山东省禹城市2014年中考二模数学试卷
- 格式:doc
- 大小:387.00 KB
- 文档页数:9
2014年初中毕业班第二次模拟测试数 学 试 卷说明:1.全卷共4页,考试用时为100分钟,满分为120分。
2.考生务必用黑色字迹的签字笔或钢笔在答题卷密封线左边的空格里填写自己的学校、班级、姓名、准考证号,并在答题卷指定的位置里填写座位号。
3.选择题选出答案后,请将所选选项的字母填写在答题卷对应题目的空格内。
4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卷的整洁。
考试结束时,将试卷和答题卷一并交回。
一、选择题(本大题共10小题,每小题3分,共30分。
在各题的四个选项中,只有—项是正确的,请将所选选项的字母填写在答题卷对应题目的空格内) 1、9的算术平方根是A .81B .3±C .3-D .32、据报道,肇庆团市委“情系农村”深化农村青年创业小额贷款工作,共发放贷款13 000 000多元,数字13 000 000用科学记数法表示为A .1.3×106B .1.3×107C .1.3×108D .1.3×1093、如图所示的几何体的主视图是4、下列计算正确的是 A.222)2(aa =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅5、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 A . 12 B . 15 C . 12或15 D . 186、如图,线段DE 是△ABC 的中位线,∠B =60°,则∠ADE 的度数为 A .80° B .70° C .60° D .50°7、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是8、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A .众数B .方差C .平均数D .中位数(第6题图)(第3题图)(第16题图)9、把不等式组2151x x -≤⎧⎨>⎩的解集在数轴上表示正确的是10、童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图中能反映y 与x 的函数关系式的大致图象是二、填空题:(本题共6个小题,每小题4分,共24分) 11、分解因式:24(1)x x --= ▲ .12、如果26a b -=,则42b a -= ▲ .13、已知菱形的两条对角线长分别为6和8,则菱形的边长为 ▲ .14、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为 ▲ . 15x 的取值范围是 ▲ . 16、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠C = 30°,CD =. 则阴影部分的面积S 阴影= ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:2014201(1)()(5)16sin 602π--⨯+---︒18、已知一次函数y x b =+的图象经过点B (0,),且与 反比例函数ky x=(k 为不等于0的常数)的图象有一交点 为点A (m ,1-) .求m 的值和反比例函数的解析式. 19、在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在小山的东侧A点处有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C点处,此时热气球上的人测得小山西侧B点的俯角为30°,求小山东西两侧A、B两点间的距离.(第20题图)21、为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在▲组,中位数在▲组;(2)求样本中,女生身高在E组的人数;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?(第22题图)22、如图,在平行四边形ABCD 中,∠ABC =60°,E 、F 分别 在CD 和BC 的延长线上,AE ∥BD .(1)求证:点D 为CE 的中点; (2)若EF ⊥BC ,EF =,求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23、现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。
2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
第6题(第 14 题)89 1 2 3 4 5 6 7 8 9102014初中数学二模试题(本试卷共150分 考试时间150分钟)第I 卷 选择题(共18分)请注意:考生须将本卷所有答案填涂到答题卡上,答在试卷上无效! 一、选择题(每题3分,共18分) 1. 下列计算中正确的是A .2352a a a += B .236a a a ⋅= C .235a a a ⋅= D .329()a a =2. 某5A 级风景区去年全年旅游总收入达10.04亿元.将10.04亿元,用科学记数法可表示为 A .10.04×108元B .10.04×109元C .1.004×1010元D .1.004×109元3. 下列事件中最适合使用普查方式收集数据的是A .了解全国每天丢弃的废旧电池数B .了解某班同学的身高情况C .了解一批炮弹的杀伤半径D .了解我国农民的人均年收入情况 4.5. 如图,在矩形ABCD 中,AD =10,AB =6,E 为BC 上一点,DE 平分∠AEC ,则CE 的长为 A .1B.2C .3D .4.6. 如图,△ABC 的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC 的对称图形,得到△''A B C ,若点A的对应点'A 的坐标是(3,5),那么点B 的对应点'B 的坐标是 A .(0,3) B .(1,2) C .(0,2) D .(4,1)二、填空题(每题3分,共30分) 7. 函数5xy x =+中,自变量x 的取值范围是 . 8. 在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,若口袋中有4个红球且摸到红球的概率为21,则袋中球的总数为________ 9. 正n 边形的一个内角比一个外角大100°,则n 为__________.10. 如图是甲、乙两射击运动员的10次射击训练成绩(环数)的折线统计图,观察图形,甲、乙这10次射击成绩的方差甲2S,乙2S 之间的大小关系是 .第10题 第15题11. 二次函数y =2(x +1)(x -3)图象的顶点坐标为_________________.12. 一个底面半径为3cm ,高为4cm 的圆锥模型,则此圆锥的侧面积是 cm 2. 13. 已知点A (-1,y 1)、B (2,y 2)都在双曲线y =3+2mx上,且y 1>y 2,则m 的取值范围是 ___________.14. 已知2x =-是一元二次方程20x ax b ++=的一个根,则代数式2244a b ab +-的值是 .15. 如图,在矩形ABCD 中,AD =D 为圆心,DC 为半径的圆弧交AB 于点E ,交DA的延长线于点F ,∠ECD =60°,则图中阴影部分的面积为_____,(结果保留π)。
2014年初中毕业升学考试数学试题参考答案及评分标准说明:1本参考答案及评分标准仅供教师评卷时参考使用. 2其它正确的证法(解法),可参照本参考答案及评分标准酌情赋分. 一、选择题(每小题3分,共30分)1.A2.C3.B4.B5.D6.D7.C8.A9.C 10.D 二、填空题(每小题3分,共24分)11.x ≥-2且x ≠0 12.0.8 13. (2)(2)x x x +- 14.6060322x x -= 15.(4,1)16.217.50°18.222n -或2224n a或24n -三、解答题(19、20每小题9分,共18分)19.解:2213(2)242x x x x x -÷-+++ =(1)(1)(2)(2)32(2)22x x x x x x x x +--+⎡⎤÷+⎢⎥+++⎣⎦…………………………2分 =2(1)(1)432(2)22x x x x x x x ⎡⎤+--÷+⎢⎥+++⎣⎦…………………………3分 =2(1)(1)432(2)2x x x x x x +--+÷++ ……………………………4分 =(1)(1)22(2)(1)(1)x x x x x x x +-+⋅++- …………………………5分=12x…………………………6分 当x = tan45°+2cos60°=1+1=2 时, …………………………8分 原式=12x =14…………………………10分 20. 解:由树形图可知,所有可能出现的结果共有16个,且每种结果出现的可能性相等,其中两次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分∴P (A )=4116= ………………10分 次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分 ∴P (A )=41164= ………………………10分 四、解答题(本题14分) 21.解:(1)a=28%,b=200(2)设身体状况 “良好”的学生有x 人, “及格”的学生有y 人.3463%200200x y xy -=⎧⎪⎨+=⎪⎩ ………2分 解得:8046x y =⎧⎨=⎩ ……………4分 ………………………6分(3)……………………9分(4)200÷10%=2000( 人)……………………10分 2000×56200=560(人) ……………………12分 五、解答题(22小题10分,23小题14,共24分)22.解:(1)连结OF∵AC=BC ∠C=∠C CF=CE ,∴△ACF ≌△BCE …………………………3分 (2)证明:∵△ACF ≌△BCE∴∠B=∠A …………………………4分∵∠C=90°∴∠A+∠AFC=90° …………………………5分∵OB=OF∴∠B=∠OFB …………………………6分∴∠OFB+∠AFC=90° …………………………7分 第22题图E∴∠OFA=90° …………………………8分∴ AF ⊥OF ………………………………9分 ∴AF 是⊙O 的切线 ………………………………10分 23. 解:过点B 作BF ⊥CD,垂足为F. ∵ ∠ABC=120°∴ ∠FBC=30° ……………1分 在Rt △BCF 中,设BF=x ,则AD=x∴ CF=BFtan30°x ………3分在Rt △ABE 中,∠AEB=45°,∴AB=AE=8 ( ……4分 ) ∴DF=AB=8 ………5分∴x +8 …………………6分 在Rt △CDE 中,∠CED=60°ED=8-x∵ tan ∠CED =CDED∴CD=ED tan ∠…7分 第23题图 即3x 8-x ) …………………8分 解得x=6-………………9分∴CF=3x =3-=2………………10分 DC=CF+DF=6+≈9.5(米) ………………11分 答:路灯C 到地面的距离约为9.5米 …………………12分六、解答题(本题12分) 24.解:(1)∵10×1=10,10010330-=……………1分 ∴甲走完全程需4小时,∵甲出发3小时后乙开车追赶甲,两人同时到达目的地 ∴乙走完全程需1小时, ∴乙的速度是60601=(千米/时)………………2分 (2)设AB 的解析式为y=kx+b. ∵10×1=10,∴点A 的坐标是(1,10) …………………3分由(1)得点B 的坐标是(4,100) 第24题图 ∴104100k b k b +=⎧⎨+=⎩ …………………4分C解得3020 kb=⎧⎨=-⎩∴AB的解析式为y=30x-20. …………………6分当y=40时,30x-20=40 …………………5分∴X=2 …………………7分∴甲出发2小时后两人第一次相遇…………………8分(3)设OA的解析式为y=kx∵点A的坐标是(1,10)∴k=10,∴OA的解析式为y=10x, …………………9分设DB的解析式为y=mx+n.∵点D的坐标是(3,40),点B的坐标是(4,100)∴3404100m nm n+=⎧⎨+=⎩…………………10分解得60140 mn=⎧⎨=-⎩∴DB的解析式为y=60x-140. …………………11分①40-(30x-20)=12,解得x=1.6; …………………12分②30x-20-40=12,解得x=2.4; …………………13分③30x-20-(60x-140)=12;解得x=3.6 ……………14分∴甲出发1.6小时,2.4小时或3.6小时后两人相距12千米.七、解答题(本题14分)25. (1)如图1①证明:∵△ABC是等边三角形∴AB=AC,∠B=∠CAF=60°又∵AF=BE ……………2分∴△ABE≌△CAF ……………3分∴AE=CF ……………4分②证明:∵△ABE≌△CAF∴∠BAE=∠ACF ………………5分又∵∠BAC=∠FCG=60°即∴∠BAE+∠EAC=∠ACF+∠ACG∴∠EAC=∠ACG ……………6分第25题图1 ∴AE∥CG ……………7分又∵AE=CF=CG∴四边形AECG是平行四边形. ……………8分(2)四边形AECG是平行四边形………… 9分证明:如图2∵△ABC是等边三角形B∴AB=AC ,∠ABC=∠CAB=60°∴∠AEB=∠CAF=120°又∵AF=BE ∴ △ABE ≌△CAF∴AE=CF ,∠BAE=∠ACF ……………11分 又∵∠BAC=∠FCG=60°∴∠BAE+∠BAC=∠ACF+∠即 ∠EAC=∠ACG ……………12分∴AE ∥CG ……………13分 第25题图2 又∵AE=CG∴四边形AECG 是平行四边形. ……………14分八、解答题(本题14分)26. (1)解:∵抛物线的对称轴是2x =∴2122b-=⎛⎫⨯- ⎪⎝⎭∴b=2. …………………2分 (2)解: 延长DC 交x 轴于点H , ∵∠CAB=90°∴∠CAH+∠HAB=90°∵MN ⊥AF ∴∠FAB+∠ABF=90° ∴∠CAH=∠ABF∵∠AFB=∠AHC=90°,AC=AB∴△ACH ≌△ABF ………………4分∴CH=AF=32,AH=BF=-m ∴C (12-m ,32) …………………6分(3)解:如图1,当点D 在点C 上方时∵CD ∥y 轴,∵点D 在抛物线上,横坐标是12-m ,将x=12-m 代入21y =-得 2111()2()3222y m m =--+-+ ……………7分化简得:21331228y m m =--+∴D (12-m ,21331228m m --+)……………8分∴CD=21331228m m --+-32=21319228m m --+…9分∵四边形OEDC 是平行四边形∴OE=CD=3, 第26题图1E∴21319228m m --+=3 ……………9分 解得152m =-,212m =- ……………10分 ∴B(2, 12-)或B(2, 52-) …………………11分当点D 在点C 下方时 ∵C (12-m ,32),D (12-m ,21331228m m --+ 32-(21331228m m --+)=3 …………………12分解得1m =2m =∴B(2,32--)或B(2,32-+)………13分 第26题图2 综上,当四边形OEDC 是平行四边形时,点B 的坐标是(2, 12-),(2, 52-), (2,32--),(2,32-+) …………14分。
山 东 中 考 全 真 模 拟 测 试数 学 试 卷一.选择题 1.23的倒数是( ) A. 32 B. 32- C. 23- D. 23 2.已知代数式163m a b --和216n ab 是同类项,则m -n 的值是( ) A. -1 B. -2 C. -3 D. 03.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是( ) A. B.C. D.4.医学研究发现某病毒直径约为0.000043毫米,这个数用科学记数法表示为( )A. 40.4310⨯B. 54.310-⨯C. 40.4310-⨯D. 50.4310⨯ 5.如图所示,正三棱柱的左视图( )A. B.C. D.6.2x -x 的取值范围是( )A. 2x ≥B. 2x ≥-C. 2x >D. 2x >-7.下列计算正确的是( )A. (a 2)3=a 5B. (﹣2a )2=﹣4a 2C. m 3m 2=m 6D. 5﹣2=125 8.三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为( ) A. 19 B. 16 C. 14 D.12 9.如图,在△ABC 中,∠BAC =90°,AB =AC =4,以点C 为中心,把△ABC 逆时针旋转45°,得到△A ′B ′C ,则图中阴影部分的面积为( )A. 2B. 2πC. 4D. 4π10.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A. 5B. 2C. 52 5二.填空题11.若2a b =+,则代数式222a ab b -+的值为__.12.写出一个函数的表达式,使它满足:①图象经过点(1,1);②在第一象限内函数y 随自变量x 的增大而减少,则这个函数的表达式为__________.13.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为_____.14.如图,在Rt ABC ∆中,090C ∠=,以顶点B 为圆心,适当长度为半径画弧,分别交,AB BC 于点,M N ,再分别以点,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若30A ∠=,则BCD ABDS S ∆∆=_____.15. 设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=.如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S 2=;如图3,分别将AC ,BC 边4等分,D 1,D 2,D 3,E 1,E 2,E 3是其分点,连接AE 3,BD 3交于点F 3,得到四边形CD 3F 3E 3,其面积S 3=; … 按照这个规律进行下去,若分别将AC ,BC 边(n+1)等分,…,得到四边形CD n E n F n ,其面积S= .三.解答题16.解方程21 =122x x x--- 17.某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下:4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.15.25.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.24.4 4.2 4.35.3 4.9 5.2 4.9 4.8 4.6 5.14.2 4.4 4.5 4.1 4.55.1 4.4 5.0 5.2 5.3根据数据绘制了如下的表格和统计图: 等级 视力(x )频数 频率A4.2x < 4 0.1 B 4.2 4.4x ≤≤ 12 0.3C4.5 4.7x ≤≤ a D 4.85.0x ≤≤b E 5.1 5.3x ≤≤ 100.25 合计40 1根据上面提供信息,回答下列问题:(1)统计表中的a = ,b = ;(2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E 级”的有多少人?