的次数是3;故答案为:,5;3.根据单项式和多项式的有关概念解答即可.此题考查多项式与单项式,关键是根据单项式和多项式的有关概念解答.13.【答案】-1 2 x3y4【解析】解:根据题意可得:2n=4,1-2m=3,解得:m=-1,n=2,所以合并以后的结果是x3y4,故答案为:-1;2;x3y4,根据同类项的概念得出m,n的值,进而合并解答即可.此题考查同类项,关键是根据同类项的概念得出m,n的值.14.【答案】-a+10【解析】解:由图可得,长方形窗框的竖条长均为米;故答案为:-a+10.根据题意和图形可以用相应的代数式表示即可.本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.15.【答案】(x+1)+x=1【解析】解:甲单独完成需4天,乙单独完成需8天,则甲、乙的效率分别为:、,由题意得,(x+1)+x=1.故答案为:(x+1)+x=1.根据题意可得甲、乙的效率分别为:、,根据甲先工作1天后和乙加入合作x天才能完成这项工程即可得出方程.本题考查了由实际问题抽象一元一次方程的知识,属于基础题,关键是得出甲、乙的工作效率.16.【答案】7或3【解析】解:根据题意有两种情况①点C在线段AB上时,如图1MN=AB+BC=5+2=7②点C在射线AB上时,如图2MN=BM-BN=AB-BC=5-2=3故答案为7或3.因直线上三点A、B、C的位置不明确,所以要分两种情况:①点C在线段AB 上;②点C在射线AB上,画出图形根据中点的定义即可求出MN的长.本题考查了学生在条件不明确前提下的问题分析能力,能正确画出图形是解决这类问题的前提,全面分析问题的各种情况是关键.17.【答案】11 2或3或4【解析】解:当x=2时,第1次运算结果为2×2+1=5,第2次运算结果为5×2+1=11,∴当x=2时,输出结果=11,若运算进行了2次才停止,则有,解得:<x≤4.5.∴x可以取的所有值是2或3或4,故答案为:11,2或3或4.由运算程序可计算出当x=2时,输出结果,由经过1次运算结果不大于10及经过2次运算结果大于10,即可得出关于x的一元一次不等式组,解之即可得出结论.本题考查了一元一次不等式组的应用以及有理数的混合运算,根据运算程序找出关于x的一元一次不等式组是解题的关键.18.【答案】【解析】解:当k=1时,有一个数,这个数是,当k=2时,有两个数,这两个数是,,当k=3时,有三个数,这三个数是,,,∵50=(1+2+3+4+5+6+7+8+9)+5,∴第50个数是:=,故答案为:.根据题意,可以发现题目中数字的变化规律,从而可以求得第50个数,本题得以解决.本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.19.【答案】解:原式=x2-6xy-2y2-2x2+5xy+2y2=-x2-xy,当x=3,y=-时,原式=-32-3×(-)=-9+=-.【解析】先去括号、合并同类项化简原式,再将x和y的值代入计算可得.本题主要考查整式的加减-化简求值,解题的关键是掌握整式的加减混合运算顺序和运算法则.20.【答案】解:(1)原式=2+9×4=38;(2)原式=-1-6-16×=-1-6-12=-19.【解析】(1)直接利用有理数的混合运算法则计算得出答案;(2)首先利用立方根以及算术平方根的性质化简,进而计算得出答案.此题主要考查了实数运算,正确掌握相关运算法则是解题关键.21.【答案】解:(1)去括号得:-3x-1+2x=3x+2移项、合并同类项得:-4x=-1系数化为1得:x=(2)去分母得:12-3(4-3x)=2(5x+3)去括号得:12-12+9x=10x+6移项、合并同类项得:-x=6系数化为1得:x=-6【解析】(1)方程去括号,移项合并,把x系数化为1,即可求出解.(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.本题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.【答案】解:(1)射线AC,线段AB,直线BC即为所求;(2)过C作CD⊥AB于D,则线段CD即为所修路程,理由:垂线段最短.【解析】(1)根据题意作出图形即可;(2)根据线段的性质即可得到结论.本题考查了作图-应用与设计作图,正确的作出图形是解题的关键.23.【答案】50500 (3500x+5000)(3000x+15000)【解析】解:(1)根据题意得,4000×10+3500×(13-10)=50500(元),故答案为:50500;(2)根据题意得,①若总人数x还是不超过20人,则总费用为:4000×10+3500(x-10)=3500x+5000(元);②若总人数x超过了20人,则总费用为:4000×10+3500×(20-10)+3000(x-20)=3000x+15000(元),故答案为:(3500x+5000);(3000x+15000).(3)4000×90%=3600,显然x>10,①当人数不超过20人时,有3500X+5000=3600x,解得x=50>20(不合题意,舍去);②当人数超过20人时,有3000x+15000=3600x,解得,x=25(人),答:本次共有25人参加.(1)根据旅行社的优惠举措,可得旅游的人数为13人时的总费用为:其中10人按4000元/人算,另3人按3500元/人计算;(2)不超过20人时,按照前面两个标准分段计算,超过20人按三个标准分段计算;(3)分两种情况:人数不超过20人和人数超过20人列方程解答便可.本题是一元一次方程的应用,主要考查了分段收费问题,关键是正确理解题意,找到等量关系列出方程.24.【答案】解:(1)∵∠COD是直角,∠AOC=30°,∴∠BOD=180°-90°-30°=60°,∴∠COB=90°+60°=150°,∵OE平分∠BOC,∴∠BOE=∠BOC=75°,∴∠DOE=∠BOE-∠BOD=75°-60°=15°.(2)∵∠COD是直角,∠AOC=α,∴∠BOD=180°-90°-α=90°-α,∴∠COB=90°+90°-α=180°-α,∵OE平分∠BOC,∴∠BOE=∠BOC=90°-,∴∠DOE=∠BOE-∠BOD=90°--(90°-α)=;(3)①∠AOC=2∠DOE,理由是:∵∠BOC=180°-∠AOC,OE平分∠BOC,∴∠BOE=∠BOC=90°-∠AOC,∵∠COD=90°,∴∠BOD=90°-∠BOC=90°-(180°-∠AOC)=∠AOC-90°,∴∠DOE=∠BOD+∠BOE=(∠AOC-90°)+(90°-∠AOC)=∠AOC,即∠AOC=2∠DOE;②设x秒后∠BOD=30°,根据题意得30+10x+90+30=180或30+10x+60=180,t=3s或t=9s.所以若旋转的速度为每秒10°,3秒或9秒后∠BOD=30°【解析】(1)求出∠BOD,求出∠BOC,根据角平分线求出∠BOE,代入∠DOE=∠BOE-∠BOD求出即可.(2)求出∠BOD,求出∠BOC,根据角平分线求出∠BOE,代入∠DOE=∠BOE-∠BOD求出即可.(3)①把∠AOC当作已知数求出∠BOC,求出∠BOD,根据角平分线求出∠BOE,代入∠DOE=∠BO+∠BOD求出即可;②根据题意列方程解答即可.本题考查了角的有关计算和角平分线定义的应用,主要考查学生的计算能力,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.。
2018-2019学年第一学期期末测试
七年级数学试卷
温馨提醒:
(1)本卷有三大题,共24小题,总分100分,考试用时90分钟;
(2)在答题卷规定的地方写上学校、班级、学号、姓名,并在规定的区域内答题,不得
在密封线以外的地方答题;
(3)考试时请勿使用计算器.
第Ⅰ卷(选择题)
一、选择题(本题有10小题,每小题3分,共30分. 每小题只有一个选项是正确的,不选、多选、错选均不给分)
1.在数1,0,﹣1,﹣2中,最大的数是…………………………………………………( ▲
)A .1 B .0 C .1D .2
2.据科学家估计,地球的年龄大约是 4 600 000 000年,将数字 4 600 000 000用科学记
数法表示为………………………………………………………………………
(▲)
A .91046.0
B .9106.4
C .101046.0
D .10
106.43. 8的立方根是…………………………………………………………………………(▲)
A .2
B .-2
C .21
D .
