4.已知经过两点(3,2)和(m,n)的直线l. (1)若l与x轴平行,则m,n的取值情况是__________; (2)若l与x轴垂直,则m,n的取值情况是__________.
【解析】(1)∵l与x轴平行,由图①可知m∈R且m≠3,n=2. (2)∵l与x轴垂直,由图②可知m=3,n∈R且n≠2.
【例2】如图,在平行四边形OABC中, 点A(3,0),点C(1,3). (1)求AB所在直线的方程; (2)过点C作CD⊥AB于点D, 求CD所在直线的方程. 【审题指导】已知四边形OABC是平行四边形,可以利用 平行四边形的有关性质求AB的斜率,利用两条直线垂直的 条件求CD的斜率,进而求相应直线的方程.
解得h≈14.92(m).
故灯柱高h约为14.92 m.
【典例】(12分)已知A(0,3)、B(-1,0)、C(3,0),求D点 的坐标,使四边形ABCD为直角梯形(A、B、C、D按逆时针方 向排列). 【审题指导】解答本题可先对直角梯形中哪个角为直角进 行讨论,然后借助于平行、垂直的关系列方程组求D点的坐 标.
【例3】已知直线l1:ax+3y+1=0,l2:x+(a-2)y+a=0,求满足下 列条件的a的值:
(1)l1∥l2;
(2)l1⊥l2.
【审题指导】直线l1和l2的方程均以一般式的形式给出,要
判断l1∥l2及l1⊥l2时,参数a的取值,求解思路有二:一是把
方程均化成斜截式利用斜率及在y轴上截距的关系求解;二
答案:(1)m∈R且m≠3,n=2 (2)m=3,n∈R且n≠2
5.已知P(2,1),直线l:x-y+4=0. (1)求过点P与直线l平行的直线方程; (2)求过点P与直线l垂直的直线方程. 【解析】(1)设过点P与直线l平行的直线方程为x-y+m=0. 由题意可知2-1+m=0,解得m=-1. 所以过点P与直线l平行的直线方程为x-y-1=0. (2)设过点P与直线l垂直的直线方程为x+y+n=0. 由题意可知2+1+n=0,解得n=-3. 所以过点P与直线l垂直的直线方程为x+y-3=0.