(4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.18.某商店销售一种商品,童威经市场调查发现:该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w (元)的三组对应值如下表:售价x (元/件)50 60 80 周销售量y (件)100 80 40 周销售利润w (元)1000 16001600注:周销售利润=周销售量×(售价-进价)(1)①求y 关于x 的函数解析式(不要求写出自变量的取值范围)②该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元 (2)由于某种原因,该商品进价提高了m 元/件(0)m ,物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m 的值19.如图,已知AB 是⊙O 的直径,点P 是⊙O 上一点,连接OP ,点A 关于OP 的对称点C 恰好落在⊙O 上. (1)求证:OP ∥BC ;(2)过点C 作⊙O 的切线CD ,交AP 的延长线于点D .如果∠D =90°,DP =1,求⊙O 的直径.20.问题情境:在综合实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图(1),将一张菱形纸片ABCD (∠BAD =60°)沿对角线AC 剪开,得到△ABC 和△ACD操作发现:(1)将图(1)中的△ABC 以A 为旋转中心,顺时针方向旋转角α(0°<α<60°)得到如图(2)所示△ABC ′,分别延长BC ′和DC 交于点E ,发现CE =C ′E .请你证明这个结论. (2)在问题(1)的基础上,当旋转角α等于多少度时,四边形ACEC ′是菱形?请你利用图(3)说明理由. 拓展探究:(3)在满足问题(2)的基础上,过点C ′作C ′F ⊥AC ,与DC 交于点F .试判断AD 、DF 与AC的数量关系,并说明理由.21.如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线经过点D (﹣2,﹣3)和点E (3,2),点P 是第一象限抛物线上的一个动点.(1)求直线DE 和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =2,动点Q 从点P 出发,沿P →M →N →A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.22.定义:点P (a ,b )关于原点的对称点为P ',以PP '为边作等边△PP 'C ,则称点C 为P 的“等边对称点”; (1)若P (13),求点P 的“等边对称点”的坐标.(2)若P 点是双曲线y =2x(x >0)上一动点,当点P 的“等边对称点”点C 在第四象限时, ①如图(1),请问点C 是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由.②如图(2),已知点A (1,2),B (2,1),点G 是线段AB 上动点,点F 在y 轴上,若以A 、G 、F 、C 这四个点为顶点的四边形是平行四边形时,求点C 的纵坐标y c 的取值范围.答案与解析一.选择题 1.23的倒数是( ) A. 32 B. 32- C. 23- D. 23 【答案】A【解析】【分析】直接利用倒数的定义得出答案.【详解】解:23的倒数是:32. 故选A .【点睛】此题主要考查了倒数,正确把握定义是解题关键.2.已知代数式163m a b --和216n ab 是同类项,则m -n 的值是( ) A. -1B. -2C. -3D. 0 【答案】A【解析】【分析】由同类项的定义可先求得m 和n 的值,从而求出代数式的值.【详解】∵代数式163m a b --和216ab 是同类项, ∴m−1=1,2n=6,∴m=2,n=3,∴m−n=2−3=−1,故选A.【点睛】此题考查同类项,解题关键在于求得m 和n 的值.3.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是( ) A. B.C. D.【答案】D【解析】【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.根据中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、是轴对称图形,不是中心对称图形,故此选项错误;C 、不是轴对称图形,不是中心对称图形,故此选项错误;D 、不是轴对称图形,是中心对称图形,故此选项符合题意.故选D .【点睛】此题主要考查中心对称图形与轴对称图形的识别,解题的关键是熟知其定义.4.医学研究发现某病毒直径约为0.000043毫米,这个数用科学记数法表示为( )A. 40.4310⨯B. 54.310-⨯C. 40.4310-⨯D. 50.4310⨯【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】50.000043 4.310-=⨯,故选B .【点睛】本题考查用科学记数法表示较小数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.如图所示,正三棱柱的左视图( )A. B. C.D.【答案】A【解析】【分析】 根据简单几何体的三视图,可得答案.【详解】主视图是一个矩形,俯视图是两个矩形,左视图是三角形,故选A .【点睛】本题考查了简单几何体的三视图,利用三视图的定义是解题关键.6.2x -x 的取值范围是( )A. 2x ≥B. 2x ≥-C. 2x >D. 2x >- 【答案】A【解析】【分析】根据二次根式的定义中关于被开方数非负的要求,求x 的取值范围.【详解】二次根式必须满足:被开方数是非负数,所以20x -≥,解得2x ≥,故选A .【点睛】本题考查二次根式的定义.7.下列计算正确的是( )A. (a 2)3=a 5B. (﹣2a )2=﹣4a 2C. m 3m 2=m 6D. 5﹣2=125【答案】D【解析】【分析】先根据幂的乘方、积的乘方、同底数幂的乘法、负整数指数幂分别求出每个式子的值,再判断即可.【详解】解:A 、结果是a 6,故本选项不符合题意;B 、结果是4a 2,故本选项不符合题意;C 、结果是m 5,故本选项不符合题意;D、结果是125,故本选项符合题意;故选:D.【点睛】本题主要考查幂的乘方、积的乘方、同底数幂的乘法、负整数指数幂,正确计算是解题的关键.8.三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为( )A. 19B.16C.14D.12【答案】D【解析】【分析】画树状图为(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)展示所有6种等可能的结果数,再找出恰好有两名同学没有坐回原座位的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)共有6种等可能的结果数,其中恰好有两名同学没有坐回原座位的结果数为3,所以恰好有两名同学没有坐回原座位的概率=36=12.故选D.9.如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A′B′C,则图中阴影部分的面积为()A. 2B. 2πC. 4D. 4π【答案】B【解析】【分析】根据阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积),代入数值解答即可.【详解】∵在△ABC中,∠BAC=90°,AB=AC=4,∴BC=2242AB AC+=,∠ACB=∠A'CB'=45°,∴阴影部分的面积=2245?(42)1145?4444436022360ππ-⨯⨯+⨯⨯-=2π,故选B.【点睛】本题考查了扇形面积公式的应用,观察图形得到阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积)是解决问题的关键.10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A. 5B. 2C. 52D. 25【答案】C【解析】【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2..∴AD=a.∴12DE•AD=a.∴DE=2.当点F 从D 到B∴Rt △DBE 中,1=,∵四边形ABCD 是菱形, ∴EC=a-1,DC=a , Rt △DEC 中, a 2=22+(a-1)2. 解得a=52. 故选C .【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二.填空题11.若2a b =+,则代数式222a ab b -+的值为__. 【答案】4. 【解析】 【分析】由2a b =+,可得2a b -=,所求代数式变形后,整体代入即可. 【详解】2a b =+,2a b ∴-=,22222()24a ab b a b ∴-+=-==,故答案为4【点睛】本题考查了代数式求值,利用完全平方公式因式分解,熟记完全平方公式结构特征是解答本题的关键.12.写出一个函数的表达式,使它满足:①图象经过点(1,1);②在第一象限内函数y 随自变量x 的增大而减少,则这个函数的表达式为__________. 【答案】1y x= 【解析】【分析】根据反比例函数、一次函数以及二次函数的性质作答. 【详解】解:该题答案不唯一,可以为1y x=等. 故答案为:1y x=. 【点睛】本题考查的是反比例函数、一次函数以及二次函数的性质,熟知函数的增减性是解答此题的关键. 13.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为_____.【答案】 4.5112x yx y +=⎧⎪⎨-=⎪⎩【解析】 【分析】设木条长x 尺,绳子长y 尺,根据绳子和木条长度间的关系,可得出关于,x y 的二元一次方程组,此题得解.【详解】设木条长x 尺,绳子长y 尺,依题意,得: 4.5112x yx y +=⎧⎪⎨-=⎪⎩故答案为 4.5112x y x y +=⎧⎪⎨-=⎪⎩.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.14.如图,在Rt ABC ∆中,090C ∠=,以顶点B 为圆心,适当长度为半径画弧,分别交,AB BC 于点,M N ,再分别以点,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若30A ∠=,则BCDABDS S ∆∆=_____.【答案】12. 【解析】 【分析】利用基本作图得BD 平分ABC ∠,再计算出30ABD CBD ∠=∠=,所以DA DB =,利用2BD CD =得到2AD CD =,然后根据三角形面积公式可得到BCD ABDS S的值.【详解】解:由作法得BD 平分ABC ∠, ∵90C =∠,30A ∠=, ∴60ABC ︒∠=,∴30ABD CBD ︒∠=∠=, ∴DA DB =,在Rt BCD ∆中,2BD CD =, ∴2AD CD =, ∴12BCD ABD S S ∆∆=. 故答案为12. 【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线). 15. 设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=.如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S2=;如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n E n F n,其面积S= .【答案】.【解析】试题分析:如图所示,连接D1E1,D2E2,D3E3,∵图1中,D1,E1是△ABC两边的中点,∴D1E1∥AB,D1E1=AB,∴△CD1E1∽△CBA,且=,∴S△CD1E1=S△ABC=,∵E1是BC的中点,∴S△BD1E1=S△CD1E1=,∴S△D1E1F1=S△BD1E1=×=,∴S1=S△CD1E1+S△D1E1F1=+=,同理可得:图2中,S2=S△CD2E2+S△D2E2F2==,图3中,S3=S△CD3E3+S△D3E3F3==,以此类推,将AC,BC边(n+1)等分,得到四边形CD n E n F n,其面积S n==,故答案为.考点:规律型:图形的变化类;三角形的面积;规律型;综合题.三.解答题16.解方程21=122xx x---【答案】x=-1.【解析】【详解】解:方程两边同乘x-2,得2x=x-2+1解这个方程,得x= -1检验:x= -1时,x-2≠0∴原方程的解是x= -1首先去掉分母,观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解17.某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下:4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.15.25.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.24.4 4.2 4.35.3 4.9 5.2 4.9 4.8 4.6 5.14.2 4.4 4.5 4.1 4.55.1 4.4 5.0 5.2 5.3根据数据绘制了如下的表格和统计图:根据上面提供的信息,回答下列问题:(1)统计表中的a=,b=;(2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E级”的有多少人?(4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.【答案】(1)8、0.15;(2)补全图形见解析;(3)估计该校八年级学生视力为“E级”的有100人;(4)恰好选到1名男生和1名女生的概率23.【解析】【分析】(1)由所列数据得出a的值,继而求出C组对应的频率,再根据频率之和等于1求出b的值;(2)总人数乘以b的值求出D组对应的频数,从而补全图形;(3)利用样本估计总体思想求解可得;(4)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【详解】(1)由题意知C等级的频数8a=,则C组对应的频率为8400.2÷=,∴1(0.10.30.20.25)0.15b=-+++=,故答案为8、0.15;(2)D组对应的频数为400.156⨯=,补全图形如下:(3)估计该校八年级学生视力为“E级”的有4000.25100⨯=(人);(4)列表如下:男男女女男(男,男)(女,男)(女,男)男(男,男)(女,男)(女,男)女(男,女)(男,女)(女,女)女(男,女)(男,女)(女,女)得到所有等可能的情况有12种,其中恰好抽中一男一女的情况有8种,所以恰好选到1名男生和1名女生的概率82 123=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.18.某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x(元/件)50 60 80周销售量y(件)100 80 40周销售利润w(元)1000 1600 1600注:周销售利润=周销售量×(售价-进价)(1)①求y 关于x 的函数解析式(不要求写出自变量的取值范围)②该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元 (2)由于某种原因,该商品进价提高了m 元/件(0)m >,物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m 的值【答案】(1)①y 与x 的函数关系式是2200y x =-+;②40,70,1800;(2)5. 【解析】 【分析】(1)①设y 与x 的函数关系式为y kx b =+,根据表格中的数据利用待定系数法进行求解即可;②设进价为a 元,根据利润=售价-进价,列方程可求得a 的值,根据“周销售利润=周销售量×(售价-进价)”可得w 关于x 的二次函数,利用二次函数的性质进行求解即可得;(2)根据“周销售利润=周销售量×(售价-进价)”可得(2200)(40)w x x m =-+--,进而利用二次函数的性质进行求解即可.【详解】(1)①设y 与x 的函数关系式为y kx b =+,将(50,100),(60,80)分别代入得,501006080k b k b +=⎧⎨+=⎩,解得,2k =-,200b =, ∴y 与x 的函数关系式是2200y x =-+;②设进价为a 元,由售价50元时,周销售是为100件,周销售利润为1000元,得 100(50-a)=1000, 解得:a=40,依题意有,(2200)(40)w x x =-+- =222808000x x -+- =()22701800x --+ ∵20-<,∴当x=70时,w 有最大值为1800,即售价为70元/件时,周销售利润最大,最大为1800元, 故答案为40,70,1800;(2)依题意有,(2200)(40)w x x m =-+--22(2280)8000200x m x m =-++--221401260180022m x m m +⎛⎫=--+-+ ⎪⎝⎭ ∵0m >,∴对称轴140702m x +=>, ∵20-<,∴抛物线开口向下,∵65x ,∴w 随x 的增大而增大,∴当65x =时,∴w 有最大值(265200)(6540)m -⨯+--,∴(265200)(6540)1400m -⨯+--=,∴5m =.【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准各量间的关系正确列出函数解析式是解题的关键.19.如图,已知AB 是⊙O 的直径,点P 是⊙O 上一点,连接OP ,点A 关于OP 的对称点C 恰好落在⊙O 上. (1)求证:OP ∥BC ;(2)过点C 作⊙O 的切线CD ,交AP 的延长线于点D .如果∠D =90°,DP =1,求⊙O 的直径.【答案】(1)见解析;(2)⊙O 的直径AB =4.【解析】【分析】(1)由题意可知AP PC =,根据同弧所对的圆心角相等得到∠AOP =12∠AOC ,再根据同弧所对的圆心角和圆周角的关系得出∠ABC =12∠AOC ,利用同位角相等两直线平行,可得出PO 与BC 平行; (2)由CD 为圆O 的切线,利用切线的性质得到OC 垂直于CD ,又AD 垂直于CD ,利用平面内垂直于同一条直线的两直线平行得到OC 与AD 平行,根据两直线平行内错角相等得到∠APO=∠COP ,由∠AOP=∠COP ,等量代换可得出∠APO=∠AOP ,再由OA=OP ,利用等边对等角可得出一对角相等,等量代换可得出三角形AOP 三内角相等,确定出三角形AOP 为等边三角形,根据等边三角形的内角为60°得到∠AOP为60°,由OP平行于BC,利用两直线平行同位角相等可得出∠OBC=∠AOP=60°,再由OB=OC,得到三角形OBC为等边三角形,可得出∠COB为60°,利用平角的定义得到∠POC也为60°,再加上OP=OC,可得出三角形POC为等边三角形,得到内角∠OCP为60°,可求出∠PCD为30°,在直角三角形PCD中,利用30°所对的直角边等于斜边的一半可得出PD为PC的一半,而PC等于圆的半径OP等于直径AB的一半,可得出PD为AB的四分之一,即AB=4PD=4.