2
4.下列属于一元一次方程的是…………………………………………………………( ▲ )
A .1x
B .322x y
C .3344x x
D . 2650
x x 5.与无理数51最接近的整数是……………………………………………………( ▲ )
A .5
B .6
C .7
D . 8
6.下列各单项式中,与324x y 是同类项的是…………………………………………( ▲ )。
浙江省宁波市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共7题;共14分)1. (2分)日媒报道说,尽管美元贬值有利于日本GDP换算美元时数值提高,但抵不过中国经济的快速增长势头,2010年日本GDP低于中国1月公布的58786亿美元,比中国少4044亿美元,将其中的58786亿美元化成科学记数法()A . 58786×108B . 5.8786×108C . 5.8786×1012D . 5.8786×10112. (2分)从上面看如图所示的几何体,得到的图形是()A .B .C .D .3. (2分) (2017七上·甘井子期末) 如图,有理数a、b、c、d在数轴上的对应点分别是A、B、C、D,若a、c互为相反数,则b+d()A . 小于0B . 大于0C . 等于0D . 不确定4. (2分)(2018·杭州模拟) 如图所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则下列说法正确的是()A . ∠AOE与∠BOC互为对顶角B . 图中有两个角是∠EOD的邻补角C . 线段DO大于EO的理由是垂线段最短D . ∠AOC=65°5. (2分)买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A . (7m+4n)元B . 28mn元C . (4m+7n)元D . 11mn元6. (2分)如图,如果M点在∠ANB的角平分线上,AM⊥AN,BM⊥BN,那么和AM相等的线段一定是()A . BMB . BNC . MND . AN7. (2分)如图,在矩形ABCD中,AB=3,将△ABD沿对角线BD对折,得到△EBD,DE与BC交于点F,∠ADB=30°,则EF=()A .B .C . 3D .二、填空题 (共12题;共12分)8. (1分) (2016七上·东阳期末) -5的相反数是________;-5的绝对值是________;-5的立方是________;-0.5的倒数是________;9. (1分) (2017七上·灌云月考) 当x=________时,3(x-2)与2(2+x)互为相反数.10. (1分) (2019七上·长兴月考) 单项式-2x2y的系数是________。
期末检测题【本检测题满分:120分,时间:120分钟】一、选择题(每小题3分,共36分)1.若a 、b 为实数,且4711++-+-=a aa b ,则b a +的值为( )A.1±B.4C.3或5D.52.根据下图所示的程序计算代数式的值,若输入n 的值为5,则输出的结果为( ) A.16 B.2.5 C.18.5 D.13.53.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A.2(3)a b -B.23()a b -C.23a b -D.2(3)a b -4.某种型号的电视机,5月份每台售价为元, 6月份降价20%,则6月份每台售价为( ) A.元B.%20x元 C.元 D.元5. 已知两数在数轴上的位置如右图所示,则化简代数式12a b a b +--++的结果是( ) A. B.C. D.6.当n 为正整数时,212(1)(1)n n +---的值是( )A.0B.2C.-2D.不能确定7.已知关于的方程的解是,则的值是( ) A.1B.53C.51D.-18.x 3的倒数与392-x 互为相反数,那么x 的值是( ) A.23 B.23- C.3 D.-3 9. 一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?在这个问题中,如果还要租x 辆客车,可列方程为( )A.4432864x -=B.4464328x +=C.3284464x +=D.3286444x +=10.如右图,∠AOB =130°,射线OC 是∠AOB 内部任意一条射线,OD 、OE 分别是∠AOC 、∠BOC 的平分线,下列叙述正确的是( ) A.∠DOE 的度数不能确定B.∠AOD +∠BOE =∠EOC +∠COD =∠DOE =65°C.∠BOE =2∠CODD.∠AOD =21∠EOC11. 已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ的值等于( ) A.45° B.60° C.90° D.180° 12. 如果要在一条直线上得到6条不同的线段,那么在这条直线上应选几个不同的点( ) A.3个 B.4个 C.5个 D.6个二、填空题(每小题3分,共30分)13.若,,则 ;21.14.已知,,则代数式.15.一个长方形的一边长34a b +,另一边长a b +,那么这个长方形的周长为 . 16.一个长方体的箱子放在地面上且紧靠墙角,它的长、宽、高分别是a 、b 、c ,则这个箱子露在外面的面积是______________.(友情提示:先想象一下箱子的放置情景吧!) 17.若代数式213k--的值是1,则k = _________. 18. 猜数字游戏中,小明写出如下一组数:52,74,118,1916,3532,…,小亮猜想出第六个数字是6764,根据此规律,第n 个数是___________.19. 已知线段AB =8,延长AB 到点C ,使BC =21AB ,若D 为AC 的中点,则BD 等于__________.20.如下图,C ,D 是线段AB 上两点,若CB =4 cm ,DB =7 cm ,且D 是AC 的中点,则AC =____ _.21.请你规定一种适合任意非零实数的新运算“”,使得下列算式成立:,,,A B D C……你规定的新运算=_______ (用的一个代数式表示).22.下图是一个数值转换机.若输入数3,则输出数是_______.三、解答题(共54分)23.(10分)化简并求值: (1)21,其中,,.(2),其中,.24.(5分)已知代数式的值为,求代数式的值.25.(5分)已知关于的方程的解为2,求代数式的值. 26.(6分)如下图,线段,点是线段上任意一点,点是线段的中点,点是线段的中点,求线段的长.27.(6分)某餐厅中,一张桌子可坐6人,有以下两种摆放方式: (1)当有张桌子时,两种摆放方式各能坐多少人?(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?28.(6分)一种笔记本的售价为2.2元/本,如果买100本以上,超过100本部分的售价为2元/本.(1)小强和小明分别买了50本和200本,他们俩分别花了多少钱?(2)如果小红买这种笔记本花了380元,她买了多少本?(3)如果小红买这种笔记本花了元,她买了多少本?29.(8分)某酒店客房部有三人间、双人间客房,收费数据如下表:普通(元/间/天)豪华(元/间/天)三人间150 300双人间140 400为吸引游客,实行团体入住五折优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1 510元,则旅游团住了三人普通间和双人普通间客房各多少间?30.(8分)某餐饮公司为了更方便地为大庆路沿街20户居民提供早餐,决定在路旁建立一个快餐店,点选在何处,才能使这20户居民到点的距离总和最小?期末检测题参考答案一、选择题1.D 解析:由题意可知a -1=0,所以a =1,b =4,所以a +b =1+4=5.2.A 解析:由程序图可知输出的结果为3.3.A4.C5. B 解析:由数轴可知,且所以, 故12(1)(2)122 3.a b a b a b a b a b a b b +--++=+--++=+-+++=+6.C 解析:当n 为正整数时,,,所以. 7.A 解析:将代入方程,得,解得.8.C 解析:由题意可知03923=-+x x ,解得,故选C.9. B 解析:乘坐客车的人数为,因为每辆客车可乘坐44人,所以乘坐客车的人数又可以表示为44,所以可列方程.通过整理可知选B. 10.B 解析:∵ OD 、OE 分别是∠AOC 、∠BOC 的平分线, ∴ ∠AOD =∠COD ,∠EOC =∠BOE .又∵ ∠AOD +∠BOE +∠EOC +∠COD =∠AOB =130°, ∴ ∠AOD +∠BOE =∠EOC +∠COD =∠DOE =65°,故选B . 11.C 解析:由题意得∠α+∠β=180°,∠α+∠γ=90°, 两式相减可得∠β-∠γ=90°,故选C . 12.B 解析:∵ 一条直线上n 个点之间有2)1(-n n 条线段,∴ 要得到6条不同的线段,则n =4,选B .二、填空题13.56 8 解析:,2121.14.5 解析:将两式相加,得,即.15.解析:长方形的周长为:.16. 解析:根据一个长方体的箱子放在地面上且紧靠墙角,那么说明有三个面紧贴墙及地面,三个面露在外面,并且,如果长方体箱子的一个顶点在墙角,那么长方体该顶点正对的顶点紧连的三个面露在外面.故计算该三个面面积的和为:.17.-4 解析:由213k--=1,解得.18.322+nn解析:∵ 分数的分子分别是:,,,…,分数的分母分别是:21+3=5, 22+3=7,23+3=11,24+3=19,322个数是第 ∴ +nnn .19.2 解析:如右图所示,因为BC =21AB ,AB =8,所以BC =4,AC =AB +BC =12. 因为D 为AC 的中点,所以CD =21AC =6.所以BD =CD -BC =2.20.6 cm 解析:因为点D 是线段AC 的中点,所以AC =2DC . 因为CB =4 cm ,DB =7 cm ,所以CD =BD -BC =3 cm , 所以AC =6 cm. 21.ab ba 22+解析:根据题意可得:12+22, =67-=32-+42-,154-=32-+52, 则=a 2+b 2=abb a 22+. 22.65 解析:设输入的数为,根据题意可知,输出的数=.把代入,即输出数是65.三、解答题123.解:(1)21=212=.将,,代入得原式=.(2).将,代入得原式.24.解:.因为3,故上式.25.解:因为是方程的解,所以.解得,所以原式.26.解:因为点是线段的中点,所以.因为点是线段的中点,所以.因为,所以.27. 解:(1)第一种摆放方式中,有一张桌子时能坐6人,每多一张桌子能多坐4人. 即有张桌子时,能坐.第二种摆放方式中,有一张桌子时能坐6人,每多一张桌子能多坐2人, 即.(2)打算用第一种摆放方式来摆放餐桌. 因为当时,用第一种方式摆放餐桌:,用第二种方式摆放餐桌:, 所以选用第一种摆放方式. 28.解:(1)小强的总花费=2.2×50=110(元);小明的总花费为:2.2×100+(200-100)×2=220+200=420(元). (2)小红买的本数为:100+21002.2380⨯-=100+80=180(本).(3)当≤220时,本数=2.2n ; 当>220时,本数=100+21002.2⨯-n =100+2220-n =102-n.29.解:设三人普通间共住了人,则双人普通间共住了()50-x 人. 由题意得510 12505.014035.0150=-⨯⨯+⨯⨯xx , 解得x =24,即5026-=x 且2438=(间),26213=(间). 答:旅游团住了三人普通间客房8间,双人普通间客房13间. 30.分析:面对复杂的问题,应先把问题“退”到比较简单的情形.如下图,如果沿街有2户居民,很明显点设在、之间的任何地方都行.如下图,如果沿街有3户居民, 点应设在中间那户居民门前.以此类推,沿街有4户居民,点应设在第2、3户居民之间的任意位置, 沿街有5户居民,点应设在第3户居民门前 ……故若沿街有户居民,当为偶数时,点应设在第2n 、12+n户居民之间的任意位置; 当为奇数时,点应设在第21+n 户居民门前.解:根据以上分析,当时,点应设在第10、11户居民之间的任意位置......。
浙江省2018-2019学年数学七年级上册期末模拟试卷(浙江专版)一、单选题1. 2017年天猫双11落下帷幕,总成交额最终定格在1207亿元,是8年来成交额首次突破1000亿大关,数据1207亿元用科学记数法表示为( )A . 12.07×10B . 1.207×10C . 12.07×10D . 1.207×102. 若关于x 的方程ax ﹣4=a 的解是x=3,则a 的值是( )A . ﹣ 2B . 2C . ﹣1D . 1 3. 下列各式计算错误的是( ) A . B . C . D .4. 减去-3x 等于5x -3x-5的代数式是( )A . 5x -5B . 5x -6x-5C . -5x -6x+5D . -5x +55. 下列说法中正确的是( )A . 如果两个数的绝对值相等,那么这两个数相等B . 有理数分为正数和负数C .互为相反数的两个数的绝对值相等 D . 最小的整数是06. 估计 的值在( )A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间7. 大于-3.1且不大于2.1的整数共有( )A . 7个B . 6个C . 5个D . 无数个8. 我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ) A . B .C .D .9.如图,将一副三角尺按不同的位置摆放,下列摆放方式中 与 互余的是()A . 图①B . 图②C . 图③D . 图④10. 如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是( )A . 71B . 78C . 85D . 89二、填空题11. 在直线AB上任取一点O ,过点O 作射线OC ,OD ,使,当 时, 的度数是________.101112 122222212. 小亮用天平秤得罐头的重量为,将这个重量精确到是________ .13. 若|a|=3,|b|=4,且a>b,那么a-b=________。