【详解】(1)证明:∵A关于OP的对称点C恰好落在⊙O上.∴AP PC∴∠AOP=∠COP,∴∠AOP=12∠AOC,又∵∠ABC=12∠AOC,∴∠AOP=∠ABC,∴PO∥BC;(2)解:连接PC,∵CD为圆O的切线,∴OC⊥CD,又AD⊥CD,∴OC∥AD,∴∠APO=∠COP,∵∠AOP=∠COP,∴∠APO=∠AOP,∴OA=AP,∵OA=OP,∴△APO为等边三角形,∴∠AOP=60°,又∵OP∥BC,∴∠OBC=∠AOP=60°,又OC=OB,∴△BCO为等边三角形,∴∠COB=60°,∴∠POC=180°﹣(∠AOP+∠COB)=60°,又OP=OC,∴△POC也为等边三角形,∴∠PCO=60°,PC=OP=OC,又∵∠OCD=90°,∴∠PCD=30°,在Rt△PCD中,PD=12 PC,又∵PC=OP=12 AB,∴PD=14 AB,∴AB=4PD=4.【点睛】此题考查了切线的性质,等边三角形的判定与性质,含30°直角三角形的性质,轴对称的性质,圆周角定理,以及平行线的判定与性质,熟练掌握性质及判定是解本题的关键.20.问题情境:在综合实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图(1),将一张菱形纸片ABCD(∠BAD=60°)沿对角线AC剪开,得到△ABC和△ACD操作发现:(1)将图(1)中的△ABC以A为旋转中心,顺时针方向旋转角α(0°<α<60°)得到如图(2)所示△ABC′,分别延长BC′和DC交于点E,发现CE=C′E.请你证明这个结论.(2)在问题(1)的基础上,当旋转角α等于多少度时,四边形ACEC′是菱形?请你利用图(3)说明理由.拓展探究:(3)在满足问题(2)的基础上,过点C′作C′F⊥AC,与DC交于点F.试判断AD、DF与AC 的数量关系,并说明理由.【答案】(1)见解析;(2)当α=30°时,四边形AC ′EC 是菱形,理由见解析;(3)AD +DF =AC ,理由见解析【解析】【分析】(1)先判断出∠ACC ′=∠AC ′C ,进而判断出∠ECC ′=∠EC ′C ,即可得出结论;(2)判断出四边形AC ′EC 是平行四边形,即可得出结论;(3)先判断出HAC ′是等边三角形,得出AH=AC ′,∠H=60°,再判断出△HDF 是等边三角形,即可得出结论.【详解】(1)证明:如图2,连接CC′,∵四边形ABCD 是菱形,∴∠ACD =∠AC′B =30°,AC =AC′,∴∠ACC′=∠AC′C ,∴∠ECC′=∠EC′C ,∴CE =C′E ;(2)当α=30°时,四边形AC′EC 是菱形,理由:∵∠DCA =∠CAC′=∠AC′B =30°,∴CE ∥AC′,AC ∥C′E ,∴四边形AC′EC 是平行四边形,又∵CE =C′E ,∴四边形AC′EC 是菱形;(3)AD+DF=AC.理由:如图4,分别延长CF与AD交于点H,∵∠DAC=∠C′AC=30°,C′F⊥AC,∴∠AC′H=∠DAC′=60°,∴△HAC′是等边三角形,∴AH=AC′,∠H=60°,又∵AD=DC,∴∠DAC=∠DCA=30°,∴∠HDC=∠DAC+∠DCA=60°,∴△HDF是等边三角形,∴DH=DF,∴AD+DF=AD+DH=AH.∵AC′=AC,∴AC=AD+DF.【点睛】此题是四边形综合题,主要考查了旋转的旋转,等边三角形的判定和旋转,菱形的判定和性质,判断出△HAC′是等边三角形是解本题的关键.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE 和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =22,动点Q 从点P 出发,沿P →M →N→A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.【答案】(1)y =x ﹣1,y =12-x 2+32x +2;(2)P (2,3)或(32,258);(3)N (12,12-). 【解析】【分析】(1)将点D 、E 的坐标代入函数表达式,即可求解;(2)S 四边形OBPF =S △OBF +S △PFB =12×4×1+12×PH ×BO ,即可求解; (3)过点M 作A ′M ∥AN ,过作点A ′直线DE 的对称点A ″,连接PA ″交直线DE 于点M ,此时,点Q 运动的路径最短,即可求解.【详解】(1)将点D 、E 的坐标代入函数表达式得:34229322a b a b -=-+⎧⎨++=⎩,解得: 1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,故抛物线的表达式为:y =12-x 2+32x +2, 同理可得直线DE 的表达式为:y =x ﹣1…①;(2)如图1,连接BF ,过点P 作PH ∥y 轴交BF 于点H ,将点FB 代入一次函数表达式,同理可得直线BF 的表达式为:y =14x -+1,设点P (x ,213222x x -++),则点H (x ,14x -+1), S 四边形OBPF =S △OBF +S △PFB =12×4×1+12×PH ×BO =2+2(213121224x x x -+++-)=7, 解得:x =2或32, 故点P (2,3)或(32,258); (3)当点P 在抛物线对称轴的右侧时,点P (2,3),过点M 作A ′M ∥AN ,过作点A ′直线DE 的对称点A ″,连接PA ″交直线DE 于点M ,此时,点Q 运动的路径最短,∵MN =2,相当于向上、向右分别平移2个单位,故点A ′(1,2),A ′A ″⊥DE ,则直线A ′A ″过点A ′,则其表达式为:y =﹣x +3…②,联立①②得x =2,则A ′A ″中点坐标为(2,1),由中点坐标公式得:点A ″(3,0),同理可得:直线AP ″的表达式为:y =﹣3x +9…③,联立①③并解得:x =52,即点M (52,32), 点M 沿BD 向下平移2个单位得:N (12,12-). 【点睛】本题考查是二次函数综合运用,涉及到一次函数、图形的平移、面积的计算等,其中(3),通过平移和点的对称性,确定点Q 运动的最短路径,是本题解题的关键.22.定义:点P (a ,b )关于原点的对称点为P ',以PP '为边作等边△PP 'C ,则称点C 为P 的“等边对称点”; (1)若P (13),求点P 的“等边对称点”的坐标.(2)若P 点是双曲线y =2x(x >0)上一动点,当点P 的“等边对称点”点C 在第四象限时, ①如图(1),请问点C 是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由.②如图(2),已知点A (1,2),B (2,1),点G 是线段AB 上的动点,点F 在y 轴上,若以A 、G 、F 、C这四个点为顶点的四边形是平行四边形时,求点C 的纵坐标y c 的取值范围.【答案】(1)(33);(2)①是,y =﹣6x(x >0);②y c ≤﹣6或﹣3<y c ≤﹣2 【解析】【分析】 (1)P (13P '(﹣13,可求PP '=4;设C (m ,n ),有PC =P 'C =4,通过解方程可得m 3,再进行运算即可;(2)①设P (c ,2c )则P '(﹣c ,﹣2c ),可求PP '=224c c +;设C (s ,t ),有PC =P 'C =224c c+通过解方程可得s =﹣22t c ,t =3±,令33x c y c ⎧=⎪⎨⎪=-⎩,消元c 即可得xy =﹣6; ②当AG 为平行四边形的边时,G 与B 重合时,为一临界点通过平移可求得C (1,﹣6),y c ≤﹣6;当AG 为平行四边形的对角线时,G 与B 重合时,求得C (3,﹣2),G 与A 重合时,C (2,﹣3),此时﹣3<y c ≤﹣2.【详解】解:(1)∵P (13,∴P '(﹣13),∴PP '=4,设C (m ,n ),∴等边△PP ′C ,∴PC =P 'C =4, 2222(1)(3)(1)(3)4m n m n -+-=+++= ,∴m 3, 3﹣1)2+(n 32=16.解得n∴m =﹣3或m =3.如图1,观察点C 位于第四象限,则C (﹣3.即点P 的“等边对称点”的坐标是(3). (2)①设P (c ,2c ),∴P '(﹣c ,﹣2c ),∴PP '=设C (s ,t ),PC =P 'C ===∴s =﹣22tc ,∴t 2=3c 2,∴t=,∴C)或C),∴点C 在第四象限,c >0,∴C(c),令x y ⎧=⎪⎨⎪=⎩,∴xy =﹣6,即y =﹣6x (x >0);②当AG 为平行四边形的边时,G 与B 重合时,为一临界点通过平移可求得C (1,﹣6),∴y c ≤﹣6;当AG 为平行四边形的对角线时,G 与B 重合时,求得C (3,﹣2),G 与A 重合时,C (2,﹣3),此时﹣3<y c ≤﹣2,综上所述:y c≤﹣6或﹣3<y c≤﹣2.【点睛】本题主要考查反比例函数综合题,平行四边形的判定与性质,对新定义的理解是解题的关键.。
2014年九年级中考模拟考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.1x ≠- 10.66.34410⨯ 11.2 12.20<<y 13.乙14.2m a - 15 16.245 17.3218.注:12题写y<2扣1分三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(1)(1)原式= 23 —4 …………………………………………4分(2)移项配方得:2(2)5x -= ………………………………………2分解之得:1222x x ==………………………………4分20.原式=122122+--÷--x x x x x ……………………………………………………2分 =1+-x ……………………………………………………4分解不等式组得 12x -<≤, …………………………………………6分 符合不等式解集的整数是0,1,2. ……………………7分 当0x =时,原式2= ……………………………………………………8分21.解:(1)列表或画树状图正确(略) …………………………………………4分 ∴P (两次都是红色)=1/9 . …………………………………………………6分(2)两次都是白色或两次一红一白。
…………………………8分22.(1)5 8 图略 …………………………………………………3分(2)95(1分) 95 (2分) …………………………………………………6分(3)54 …………………8分23.证明:(1)∵ BC = CD ,∴ ∠CDB =∠CBD .∵ AD // BC ,∴ ∠ADB =∠CBD .∴ ∠ADB =∠CDB .……………1分又∵ AB ⊥AD ,BE ⊥CD ,∴ ∠BAD =∠BED = 90°. ………2分在△ABD 和△EBD 中,∵ ∠ADB =∠CDB ,∠BAD =∠BED ,BD = BD ,∴ △ABD ≌△EBD . ………………………………………………4分∴ AD = ED . ………………………………………………………5分(2)∵AF // CD ,∴ ∠AFD =∠EDF . ∴∠AFD =∠ADF ,即得 AF = AD .又∵ AD = ED ,∴ AF = DE . …………………………………7分于是,由 AF // DE ,AF = DE ,得四边形ADEF 是平行四边形. ……9分又∵ AD = ED ,∴ 四边形ADEF 是菱形. ………………………10分24.(1)在Rt △BOP 中 ,∠BOP =90°,∠BPO =45°,OP =100,∴OB=OP =100.…………………………………………………………………2分在Rt △AOP 中, ∠AOP =90°,∠APO =60°,tan AO OP APO ∴=⋅∠. AO ∴=. …………………………………4分∴1031)AB =(米). ………………………………………………6分(2)v 此车速度1)=250.7318.25≈⨯=(米/秒) . ………8分 18.25米/秒 =65.7千米/小时. ……………………………………9分65.770<, ∴此车没有超过限制速度. ………………………………………………10分25.(1)设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =kx +b , ……1分由图可知,函数图象过点(2,30)、(6,50),∴⎩⎨⎧=+=+506302b k b k 解得⎩⎨⎧==205b k ……………………………………………4分 ∴y =5x +20. ……………………………………………………………………5分(2)由图可知,甲队速度是:60÷6=10(米/时). ……………………………6分设甲队从开始到完工所铺设彩色道砖的长度为z 米,依题意,得6050.1012z z --= ……………………………………………………8分解得 z =110. ………………………………………………………9分答:甲队从开始到完工所铺设彩色道砖的长度为110米. …………10分26.(1)证明:连接AE ………………………………………………………1分∵AB 为⊙O 的直径,∴∠AEB =90°∴∠BAE +∠ABE =90° …………………2分∵AB =AC ,AE ⊥BC ∴AE 平分∠BAC ∴CBF BAC BAE ∠=∠=∠21 ………3分 ∴︒=∠+∠90ABE CBF ∴AB ⊥BF∴BF 为⊙O 的切线 ………………………………………………………5分(2)过点C 作CG ⊥BF , ………………………………………………………6分在Rt △ABF 中1022=+=BF AB AF∵AC =6 ∴CF =4 ………………7分∵CG ⊥BF ,AB ⊥BF ∴CG ∥AB∴△CFG ∽△AFB ………………8分 ∴ABCG BF GF AF CF == G∴512516==CG CF , ∴5245168=-=-=GF BF BG ………………………………9分 在Rt △BCG 中21tan ==∠BG CG CBF ………………………………………………10分27.(1)等腰三角形 …………………………………3分(2)因为抛物线y=-x2+bx (b >0)过原点,设抛物线顶点为B 点,抛物线与X 轴的另一交点为A 点,若“抛物线三角形”是等腰直角三角形,△OAB 中,∠OBA=90°,抛物线的对称轴是x=b/2,B 点坐标为(b/2,b/2)代入函数表达式,算出b=2 …………3分(3)存在,(略) …………4分(4)m=2 …………………………………2分28.解:(1)由题意可知 44m =,1m =.(1分)∴ 二次函数的解析式为24y x =-+.∴ 点A 的坐标为(- 2, 0). …………………………………3分(2)①∵ 点E (0,1),由题意可知, 241x -+=.解得 x = AA …………………………………5分②如图,连接EE ′.由题设知AA ′=n (0<n <2),则A ′O = 2 - n .在Rt △A ′BO 中,由A ′B 2 = A ′O 2 + BO 2,得A ′B 2 =(2–n )2 + 42 = n 2 - 4n + 20. …6分∵△A ′E ′O ′是△AEO 沿x 轴向右平移得到的,∴EE ′∥AA ′,且EE ′=AA ′.∴∠BEE ′=90°,EE ′=n .又BE =OB - OE =3.∴在Rt △BE ′E 中,BE ′2 = E ′E 2 + BE 2 = n 2 + 9, ……………………7分∴A ′B 2 + BE ′2 = 2n 2 - 4n + 29 = 2(n –1)2 + 27. ……………………8分当n = 1时,A ′B 2 + BE ′2可以取得最小值,此时点E ′的坐标是(1,1). ………9分③如图,过点A 作AB ′⊥x 轴,并使AB ′ = BE = 3.易证△AB ′A ′≌△EBE ′,∴B ′A ′ = BE ′,∴A ′B + BE ′ = A ′B + B ′A ′.………………10分当点B ,A ′,B ′在同一条直线上时,A ′B + B ′A ′最小,即此时A ′B +BE ′取得最小值.易证△AB ′A ′∽△OBA ′, ∴34AA AB A O OB ''==',∴AA ′=36277⨯=,∴EE ′=AA ′=67, …………………11分 ∴点E ′的坐标是(67,1). ……………………………………12分。
2014中考二模考试数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,共24分;第Ⅱ卷为非选择题,96分;全卷共10页,满分120分,考试时间为120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题共24分)一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.无理数: ()15D. 52.下列各命题正确的是 : ()A.若两弧相等,则两弧所对圆周角相等B. 有一组对边平行的四边形是梯形.C.垂直于弦的直线必过圆心.D. 有一边上的中线等于这边一半的三角形是直角三角形.3.某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是() A.平均数 B.众数 C.中位数 D.方差4.已知反比例函数2kyx-=的图象如图所示,则一元二次方程22(21)10x k x k--+-=根的情况是()A.有两个不等实根 B.有两个相等实根C.没有实根 D.无法确定5.已知四边形ABCD是平行四边形,下列结论中不正确的有()①当AB=BC时,它是菱形②当AC⊥BD时,它是菱形③当∠ABC=90时,它是矩形④当AC=BDA.1个 B.2个 C.3个 D.4个6.二次函数cbxaxy++=2的图象如图所示,则一次函数abxy+=的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限第7题图7.如图所示,在折纸活动中,小明制作了一张ABC ∆纸片,点D E 、 分别在边AB AC 、上,将ABC ∆沿着DE 折叠压平,A 与A '重合, 若70A ∠=︒,则1+2∠∠=( ) A .70︒ B .110︒ C . 130︒ D .140︒8. 在6张完全相同的卡片上分别画有线段、等边三角形、直角梯形、正方形、正五边形和圆各一个图形。
2014年初中毕业暨高中阶段招生考试模拟试题数学〔试卷总分值:150分考试时间:120分钟〕注意事项:1.全卷共三大题,27小题,试卷共6页,答题卡6页;2.答案一律写在答题卡上,答在试卷上不计分.第I卷〔选择题,共24分〕一、选择题〔本大题共8个小题,每题3分,共24分,每题均有四个选项,其中只有一个选项是符合题意的,请将正确的选项前的字母代号填涂在答题卡上〕1.在-2、-3、0、1、3中,最小数与最大数之积为( ▲ )A.3 B. -6 C. -9 D. 02.以下是天气预报中经常使用到的图标,其中既是中心对称又是轴对称图形的为( ▲ )A. B. C. D.3.国家统计局于2014年1月20日公布,2013年国内生产总值568845亿元,同比增长7.7%。