2018-2019学年浙江省宁波市七年级(上)期末数学试卷副标题题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.8的算术平方根应在哪两个连续整数之间()A. 2和3B. 3和4C. 4和5D. 5和62.一张试卷共有25道选择题,做对一道题得4分,不做或做错一道题倒扣1分,某同学做了全部的试题,共得了70分,他做对的题数为()A. 17B. 18C. 19D. 203.宁波天一阁现收藏各类古籍近30万卷.数字30万用科学记数法表示为()A. B. C. D.4.如图,数轴的单位长度为1,若点A和点C所表示的两个数的绝对值相等,则点B表示的数是()A. B. C. 1 D. 35.如图,从A地到B地有三条路可走,为了尽快到达,人们通常选择其中的直路.能正确解释这一现象的数学知识是()A. 两点之间线段最短B. 两点确定一条直线C. 垂线段最短D. 在同一平面内,过一点有一条且只有一条直线垂直于已知直线6.若关于x的方程ax=3x-2的解是x=1,则a的值是()A. B. C. 5 D. 17.若代数式k2x+y-x+ky+10的值与x,y无关,则k的值为()A. 0B.C. 1D.8.在,-,0.3,π中是无理数的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)9.如图,小明编制了一个计算机计算程序,如果输出的数是3,那么输入的数是______.10.将有理数化为小数是3.4285,则小数点后第2018位上的数是______.11.如图1,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”的图案,如图2所示,再将剪下的两个小长方形拼成一个新的长方形,如图3所示,则新长方形的周长可表示为______.(用含a,b的代数式表示)12.“江北公开课”是江北区教育系统内的省特级教师,市、区名师和教坛新秀,结合各学科的教学重点进行录制,通过江北电视台直播,同时通过多个渠道向公众免费提供优质的公共教育产品.“江北公开课”的播出时间为每周日上午9点30分,那么这个时刻的时针与分针所夹角的度数为______.(本试卷只讨论大于0°且小于180°的角)13.如果a-3b=6,那么代数式2+3a-9b的值是______.14.在直线l上有四个点A、B、C、D,已知AB=24,AC=6,点D是BC的中点,则线段AD=______.三、计算题(本大题共1小题,共12.0分)15.计算:(1)-10+5-3(2)-(-1)2+(3)先化简,再求值:2(a2-ab)-3(a2-ab),其中a=-2,b=3.四、解答题(本大题共5小题,共34.0分)16.我国的农历,是按照“天干”与“地支”的搭配来纪年的.十个“天干”的顺序是:甲、乙、丙、丁、戊、己、庚、辛、壬、癸十二个“地支”的顺序是:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.将一个天干和一个地支顺次循环逐一搭配起来,就出现了“甲子”、“乙丑”、“丙寅”等年,2018年春节后进入的农历“戊戌”年,就是由天干中的“戊”和地支中的“戌”搭配而来的.(1)公元2017年是农历“丁酉”年,2019年是农历“______”年.(2)______(填“会”或“不会”)出现“丁午”年.(3)19世纪末,“戊戌变法”是中国近代史上一次重要的政治改革,也是一次思想启蒙运动,促进了思想解放,对社会进步和思想文化的发展,促进中国近代社会的进步起了重要推动作用.那么历史上“戊戌变法”发生在公元______年.(4)从王老师的身份证号320821************可知王老师出生于1972年,那么他出生在农历______年.17.在春运期间,宁波火车站加大了安检力度,原来在北广场执勤的有10人,在南广场执勤的有6人,现调50人去支援.设调往北广场x人.(1)则南广场增援后有执勤______人(用含x的代数式表示).(2)若要使在北广场执勤人数是在南广场执勤人数的2倍,问应调往北广场、南广场两处各多少人?(3)通过适当的调配支援人数,使在北广场执勤人数恰好是在南广场执勤人数的n倍(n是大于1的正整数,不包括1).则符合条件的n的值是______.18.解方程:(1)2x-(x-3)=2(2)19.根据下列条件画图,如图所示点A、B、C.(1)画直线AB,画射线AC,画线段BC.(2)过点C作AB的垂线段CD,垂足为D,并标上垂直记号.(作图工具不限)20.已知直线AB和CD相交于O点,CO⊥OE,OF平分∠AOE,∠2=26°.(1)写出图中所有∠4的余角______.(2)写出图中相等的三对角:①______②______③______.(3)求∠5的度数.答案和解析1.【答案】A【解析】解:∵8的算术平方根为:2,∴2<2<3,故选:A.直接利用8的算术平方根,得出其取值范围.此题主要考查了估算无理数的大小,正确得出2的取值范围是解题关键.2.【答案】C【解析】解:设他做对的题数为x道,则做错的题数为(25-x)道,根据题意得:4x-(25-x)=70,解得:x=19,即他做对的题数为19,故选:C.设他做对的题数为x道,则做错的题数为(25-x)道,根据“做对一道题得4分,不做或做错一道题倒扣1分,某同学做了全部的试题,共得了70分”,列出关于x的一元一次方程,解之即可.本题考查一元一次方程的应用,正确找出等量关系,列出一元一次方程是解题的关键.3.【答案】B【解析】解:数字30万用科学记数法表示为3×105.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:因为点A和点C所表示的两个数的绝对值相等,所以AC的中点表示的数为0,所以点B表示的数是-1.故选:B.找到AC的中点,即为原点,进而看B在原点的哪边,距离原点几个单位即可.本题考查数轴上点的确定,找到原点的位置是解决本题的关键.用到的知识点为:两个数的绝对值相等,那么这两个数距离原点的距离相等.5.【答案】A【解析】解:从A地到B地有三条路可走,为了尽快到达,人们通常选择其中的直路,理由是两点之间线段最短,故选:A.根据线段的性质,可得答案.本题考查了线段的性质,熟记线段的性质并应用是解题关键.6.【答案】D【解析】解:把x=1代入方程ax=3x-2得:a=3-2,解得:a=1,故选:D.把x=1代入方程,即可得出一个关于a的一元一次方程,求出方程的解即可.本题考查了解一元一次方程,一元一次方程的解的应用,能得出关于a的一元一次方程是解此题的关键.7.【答案】D【解析】解:∵代数式k2x+y-x+ky+10的值与x,y无关,∴1+k=0,k2-1=0,解得:k=-1.故选:D.直接利用合并同类项得运算法则得出k的值,进而得出答案.此题主要考查了合并同类项以及代数式求值,正确得出x,y的系数关系是解题关键.8.【答案】B【解析】解:无理数:-,π,共2个,故选:B.根据无理数的定义进行选择即可.本题考查了无理数,掌握无理数的定义是解题的关键.9.【答案】1或-5【解析】解:设输入的数为x,根据题意得:|x+2|=3,解得:x=1或-5,故答案为:1或-5根据输出结果为3,由计算程序计算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.【答案】4【解析】解:∵2018÷6=336……2,∴小数点后第2018位上的数与第2位数字相同,为4,故答案为:4.此循环小数中这6个数字为一个循环周期,要求小数点后面第2018位上的数字是几,就是求2018里面有几个6,再根据余数确定即可此题考查了数字的变化规律,解决此题关键是根据循环节确定6个数字为一个循环周期,进而求出2018里面有几个6,再根据余数确定即可11.【答案】5a-9b【解析】解:新矩形的周长为2[(a-b)+(a-2b)+(a-3b)]=5a-9b.故答案为5a-9b.剪下的上面一个小矩形的长为a-b,下面一个小矩形的长为a-2b,宽都是(a-3b),所以这两个小矩形拼成的新矩形的长为a-b+a-2b,宽为(a-3b),然后计算这个新矩形的周长.本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解决本题的关键用a和b表示出剪下的两个小矩形的长与宽.12.【答案】105°【解析】解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上上午9点30分时,时针与分针的夹角可以看成时针转过9时0.5°×30=15°,分针在数字6上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午9点30分时分针与时针的夹角3×30°+15°=105°.故答案为:105°.因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,找出时针和分针之间相差的大格数,用大格数乘30°即可.本题考查钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.13.【答案】20【解析】解:∵a-3b=6,∴2+3a-9b=2+3(a-3b)=2+3×6=20,故答案为:20.将原式提取公因式,进而将已知整体代入求出即可.此题主要考查了代数式求值,正确应用已知得出是解题关键.14.【答案】15或9【解析】解:如图1,当C在线段AB的反向延长向上时,由线段的和差,得BC=AB+AC=24+6=30,由线段中点的性质,得AD=BC=×30=15;如图2,当C在线段AB上时,由线段的和差,得BC=AB-AC=24-6=18,由线段中点的性质,得AD=BC=×18=9.故答案为:15或9.分类讨论:C在线段AB的反向延长向上;C在线段AB上;根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.本题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键,以防遗漏.15.【答案】解:(1)原式=-13+5=-8;(2)原式=-2-1+=-;(3)原式=2a2-2ab-2a2+3ab=ab,当a=-2,b=3时,原式=-6.【解析】(1)原式利用加减法则计算即可求出值;(2)原式利用平方根、立方根定义计算即可求出值;(3)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.16.【答案】己亥;不会;1898;壬子【解析】解:(1)公元2017年是农历“丁酉”年,2019年是农历“己亥”年.故答案为:己亥.(2)因为与天干中的单数个的字对应的字是地支的单数个字,而丁是第4个,是双数,与之相对的字只能是地支中的第双数个字,∵“午”的排名是单数,∴不可能出现“丁午”年,故答案为:不会.(3)根据题意知,两个相同农历纪年的最小间隔是10与12的最小公倍数60年,那么“戊戌变法”发生2018-60×2=1898年,故答案为:1898;(4)从身份证可知,出生在1972年,与2032年农历年相同,2032-2018=14、14÷10=1…4,14÷12=1…2,∴“戊”后4位是“壬”、“戌”后2位是“子”,∴2032年,即1972年是“壬子”年,故答案为:壬子.(1)根据“天干”与“地支”的搭配规则直接可得;(2)由天干中的单数个的字对应的字是地支的单数个字可作出判断;(3)根据两个相同农历纪年的最小间隔是10与12的最小公倍数60年可得;(4)从身份证可知,出生在1972年,与2032年农历年相同,再结合2018年进入的农历“戊戌”年求解可得.此题主要考查规律问题的探索与运用,了解天干地支纪年法的基础知识是解题的关键.17.【答案】56-x;2、5、10【解析】解:(1)设调往北广场x人,则调往南广场(50-x)人,∴南广场增援后有执勤50-x+6=56-x故答案为:56-x;(2)设调往北广场x人,则调往南广场(50-x)人,由题意得:10+x=2(6+50-x),解得:x=34调往南广场人数:50-34=16(人),故调往北广场34人,则调往南广场16人.(3)设调往北广场x人,则调往南广场(50-x)人,由题意得:10+x=n(6+50-x),10+x=n(56-x),n=,解得:故答案为:2、5、10.(1)设调往北广场x人,则调往南广场(50-x)人,(2)设调往北广场x人,则调往南广场(50-x)人,由题意得等量关系:在北广场执勤人数=在南广场执勤人数×2,根据等量关系列出方程,再解即可;(3)设调往北广场x人,则调往南广场(50-x)人,由题意得等量关系:在北广场执勤人数=在南广场执勤人数×n,根据等量关系列出方程,再求出整数解即可.此题主要考查了一元一次方程的应用以及二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.18.【答案】解:(1)2x-(x-3)=2,2x-x+3=2,2x-x=2-3,x=-1;(2),4(2x-1)=12-3(x-2),8x-4=12-3x+6,8x+3x=12+6+4,11x=22,x=2.【解析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.19.【答案】解:(1)直线AB,射线AC,线段BC如图所示;(2)垂线段CD如图所示;【解析】(1)根据直线、射线、线段的定义画出图形即可;(2)根据垂线段的定义画出图形即可;本题考查作图-复杂作图、直线、射线、线段、垂线段等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.【答案】∠1,∠5;∠1=∠5;∠AOF=∠EOF;∠COE=∠DOE【解析】解:(1)∵CO⊥OE,∴∠4+∠5=90°,又∵∠1=∠5,∴∠1+∠5=90°,∴∠4的余角为∠1,∠5,故答案为:∠1,∠5;(2)∵直线AB和CD相交于O点,∴∠1=∠5,∵OF平分∠AOE,∴∠AOF=∠EOF,∵CO⊥OE,∴∠COE=∠DOE;故答案为:∠1=∠5,∠AOF=∠EOF,∠COE=∠DOE;(3)∵CO⊥OE,∴∠COE=90°,又∵∠COF=26°,∴∠EOF=90°-26°=64°,∵OF平分∠AOE,∴∠AOF=EOF=64°,∴∠AOC=64°-26°=38°,∵∠AOC与∠5是对顶角,∴∠5=38°.(1)依据垂直的定义以及对顶角相等,即可得到所有∠4的余角;(2)依据对顶角相等,角平分线的定义以及垂直的定义,即可得到相等的三对角;(3)根据垂直的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后求出∠AOC,再根据对顶角相等解答即可.本题考查了余角和补角的定义,角平分线的定义,准确识图,找出各角度之间的关系是解题的关键.。
2018-2019学年浙江省宁波市北仑区七年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.2019的相反数是()A.2019B.﹣2019C.D.﹣2.据报道,北仑滨海万人沙滩规划面积约32万平方米,数字32万用科学记数法表示为()A.32×104B.3.2×104C.3.2×105D.0.32×1063.下列运算正确的是()A.﹣3+2=﹣5B.=±3C.﹣|﹣1|=1D.(﹣2)3=﹣8 4.在,0.2,,π,1.010010001……(每两个1之间依次增加一个0)中,无理数的个数是()A.1个B.2个C.3个D.4个5.已知2x5y2和﹣x m+2y2是同类项,则m的值为()A.3B.4C.5D.66.关于x的方程kx=2x+6与2x﹣1=3的解相同,则k的值为()A.3B.4C.5D.67.《九章算术》中记载一问题如下:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,依题意列方程得()A.8x+3=7x﹣4B.8x﹣3=7x+4C.8x+3=7x+4D.8x﹣3=7x﹣4 8.如图,OA方向是北偏西40°方向,OB平分∠AOC,则∠BOC的度数为()A.50°B.55°C.60°D.65°9.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d ×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A.B.C.D.10.如图,在线段AB上有C、D两点,CD长度为1cm,AB长为整数,则以A、B、C、D 为端点的所有线段长度和不可能为()A.21cm B.22cm C.25cm D.31cm二、填空题(每小题3分,共24分)11.如果把向东走2米记为+2米,则向西走3米表示为米.12.单项式的系数为.13.36的平方根是.14.若a﹣2b=3,则3a﹣6b﹣2=.15.如图,线段AB=16cm,C是AB上一点,且AC=10cm,O是AB中点,则线段OC的长度为cm.16.如图,在长方形ABCD中,∠2比∠1大41°,则∠AEB的度数为(用度分秒形式表示)17.数轴上从左到右依次有A、B、C三点表示的数分别为a、b、,其中b为整数,且满足|a+3|+|b﹣2|=b﹣2,则b﹣a=.18.“格子乘法”作为两个数相乘的一种计算方法最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”,如图1,计算47×51,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397,图2用“格子乘法”表示两个两位数相乘,则a的值为.三、解答题(共46分)19.(6分)计算:(1)()×12;(2)﹣32+.20.(6分)(1)化简:3x2﹣5x2+6x2.(2)先化简,后求值:2(a2﹣ab﹣3.5)﹣(a2﹣4ab﹣9),其中a=﹣5,b=.21.(6分)解下列方程:(1)5(x﹣2)=2x﹣4;(2).22.(5分)如图,平面上有四个点A、B、C、D,按要求作图并回答问题.(1)作直线AC,射线AD;(2)作∠DAC的角平分线;(3)在直线AC上找一点P,使P点到B、D两点的距离和最小,并说明理由.23.(5分)如图,直线AB和CD相交于点O,CD⊥OE,OF平分∠AOE,∠COF=26°,求∠EOF,∠BOD的度数.24.(5分)观察以下图案和算式,解答问题:(1)1+3+5+7+9=;(2)1+3+5+7+9+…+19=;(3)请猜想1+3+5+7+……+(2n﹣1)=;(4)求和号是数学中常用的符号,用表示,例如,其中n=2是下标,5是上标,3n+1是代数式,表示n取2到5的连续整数,然后分别代入代数式求和,即:=3×2+1+3×3+1+3×4+1+3×5+1=46请求出的值,要求写出计算过程,可利用第(2)(3)题结论.25.(6分)为倡导绿色出行推广节能减排,国家越来越重视新能源汽车的发展,到2020年宁波市将建成不少于5万个新能源汽车充电桩,现有一充电桩具体收费标准如下:充电时长0~4小时(含4小时)每小时收费3元,充电时长超过4小时,超过部分每小时收费2元.(1)若小明妈妈在该充电桩充电3小时,则需支付费用元;若小明妈妈在该充电桩充电6小时,则需支付费用元.(2)若小明妈妈在该充电桩充电x小时(x>4),则需要支付费用(用含x的代数式表示).(3)若某星期小明妈妈周二和周五在该充电桩连续充电共10小时(周五充电时长超过周二充电时长),共支付费用27元,则小明妈妈周二和周五各充电多少小时?26.(7分)如果两个角的差的绝对值等于60°,就称这两个角互为友好角,例如:∠l=100°,∠2=40°,|∠1﹣∠2|=60°,则∠1和∠2互为友好角(本题中所有角都指大于0°且小于180°的角),将两块直接三角板如图1摆放在直线EF上,其中∠AOB=∠COD=60°,保持三角板ODC不动,将三角板AOB绕O点以每秒2°的速度顺时针旋转,旋转时间为t秒.(1)如图2,当AO在直线CO左侧时,①与∠BOE互为友好角的是,与∠BOC互为友好角的是,②当t=时,∠BOE与∠AOD互为友好角;(2)若在三角板AOB开始旋转的同时,另一块三角板COD也绕点O以每秒3°的速度逆时针旋转,当OC旋转至射线OE上时两三角板同时停止,当t为何值时,∠BOC与∠DOF互为友好角(自行画图分析).2018-2019学年浙江省宁波市北仑区七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:2019的相反数是﹣2019.故选:B.2.【解答】解:数字32万用科学记数法表示为3.2×105.故选:C.3.【解答】解:A、﹣3+2=﹣1,错误;B、=3,错误;C、﹣|﹣1|=﹣1,错误;D、(﹣2)3=﹣8,正确;故选:D.4.【解答】解:在所列实数中,无理数有,π,1.010010001……(每两个1之间依次增加一个0)这3个,故选:C.5.【解答】解:由题意可知:m+2=5,∴m=3,故选:A.6.【解答】解:方程2x﹣1=3,解得:x=2,把x=2代入kx=2x+6得:2k=10,解得:k=5,故选:C.7.【解答】解:设有x人,根据题意得:8x﹣3=7x+4.故选:B.8.【解答】解:∵OA方向是北偏西40°方向,∴∠AOC=40°+90°=130°,∵OB平分∠AOC,∴∠BOC=∠AOC=65°,故选:D.9.【解答】解:A、第一行数字从左到右依次为1、0、1、0,序号为1×23+0×22+1×21+0×20=10,不符合题意;B、第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,符合题意;C、第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;D、第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不符合题意;故选:B.10.【解答】解:由题意可得,图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和是:AC+CD+DB+AD+CB+AB=(AC+CD+DB)+(AD+CB)+AB=AB+AB+CD+AB=3AB+CD,∴以A、B、C、D为端点的所有线段长度和为长度为3的倍数多1,∴以A、B、C、D为端点的所有线段长度和不可能为21.故选:A.二、填空题(每小题3分,共24分)11.【解答】解:∵向东走2米记为+2米,∴向西走3米可记为﹣3米,故答案为:﹣3.12.【解答】解:单项式的系数为,故答案为:.13.【解答】解:36的平方根是±6,故答案为:±6.14.【解答】解:当a﹣2b=3时,原式=3(a﹣2b)﹣2=3×3﹣2=9﹣2=7,故答案为:7.15.【解答】解:本题有两种情形:(1)当点C在线段AB上时,如图,OC=AC﹣AO=AC﹣AB,又∵AC=10cm,AB=16cm,∴OC=2cm;(2)当点C在线段BA的延长线上时,如图,OC=AC+AO=AC+AB,又∵AC=10cm,AB=16cm,∴OC=18cm.故线段OC的长度是2cm或18cm.故答案为:2或1816.【解答】解:∵四边形ABCD是矩形,∴∠DAB=90°,AD∥BC∴∠2+∠1=90°,且∠2﹣∠1=41°,∴∠2=65°30′∵AD∥BC∴∠AEB=∠2=65°30′故答案为:65°30′17.【解答】解:因为|a+3|+|b﹣2|≥0,所以b﹣2≥0,即b≥2.∵|a+3|+|b﹣2|=b﹣2,∴|a+3|+b﹣2=b﹣2,即|a+3|=0,∴a=﹣3由于2≤b<,且b是整数,所以b=2或3.当b=2时,b﹣a=2﹣(﹣3)=5,当b=3时,b﹣a=3﹣(﹣3)=6.故答案为:5或618.【解答】解:设4a的十位数字是m,个位数字是n,∴∴∴a=1,故答案为1;三、解答题(共46分)19.【解答】解:(1)原式=8+9﹣6=11;(2)原式=﹣9+4+1+3=﹣1.20.【解答】解:(1)3x2﹣5x2+6x2=(3﹣5+6)x2=4x2;(2)2(a2﹣ab﹣3.5)﹣(a2﹣4ab﹣9)=2a2﹣2ab﹣7﹣a2+4ab+9=a2+2ab+2,当a=﹣5,b=时,原式=25﹣15+2=12.21.【解答】解:(1)5x﹣10=2x﹣4,5x﹣2x=10﹣4,3x=6,x=2;(2)4(2x﹣1)=3(x+2)﹣12,8x﹣4=3x+6﹣12,8x﹣3x=6﹣12+4,5x=﹣2,x=﹣.22.【解答】解:(1)如图所示,直线AC和射线AD即为所求;(2)如图所示,射线AE即为所求;(3)如图所示,点P即为所求,∵两点直线的所有连线中,线段最短,且点P在AC上,∴P点到B、D两点的距离和最小.23.【解答】解:∵CD⊥OE,∴∠COE=90°,∵∠COF=26°,∴∠EOF=∠COE﹣∠COF=90°﹣26°=64°,∵OF平分∠AOE,∴∠AOF=∠EOF=64°,∴∠AOC=∠AOF﹣∠COF=38°∵∠BOD=∠AOC=38°.24.【解答】解:(1)1+3+5+7+9=52=25,故答案为:25;(2)1+3+5+7+9+…+19=102=100,故答案为:100;(3)1+3+5+7+……+(2n﹣1)=n2,故答案为:n2;(4)=21+23+25+……+47+49=(1+3+5+......+47+49)﹣(1+3+5+ (19)=252﹣102=525.25.【解答】解:(1)3×3=9(元),3×4+2×(6﹣4)=16(元).故答案为:9;16.(2)依题意,得:需要支付费用为3×4+2(x﹣4)=2x+4(元).故答案为:(2x+4)元.(3)设周二充电m小时,则周五充电(10﹣m)小时,∵周二和周五共充电10小时,周五充电时长超过周二充电时长,∴周五充电时长超过4小时.当0<m≤4时,有3m+2(10﹣m)+4=27,解得:m=3,∴10﹣m=7;当m>4时,有2m+4+2(10﹣m)+4=27,即28=27(舍).答:周二充电3小时,周五充电7小时.26.【解答】解:(1)由题意知①∵当AO在直线CO左侧时,∠BOE<60°,∴互为友好角应该是∠BOE+60°=∠AOE,而与∠BOC互为友好角的可以是∠BOC+60°=∠BOD,也可以是∠BOC﹣60°=∠AOC②当∠BOE与∠AOD互为友好角时,即∠AOD﹣∠BOE=60°得方程:(120°﹣2t)﹣2t=60°∴t=15故答案为∠AOE,∠BOD或∠AOC,15s.(2)由题意可知:三角板旋转40秒停止,∠DOF=3t①当OB在OC左侧时,∠BOC=120﹣5t|∠BOC﹣∠DOF|=60°,表示为|120﹣5t﹣3t|=60即|120﹣8t|=60去绝对值得120﹣8t=60(如图1)或8t﹣120=60(如图2)∴t=7.5或t=22.5②当OB在OC右侧时,∠BOC=5t﹣120|∠BOC﹣∠DOF|=60°,表示为|5t﹣120﹣3t|=60即|2t﹣120|=60去绝对值得2t﹣120=60或120﹣2t=60(如图3)∴t=90(不符合题意,应舍去)或t=30综合①②,故当t为7.5s、22.5s、30s时,∠BOC与∠DOF互为友好角.。