其中568845亿用科学计数法可写成( ▲ )(保留三位有效数字)A. 5.68×1012B. 5.68×1013C. 5.69×1012D. 5.69×10134.如下图,直线AB与坐标轴分别交于点A(-3,0)和B(0,4)且与x轴的夹角为α,则sinα+tanα的值为( ▲ )A.2720B.2215C.3120D.29155.一元二次方程a(x−b)2−11=0的两实根为13±√113,则ab的值为( ▲ )A. 1B.2C. 3D. 46.点A是质地均匀的正方体“魔方”上的一个顶点,将“魔方”随机投掷在水平桌面上,则点A与桌面接触的概率为( ▲ )A.16B.13C.12D.237.已知关于t的不等式组{m≤t2t+1<4恰好3个整数解,则函数y=1√5x+m与y=x²-m图像交点个数为( ▲ )A. 0B. 1C. 2D.以上答案均有可能8.甲、乙两位同学想在正五边形ABCDE内部寻求点P,使得四边形ABPE是平行四边形,其作法如下:〔甲〕连接BD和CE,两线段交于P点,则P为所求;〔乙〕取CD中点M,再以A点为圆心,AB为半径画弧,交AM与P点,P点为所求。
第6题图第3题图(千米)第4题图2014年中考数学模拟试题(六)亲爱的同学:这份试卷将记录你的自信、沉着、智慧和收获. 请认真审题,看清要求,仔细答题. 预祝你取得好成绩! 请注意:1.选择题答案用铅笔涂在答题卡上.2.填空题、解答题不得用铅笔或红色笔填写. 3.考试时,不允许使用科学计算器.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下面的计算一定正确的是( )A .6332b b b =+ B .2229)3(q p pq -=-C .8531535y y y =⋅ D .339b b b =÷2.某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字)应为( )A .51075.6-⨯ 克 B .51074.6-⨯ 克 C .61074.6-⨯ 克 D .61075.6-⨯克 3.星期六,小亮从家里骑直行车到同学家去玩,然后返回,如图是他离家的路程y (千米)与时间x (分钟)的图象,根据图象信息,下列说法不一定正确的是( )A .小亮到同学家的路程是3千米.B .小亮在同学家逗留的时间是1小时.C .小亮回家时用的时间比去时用的时间少.D .小亮去时走上坡路,回家时走下坡路.4.如图,直线AB ∥CD ,直线EF 与AB ,CD 分别交于点E ,F ,EG ⊥EF ,垂足为E ,若o601=∠,则∠2的度数为A .o60 B .o45 C .o30 D .o155.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ① AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3.A .4B .3C .2D .16.如图所示,在平行四边形ABCD 中,AC 与BD 相交于 点O ,E 为OD 的中点,连接AE 并延长交DC 于点F , 则DF :FC=( )A .1:4B .1:3 C .2:3 D .1:27.不等式组⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(315的解集是A .2>xB .42≤<xC .2<x 或4≥xD .4≤x8.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC ,作AC 的垂直平分线MN 分别交AD ,AC ,BC 于M ,O ,N ,连接AN ,CM ,则四边形ANCM 是菱形.乙:分别作∠A ,∠B 的平分线AE ,BF ,分别交BC ,AD 于E ,F ,连接EF ,则四边形ABEF 是菱形.根据两人的作法可判断( )第6题图A .甲正确,乙错误B .乙正确,甲错误C .甲、乙均错误D .甲、乙均正确 9.已知二次函数)0(2≠++=a c bx ax y 的图象 如图所示,下列结论:①0<b ;②024<++c b a ;③0>+-c b a ;④22)(b c a <+.其中正确的结论是( )A .①②B .①③C .①③④D .①②③④10.如图,在等腰直角△ACB 中,∠ACB=90°,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且∠DOE=90°,DE 交OC 于点P .则下列结论: (1)图形中全等的三角形只有两对;(2)△ABC 的面积等于四边形CDOE 的面积的2倍;(3)CD+CE=OA ;(4)AD 2+BE 2=2OP •OC . 其中正确的结论有( )A . 4个B .3个C .2个D .1个11.如图所示,在直角坐标系中放置一个边长为1的正方形ABCDx 轴的正方向无滑动的在x 轴上滚动,当点A 离开原点后第一次落在x 轴上时,点A 运动的路径线与x 轴围成的面积为( )A .1+πB .12+πC .212+πD .21+π12.如图,点P (a ,a )是反比例函数xy 16=在第一象限内的图象上的一个点,以点P 为顶点作等边△PAB ,使A 、B 落在x 轴上,则△POA 的面积是( )A .3B .4C .33412- D .33824- 第Ⅱ卷 (非选择题 共84分)注意事项:1.用钢笔或圆珠笔(蓝色或黑色)直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分. 13.因式分解 3222x x y xy -+= . 14.化简 =+-÷+---12112113(22a a a a a . 15.同时抛掷A 、B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x 、y ,并以此确定点P (x ,y ),那么点P 落在抛物线x x y 32+-=上的概率为 .16.如图,在平面直角坐标系中,点O 是原点,点B (0,),点A 在第一象限且AB ⊥BO ,点E 是线段AO 的中点,点M 在线段AB 上.若点B 和点E 关于直线OM 对称,则点M 的坐标是 .17.如图,小方格都是边长为1 的正方形。
2014年数学中考模拟试题收集·江苏省南京市秦淮区2013-2014学年中考一模数学试卷及答案·江苏省苏州市高新区2014年中考一模数学试题及答案·天津市红桥区2014年初中会考模拟数学试题及答案·2013年福建师大附中空飞招生数学试题及答案·北京市怀柔区2014年中考一模数学试题及答案·内蒙古海拉尔区第12中学2014届中考模拟数学试题(一)及答案·湖北省沙洋县2014年初中毕业生调研考试数学试卷及答案·2014年江苏省姜堰区中考适应性考试数学试卷及答案·安徽省安庆市2014年中考模拟考试一模数学试题及答案·南安市2014届初中毕业班数学科综合模拟试卷(一)及答案·山东省泰安市2014年初中学生学业模拟考试数学试题及答案·北京市平谷区2014年中考一模数学试题及答案·北京市通州区2014年中考一模数学试题及答案·连云港市灌南县2014年中考数学模拟试题及答案·北京市延庆县2014年中考一模数学试题及答案·深圳市2014年初中毕业考试数学模拟试卷(7)及答案·泰兴市实验初级中学2014届中考第一次模拟数学试题及答案·温州市市直五校协作体2014年中考一模数学试卷及答案·2014年南京市雨花栖霞浦口化工园区四区中考一模数学试卷·河南省洛阳市2014年中考一模数学试卷及答案·2014年山东省潍坊安丘兴华学校中考数学模拟试题及答案·深圳市2014年初中毕业考试数学模拟试卷(2)及答案解析·福建省莆田市2014年初中毕业班质量检查数学试卷·2014年安徽省初中名校毕业学业模拟考试数学试卷及答案·北京市丰台区2014年中考一模数学试题·2014年广州市荔湾区初三模拟十校联考数学试卷及答案·2014年三门峡中考数学第一次质量检测试卷及答案·江苏省南京市六合区2014年中考一模数学试题及答案·北京市东城区2014年中考一模数学试题及答案·北京市西城区2014年中考一模数学试题分析·江苏省南京市建邺区2014年中考一模数学试卷及答案·天津市塘沽区2014年中考一模数学试题及答案·2014年河南省郑州市九年级第二次质量预测数学试卷及答案·深圳市2014年初中毕业考试数学模拟试卷(3)及答案·深圳市2014年初中毕业考试数学模拟试卷(4)及答案·济南市槐荫区2014届中考一模数学试题及答案·山东省临沂市2014年中考数学模拟试卷(一)·广西玉林市2014年中考一模数学试卷及答案(word版) ·浙江省金衢十二校2014年初三联考数学试卷及答案·温州地区2013-2014学年中考第一次模拟考试数学试题及答案·北京市朝阳区2014年中考一模数学试题及答案·徐州市2014年九年级第一次质量检测(一模)数学试卷及答案·山东省章丘绣江中学2014年推荐生数学模拟试题(3)及答案·2014年上海市初三五校联考数学卷及答案·广州市花都区2014年中考数学一模试题及答案·揭西县第三华侨中学2014年初中学业毕业数学模拟试卷及答案·江苏省苏州立达中学2014年中考一模数学试题及答案·山东省章丘绣江中学2014年推荐生考试数学模拟试题及答案·山东省青岛市北区2014年中考一模数学试题及答案(WORD版)·北京市西城2014年中考一模数学试卷及答案·2014年广东省从化市中考一模数学试题及答案·江苏省苏州高新区2014年中考一模数学试题及答案·深圳市2014年初中毕业考试数学模拟试卷(1)及答案解析·邯郸市2014届中考第一次模拟数学试题及答案·深圳市2014年初中毕业考试数学模拟试卷(6)及答案·重庆市永川中学初2014级中考模拟数学试题·深圳市2014年初中毕业考试数学模拟试卷(5)·北京市石景山区2014年中考一模数学试题及答案·湖北省恩施州2014年中考适应性考试数学试卷及答案·河南省郑州市2014年九年级第二次质量预测数学试卷及答案·北京市门头沟区2014年中考一模数学试题及答案·江苏省南京市玄武区2014年中考一模数学试卷及答案·2014年广州市天河中考一模数学试卷·南安市2014届初中毕业班数学科综合模拟试卷(二)及答案·海南省2014年中考数学模拟试题(7)含参考答案·江苏省南京市高淳区2014年中考一模数学试题及答案·2014年安徽省凤阳县中考数学模拟试卷及答案·济南市市中区2014年中考一模数学试题及答案·山东省临清市2014届第一次中考模拟数学试题及答案·2014年河南省唐河县中考一模数学试卷及答案·海南省2014年中考数学模拟试题(4)含参考答案·保定市定兴县2014年初中毕业生第一次模拟数学试卷及答案·河北省滦南县2014届中考第一次模拟考试数学试题及答案·海口市大华中学2014年初中毕业数学科模拟试卷及答案·浙江省杭州市拱墅区2014年中考一模数学试卷及答案·2014年上海市松江区中考二模数学试卷含答案·广州市南沙区2014年初中毕业班综合测试数学试题(一)及答案·峨眉山市2014年初三4月第二次调研考试数学试卷及答案·海南省琼海市2013-2014年初三模拟监测数学试卷(二)及答案·哈尔滨市2014年中考模拟数学试卷及答案·上海市闸北区2014年中考二模数学试题及答案·武汉市部分学校2014届九年级四月调研测试数学试题及答案·湖北省黄冈市2014届九年级四月调研数学试题及答案·江苏省盐城市亭湖区2014年中考一模数学试卷及答案·海南省2014年中考数学模拟试题(8)含参考答案·四川省渠县三中初2014届九年级一诊考试数学试题及答案·海南省2014年中考数学模拟试题(2)含参考答案·海南省2014年中考数学模拟试题(10)含参考答案·浙江省杭州市2014年中考适应性训练数学试卷及答案·福建省福州市岚华中学2014届九年级质量检查数学模拟试卷·北京市燕山地区2014年初中毕业考试模拟数学试题及答案·北京市西城区2014年中考一模数学试题·云南省曲靖市板桥镇一中2014年中考模拟数学试卷及答案·天津市南开区2014年九年级学业水平质量调查数学试题(一)及答案·江苏省无锡市江南中学2014年中考数学一模试卷及答案·2014年陕西中考数学模拟试卷及答案·海南省2014年中考数学模拟试题(1)含参考答案·陕西省西安市2014年中考数学模拟试卷及答案·南京市6区2014年中考一模数学试卷及答案(6份打包) ·2014年永定二中中考数学模拟试题·海南省2014年中考数学模拟试题(6)含参考答案·上海市徐汇区2014年中考二模数学试题及答案·浙江省温岭市第四中学2014届中考一模数学试题及答案·海南省2014年中考数学模拟试题(3)含参考答案·安徽省淮北市五校2014届中考第一次联合模拟考试数学试题及答案·2014年河南省郑州市八中中考模拟数学试题及答案·广州市番禺区2014年九年级综合训练数学试题(一)及答案·北京市房山区2014年初中毕业会考一模数学试题·上海市虹口区2014年中考二模数学试题及答案·2014年临沂市初中学生学业数学考试样卷及答案·云南省双柏县2014年初中学业水平数学模拟试卷(一)及答案·乐山市夹江县2014届初中毕业会考适应性考试数学试卷及答案·北京市西城区2014届九年级毕业会考数学试卷及答案·江门市2014年初中毕业生学业水平调研测试数学试题及答案·哈尔滨市道外区2014届中考调研测试数学试题(一)及答案·太原市2014年初中毕业班综合一模数学试题及答案·海南省2014年中考数学模拟试题(5)含参考答案·福州市龙山初级中学2014届中考模拟数学试题(三)及答案·海南省2014年中考数学模拟试题(9)含参考答案·鞍山市2014届九年级数学第一次模拟考试试题及答案·湖南省怀化市2014年初中毕业学业水平考试模拟试卷(一)及答案·天津市河北区2014年初中毕业生学业模拟考试数学试题(一)及答案·2014年中考第二次模拟考试数学试题(广州专用)·江苏省泰州市海陵区2014年中考第一次模拟考试数学试题·2014年上海市金山区中考二模数学试题·沙河市二十冶第三中学2014届中考模拟数学试题(八)及答案·常州市2014年初中毕业升学模拟调研测试数学试题及答案·2014年广东省初中毕业生学业考试数学最新模拟试卷(含部分14原创题)·杭州市萧山区北干初中2014年中考数学模拟试卷及答案·哈尔滨市道里区2014年毕业班数学模拟测试题(一)及答案·2014年浙江省宁波市中考数学一模试卷及答案·2014年山东省淄博市张店区中考模拟数学试题及答案·2014年浙江省温州市中考数学模拟试卷及答案·扬州市江都区2013-2014年度九年级数学第一次模拟试卷·上海市奉贤区2014届九年级4月模拟调研测试数学试题及答案·山东省济南市2014年中考数学模拟试卷及答案·2014年湖北省宜昌市中考数学模拟试题(五)及答案·2014届山东省滕州市级索中学初中九年级模拟试题(一)数学试题·山东淄博市桓台县索镇一中2014年中考数学模拟试题·2014年浙江省杭州市建兰中学中考数学模拟试卷(6)及答案·2014年上海市黄浦区九年级学业考试模拟数学试卷及答案·浙江省杭州市2014年中考数学模拟试卷(3)及答案·吉林实验中学2014中考第一次模拟数学试卷及答案·2014届苏科版中考数学模拟试卷(3)·云南教育2014中考数学全真模拟大寨中考数学试卷·2014年池州市贵池区中考数学模拟试卷(一)及答案解析·江苏省高邮市2013-2014学年九年级数学一模试卷及答案·浙江省杭州市2014年中考数学模拟试卷(9)及答案(1)·淄博市桓台县邢家中学2014年中考数学模拟试题及答案·2014年北京市中考数学模拟试题及答案·2014年浙江省杭州市建兰中学中考数学模拟试卷(5)及答案·上海市普陀区2014年中考二模数学试题·安徽省合肥西苑中学2014年中考一模数学试卷·山东省莘县2014年中考数学模拟试卷(二)·2014年安徽省初中毕业学业考试数学模拟试题及答案·2014年浙江省杭州市建兰中学中考数学模拟试卷(4)及答案·扬州中学教育集团2013-2014年九年级数学第一次模拟考试试卷·2014年福州市初中毕业班质量检测数学试卷及答案(word 版)·温州地区2013-2014学年中考第一次模拟考试数学试卷及答案·2014年湖北省宜昌市中考数学模拟试题(三)及答案·2014年上海市浦东区中考二模数学试题·浙江省衢州市2014年中考数学模拟试卷及答案·2014年安徽省初中毕业学业考试模拟试卷(二)及答案·2014年哈尔滨香坊区中考一模数学试卷及答案(WORD版) ·山东淄博桓台县马桥中学2014年中考数学模拟试题·上海市宝山区2014年中考二模数学试题·浙江省杭州市2014年中考数学模拟试卷(2)及答案·山东省淄博市桓台县2014年中考模拟数学试题及答案·杭州市萧山区瓜沥二中2014年中考数学模拟试卷及答案·2014年浙江省杭州市建兰中学中考数学模拟试卷(2)及答案·2014年广东省初中毕业生学业考试模拟试卷及答案·2014届苏科版中考数学模拟试卷(2)·浙江省杭州市2014年中考数学模拟试卷(5)及答案·山东博兴实验中学2014年中考模拟数学试题及答案·山东省新泰市2014年中考数学模拟试卷·2014年安徽省初中毕业学业考试模拟试卷(一)及答案·吉安市青原区值夏中学2014年中考数学模式试题及答案·安庆市2014年中考模拟考试(一模)数学试题(扫描版,答案word版)·2014届苏科版中考数学模拟试卷(1)及答案·2014年东营市初中学生中考模拟考试数学试题及答案·2014年浙江省杭州市建兰中学中考数学模拟试卷(3)及答案·沙河市二十冶第三中学2014届中考模拟数学试题(五)及答案·山东省莘县2014年中考数学模拟试卷(三)·2014年深圳市中考数学模拟试题(4)及答案·2014年湖北省宜昌市中考数学模拟试题(四)及答案·哈尔滨市南岗区2014年中考调研测试数学试卷(一)及答案·上海市杨浦区2014年4月初三数学基础测试卷及答案(word 版)·浙江省杭州市2014年中考数学模拟试卷(6)及答案·2014年上海市闵行区中考二模数学试卷及答案·苏州市昆山市2014年中考第一次模拟测试数学试题·泰州市第二附属中学2014届九年级中考一模数学试题·山东省淄博市高青县2014年中考模拟数学试题(一)及答案·湖南省邵阳地区2014年初中学业水平调研考试数学试卷及答案·2014年深圳市中考数学模拟试题(2)及答案·山东省莘县2014年中考数学模拟试卷(一)及答案·山东淄博市临淄区2014年中考数学模拟试题及答案·山东淄博高青县2014年中考一模数学试题(三)及答案·2014年河北石家庄裕华区中考摸底考试数学试卷及答案·2014届苏科版中考数学模拟试卷(4)·2014年南阳市邓州市裴营乡联合中学第一次数学模拟试题及答案·2014年湖北省宜昌市中考数学模拟试题(一)及答案·2014年山东省滕州市东沙河中学九年级中考模拟(一)数学试题·2014广东省初中毕业生学业考试数学最新模拟试卷(二)及答案·上海市长宁区2014年中考二模数学试题·石家庄市教育局2014届中考第一次模拟考试数学试题及答案·杭州市萧山区瓜沥一中2014年中考数学模拟试卷及答案·长春市朝阳区2014年初中毕业生学业考试模拟数学试题(一)·浙江省杭州市2014年中考数学模拟试卷(7)及答案·2014年思茅一中实验中学中考第一次模拟数学试卷及答案·海口市灵山中学2014年九年级第一次模拟考试数学试题·2014年上海市崇明县九年级模拟考试数学试卷及答案·上海市闵行区2014年中考二模数学试题·湖北省孝感市朋兴中学2014年春中考适应考试数学试卷及答案·2014年台州市中考模拟数学试卷及答案·2014年深圳市中考数学模拟试题(1)及答案·2014年山东淄博高青县实验中学中考模拟数学试题·河南省三门峡市2013-2014学年九年级数学第一次模拟试题·山东省淄博市博山区2014年中考模拟数学试题·2014年江西省中等学校招生适应性考试数学试题及答案·2014届苏科版中考数学模拟试卷(5)·2014年池州市贵池区中考数学模拟试卷(二)及答案解析·山东淄博市桓台县鱼洋中学2014年中考模拟数学试题及答案·浙江省杭州市2014年中考数学模拟试卷(4)及答案·云南省临沧市勐捧中学2014年九年级第一轮模拟考试数学试卷·浙江省杭州市2014年中考数学模拟试卷(10)及答案·关桥中学2013-2014学年度九年级第一次模拟数学试卷·沙河市二十冶第三中学2014届中考模拟数学试题(七)及答案·2014年广州地区中考第一次模拟考试数学试题·山东省莘县2014年中考数学模拟试卷(四)·上海市徐汇区2014年中考二模数学试题·2014年河南省鹤壁市中考学业考试第一次模拟测试试卷及答案·浙江省杭州市2014年中考数学模拟试卷(9)及答案·2014年深圳市中考数学模拟试题(3)·山东淄博淄川区2014年中考模拟数学试题·衢州市石梁中学2014届初三毕业生中考数学模拟试卷及答案·2014年湖北省宜昌市中考数学模拟试题(二)及答案·北京市2014年中考数学押宝预测试题(一)及答案·2014年浙江省杭州市建兰中学中考数学模拟试卷(1)及答案·2014年陕西省中考模拟数学试题及答案·菏泽市牡丹区安兴中学九年级学业水平测试模拟卷(一)及答案·四川省内江市东兴区2014年中考适应性考试数学试题·浙江省杭州市2014年中考数学模拟试卷(1)及答案·安徽省合肥168中学2014年中考一模数学试卷·上海市浦东新区2014年中考预测数学试卷及答案·广西玉林市2014年中考数学第一次模拟试题及答案·山东省青岛市北区2014年3月中考一模数学试题及答案·2014年新泰市泉沟中学数学中考模拟试题·遵义县2014年中考数学模拟试题(四)·遵义县2014年中考数学模拟试题(三)·遵义县2014年中考数学模拟试题(五)·遵义县2014年中考数学模拟试题答案(五套)·遵义县2014年中考数学模拟试题(一)·遵义县2014年中考数学模拟试题(二)。
xABB.初三数学第二次模拟试题(考试时间120分钟满分150分)第一部分选择题(共24分)一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题3分,共24分)1.2012年元月的某一天,我市的最低气温为-3℃,最高气温为4℃,那么这一天我市的日温差是A.3℃B.4℃C.-7℃D.7℃2.下列运算,结果正确的是A.422aaa=+B.()222baba-=-C.()()aabba222=÷D.()422263baab=3.图中圆与圆之间不同的位置关系有A.2种B.3种C.4种D.5种4.如图,BC∥DE,∠1=105°, ∠AED=65°, 则∠A的大小是A.25°B.35°C.40°D.60°5.四名运动员参加了射击预选赛,他们成绩的平均环数x及其方差s2如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选A.甲B.乙C.丙D.丁6.如右图是一个机器零件的三视图,根据标注的尺寸,这个零件的侧面积(单位:mm2)是A.π24B.π21C.π20D.π157.反比例函数ky=的图象如左图所示,那么二次函数y = kx2-k2x —1图象大致为8.下列说法正确的个数是①“对顶角相等”的逆命题是真命题②所有的黄金三角形都相似③若数据1、-2、3、x的极差为6,则x=4 ④方程x2-mx-3=0有两个不相等的实数根⑤已知关于x的方程232x mx+=-的解是正数,那么m的取值范围为6m>-A.5 B.4 C.3 D.2第二部分选择题(共126分)二、填空题(每小题3分,共30分)9.在函数xy32-=中,自变量x的取值范围是.10.我市今年初中毕业生为12870人,将12870用科学记数法表示为______(保留两个有效数字).11.如图,人民币旧版壹角硬币内部的正九边形每个内角的度数是______.12.如图,直线1l:11y x=+与直线2l:2y mx n=+相交于点),1(bP.当12y y>时,x的取值范围为.13.六·一儿童节前,苗苗来到大润发超市发现某种玩具原价为100元,经过两次降价,现售价为81元,假设两次降价的百分率相同,则每次降价的百分率为.14.如图所示,在建立平面直角坐标系后,△ABC顶点A的坐标为(1,-4) ,若以原点O为位似中心,在第二象限内画ABC△的位似图形A B C'''△,使ABC△与A B C'''△的位似比等于12,则点A'的坐标为.第11题第12题第14题15.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.16.定义:如图,若双曲线xky=(0>k)与它的其中一条对称轴y x=相交于两点A,B,则线段AB的长称为双曲线xky=(0>k)的对径.若某双曲线xky=(0>k)的对径是26,则k的值为.17.如图,已知四边形ABCD是菱形,∠A=70°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3= 度.18.在矩形纸片ABCD中,AB=8,BC=20,F为BC的中点,沿过点F的直线翻折,使点B落在边AD上,折痕交矩形的一边与G,则折痕FG=_____________第4题第5题第3题第15题第16题第17题三、简答题(共96分) 19.(8分)(1)计算:121(2)3-⎛⎫- ⎪⎝⎭-12sin30° (2)解方程:120112x x x x -+=+- 20.(6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值. 21.(8分)一个不透明的口袋中有n 个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,从袋中随机地取出一个球,它是红球的概率是35.(1)求n 的值;(2)把这n 个球中的两个标号为1,其余分别标号为2,3,…,1n -,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率. 22.(10分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄, 将调查数据绘制成如下扇形和条形统计图: 请根据以上不完整的统计图提供的信息, 解答下列问题:(1)扇形统计图中a = ,b = ; 并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少? 23.(10分)如图,自来水公司的主管道从A 小区向北偏东 60° 直线延伸,测绘员在A 处测得要安装自来水的M 小区在A 小区 北偏东30°方向,测绘员沿主管道测量出AC=200米,小区M 位于C 的北偏西60°方向,(1)请你找出支管道连接点N ,使得N 到该小区铺设的管道最短. (在图中标出点N 的位置) (2)求出AN 的长.24.(10分)如图,在△ABC 中,AD 平分∠BAC ,交BC 于D ,将 A 、D 重合折叠,折痕交AB 于E ,交AC 于F ,连接DE 、DF , (1)判断四边形AEDF 的形状并说明理由; (2)若AB=6,AC=8,求DF 的长.25.(10分)已知四边形ABCD 的外接圆⊙O 的半径为5,对角线AC 与BD 的交点为E ,且AB 2=AE ²AC ,BD=8, (1)判断△ABD 的形状并说明理由;(2)求△ABD 的面积.26.(10分)某种商品在30天内每件销售价格P (元)与时间t(天)的函数关系用如图所示的两条线段表示,该商品在30天内日销售量Q (件)与时间t(天) 之间的函数关系是Q=-t+40(0<t≤30,t 是整数).(1)求该商品每件的销售价格P 与时间t 的函数关系式,并写出自变量t 的取值范围; (2)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中 的第几天?(日销售金额=每件的销售价格×日销售量)27.(12分)如图,矩形ABCD 中,AD=8,AB=4,点E 沿A→D 方向在线段AD 上运动,点F 沿D→A 方向在线段DA 上运动,点E 、F 速度都是每秒2个长度单位,E 、F 两点同时出发,且当E 点运动到D 点时两点都停止运动,设运动时间是t(秒). (1)当 0<t<2时,判断四边形BCFE 的形状,并说明理由(2)当0<t<2时,射线BF 、CE 相交于点O ,设S △FEO =y ,求y 与t 之间的函数关系式. (3)问射线BF 与射线CE 所成的锐角是否能等于60°?若有可能,请求出t 的值,若不能,请说明理由.28.(12分)如图(1),分别以两个彼此相邻的正方形OABC 与CDEF 的边OC 、OA 所在直线为x轴、y 轴建立平面直角坐标系(O 、C 、F 三点在x 轴正半轴上).若⊙P 过A 、B 、E 三点(圆心在x 轴上)交y 轴于另一点Q ,抛物线c bx x y ++=241经过A 、C 两点,与x 轴的另一交点为G ,M 是FG 的中点,B 点坐标为(2,2).(1)求抛物线的函数解析式和点E 的坐标;(2)求证:ME 是⊙P 的切线;(3)如图(2),点R 从正方形CDEF 的顶点E 出发以1个单位/秒的速度向点F 运动,同时点S 从点Q 出发沿y 轴以5个单位/秒的速度向上运动,连接RS ,设运动时间为t 秒(0<t<1),在运动过程中,正方形CDEF 在直线RS 下方部分的面积是否变化,若不变,说明理由并求出其值;若变化,请说明理由;初三数学二模试题参考答案1-5 DCACB 6-8 DBD9.x ≤32 10.1.3³104 11.140 12.x >1 13.10% 14.(-21,2) 15.(-2,1) 16.917.95 18.55或45 19.(1)419 (2)5120.a 2+1 (a ≠±1) 21.(1)5 (2)209 22.(1)a=20% b=12% (2)700 (3)66分 23.(1)菱形 理由略 (2)724 24.(1)画MN ⊥AC 即可 (2)503 25.(1)等腰(略) (2)826.(1)P=⎩⎨⎧≤≤+-<<+)3025(100)250(20t t t t(2)W=QP①0<t <25 ②25≤t ≤30W=(-t+40)(t+20) W=(-t+40)(-t+100) =-(t -10)2+900 =t 2-140t+4000 t=10 W 大=900 =(t -70)2-900t=25 W 大=1125 综上所述, 最大值1125 第25天27.(1)等腰梯形 略 (2)y=t t --4)2(82 (3)①t=4-23 ②t =4-33228.(1)y=41x 2-23x+2 E(3,1)(2)证明略(3)不变 21。
2014山东禹城中考数学二模试卷(附答案)2014山东禹城中考数学二模试卷(附答案)本试题分选择题,36分;非选择题,84分;全卷满分120分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的县(市、区)、学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(选择题共36分)一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.的相反数的倒数是()A.B.C.D.2.如图所示的物体是一个几何体,其主视图是()3.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是().A.B.C.D.4.北京2008奥运的国家体育场“鸟巢”建筑面积达25.8万平方米,用科学记数法表示应为()(A)(B)(C)(D)5.下列命题是假命题的是()A.若,则x+2008C.若则D.平移不改变图形的形状和大小6、已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是().A.k>2B.k≥2C.k≤2D.k<27.已知抛物线与轴的一个交点为,则代数式的值为()A.2009B.2008C.2007D.20068.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中相似的是()9.如图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是A.18B.16C.10D.2010.在同一直角坐标系中,函数和(是常数,且)的图象可能是()11、如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B’处,则B’点的坐标为().A、(2,)B、(,)C、(2,)D、(,)12.如图,圆锥的侧面积恰好等于其底面积的2倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.B.C.D.第Ⅱ卷(非选择题共84分)二、填空题:本大题共5小题,每小题填对得4分,共20分.只要求填写最后结果.13.不等式组的解集为.14、如图4所示的半圆中,是直径,且,,则的值是.15.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为元.16.把两块含有30o的相同的直角三角尺按如图所示摆放,使点C、B、E在同一直线上,连结CD,若AC=6cm,则△BCD的面积是cm2.17.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点,那么点(是自然数)的坐标为.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(本题满分6分)先化简,再求值:(-)÷,其中x=.19.(本题满分8分)某中学五班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据。
2014年山东省中考模拟数学一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(3分)下列运算正确的是()A.=±2B.C.D. ﹣|﹣2|=2解析:A、根据算术平方根的定义即可判定;B、根据负整数指数幂的法则即可判定;C、根据立方根的定义即可判定;D、根据绝对值的定义即可判定.答案:C.2.(3分)下列运算正确的是()A. a3+a3=3a6B.(﹣a)3•(﹣a)5=﹣a8C.(﹣2a2b)3•4a=﹣24a6b3D.(﹣a﹣4b)(a﹣4b)=16b2﹣a2解析:根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,单项式的乘法法则;平方差公式,对各选项解析判断后利用排除法求解.答案:D.3.(3分)若一个圆锥的母线长是它底面半径的3倍,则它的侧面展开图的圆心角等于()A. 120°B. 135°C. 150°D. 180°解析:根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得.设底面半径为r,则母线为3r,则2πr=,解得n=120.答案:A.4.(3分)将y=(2x﹣1)•(x+2)+1化成y=a(x+m)2+n的形式为()A.B.C.D.解析:化为一般式后,利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.y=(2x﹣1)(x+2)+1=2x2+3x﹣1=2(x2+x+)﹣﹣1=2(x+)2﹣.答案:C.5.(3分)计算的结果为()A.B.C.D.解析:先计算括号里的,再相乘.==﹣=﹣.答案:A.6.(3分)如图,在△ABC中,∠ACB=90°,CD⊥AB于D,若AC=2,AB=3,则tan∠BCD的值为()A.B.C.D.解析:证明∠BCD=∠A,求tanA即可.根据三角函数的定义求解.由勾股定理知,c2=a2+b2∴BC==.根据同角的余角相等,∠BCD=∠A.∴tan∠BCD=tan∠A==.答案:B.7.(3分)如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,下列结论:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正确的个数为()A. 1B. 2C. 3D. 4解析:本题主要掌握相似三角形的定义,根据已知条件判定相似的三角形.∵在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,∴∠B=∠C=90°,AB:EC=BE:CF=2:1.∴△ABE∽△ECF.∴AB:EC=AE:EF,∠AEB=∠EFC.∵BE=CE,∠FEC+∠EFC=90°,∴AB:AE=BE:EF,∠AEB+∠FEC=90°.∴∠AEF=∠B=90°.∴△ABE∽△AEF,AE⊥EF.∴②③正确.答案:B.8.(3分)如图,△ABC是等腰直角三角形,且∠ACB=90度.曲线CDEF…叫做“等腰直角三角形的渐开线”,其中,,,…的圆心依次按A,B,C循环.如果AC=1,那么曲线CDEF和线段CF围成图形的面积为()A.B.C.D.解析:曲线CDEF和线段CF围成图形的面积为半径分别为1,+1,+2,圆心角分别为135°,135°,90°的扇形以及△ABC组成的,代入扇形面积公式相加即可.曲线CDEF和线段CF围成图形的面积是由三个圆心不同,半径不同的扇形以及△ABC组成,所以根据面积公式可得:+1×1÷2=.答案:C.9.(3分)已知三点P1(x1,y1),P2(x2,y2),P3(1,﹣2)都在反比例函数的图象上,若x1<0,x2>0,则下列式子正确的是()A. y1<y2<0B. y1<0<y2C. y1>y2>0D. y1>0>y2解析:根据k=xy即横纵坐标相乘得比例系数k,再由反比例函数图象上点的坐标特征即可解答.∵点P3(1,﹣2)都在反比例函数的图象上,∴k=1×(﹣2)=﹣2<0,函数图象在二,四象限,又∵x1<0,x2>0,∴P1在第二象限,P2在第四象限,∴y1>0,y2<0,∴y1>0>y2.答案:D.10.(3分)(2007•泰安)半径分别为13和15的两圆相交,且公共弦长为24,则两圆的圆心距为()A. 或14B. 或4C. 14D. 4或14解析:利用了连心线垂直平分公共弦,勾股定理求解,注意两圆相交的情况有两种情况.如图,圆A与圆B相交于点C,D,CD与AB交于点E,AC=15,BC=13,由于连心线AB垂直平分CD,有CE=12,△ACE,△BCE是直角三角形,由勾股定理得,AE=9,BE=5,而两圆相交的情况有两种,当为左图时,AB=AE﹣BE=9﹣5=4,当为右图时,AB=AE+BE=14.答案:D.11.(3分)若x1,x2是方程x2﹣2x﹣4=0的两个不相等的实数根,则代数式2x12﹣2x1+x22+3的值是()A. 19B. 15C. 11D.3解析:欲求2x12﹣2x1+x22+3的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.∵x1,x2是方程x2﹣2x﹣4=0的两个不相等的实数根.∴x12﹣2x1=4,x1x2=﹣4,x1+x2=2.∴2x12﹣2x1+x22+3=x12﹣2x1+x12+x22+3=x12﹣2x1+(x1+x2)2﹣2x1x2+3=4+4+8+3=19.