宁波市七年级数学上册期末测试卷及答案一、选择题1.购买单价为a元的物品10个,付出b元(b>10a),应找回()A.(b﹣a)元B.(b﹣10)元C.(10a﹣b)元D.(b﹣10a)元2.以下选项中比-2小的是()A.0 B.1 C.-1.5 D.-2.53.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1064.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短 B.两点确定一条直线C.垂线段最短 D.两点之间直线最短5.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x天,由题意得方程()A.410+415x-=1 B.410+415x+=1 C.410x++415=1 D.410x++15x=16.有m 辆客车及n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘45 人,则还有 5 人不能上车.有下列四个等式:① 40m+25=45m+5 ;②2554045n n+-=;③2554045n n++=;④ 40m+25 = 45m- 5 .其中正确的是()A.①③B.①②C.②④D.③④7.已知关于x的方程ax﹣2=x的解为x=﹣1,则a的值为()A.1 B.﹣1 C.3 D.﹣38.已知单项式2x3y1+2m与3x n+1y3的和是单项式,则m﹣n的值是()A.3 B.﹣3 C.1 D.﹣19.某个数值转换器的原理如图所示:若开始输入x的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是()A.1010 B.4 C.2 D.110.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A.(2,1) B.(3,3) C.(2,3) D.(3,2)11.下列计算正确的是()A.-1+2=1 B.-1-1=0 C.(-1)2=-1 D.-12=112.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN 的长度为()cm.A .2B .3C .4D .6二、填空题13.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元. 14.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.15.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.16.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.17.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.18.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________19.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.20.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.21.如果向东走60m 记为60m +,那么向西走80m 应记为______m.22.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).23.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.24.当x= 时,多项式3(2-x)和2(3+x)的值相等.三、压轴题25.如图,在数轴上的A1,A2,A3,A4,……A20,这20个点所表示的数分别是a1,a2,a3,a4,……a20.若A1A2=A2A3=……=A19A20,且a3=20,|a1﹣a4|=12.(1)线段A3A4的长度=;a2=;(2)若|a1﹣x|=a2+a4,求x的值;(3)线段MN从O点出发向右运动,当线段MN与线段A1A20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN=5,求线段MN的运动速度.26.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。
宁波市七年级上学期期末数学试题题及答案一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .123.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( ) A .1B .2C .3D .44.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或55.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =16.若多项式229x mx ++是完全平方式,则常数m 的值为() A .3B .-3C .±3D .+67.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④8.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cm B .3cm C .3cm 或6cm D .4cm 9.单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,210.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A .不赔不赚B .赚了9元C .赚了18元D .赔了18元11.下列计算正确的是( ) A .3a +2b =5ab B .4m 2 n -2mn 2=2mn C .-12x +7x =-5xD .5y 2-3y 2=212.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( ) A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元二、填空题13.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米. 14.把53°30′用度表示为_____. 15.=38A ∠︒,则A ∠的补角的度数为______.16.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______.17.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C运算”如下:若n =26,则第2019次“C 运算”的结果是_____.18.如果向东走60m 记为60m +,那么向西走80m 应记为______m. 19.若a a -=,则a 应满足的条件为______.20.已知一个角的补角是它余角的3倍,则这个角的度数为_____. 21.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____. 22.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 23.用度、分、秒表示24.29°=_____. 24.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.三、解答题25.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(∠MON=90︒).(1)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分∠BOC,问:ON 是否平分∠AOC?请说明理由;(2)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在∠BOC 的内部,如果∠BOC=60︒,则∠BOM 与∠NOC 之间存在怎样的数量关系?请说明理由.26.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几日追及之.若设良马x 天可追上弩马. (1)当良马追上驽马时,驽马行了 里(用x 的代数式表示). (2)求x 的值.(3)若两匹马先在A 站,再从A 站出发行往B 站,并停留在B 站,且A 、B 两站之间的路程为7500里,请问驽马出发几天后与良马相距450里? 27.计算:(1)84(3)-÷⨯- (2)220192(3)(1)-+---28.(1)如图1,∠AOB 和∠COD 都是直角, ①若∠BOC=60°,则∠BOD= °,∠AOC= °; ②改变∠BOC 的大小,则∠BOD 与∠AOC 相等吗?为什么?(2)如图2,∠AOB=100°,∠COD=110°,若∠AOD=∠BOC+70°,求∠AOC 的度数.29.在11•11期间,掀起了购物狂潮,现有两个商场开展促销优惠活动,优惠方案如下表所示; 商场 优惠方案 甲 全场按标价的六折销售乙单件商品实行“满100元减50元的优惠”(比如:某顾客购买了标价分别为240元和170元的两件商品,她实际付款分别是140元和120元.根据以上信息,解决以下问题(1)两个商场同时出售一件标价290元的上衣和一条标价270元的裤子,小明妈妈想以最少的钱购买这一套衣服,她应该选择哪家商场?完成下表并做出选择. 商场甲商场乙商场实际付款/元(2)小明爸爸发现:在甲、乙商场同时出售的一件标价380的上衣和一条标价300多元的裤子,在两家商场的实际付款钱数是一样的,请问:这条裤子的标价是多少元? 30.如图,在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2BC ,设点A ,B ,C 所对应数的和是m .(1)若点C 为原点,BC =1,则点A ,B 所对应的数分别为 , ,m 的值为 ;(2)若点B 为原点,AC =6,求m 的值.(3)若原点O 到点C 的距离为8,且OC =AB ,求m 的值.四、压轴题31.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值. 32.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.33.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.2.C解析:C 【解析】 【分析】利用max}2,x x 的定义分情况讨论即可求解.【详解】解:当max }21,2x x =时,x ≥012,解得:x =14>x >x 2,符合题意;②x 2=12,解得:x =2x >x 2,不合题意;③x =12x >x 2,不合题意;故只有x =14时,max }21,2x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.3.B解析:B 【解析】 【分析】点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案. 【详解】()32-=-8,613⎛⎫- ⎪⎝⎭=1719,25-=-25 ,0,21m +≥1 在原点右边的数有613⎛⎫- ⎪⎝⎭和 21m +≥1 故选B 【点睛】此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键.4.D解析:D 【解析】 【分析】如图,根据点A 、B 表示的数互为相反数可确定原点,即可得出点B 表示的数,根据两点间的距离公式即可得答案. 【详解】如图,设点C 表示的数为m , ∵点A 、B 表示的数互为相反数, ∴AB 的中点O 为原点, ∴点B 表示的数为3,∵点C 到点B 的距离为2个单位, ∴3m -=2, ∴3-m=±2, 解得:m=1或m=5, ∴m 的值为1或5,故选:D. 【点睛】本题考查了数轴,熟练掌握数轴上两点间的距离公式是解题关键.5.A解析:A 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案. 【详解】 解:A 、213+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程; C 、32y=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程; 故选:A . 【点睛】解题的关键是根据一元一次方程的定义,未知数x 的次数是1这个条件.此类题目可严格按照定义解题.6.C解析:C 【解析】 【分析】利用完全平方式的结构特征即可求出m 的值. 【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式, ∴2m =±6,解得:m=±3,故选:C.【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.7.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.8.