答案:A.12.(3分)(2007•泰安)如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A﹣B﹣C﹣D的路径以1cm/s的速度运动(点P不与A,D重合).在这个运动过程中,△APD的面积S(cm)2随时间t(s)的变化关系用图象表示,正确的为()A.B.C.D.解析:本题考查动点函数图象的问题.点P在AB上运动时,△APD的面积S将随着时间的增多而不断增大,排除C.点P在BC上运动时,△APD的面积S将随着时间的增多而不再变化,应排除A,D.答案:B.二、填空题(本大题共7小题,满分21分.只要求填写最后结果,每小题填对得3分)13.(3分)方程(x+2)(x+3)=20的解是 .解析:此题很容易出错,解题时要注意方程右边为0才可用因式分解法,因此解此题时先要变形:(x+2)(x+3)﹣20=0,再化简得:x2+5x﹣14=0,用因式分解法即可求得.∵(x+2)(x+3)=20,∴(x+2)(x+3)﹣20=0,∴x2+5x﹣14=0,即(x﹣2)(x+7)=0解得x1=2,x2=﹣7.答案:2或﹣714.(3分)如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,若∠BAC=150°,则∠θ的度数是度.解析:解题关键是把所求的角转移成与已知角有关的角.根据对顶角相等,翻折得到的∠E=∠ACB可得到∠θ=∠EAC,∵△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,∠BAC=150°,∴∠DAC=∠BAE=∠BAC=150°.∴∠DAE=∠DAC+∠BAE+∠BAC﹣360°=150°+150°+150°﹣360°=90°.∴∠θ=∠EAC=∠DAC﹣∠DAE=60°.答案:60.15.(3分)若关于x的不等式组有解,则实数a的取值范围是 .权所有解析:解出不等式组的解集,根据已知不等式组有解比较,可求出a的取值范围.由(1)得x>2,由(2)得x<,∵不等式组有解,∴解集应是2<x<,则>2,即a>4实数a的取值范围是a>4.答案:a>4.16.(3分)如图所示,⊙M与x轴相交于点A(2,0),B(8,0),与y轴相切于点C,则圆心M的坐标是 .解析:连接AM,作MN⊥x轴于点N,则根据垂径定理即可求得AN的长,从而球儿ON的长,即圆的半径,然后在直角△AMN中,利用勾股定理即可求得MN的长,则M的坐标即可求出. 连接AM,作MN⊥x轴于点N.则AN=BN.∵点A(2,0),B(8,0),∴OA=2,OB=8,∴AB=OB﹣OA=6.∴AN=BN=3.∴ON=OA+AN=2+3=5,则M的横坐标是5,圆的半径是5.在直角△AMN中,MN===4,则M的纵坐标是4.故M的坐标是(5,4).答案:(5,4)17.(3分)如图,图1,图2,图3,…是用围棋棋子摆成的一列具有一定规律的“山”字.则第n个“山”字中的棋子个数是 .解析:由题目得,第1个“山”字中的棋子个数是7;第2个“山”字中的棋子个数是12;第3个“山”字中的棋子个数是17;第4个“山”字中的棋子个数是22;进一步发现规律:第n个“山”字中的棋子个数是5n+2.答案:5n+2.18.(3分)如图,一游人由山脚A沿坡角为30°的山坡AB行走600m,到达一个景点B,再由B沿山破BC行走200m到达山顶C,若在山顶C处观测到景点B的俯角为45°,则山高CD等于 m.(结果用根号表示)版权所有解析:解此题时需两次用到三角函数,即求出ED和CE后相加即可.过B作BF⊥AD于F,BE⊥CD于E,如图,∵在山顶C处观测到景点B的俯角为45°,∴△BEC为等腰直角三角形,而BC=200m,∴CE=BC=100m;∵∠A=30°,AB=600m,∴BF=AB=300m,∴CD=CE+ED=(100+300)m.答案:(300+100).19.(3分)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文x,y,z对应密文2x+3y,3x+4y,3z.例如:明文1,2,3对应密文8,11,9.当接收方收到密文12,17,27时,则解密得到的明文为 .解析:建立关于x,y,z的三元一次方程组,求解即可.根据题意列方程组得:,解得.答案: 3,2,9.三、解答题(本大题共7小题,满分63分.解答应写出必要的文字说明、证明过程或推演步骤)20.(6分)灌云县实验中学为了解毕业年级800名学生每学期参加社会实践活动的时间,随机对该年级60名学生每学期参加社会实践活动的时间进行了统计,结果如下表:(1)补全右面的频率分布表;(2)请你估算这所学校该年级的学生中,每学期参加社会实践活动的时间大于7天的约有多少人?解析:由统计表可以看出:7.5﹣9.5的频数为8+13=21,频率为21÷60=0.35;9.5﹣11.5的频数为8+7=15,频率为15÷60=0.25;所学校该年级的学生中,每学期参加社会实践活动的时间大于7天的约有800×=560.答案:(1)补全频数分布表:(2)每学期参加社会实践活动的时间大于7天的人数=800×=560人.21.(8分)如图,在梯形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAD的平分线AE交BC于E,F,G分别是AB,AD的中点.(1)求证:EF=EG;(2)当AB与EC满足怎样的数量关系时,EG∥CD?并说明理由.解析:1、易证得△ABD是等腰三角形,再由SAS证得△AFE≌△AGE⇒EF=EG.2、若EG∥CD,则四边形GDCE为平行四边形,则应有CE=GD=AD=AB.答案:(1)证明:∵AD∥BC,∴∠DBC=∠ADB.又∵∠ABD=∠DBC,∴∠ABD=∠ADB.∴AB=AD.又∵AF=AB,AG=AD,∴AF=AG.又∵∠BAE=∠DAE,AE=AE,∴△AFE≌△AGE.∴EF=EG.(2)解:当AB=2EC时,EG∥CD,证明:∵AB=2EC,∴AD=2EC.∴GD=AD=EC.又∵GD∥EC,∴四边形GECD是平行四边形.∴EG∥CD.22.(9分)某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?解析:先考虑购书的情况,设第一次购书的单价为x元,则第二次购书的单价为1.2x元,第一次购书款1200元,第二次购书款1500元,第一次购书数目,第二次购书数目,第二次购书数目多10本.关系式是:第一次购书数目+10=第二次购书数目.再计算两次购书数目,赚钱情况:卖书数目×(实际售价﹣当次进价),两次合计,就可以回答问题了.答案:解:设第一次购书的单价为x元,∵第二次每本书的批发价已比第一次提高了20%,∴第二次购书的单价为1.2x元.根据题意得:.(4分)解得:x=5.经检验,x=5是原方程的解.(6分)所以第一次购书为1200÷5=240(本).第二次购书为240+10=250(本).第一次赚钱为240×(7﹣5)=480(元).第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元).所以两次共赚钱480+40=520(元)(8分).答:该老板两次售书总体上是赚钱了,共赚了520元.(9分)23.(9分)如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC,垂足为F.(1)求证:DF为⊙O的切线;(2)若过A点且与BC平行的直线交BE的延长线于G点,连接CG.当△ABC是等边三角形时,求∠AGC的度数.解析:(1)连接AD,OD,根据等腰三角形的性质与平行线的性质,可得DF⊥OD,故得到证明;(2)根据题意,△ABC是等边三角形,可得BG是AC的垂直平分线,再根据平行线的性质,可得△ACG是等边三角形,故∠AGC=60°.答案:(1)证明:连接AD,OD,∵AB是⊙O的直径,∴AD⊥BC.(2分)∵△ABC是等腰三角形,∴BD=DC,又∵AO=BO,∴OD是△ABC的中位线,∴OD∥AC.∵DF⊥AC,(4分)∴DF⊥OD,∴DF是⊙O的切线.(5分)(2)解:∵AB是⊙O的直径,∴BG⊥AC.∵△ABC是等边三角形,∴BG是AC的垂直平分线,∴GA=GC.(7分)又∵AG∥BC,∠ACB=60°,∴∠CAG=∠ACB=60°.∴△ACG是等边三角形.∴∠AGC=60°.(9分)24.(9分)市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B 两种树的相关信息如下表:若购买A种树x棵,购树所需的总费用为y元.(1)求y与x之间的函数关系式;(2)若购树的总费用不超过82 000元,则购A种树不少于多少棵?(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A,B两种树各多少棵?此时最低费用为多少?解析:(1)根据购树的总费用=买A种树的费用+买B种树的费用,化简后便可得出y与x 的函数关系式;(2)根据(1)得到的关系式,然后将所求的条件代入其中,然后判断出购买A种树的数量;(3)先用A种树的成活的数量+B种树的成活的数量≥树的总量×平均成活率来判断出x的取值,然后根据函数的性质判断出最佳的方案.答案:解:(1)y=80x+100(900﹣x)=﹣20x+90000(0≤x≤900且为整数);(2)由题意得:﹣20x+90000≤82000,解得:x≥400,又因为计划购买A,B两种风景树共900棵,所以x≤900,即购A种树为:400≤x≤900且为整数.(3)92%x+98%(900﹣x)≥94%×90092x+98×900﹣98x≥94×900﹣6x≥﹣4×900x≤600∵y=﹣20x+90000随x的增大而减小.∴当x=600时,购树费用最低为y=﹣20×600+90000=78000(元).当x=600时,900﹣x=300,∴此时应购A种树600棵,B种树300棵.25.(10分)如图,在△OAB中,∠B=90°,∠BOA=30°,OA=4,将△OAB绕点O按逆时针方向旋转至△OA′B′,C点的坐标为(0,4).(1)求A′点的坐标;(2)求过C,A′,A三点的抛物线y=ax2+bx+c的解析式;(3)在(2)中的抛物线上是否存在点P,使以O,A,P为顶点的三角形是等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.解析:(1)由题意可知,∠A′OA的度数和旋转角的度数相同,可过A′作x轴的垂线,在构建的直角三角形中可根据OA′的长和∠A′OA的度数求出A′的坐标;(2)已知了C,A′,A三点的坐标,可用待定系数法求出抛物线的解析式;(3)本题要分三种情况进行讨论:①以O为直角顶点,OA=OP=4,而OC=4,那么此时C点和P点重合,因此P点的坐标即为C 点的坐标.②以A为直角顶点,那么P点的坐标必为(4,4)或(4,﹣4).可将这两个坐标代入抛物线的解析式中判定其是否在抛物线上即可.③以P为直角顶点,那么P点在OA的垂直平分线上,且P点的坐标为(2,2)或(2,﹣2)然后按②的方法进行求解即可.答案:解:(1)过点A′作A′D垂直于x轴,垂足为D,则四边形OB′A′D为矩形.在△A′DO中,A′D=OA′•sin∠A′OD=4×sin60°=2,OD=A′B′=AB=2,∴点A′的坐标为(2,2);(2)∵C(0,4)在抛物线上,∴c=4,∴y=ax2+bx+4,∵A(4,0),A′(2,2),在抛物线y=ax2+bx+4上,∴,解之得,∴所求解析式为y=+(2﹣3)x+4;(3)①若以点O为直角顶点,由于OC=OA=4,点C在抛物线上,则点P(0,4)为满足条件的点.②若以点A为直角顶点,则使△PAO为等腰直角三角形的点P的坐标应为(4,4)或(4,﹣4),代入抛物线解析式中知此两点不在抛物线上.③若以点P为直角顶点,则使△PAO为等腰直角三角形的点P的坐标应为(2,2)或(2,﹣2),代入抛物线解析式中知此两点不在抛物线上.综上述在抛物线上只有一点P(0,4)使△OAP为等腰直角三角形.26.(12分)如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E是BC边上的一个动点(不与B,C重合),EF⊥AB,EG⊥AC,垂足分别为F,G.(1)求证:;(2)FD与DG是否垂直?若垂直,请给出证明;若不垂直,请说明理由;(3)当AB=AC时,△FDG为等腰直角三角形吗?并说明理由.解析:(1)由比例线段可知,我们需要证明△ADC∽△EGC,由两个角对应相等即可证得;(2)由矩形的判定定理可知,四边形AFEG为矩形,根据矩形的性质及相似三角形的判定可得到△AFD∽△CGD,从而不难得到结论;(3)是,利用相似三角形的性质即可求得.答案:(1)证明:在△ADC和△EGC中,∵∠ADC=∠EGC,∠C=∠C,∴△ADC∽△EGC.∴.(3分)(2)解:FD与DG垂直.(4分)证明如下:在四边形AFEG中,∵∠FAG=∠AFE=∠AGE=90°,∴四边形AFEG为矩形.∴AF=EG.∵,∴.(6分)又∵△ABC为直角三角形,AD⊥BC,∴∠FAD=∠C=90°﹣∠DAC,∴△AFD∽△CGD.∴∠ADF=∠CDG.(8分)∵∠CDG+∠ADG=90°,∴∠ADF+∠ADG=90°.即∠FDG=90°.∴FD⊥DG.(10分)(3)解:当AB=AC时,△FDG为等腰直角三角形,理由如下:∵AB=AC,∠BAC=90°,∴AD=DC.∵△AFD∽△CGD,∴.∴FD=DG.∵∠FDG=90°,∴△FDG为等腰直角三角形.(12分)。
第Ⅰ卷(选择题 共36分)一、选择题:本大题共8小题,在每小题给出地四个选项中,只有一项是正确地,请把正确地选项选出来,每小题选对得3分,选错、不选或选出地答案超过一个均记零分. 1.3-地相反数地倒数是( ) A .13-B .3-C .3D .132.如图所示地物体是一个几何体,其主视图是( )3.在一个袋子中装有除颜色外其它均相同地2个红球和3个白球,从中任意摸出一个球,则摸到红球地概率是( ).A .53B .52 C .23D .144.北京2008奥运地国家体育场“鸟巢” 建筑面积达25.8万平方米, 用科学记数法表示应为( ) (A) 24108.25m ⨯ (B) 25108.25m ⨯(C) 251058.2m ⨯ (D) 261058.2m ⨯ 5.下列命题是假.命题地是()A. 若,则x +2008<y +2008B. 单项式地系数是-4C. 若则D. 平移不改变图形地形状和大小6、已知反比例函数y =2k x-地图象位于第一、第三象限,则k 地取值范围是( ). A .k >2 B . k ≥2 C .k ≤2 D . k <27.已知抛物线21y x x =--与x 轴地一个交点为(0)m ,,则代数式22008m m -+地值为( ) A .2009B .2008C .2007D .20069. 如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动地路程为x ,△ABP 地面积为y ,如果y 关于x 地函数图象如图2所示,则△ABC 地面积是A .18 B .16 C .10 D .20图 1图 211、如图,在平面直角坐标系中,OABC 是正方形,点A 地坐标是(4,0),点P 为边AB 上一点,∠CPB =60°,沿CP 折叠正方形,折叠后,点B 落在平面内点B ’处,则B ’点地坐标为().A 、(2,) B 、(,) C 、(2,) D 、(,)12.如图,圆锥地侧面积恰好等于其底面积地2倍,则该圆锥侧面展开图所对应扇形圆心角地度数为( )A .180 B .90 C .120D.60第Ⅱ卷(非选择题 共84分)二、填空题:本大题共5小题,每小题填对得4分,共20分.只要求填写最后结果.13.不等式组210353x x x x >-⎧⎨+⎩,≥地解集为.14、如图4所示地半圆中,是直径,且,,则地值是.15.某书店把一本新书按标价地九折出售,仍可获利20%.若该书地进价为21元,则标价为14题图(第12题)元.16.把两块含有30o地相同地直角三角尺按如图所示摆放,使 点C 、B 、E 在同一直线上,连结CD ,若AC =6cm ,则△BCD 地 面积是cm 2.17.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、 向右、向下、向右地方向依次不断地移动,每次移动一个单位, 得到点()()()()12340,1,1,1,1,0,2,0,A A A A ,那么点41n A +(n 是自然数)地坐标为_____________.三、解答题:本大题共7小题,共64分.解答要写出必要地文字说明、证明过程或演算步骤.18.(本题满分6分) 先化简,再求值:(-)÷,其中x =3.19.(本题满分8分)某中学五班地学生对本校学生会倡导地“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况地数据.下图是根据这组数据绘制地统计图,图中从左到右各长方形地高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元地学生一共42人.(1)他们一共调查了多少人?(2)这组数据地众数、中位数各是多少?(3)从该班任选一人,捐款数不低于25元地概率是多少?20.(本小题满分8分)一艘轮船自西向东航行,在A 处测得东偏北21.3°方向有一座小岛C ,继续向东航行60海里到达B 处,测得小岛C 此时在轮船地东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近?(参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)21. (本小题满分10分)如图,AB 为O ⊙地直径,点C 为O ⊙上一点,若CAM BAC ∠=∠,过点C 作直线l 垂直于射线AM ,垂足为点D .(1)试判断CD 与O ⊙地位置关系,并说明理由;(2)若直线l 与AB 地延长线相交于点E ,O ⊙地半径为3,并且30CAB °∠=. 求CE 地长.A BC北东A22.(本小题满分10分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x(元/千克)地变化而变化,具体关系式为:w=-2x+240.设这种绿茶在这段时间内地销售利润为y(元),解答下列问题:(1)求y与x地关系式;(2)当x取何值时,y地值最大?(3)如果物价部门规定这种绿茶地销售单价不得高于90元/千克,公司想要在这段时间内获得2250元地销售利润,销售单价应定为多少元?23.(本小题满分10分)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.求证:BD⊥CF;(3)在(2)小题地条件下, AC与BG地交点为M,当AB=4,AD=时,求线段CM地长.24、(本小题满分12x轴交于点A,B,且B点地坐标为(2,0).(1)求该抛物线地解析式.(2)若点P是AB上地一动点,过点P作PE kavU4。