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4, ,故选:D . 【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.9.D解析:D 【解析】 【分析】直接利用单项式的次数与系数确定方法分析得出答案. 【详解】解:单项式﹣6ab 的系数与次数分别为﹣6,2. 故选:D . 【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.10.D解析:D 【解析】试题分析:设盈利的这件成本为x 元,则135-x=25%x ,解得:x=108元;亏本的这件成本为y 元,则y -135=25%y ,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.11.C解析:C 【解析】试题解析:A.不是同类项,不能合并.故错误. B. 不是同类项,不能合并.故错误. C.正确.D.222 532.y y y -=故错误. 故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.12.D解析:D 【解析】 【分析】设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.【详解】解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元.. 故选:D 【点睛】本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.二、填空题13.【解析】 【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可. 【详解】解:20﹣(﹣9)=20+9=29, 故答案为:29. 【点睛】此题主要考查了有理数的减法,关键是解析:【解析】 【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可. 【详解】解:20﹣(﹣9)=20+9=29, 故答案为:29. 【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.14.5°. 【解析】 【分析】根据度分秒之间60进制的关系计算. 【详解】解:5330’用度表示为53.5, 故答案为:53.5. 【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.15.【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:,的补角的度数为:,故答案为:.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.解析:142︒【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:∠=,38A∴A∠的补角的度数为:18038142-=,故答案为:142︒.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.16.1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴a=1故本题答案应为:1【点睛】解解析:1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解一元一次方程是本题的考点,熟练掌握其解法是解题的关键17.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13解析:【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C 运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.19.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.≥解析:a0【解析】【分析】根据绝对值的定义和性质求解可得.【详解】-=,解:a a∴≥,a0≥.故答案为a0【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.20.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.21.﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,()2019=()201解析:﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,(xy)2019=(22-)2019=(﹣1)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.22.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解解析:5x=-【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解23.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′解析:241724︒'"【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.24.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 三、解答题25.(1)ON 平分∠AOC (2)∠BOM=∠NOC+30°【解析】试题分析:(1)由角平分线的定义可知∠BOM =∠MOC ,由∠NOM =90°,可知∠BOM +∠AON =90°,∠MOC +∠NOC =90°,根据等角的余角相等可知∠AON =∠NOC ; (2)根据题意可知∠NOC +∠NOB =60°,∠BOM +∠NOB =90°,由∠BOM =90°﹣∠NOB 、∠BON =60°﹣∠NOC 可得到∠BOM =∠NOC +30°.试题解析:解:(1)ON 平分∠AOC .理由如下:∵OM 平分∠BOC ,∴∠BOM =∠MOC .∵∠MON =90°,∴∠BOM +∠AON =90°.又∵∠MOC +∠NOC =90°∴∠AON =∠NOC ,即ON 平分∠AOC .(2)∠BOM =∠NOC +30°.理由如下:∵∠BOC =60°,即:∠NOC +∠NOB =60°,又因为∠BOM +∠NOB =90°,所以:∠BOM=90°﹣∠NOB=90°﹣(60°﹣∠NOC)=∠NOC+30°,∴∠BOM与∠NOC之间存在的数量关系是:∠BOM=∠NOC+30°.点睛:本题主要考查的是角的计算、角平分线的定义,根据等角的余角相等证得∠AON=∠NOC是解题的关键.26.(1)(150x+1800);(2)20;(3)驽马出发3或27或37或47天后与良马相距450里.【解析】【分析】(1)利用路程=速度×时间可用含x的代数式表示出结论;(2)利用两马行的路程相等,即可得出关于x的一元一次方程,解之即可得出结论;(3)设驽马出发y天后与良马相距450里,分良马未出发时、良马未追上驽马时、良马追上驽马时及良马到达B站时四种情况考虑,根据两马相距450里,即可得出关于y的一元一次方程,解之即可得出结论.【详解】解:(1)∵150×12=1800(里),∴当良马追上驽马时,驽马行了(150x+1800)里.故答案为:(150x+1800).(2)依题意,得:240x=150x+1800,解得:x=20.答:x的值为20.(3)设驽马出发y天后与良马相距450里.①当良马未出发时,150y=450,解得:y=3;②当良马未追上驽马时,150y﹣240(y﹣12)=450,解得:y=27;③当良马追上驽马时,240(y﹣12)﹣150y=450,解得:y=37;④当良马到达B站时,7500﹣150y=450,解得:y=47.答:驽马出发3或27或37或47天后与良马相距450里.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,利用含x的代数式表示出驽马行的路程;(2)(3)找准等量关系,正确列出一元一次方程.27.(1)6;(2)12.【解析】【分析】(1)由题意利用有理数的乘除运算法则对式子进行运算即可;(2)先进行乘方与去绝对值运算,最后进行加减运算即可.【详解】解:(1)84(3)-÷⨯-= 2(3)-⨯-=6(2)220192(3)(1)-+---=29(1)+--=12【点睛】本题考查有理数的混合运算,熟练掌握有理数的混合运算法则包括乘方与去绝对值运算等是解题关键.28.(1)①30;30;②相等,理由详见解析;(2)∠AOC=30°.【解析】【分析】(1)①根据直角定义可得∠COD=∠AOB=90°,再利用角的和差关系可得答案;②根据条件可得∠AOB=∠COD ,再用等式的性质可得∠AOB-∠COB=∠COD-∠BOC ,进而可得结论;(2)设∠AOC=x °,则∠BOC=(100-x )°,然后再表示出∠BOD ,进而可得∠AOD=∠AOB+∠BOD=100°+10°+x°=100°-x°+70°,再解方程即可.【详解】解:(1)①∵∠COD 是直角,∴∠COD=90°,∵∠BOC=60°,∴∠BOD=30°,∵∠AOB 是直角,∴∠AOB=90°,∵∠BOC=60°,∴∠AOC=30°,故答案为30;30;②相等,∵∠AOB 和∠COD 都是直角,∴∠AOB=∠COD ,∴∠AOB ﹣∠COB=∠COD ﹣∠BOC ,即∠BOD=∠AOC ;(2)设∠AOC=x°,则∠BOC=(100﹣x )°,∵∠COD=110°,∴∠BOD=110°﹣(100﹣x )°=x°+10°,∵∠AOD=∠BOC+70°,∴∠AOD=∠AOB+∠BOD=100°+10°+x°=100°﹣x°+70°,解得:x=30,∴∠AOC=30°.【点睛】此题主要考查了角的计算,关键是理清图中角之间的和差关系.29.(1)336,360;(2)这条裤子的标价是370元.【解析】【分析】(1)按照两个商场的优惠方案进行计算即可;(2)设这条裤子的标价是x元,根据两种优惠方案建立方程求解即可.【详解】解:(1)甲商场实际付款:(290+270)×60%=336(元);乙商场实际付款:290﹣2×50+270﹣2×50=360(元);故答案为:336,360;(2)设这条裤子的标价是x元,由题意得:(380+x)×60%=380﹣3×50+x﹣3×50,解得:x=370,答:这条裤子的标价是370元.【点睛】本题考查一元一次方程的应用,理解两种优惠方案的价格计算方式是解题的关键.30.(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【解析】【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,AB+BC=AC,∴AB=4,BC=2,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.四、压轴题31.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10.【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52,所以数列−4,−3,2的最佳值为52;对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52,所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52,所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52,所以数列2,−3,−4的最佳值为1 2∴数列的最佳值的最小值为223-=12,数列可以为:−3,2,−4或2,−3,−4.故答案为:12,−3,2,−4或2,−3,−4.(3)当22a+=1,则a=0或−4,不合题意;当92a-+=1,则a=11或7;当a=7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意;当972a-++=1,则a=4或10.∴a=11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.32.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.33.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,。
(上)期末教学质量测评试题七年级数学注意事项:1.全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟. 2.在作答前,考生务必将自己的姓名,准考证号及座位号涂写在答题卡规定的地方.3.选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求. 1. 下列各数中,大于-2小于2的负数..是 A .-3 B .-2 C .-1 D .0 2. 如果||a a =-,那么a 一定是A .负数B .正数C .非负数D .非正数3. 有理数b a ,在数轴上的位置如图所示,则下列各式的符号为正的是 A . b a + B . b a - C . ab D . -4a 4. 用一平面截一个正方体,不能得到的截面形状是A .直角三角形B .等边三角形C .长方形D .六边形 5. 下列平面图形中不能..围成正方体的是A .B .C .D .6.a 个学生按每8个人一组分成若干组,其中有一组少3人,共分成的组数是A .8a B .38a - C .(3)8a + D .38a +7. 下列说法正确的是 A .23vt -的系数是2-B .233ab 的次数是6次C .5x y +是多项式D .21x x +-的常数项为18.下列语句正确的是A .线段AB 是点A 与点B 的距离 B .过n 边形的每一个顶点有(n -3)条对角线C .各边相等的多边形是正多边形D .两点之间的所有连线中,直线最短9. 某地区卫生组织为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是A .在公园调查了1000名老年人的健康状况B .在医院调查了1000名老年人的健康状况a(第3题图)C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况10. 成都市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是A .5(x +21-1)=6(x -l)B .5(x +21)=6(x -l)C .5(x +21-1)=6xD .5(x +21)=6x 二、填空题:(每小题3分,共15分)11.近年来,汉语热在全球范围内不断升温。
七年级上学期数学期末考试试卷一、选择题(共10题;共20分)1.-5的绝对值为()A. -5B. 5C.D.2.2019年12月20日澳门回归20周年.1999年至2018年内地赴澳门旅游人数达2526万人次,促进内地与澳门文化和旅游产业深化合作.数据2526万用科学记数法表示()A. B. C. D.3.下列运算中正确的是( )A. B. C. D.4.下列六个数中:3.14,,,,,0.1212212221……(每两个1之间增加一个2),其中无理数的个数是().A. 2B. 3C. 4D. 55.解方程时,以下变形正确的是()A. B.C. D.6.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了6天才到达目的地.若设此人第一天走的路程为里,依题意可列方程为()A. B.C. D.7.以下说法正确的是()A. 两点之间直线最短B. 延长直线到点,使C. 相等的角是对顶角D. 连结两点的线段的长度就是这两点间的距离8.一个角的余角比它的补角的一半少,则这个角的度数为()A. B. C. D.9.如图,点在线段上,且.点在线段上,且. 为的中点,为的中点,且,则的长度为()A. 15B. 16C. 17D. 1810.如图,在一个长方形中放入三个正方形,从大到小正方形的边长分别为、、,则右上角阴影部分的周长与左下角阴影部分周长差为()A. a+bB.C.D.二、填空题(共8题;共10分)11.的平方根是________.12. 36度45分等于________度.13.若单项式与是同类项,则的值是________.14.如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.15.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用表示珐琅书签的销量,则可列出一元一次方程________.16.如图,的方向是北偏东,的方向是西北方向,若,则的方向是________.17.若,,则________.18.已知有理数,,满足,且,则________.三、解答题(共7题;共70分)19.计算:(1)(2)20.解下列方程:(1)(2)21.先化简,再求值:,其中x=3,y=- .22.如图,已知直线和直线外三点,,,按下列要求画图:( 1 )画射线,画直线;( 2 )画点到直线的垂线段,垂足为;( 3 )在直线上确定点,使得最小,并说明理由.23.已知数轴上,点为原点,点对应的数为9,点对应的数为,点在点右侧,长度为2个单位的线段在数轴上移动.(1)当线段在、两点之间移动到某一位置时恰好满足,求此时的值.(2)当线段在射线上沿方向移动到某一位置时恰好满足,求此时的值.24.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.25.已知:如图,在内部有().(1)如图1,求的度数;(2)如图2,平分,平分,求的度数;(3)如图3,在(2)的条件下,当从的位置开始,绕着点以每秒的速度顺时针旋转秒时,使,求的值.答案解析部分一、选择题1.【解析】【解答】解:故答案为:B.【分析】一个负数的绝对值是它的相反数,据此解题.2.【解析】【解答】解:2526万=25260000= .故答案为:A.【分析】根据科学记数法的表示方法,将2526万先写成25260000,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.3.【解析】【解答】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=0,故本选项正确;C、a3与3a2不是同类项,不能合并,故本选项错误;D、原式=a2,故本选项错误.故答案为:B.【分析】根据同类项的定义及合并同类项的法则,再对各选项作出判断。
浙江省宁波市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)在下列各说法中,正确的是()。
A . 数0的意义就是没有B . 一个有理数,不是整数就是分数C . 一个有理数不是正有理数就是负有理数D . 正数和负数统称为有理数2. (2分) (2018七上·温岭期中) 冥王星围绕太阳公转的轨道半径长度约为5900000000千米,这个数用科学记数法表示为()A . 5.9×1010千米B . 5.9×109千米C . 59×108千米D . 0.59×1010千米3. (2分)下列各式:−a²b²,x−1,-25,,, a2-2ab中单项式的个数有()A . 4个B . 3个C . 2个D . 1个4. (2分)方程4(2-x)-4x=60的解是()A . 7B .C .D . -5. (2分)下列关于数0的说法错误的是()A . 0的相反数是0B . 0的绝对值是0C . 0不能作除数D . 0除以任何数仍得06. (2分)下列语句说法正确的是()A . 两条直线被第三条直线所截,同位角相等B . 如果两个角互为补角,那么其中一定有一个角是钝角C . 过一点有且只有一条直线与已知直线垂直D . 平行于同一直线的两条直线平行7. (2分)两个角的大小之比是7:3,他们的差是72°,则这两个角的关系是()A . 相等B . 互余C . 互补D . 无法确定8. (2分) (2020七上·淮滨期末) 某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是().A . 95元B . 90元C . 85元D . 80元二、填空题 (共7题;共9分)9. (3分) (2019七上·防城期中) ﹣的绝对值是________;﹣6的倒数是________;3.5的相反数是________.10. (1分) (2018七上·紫金期中) 如果三个连续偶数的和为72,那么其中最小数为________.11. (1分)(2016·雅安) 1.45°=________.12. (1分) (2008七下·上饶竞赛) 如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°, 则∠2=________度.13. (1分) (2017七上·桂林期中) 化简:﹣3x﹣(﹣x)=________.14. (1分) (2020七上·重庆期中) 若关于x的方程的解为任意数,则的值为________15. (1分) (2020七上·新乡期末) 下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案需8根火材棒,图案需15根火柴棒,,按此规律,图案需________根火材棒.三、解答题 (共8题;共65分)16. (5分)(2017·河北模拟) 100÷(﹣2)2﹣(﹣2).17. (10分) (2017七上·平邑期末) 解方程:(1)(2)18. (5分) (2019七上·港闸期末) 已知当x=2,y=-4时,ax3+ by+8=2018 ,求当x=-4,y=时,式子3ax-24by3+6的值.19. (5分)如图,线段AB被点C、D分成2:3:4三部分,M为AC的中点,N为BD的中点,且MN=2.4,求AB的长.20. (10分) (2020八上·长春月考) 如图所示,成都市青羊区有一块长为米,宽为米的长方形地块,角上有四个边长均为米的小正方形空地,开发商计划将阴影部分进行绿化.(1)用含a,b的代数式表示绿化的面积是多少平方米?(结果写成最简形式)(2)若,,求出绿化面积.21. (10分) (2019八上·南平期中) 如图,BD是∠ABC的平分线,AB=BC,点E在BD上,连接AE,CE,DF⊥AE,DG⊥CE,垂足分别是F,G.(1)求证:△ABE≌△CBE;(2)求证:DF=DG.22. (10分) (2017七上·洪湖期中) 计算:(1)(﹣9)+4﹣(﹣5)+8(2)(﹣32)÷(﹣2 )﹣(﹣2)3× ﹣5× ÷4.23. (10分)某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a、由甲单独修理;b、由乙单独修理;c、甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共7题;共9分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共8题;共65分)答案:16-1、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:。
浙江省宁波市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·浦北期中) 如果电梯向上运行3m记作“ m”,那么电梯向下运行6m记作()A . mB . mC . mD . m2. (2分)(2017·天津模拟) 下列几何体的主视图与其他三个不同的是()A .B .C .D .3. (2分) (2018七上·萍乡期末) 据某市旅游局统计,今年“五一”小长假期间,各旅游景点门票收入约3700万元,数据“3700万”用科学记数法表示为()A . 3.7×107B . 3.7×108C . 0.37×108D . 37×1084. (2分)如图,有四个大小相同的小长方形和两个大小相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是()A . 3b﹣2aB .C .D .5. (2分) (2019七上·安庆期中) 下列各组是同类项的是()A . 与B . 12ax与8bxC . 与D . π与-36. (2分)已知点A(-3,2),B(3,2),则A,B两点相距()A . 3个单位长度B . 4个单位长度C . 5个单位长度D . 6个单位长度7. (2分) (2018七上·宜昌期末) 已知x=﹣1是方程ax+4x=2的解,则a的值是()A . ﹣6B . 6C . 2D . ﹣28. (2分)若|a-2008|+(b-2009)2=0,则a-b=()A . 1B . -1C . 0D . ±19. (2分)某同学随机将一枚硬币抛向空中20次,有12次出现反面,那么正面出现的频率是()A . 0.12B . 0.4C . 0.8D . 0.610. (2分) (2017七上·吉林期末) A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A . 2(x-1)+3x=13B . 2(x+1)+3x=13C . 2x+3(x+1)=13D . 2x+3(x-1)=13二、填空题 (共5题;共7分)11. (2分) (2019七上·房山期中) 比较大小:-2________-3(填“>”或“<”或“=”).请你说明是怎样判断的:________.12. (1分) (2017七下·临沧期末) 若甲看乙的方向为南偏西25°,则乙看甲的方向是________.13. (1分)(2019·莲湖模拟) 中秋节是我国四大传统文化节日之一,为每年的农历八月十五,自古以来都有赏月吃月饼的习俗,重庆某大型超市为了了解市民对“云腿”月饼的喜好程度,特意在三峡广场做了试吃及问卷调查活动,将市民对“云腿”月饼的喜好程度分为“A非常喜欢”、“B比较喜欢”、“C感觉一般”、“D不太喜欢”四个等级,并将四个等级分别计分为:A等级10分,B等级8分,C等级5分,D等级2分,根据调查结果绘制出如图所示的条形统计图,请问喜好“云腿”程度的平均分是________分.14. (1分)某商店卖出两个计算器,两个计算器都卖64元,一个盈利60%,另一个亏本20%,则这个商店________元.(填赚了还是亏了多少元)15. (2分)已知数轴上动点A表示整数x的点的位置开始移动,每次移动的规则如下:当点A所在位置表示的数是7的整数倍时,点A向左移动3个单位,否则,点A向右移动1个单位,按此规则,点A移动n次后所在位置表示的数记做xn .例如,当x=1时,x3=4,x6=7,x7=4,x8=5.①若x=1,则x14=________ ;②若|x+x1+x2+x3+…+x20|的值最小,则x3=________ .