山东数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题1.在实数﹣227、9、π、sin60°、38中无理数的个数是()A. 1B. 2C. 3D. 42.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A. 赵爽弦图B. 笛卡尔心形线C. 科克曲线D. 斐波那契螺旋线3.下列计算正确的是( )A. a6+a6=2a12B. 2﹣2÷20×23=32C. (﹣12ab2)•(﹣2a2b)3=a3b3 D. a3•(﹣a)5•a12=﹣a204.如图,已知AB∥CD,则∠α、∠β和∠γ之间的关系为( )A. β+γ-α=180°B. α+γ=βC. α+β+γ=360°D. α+β-2γ=180°5.如图是由个完全相同的小正方形搭成的几何体,如果将小正方体放到小正方体的正上方,则它的()A. 主视图会发生改变B. 俯视图会发生改变C 左视图会发生改变 D. 三种视图都会发生改变6.《九章算术》中记载:”今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为()A83,74x yx y=+⎧⎨=-⎩B.83,74x yx y=-⎧⎨=+⎩C.84,73x yx y=+⎧⎨=-⎩D.84,73x yx y=-⎧⎨=+⎩7.如图,⊙O的半径为2,点A为⊙O上一点,半径OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是( )A. 2B. 3C. 1D.3 28.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A. B.C. D.9.如图已知一次函数y=﹣x+b与反比例函数y=1x的图象有2个公共点,则b的取值范围是( )A. b>2B. ﹣2<b<2C. b>2或b<﹣2D. b<﹣210.小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上个数,如下表:星期日一二三四五六个数11 12 13 12其中有三天的个数墨汁覆盖了,但小强己经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是( ) A. 87 B. 107 C. 1 D. 9711.如图,正方形ABCD 的边长为2cm ,动点,Q 同时从点出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示与的函数关系的是( )A. B.C. D.12.表中所列、的7对值是二次函数2y ax bx c =++图象上的点所对应的坐标,其中1234567x x x x x x x <<<<<< (1x)2x 3x 4x 5x 6x 7x ... (6)11 11 6 …根据表中提供约信息,有以下4个判断:①0a <;②611m <<;③当262x x x +=时,的值是;④24()b a c k ≥-;其中判断正确的是( )A. ①②③B. ①②④C. ①③④D. ②③④二.填空题13.若关于x的不等式组43413632x xx ax--⎧+≥⎪⎪⎨-⎪>⎪⎩有2个整数解,则a的取值范围是_____.14.如图,在扇形OAB中,半径OA与OB的夹角为120︒,点与点的距离为23,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.15.如图,矩形ABCD中,AB=8,BC=4,点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是_____.16.在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是____________.17.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为”准互余三角形”.在Rt△ABC 中,∠ACB=90°,AC=6,BC=8.点D是BC边上一点,连接AD,若△ABD是准互余三角形,则BD的长为_____.三.解答题18.因式分解:(x﹣y)2+6(y﹣x)+9=.19.已知一元二次方程x 2﹣2x+m ﹣1=0.(1)当m 取何值时,方程有两个不相等的实数根?(2)设x 1,x 2是方程的两个实数根,且满足x 12+x 1x 2=1,求m 的值.20.某校为了解学生课外阅读情况,就学生每周阅读时间随机调查了部分学生,调查结果按性别整理如下: 女生阅读时间人数统计表 阅读时间 (小时) 人数占女生人数百分比 00.5t ≤< 420% 0.51t ≤<15% 1 1.5t ≤< 525% 1.52t ≤< 62 2.5t ≤<2 10%根据图表解答下列问题:(1)女生阅读时间人数统计表中,m = ,n = ;(2)此次抽样调查中,共抽取了 名学生,学生阅读时间的中位数在 时间段;(3)从阅读时间在2~2.5小时的5名学生中随机抽取2名学生参加市级阅读活动,恰好抽到男女生各一名的概率是多少?21.遥感兴趣小组在如图所示的情景下,测量无人机的飞行高度,如图,点,,在同一平面内,操控手站在坡度3i =、坡面长4m 的斜坡BC 的底部处遥控无人机,坡顶处的无人机以0.3m/s 的速度,沿仰角38α=︒的方向爬升,25s 时到达空中的点处,求此时无人机离点所在地面的高度(结果精确到0.1m ,参考数据:sin380.62︒≈,cos380.79︒≈,tan380.78︒≈2 1.41≈3 1.73≈).22.如图,AB 是☉的直径,为☉上一点,是半径OB 上一动点(不与,O B 重合),过点作射线l AB ⊥,分别交弦BC ,BC 于,D E 两点,过点的切线交射线于点.(1)求证:FC FD =.(2)当是BC 的中点时,①若60BAC ∠=︒,判断以,,,O B E C 为顶点的四边形是什么特殊四边形,并说明理由; ②若34AC BC =,且30AB =,则OP =_________. 23.某超市销售一种商品,成本价为50元/千克,规定每千克售价不低于成本价,且不高于85元.经过市场调查,该商品每天的销售量 (千克)与售价 (元/千克)满足一次函数关系,部分数据如下表: 售价 (元/千克)50 60 70 销售量 (千克)120 100 80(1)求与之间的函数表达式.(2)设该商品每天的总利润为 (元),则当售价定为多少元/千克时,超市每天能获得最大利润?最大利润是多少元?(3)如果超市要获得每天不低于1600元的利润,且符合超市自己的规定,那么该商品的售价的取值范围是多少?请说明理由.24.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.25.如图,在平面直角坐标系中,直线243y x =-+分别与轴、轴相交于点B 、C ,经过点B 、C 的抛物线223y x bx c =-++与轴的另一个交点为A . (1)求出抛物线表达式,并求出点A 坐标;(2)已知点D 在抛物线上,且横坐标为3,求出△BCD 面积;(3)点P 是直线BC 上方的抛物线上一动点,过点P 作PQ 垂直于轴,垂足为Q .是否存在点P ,使得以点A 、P 、Q 为顶点的三角形与△BOC 相似?若存在,请求出点P 的坐标;若不存在,请说明理由.答案与解析一.选择题1.在实数﹣227、9、π、sin60°、38中无理数的个数是()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【详解】解:227-是分数,属于有理数;93=是整数,属于有理数;π是无理数;3sin602︒=,是无理数;382=是整数,属于有理数;∴无理数有π、sin60°共2个.故选:B.【点睛】本题考查了无理数和有理数的定义,熟练掌握特殊角的三角函数、立方根等知识进行化简,从而进行判断.2.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A. 赵爽弦图B. 笛卡尔心形线C. 科克曲线D. 斐波那契螺旋线【答案】C【解析】【分析】根据把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选C.【点睛】此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.下列计算正确的是( )A. a6+a6=2a12B. 2﹣2÷20×23=32C. (﹣12ab2)•(﹣2a2b)3=a3b3 D. a3•(﹣a)5•a12=﹣a20【答案】D【解析】【分析】根据合并同类项的运算法则,同底数幂的乘除法运算法则、积的乘方的运算法则,对每一项进行计算求解运算即可.【详解】A、a6+a6=2a6,故此选项错误;B、2﹣2÷20×23=2,故此选项错误;C、(﹣12ab2)•(﹣2a2b)3=(﹣12ab2)•(﹣8a6b3)=4a7b5,故此选项错误;D、a3•(﹣a)5•a12=﹣a20,正确.故选:D.【点睛】本题考查了合并同类项、同底数幂的乘除法、积的乘方等相关知识,解决本题的关键是能够熟练掌握各类运算的运算法则,并且能够对它们进行区别.4.如图,已知AB∥CD,则∠α、∠β和∠γ之间的关系为( )A. β+γ-α=180°B. α+γ=βC. α+β+γ=360°D. α+β-2γ=180°【答案】A【解析】【分析】此题主要是巧妙构造辅助线,根据平行线的性质,把要探讨的角联系起来.【详解】解:过点E作EF∥AB,则EF∥CD,∴∠γ+∠FEC=180°∠FEA=∠α,∵∠AEF+∠FEC=∠β,∴∠γ+∠β-∠AEF=180°,∴γ+β-α=180°,故选:A.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解答此题的关键.5.如图是由个完全相同的小正方形搭成的几何体,如果将小正方体放到小正方体的正上方,则它的()A. 主视图会发生改变B. 俯视图会发生改变C. 左视图会发生改变D. 三种视图都会发生改变【答案】A【解析】【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】如果将小正方体放到小正方体的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选.【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.6.《九章算术》中记载:”今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为()A.83,74x yx y=+⎧⎨=-⎩B.83,74x yx y=-⎧⎨=+⎩C.84,73x yx y=+⎧⎨=-⎩D.84,73x yx y=-⎧⎨=+⎩【答案】A【解析】【分析】根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.【详解】根据题意有83, 74 x yx y=+⎧⎨=-⎩故选:A.【点睛】本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.7.如图,⊙O的半径为2,点A为⊙O上一点,半径OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是( )A. 2B. 3C. 1D.3 2【答案】C【解析】∵OB=OC,OD⊥BC,∴∠BOD=12∠BOC,∵∠A=12∠BOC,∴∠BOD=∠A=60°,∴OD=OB·cos60°=2×12=1.故选C.点睛:题目中出现特殊角30°、45°、60°,要将特殊角放到直角三角形中去,充分利用锐角三角函数值解题.8.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A. B.C. D.【答案】C【解析】【分析】根据三角形外心的定义得到三角形外心为三边的垂直平分线的交点,然后利用基本作图对各选项进行判断.【详解】三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选C.【点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.9.如图已知一次函数y=﹣x+b与反比例函数y=1x的图象有2个公共点,则b的取值范围是( )A. b>2B. ﹣2<b<2C. b>2或b<﹣2D. b<﹣2 【答案】C【解析】y x b =-+与1yx=的图像有个交点,即1x bx-+=有个解.210 x bx-+=,240b ∆=->,∴2b <-或2b >.10.小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数墨汁覆盖了,但小强己经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是( )A. 87B. 107C. 1D. 97【答案】A【解析】【分析】根据已知条件得到被墨汁覆盖三个数为:10,13,13,根据方差公式即可得到结论.【详解】解:∵平均数12,∴这组数据的和=12×7=84, ∴被墨汁覆盖三天的数的和=84﹣(11+12+13+12)=36,∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为:10,13,13,∴S 2=17[(11﹣12)2+(12﹣12)2+(10﹣12)2+(13﹣12)2+(13﹣12)2+(13﹣12)2+(12﹣12)2]=87, 故选:A .【点睛】本题考查方差的计算,熟记方差公式是解题的关键.11.如图,正方形ABCD 的边长为2cm ,动点,Q 同时从点出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示与的函数关系的是( )A. B. C. D.【答案】A【解析】【分析】根据题意结合图形,分情况讨论:①02x ≤≤时,根据12APQ S AQ AP ∆=⋅,列出函数关系式,从而得到函数图象;②24x ≤≤时,根据''''APQ CP Q ABQ AP D ABCD S S S S S ∆∆∆∆=---正方形列出函数关系式,从而得到函数图象,再结合四个选项即可得解.【详解】①当02x ≤≤时,∵正方形边长为2cm , ∴21122APQ y S AQ AP x ∆==⋅=; ②当24x ≤≤时,APQ y S ∆=''''CP Q ABQ AP D ABCD S S S S ∆∆∆=---正方形()()()21112242222222x x x =⨯---⨯⨯--⨯⨯- 2122x x =-+, 所以,与之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A 选项图象符合,故选A .【点睛】本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键. 12.表中所列、的7对值是二次函数2y ax bx c =++图象上的点所对应的坐标,其中1234567x x x x x x x <<<<<< … 1x 2x 3x 4x 5x 6x 7x … (6)11 11 6 …根据表中提供约信息,有以下4个判断:①0a <;②611m <<;③当262x x x +=时,的值是;④24()b a c k ≥-;其中判断正确的是( )A ①②③B. ①②④C. ①③④D. ②③④【答案】B【解析】【分析】首先根据1234567x x x x x x x <<<<<<,其对应的函数值是先增大后减小,可得抛物线开口向下,所以a <0;然后根据函数值是先增大后减小,可得6<m <14<k ;最后根据a <0,可得二次函数有最大值,而且二次函数的最大值244ac b a -,所以b 2≥4a (c−k ),据此判断即可. 【详解】解:∵1234567x x x x x x x <<<<<<,其对应的函数值是先增大后减小,∴抛物线开口向下,∴0a <,①符合题意;∴611m k <<<,∴611m <<,②符合题意;根据图表中的数据知,只有当2642x x x x +==时,抛物线的顶点坐标纵坐标是,即的值是,③不符合题意;∵244ac b k a-≥,0a <, ∴244ac b ak -,∴24()b a c k -,④符合题意.综上,可得判断正确的是:①②④.故选:B .【点睛】本题考查了二次函数图象与系数的关系.二次函数y =ax 2+bx +c (a ≠0)系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.二.填空题13.若关于x 的不等式组43413632x x x a x --⎧+≥⎪⎪⎨-⎪>⎪⎩有2个整数解,则a 的取值范围是_____.【答案】0≤a <1【解析】【分析】分别解两个不等式,得到两个解集:x >a 和x ≤2,根据不等式组有2个整数解,得到关于a 的取值范围,即可得到答案. 【详解】解:解不等式434136x x --+≥得:x≤2, 解不等式32x a x ->得:x >a , ∵不等式组有2个整数解,∴不等式组的解集为:a <x≤2,且两个整数解为:2,1,∴0≤a <1,即a 的取值范围为:0≤a <1.故答案为:0≤a <1.【点睛】本题考查一元一次不等式组的整数解,正确掌握解一元一次不等式组的方法是解题的关键. 14.如图,在扇形OAB 中,半径OA 与OB 的夹角为120︒,点与点的距离为OAB 恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.【答案】43 【解析】【分析】 利用弧长=圆锥的周长这一等量关系可求解.【详解】解:连接AB ,过作OM AB ⊥于M ,∵120AOB ∠=︒,OA OB =,∴30BAO ∠=︒,3AM =,∴2OA =,∵24022180r ππ⨯=, ∴43r = 故答案是:43 【点睛】本题运用了弧长公式和圆的周长公式,建立准确的等量关系是解题的关键.15.如图,矩形ABCD 中,AB=8,BC=4,点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 长是_____.【答案】5【解析】【分析】首先连接EF 交AC 于O ,由矩形ABCD 中,四边形EGFH 是菱形,易证得△CFO ≌△AOE (AAS ),即可得OA=OC ,然后由勾股定理求得AC 的长,继而求得OA 的长,又由△AOE ∽△ABC ,利用相似三角形的对应边成比例,即可求得答案.【详解】解:连接EF 交AC 于O ,∵四边形EGFH 是菱形,∴EF ⊥AC ,OE=OF ,∵四边形ABCD 是矩形,∴∠B=∠D=90°,AB ∥CD ,∴∠ACD=∠CAB ,在△CFO 与△AOE 中,FCO OAB FOC AOE OF OE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CFO ≌△AOE (AAS ),∴AO=CO ,∵AC=22AB BC +=45, ∴AO=12AC=25, ∵∠CAB=∠CAB ,∠AOE=∠B=90°,∴△AOE ∽△ABC ,∴AO AE AB AC=, ∴25845AE =, ∴AE=5.故答案为:5.16.在平面直角坐标系中,直线l :y =x +1与y 轴交于点A 1,如图所示,依次作正方形OA 1B 1C 1,正方形C 1A 2B 2C 2,正方形C 2A 3B 3C 3,正方形C 3A 4B 4C 4,……,点A 1,A 2,A 3,A 4,……在直线l 上,点C 1,C 2,C 3,C 4,……在x 轴正半轴上,则前n 个正方形对角线长的和是____________.2(2n﹣1)【解析】【分析】根据题意和函数图象可以求得点A1,A2,A3,A4的坐标,从而可以得到前n个正方形对角线长的和,即可求解.【详解】由题意可得,点A1的坐标为(0,1),点A2的坐标为(1,2),点A3的坐标为(3,4),点A4的坐标为(7,8),……,∴OA1=1,C1A2=2,C2A3=4,C3A4=8,……,∴前n2(OA1+C1A2+C2A3+C3A4+…+C n﹣1A n)2(1+2+4+8+…+2n﹣1),设S=1+2+4+8+…+2n﹣1,则2S=2+4+8+…+2n﹣1+2n,则2S﹣S=2n﹣1,∴S=2n﹣1,∴1+2+4+8+…+2n﹣1=2n﹣1,∴前n2×(2n﹣1),2(2n﹣1).【点睛】本题主要考查了一次函数图象上点的坐标特征、规律型:点的坐标,解答本题的关键是明确题意,利用数形结合的思想解答.17.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为”准互余三角形”.在Rt△ABC 中,∠ACB=90°,AC=6,BC=8.点D是BC边上一点,连接AD,若△ABD是准互余三角形,则BD的长为_____.【答案】5或7 2【解析】【分析】分两种情况画图说明,①根据△ABD是准互余三角形,可以证明AD是∠BAC的平分线,根据勾股定理即可求出BD的长;②可以根据△ABD是准互余三角形,证明△CAD∽△CBA,对应边成比例即可求出CD的长,进而求出BD的长.【详解】解:∵∠ACB=90°,AC=6,BC=8,∴AB=22=10.AC BC①如图1,∵△ABD是准互余三角形,∴∠B+2∠BAD=90°,∵∠ACB=90°,∴∠B+∠BAC=90°,∴∠BAC=2∠BAD,∴AD是∠BAC的平分线,作DE⊥AB于点E,则DC=DE,AE=AC=6,设DC=DE=x,则BD=8﹣x,BE=AB﹣AE=4,在Rt△BDE中,根据勾股定理,得BD2=DE2+BE2,(8﹣x)2=x2+42,解得x=3,∴BD=BC﹣CD=8﹣3=5;②如图2,∵△ABD是准互余三角形,∴2∠B+∠BAD=90°,∵∠ACB=90°,∴∠B+∠BAD+∠DAC=90°,∴∠DAC=∠B,∵∠C=∠C,∴△CAD∽△CBA,∴CD CA CA CB,∴CD=92,∴BD=BC﹣CD=8﹣92=72.综上所述:BD的长为5或72.故答案为:5或72.【点睛】本题考查了相似三角形的判定和性质,勾股定理、余角和补角,解决本题的关键熟练掌握所学的知识,和新定义的掌握,注意分两种情况进行讨论分析.三.解答题18.因式分解:(x﹣y)2+6(y﹣x)+9=.【答案】(x﹣y﹣3)2【解析】【分析】直接利用完全平方公式分解因式得出答案.【详解】解:(x﹣y)2+6(y﹣x)+9=(x﹣y)2﹣6(x﹣y)+9=(x﹣y﹣3)2.故答案为:(x﹣y﹣3)2.【点睛】此题主要考查了运用公式法分解因式,正确运用乘法公式是解题关键.19.已知一元二次方程x2﹣2x+m﹣1=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1,x2是方程的两个实数根,且满足x12+x1x2=1,求m的值.【答案】(1)m<2;(2)m=74.【解析】【分析】(1)若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,即可求出m的取值范围;(2)x1是方程的实数根,就适合原方程,可得到关于x1与m的等式.再根据根与系数的关系知,x1x2=m﹣1,故可求得x1和m的值.【详解】解:(1)根据题意得△=b2﹣4ac=4﹣4×(m﹣1)>0,解得m<2;(2)∵x1是方程的实数根,∴x12﹣2x1+m﹣1=0 ①,∵x1,x2是方程的两个实数根,∴x1•x2=m﹣1,∵x12+x1x2=1,∴x12+m﹣1=1 ②,由①②得x1=0.5,把x=0.5代入原方程得,m=74.【点睛】本题考查根与系数的关系;一元二次方程的解;根的判别式.20.某校为了解学生课外阅读情况,就学生每周阅读时间随机调查了部分学生,调查结果按性别整理如下:女生阅读时间人数统计表根据图表解答下列问题:(1)在女生阅读时间人数统计表中,m = ,n = ;(2)此次抽样调查中,共抽取了 名学生,学生阅读时间的中位数在 时间段;(3)从阅读时间在2~2.5小时的5名学生中随机抽取2名学生参加市级阅读活动,恰好抽到男女生各一名的概率是多少?【答案】(1)3,30%;(2)50,1 1.5t ≤<;(3)恰好抽到男女各一名的概率是35. 【解析】【分析】 ()1由00.5t ≤<时间段的人数及其所占百分比可得女生人数,再根据百分比的意义求解可得;()2将男女生人数相加可得总人数,再根据中位数的概念求解可得;()3利用列举法求得所有结果的个数,然后利用概率公式即可求解.【详解】解:(1)女生总人数为420%20÷=(人),∴2015%3m =⨯=,6100%30%20n =⨯=, 故答案为3,30%;(2)学生总人数为2065124350+++++=(人),这组数据的中位数是第25、26个数据的平均数,而第25、26个数据均落在1 1.5t ≤<范围内, ∴学生阅读时间的中位数在1 1.5t ≤<时间段,故答案为50,1 1.5t ≤<;(3)学习时间在2~2.5小时的有女生2人,男生3人.共有20种可能情况,则恰好抽到男女各一名的概率是123205=. 【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,找出直方图和数据表格之间的联系,才能作出正确的判断和解决问题. 21.遥感兴趣小组在如图所示的情景下,测量无人机的飞行高度,如图,点,,在同一平面内,操控手站在坡度3:1i =、坡面长4m 的斜坡BC 的底部处遥控无人机,坡顶处的无人机以0.3m/s 的速度,沿仰角38α=︒的方向爬升,25s 时到达空中的点处,求此时无人机离点所在地面的高度(结果精确到0.1m ,参考数据:sin380.62︒≈,cos380.79︒≈,tan380.78︒≈,2 1.41≈,3 1.73≈).【答案】此时无人机离点所在地面的高度大约为8.1m .【解析】【分析】过B 点作BD ⊥CD ,过A 点作AE ⊥CD 于E ,交FB 的延长线于G ,根据坡度的定义求出BD ,可求EG ,根据正弦的定义求出AG ,再根据线段的和差关系计算即可求解.【详解】解:过点作BD CD ⊥,过点作AE CD ⊥于,交FB 的延长线于,∵3i =,4BC m =,∴3BD m =,∴3EG m =,∵0.3257.5AB m =⨯=,在Rt △AGB 中,sin 38 4.65(m)AG AB =⋅︒≈∴3 4.658.1(m)AE AG GE =+≈≈.故此时无人机离点所在地面的高度大约为8.1m .【点睛】本题考查的是解直角三角形的应用—仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.22.如图,AB 是☉的直径,为☉上一点,是半径OB 上一动点(不与,O B 重合),过点作射线l AB ⊥,分别交弦BC ,BC 于,D E 两点,过点的切线交射线于点.(1)求证:FC FD =.(2)当是BC 的中点时,①若60BAC ∠=︒,判断以,,,O B E C 为顶点的四边形是什么特殊四边形,并说明理由; ②若34AC BC =,且30AB =,则OP =_________. 【答案】(1)详见解析;(2)①以,,,O B E C 为顶点的四边形是菱形;②9【解析】【分析】(1)连接OC ,根据切线的性质得出OC ⊥CF 以及∠OBC=∠OCB 得∠FCD=∠FDC ,可证得结论;(2)①如图2,连接OC ,OE ,BE ,CE ,可证△BOE ,△OCE 均为等边三角形,可得OB=BE=CE=OC ,可得结论;②设AC=3k ,BC=4k (k >0),由勾股定理可求k=6,可得AC=18,BC=24,由面积法可求PE ,由勾股定理可求OP 的长.【详解】(1)证明:如图1,连接OC ,则90OCF ∠=︒.OB OC =,OBC OCB ∴∠=∠.PF AB ⊥,90BPD ∴∠=︒,90OBC BDP ∴∠+∠=︒.90OCF ∠=︒,90OCB DCF ∴∠+∠=︒,BDP DCF ∴∠=∠.又BDP CDF ∠=∠,DCF CDF ∴∠=∠,FC FD ∴=.(2)解:如图2,连接,,,,OC OE BE CE OE 与BC 交于点.①以,,,O B E C 为顶点的四边形是菱形.理由如下: AB 是直径,90ACB ∴∠=︒.60BAC ∠=︒,120BOC ∴∠=︒. E 是BC 的中点,60BOE COE ∴∠=∠=︒.又0OB OE C ==,,BOE OCE ∴∆∆均为等边三角形,OB BE CE OC ∴===,四边形BOCE 是菱形. ②3,4AC BC = 设3AC k =,则4(0)BC k k =>.在Rt ACB ∆中,由勾股定理,得222AC BC AB +=,即222(3)(4)30k k +=,解得6k =, 18,24AC BC ∴==.E 是BC 的中点,,12OE BC BH CH ∴⊥==,1122OBE S OE BH OB PE ∆∴=⨯=⨯,即151215PE ⨯=,解得12PE =.在Rt OPE ∆中,由勾股定理,得9OP ===.故答案为:9.【点睛】本题是圆的综合题,考查了圆的有关知识,等腰三角形的性质,切线的性质,等边三角形的判定和性质,菱形的判定,勾股定理等知识,添加恰当的辅助线是本题的关键.23.某超市销售一种商品,成本价为50元/千克,规定每千克售价不低于成本价,且不高于85元.经过市场调查,该商品每天的销售量 (千克)与售价 (元/千克)满足一次函数关系,部分数据如下表:(1)求与之间的函数表达式.(2)设该商品每天的总利润为 (元),则当售价定为多少元/千克时,超市每天能获得最大利润?最大利润是多少元?(3)如果超市要获得每天不低于1600元的利润,且符合超市自己的规定,那么该商品的售价的取值范围是多少?请说明理由.【答案】(1)2220(5085)y x x =-+≤≤;(2)售价定为80元/千克时,超市每天能获得自大利润,最大利润是1800元;(3)的取值范围是7085x ≤≤【解析】【分析】(1)运用待定系数法求解即可得;(2)根据”总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.(3)求得W=1600时x 的值,再根据二次函数的性质求得W≥1600时x 的取值范围,继而根据”每千克售价不低于成本且不高于85元”得出答案.【详解】解:(1)设y kx b =+,将(50,120),(60,100)代入,得50120,60100,k b k b +=⎧⎨+=⎩解得2,220.k b =-⎧⎨=⎩ 2220(5085)y x x ∴=-+≤≤.(2)(50)(2220)W x x =--+2232011000x x =-+-22(80)1800x =--+,当80x =时,取得最大值1800,故售价定为80元/千克时,超市每天能获得自大利润,最大利润是1800元.(3)的取值范围是7085x ≤≤.理由:当1600W =时,得22320110001600x x -+-=,解得70x =或90x =.抛物线2232011000W x x =-+-的开口向下,当7090x ≤≤时,1600W≥. 又5085x ≤≤,该商品的售价的取值范围是7085x ≤≤.【点睛】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.24.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【答案】(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,证明详见解析;(3)492.【解析】【分析】(1)利用三角形的中位线得出PM=12CE,PN=12BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=12BD,PN=12BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【详解】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=12 BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=12 CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;。
山东省禹城市2014年中考二模数学试卷本试题分选择题,36分;非选择题,84分;全卷满分120分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的县(市、区)、学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(选择题 共36分)一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.3-的相反数的倒数是( ) A .13-B .3-C .3D .132.如图所示的物体是一个几何体,其主视图是( )3.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是( ).A .53B .52C . 23D .144.北京2008奥运的国家体育场“鸟巢” 建筑面积达25.8万平方米, 用科学记数法表示应为( )(A) 24108.25m ⨯ (B) 25108.25m ⨯ (C) 251058.2m ⨯ (D) 261058.2m ⨯5.下列命题是假.命题的是( )A. 若,则x +2008<y +2008 B. 单项式的系数是-4C. 若则D. 平移不改变图形的形状和大小6、已知反比例函数y =2k x-的图象位于第一、第三象限,则k 的取值范围是( ). A .k >2 B . k ≥2 C .k ≤2 D . k <27.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式22008m m -+的值为( )A .2009B .2008C .2007D .20068. 如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中相似的是( )9. 如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是A .18B .16C .10D .2010.在同一直角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图象可能..是( )11、如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 为边AB 上一点,∠CPB =60°,沿CP 折叠正方形,折叠后,点B 落在平面内点B ’处,则B ’点的坐标为( ).A 、(2,) B 、(,) C 、(2,) D 、(,)12.如图,圆锥的侧面积恰好等于其底面积的2倍,则该圆锥侧面展开图所对应扇形圆心角的度数为( )A .180B .90C .120D.60A.B.C.D.图 1图 2(6题图) ABC D (第12题)第Ⅱ卷(非选择题 共84分)二、填空题:本大题共5小题,每小题填对得4分,共20分.只要求填写最后结果. 13.不等式组210353x x x x>-⎧⎨+⎩,≥的解集为 . 14、如图4所示的半圆中,是直径,且,,则的值是 .15.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为 元.16.把两块含有30o 的相同的直角三角尺按如图所示摆放,使 点C 、B 、E 在同一直线上,连结CD ,若AC =6cm ,则△BCD 的面积是 cm 2.17. 如图,在平面直角坐标系中,一动点从原点O 出发,按向上、 向右、向下、向右的方向依次不断地移动,每次移动一个单位, 得到点()()()()12340,1,1,1,1,0,2,0,A A A A ,那么点41n A +(n 是自然数)的坐标为_____________.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(本题满分6分) 先化简,再求值:(-)÷,其中x =3.19.(本题满分8分)某中学五班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据。
下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的学生一共42人。
(1)他们一共调查了多少人?(2)这组数据的众数、中位数各是多少?(3)从该班任选一人,捐款数不低于25元的概率是多少?(第16题图)14题图20.(本小题满分8分)一艘轮船自西向东航行,在A 处测得东偏北21.3°方向有一座小岛C ,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近?(参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)21. (本小题满分10分)如图,AB 为O ⊙的直径,点C 为O ⊙上一点,若CAM BAC ∠=∠,过点C 作直线垂直于射线AM ,垂足为点D .(1)试判断CD 与O ⊙的位置关系,并说明理由;(2)若直线与AB 的延长线相交于点E ,O ⊙的半径为3,并且30CAB °∠=. 求CE 的长.22.(本小题满分10分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w =-2x +240.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题:(1)求y 与x 的关系式;(2)当x 取何值时,y 的值最大?A B C 北东(第21题)A(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?23.(本小题满分10分)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.求证:BD⊥CF;(3)在(2)小题的条件下,AC与BG的交点为M,当AB=4,AD=时,求线段CM的长.九年级第二次模拟数学试题答案一、选择题(本题满分21分,共有7道小题,每小题3分)二、填空题(本题满分21分,共有7道小题,每小题3分)18.(本题满分6分) 解:原式=[–]×······································································ 3分=×–×=–·········································································································· 4分=–=····················································································································· 5分当x =3时, 原式=321-=32+ ·························································································· 6分19.(1)设捐款30元的有6 x 人,则8 x +6x=42,得x=3。