三、解答题 (共9题;共65分)16. (10分) (2018七上·灵石期末)(1)计算:① ;②-22+[12-(-3)×2]÷(-3)(2)先化简,再求值:(2x2-5xy+2y2)-2(x2-3xy+2y2),其中x=-1,y=2.17. (5分)讨论x=12是不是方程的解.18. (5分) (2019八上·新兴期中) 如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为多少?19. (5分) (2018七上·灵石期末) 如图,已知线段AB,请用尺规按照下列要求作图:①延长线段AB到C,使得BC=2AB;②连接PC;③作射线AP.如果AB=2cm,求AC的值20. (9分)(2017·吉林模拟) 深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:关注情况频数频率A.高度关注M0.1B.一般关注1000.5C.不关注30ND.不知道500.25(1)根据上述统计图可得此次采访的人数为________人,m=________,n=________;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有________人.21. (5分) (2017七下·大庆期末) 如果方程和的解相同,求出a 的值.22. (5分)如图,平面上有射线AP和点B、点C,按下列语句要求画图:(1)连接AB;(2)用尺规在射线AP上截取AD=AB;(3)连接BC,并延长BC到E,使CE=BC;(4)连接DE.23. (10分) (2018七上·三河期末) 为了加强公民节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的,该市自来水收费见价目表.例如:某居民元月份用水9吨,则应收水费2×6+4×(9﹣6)=24元每月用水量(吨)单价不超过6吨2元/吨超过6吨,但不超过10吨的部分4元/吨超过10吨部分8元/吨(1)若该居民2月份用水12.5吨,则应收水费多少元?(2)若该居民3、4月份共用15吨水(其中4月份用水多于3月份)共收水费44元(水费按月结算),则该居民3月、4月各用水多少吨?24. (11分) (2019七上·辽阳月考) 如图,以直线AB上一点O为端点作射线OC,使∠AOC=65°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OA上,则∠COE=________;(2)如图②,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,试猜想∠AOD和∠COE有怎样的数量关系?并说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共7分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共65分)16-1、16-2、17-1、18-1、19-1、20-1、20-2、20-3、21-1、22-1、23-1、23-2、24-1、24-2、24-3、。
宁波市七年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·灌阳期中) 你认为下列各式正确的是()A .B .C .D .2. (2分) (2019七上·朝阳期末) 若一个整数12500…0用科学记数法表示为1.25×1010 ,则原数中“0”的个数为()A . 5B . 8C . 9D . 103. (2分)已知:|a|=3,|b|=4,则a﹣b的值是()A . -1B . ﹣1或﹣7C . ±1或±7D . 1或74. (2分) (2019七上·焦作期末) 下列说法正确的是()A . 连接两点的线段叫做两点间的距离B . 射线AB和射线BA是同一条射线C . 若点C是线段AB的中点,则 AB=2ACD . 角的两边越长角越大5. (2分)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2 ,其中正确的是()A . ①②③B . ①③⑤C . ②③④D . ②④⑤6. (2分)下列图形是正方体的展开图,还原成正方体后,其中完全一样的是()(1)(2)(3)(4)A . (1)和(2)B . (1)和(3)C . (2)和(3)D . (3)和(4)7. (2分)某校在七年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,如图是六个兴趣小组不完整的频数分布直方图和扇形统计图.根据图中信息,可得下列结论不正确的是()A . 七年级共有320人参加了兴趣小组B . 体育兴趣小组对应扇形圆心角的度数为96°C . 美术兴趣小组对应扇形圆心角的度数为72°D . 各小组人数组成的数据写作组人数最少.8. (2分)如图所示的几何体的俯视图是()A .B .C .D .9. (2分)若a+b<0,ab>0,那么这两个数()A . 都是正数B . 都是负数C . 一正一负D . 符号无法确定10. (2分)练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x元,那么下列所列方程正确的是()A . 5(x﹣2)+3x=14B . 5(x+2)+3x=14C . 5x+3(x+2)=14D . 5x+3(x﹣2)=14二、填空题 (共7题;共7分)11. (1分)若图1中的线段长为1,将此线段三等分,并以中间的一段为边作等边三角形,然后去掉这一段,得到图2称第1次操作,再将图2中的每一段类似变形,得到图3即第2次操作,按上述方法继续得到图4为第3次操作,则第4次操作后折线的总长度为________.12. (1分) (2019七上·瑞安月考) 抽查四个零件的长度,超过为正,不足为负:(1)﹣0.3;(2)﹣0.2;(3)0.4;(4)0.05.则其中误差最大的是________.(填序号)13. (1分)已知关于的一元一次方程的解为,那么关于的一元一次方程的解为________.14. (1分)当k=________时,﹣3x2y3k与4x2y6是同类项.15. (1分) (2019七上·文昌期末) 如图,数轴上的点A表示的数为a,则化简|﹣a|﹣|a﹣1|的结果为________.16. (1分)如图,O是直线AB上一点,OC⊥AB,∠BOD=35°36′.则∠1=________度.17. (1分) (2015七下·深圳期中) 如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=________°.三、解答题 (共7题;共77分)18. (20分) (2017七上·青岛期中) 计算:(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)(3)(4).19. (5分)(2017·定远模拟) 解方程:﹣ =5.20. (5分) (2018七上·黑龙江期末) 先化简,后求值:,其中 .21. (15分)如图,平面上有四个点A、B、C、D,根据下列语句画图:(1)画线段AB;(2)连接CD,并将其反向延长至E,使得DE=2CD;(3)在平面内找到一点F,使F到A,B,C,D四点距离最短.22. (12分) (2018七上·平顶山期末) 为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了________名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是________度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?23. (10分) (2016七上·重庆期中) 列方程解应用题:白沙华联超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)2230售价(元/件)2940(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?24. (10分)如图,已知线段AB.(1)延长线段AB到C,使BC= AB,D为AC的中点,请准确画出图形并标出点D.(2)若DC=2,求AB的长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共7题;共77分)18-1、18-2、18-3、18-4、19-1、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、。
的相反数是(
,
翻转
下列对于
点点点点其中正确的有(
答案第2页,总16页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
A.6cm
B.5cm
C.4cm
D.3cm
5.如图,经过刨平的木板上的A ,B 两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()
A.两点之间,线段最短
B.两点确定一条直线
C.垂线段最短
D.在同一平面内,过一点有且只有一条直线与已知直线垂直
6.宁波市江北区慈城的年糕闻名遐迩若每包标准质量定为300g ,实际质量与标准质量相比,超出部分记作正数,不足部分记作负数则下面4个包装中,实际质量最接近标准质量的是
A. B. C. D.
7.下列运算正确的是()A.2x 2﹣x 2=2
B.2m 2+3m 3=5m 5
C.5xy ﹣4xy =xy
D.a 2b ﹣ab 2=0
8.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为()A.26×105
B.2.6×102
C.2.6×106
D.260×104
9.甲、乙两人从同一个地点出发,沿着同一条线路进行赛跑练习,甲每秒跑7米,乙每秒跑米,甲
让乙先跑5米,设x 秒后甲可以追上乙,则下面列出的方程不正确的是A.
B.
C.
D.
10.与50的算术平方根最接近的整数是A.7
B.8
C.10
D.25
第Ⅱ卷主观题
的系数是
的值是
的小长方形后得图和
阴影部分周长阴影部分周长的差是
,则到点
)
答案第4页,总16页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
(2)
10.先化简,再求值:,其中
,
.
11.解方程:
(1)
(2)
评卷人得分
三、作图题(共1题)
12.“环保”是当今世界关注的重要议题通常,距离越近,噪音越大若一辆汽车P 在笔直的公路上由点B 驶向点C ,A 是位于公路BC 一侧的学校,请完成:
(1)画直线BC ,画射线AB ,画线段AC ;
(2)汽车P 在直线BC 上行驶到何处时,学校A 受噪音影响最严重?请在图中标出适当标记,并从数学的角度说明理由作图工具不限,保留作图痕迹
评卷人得分
四、综合题(共2题)
13.如图,直线AB ,CD 相交于点O.OF 平分∠AOE ,OF ⊥CD 于点O.
元,实际付款
,
答案第6页,总16页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
参数答案
1.【答案】:
【解释】:
2.【答案】:
【解释】:
3.【答案】:
【解释】:
第7页,总16页
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
4.【答案】
:【解释】:5.【答案】
:
答案第8页,总16页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
【解释】:
6.【答案】:
【解释】:
7.【答案】:
【解释】:
8.【答案】:
第9页,总16页
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
【解释】:9.【答案】:【解释】:10.【答案】
:【解释】:【答案】:【解释】:
【答案】:
答案第10页,总16页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
【解释】:
【答案】:
【解释】:
【答案】:
【解释】:
第11页,总16页
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
【答案】:
【解释】:【答案】:【解释】:【答案】:
答案第12页,总16页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
【解释】:
【答案】:
【解释】:
(1)【答案】:
(2)【答案】:
【解释】:
【答案】:
第13页,总16页
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
【解释】:(1)【答案】:
(2)【答案】:【解释】:(1)【答案】:
答案第14页,总16页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
(2)【答案】:
【解释】:
(1)【答案】:
(2)【答案】:
【解释】:
第15页,总16页
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
(1)【答案】:
(2)【答案】:(3)【答案】:
【解释】:
答案第16页,总16页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………。