2020学年新教材高中数学第八章立体几何初步8.1.1棱柱、棱锥、棱台的结构特征课时作业新人教A版必修第二册
- 格式:doc
- 大小:179.50 KB
- 文档页数:3
8.1 基本几何图形第2课时圆柱、圆锥、圆台、球、简单组合体立体几何是研究三维空间中物体的形状、大小、位置关系的一门数学学科,而三维空间是人们生存发展的现实空间,学习立体几何对我们更好地认识客观世界,更好地生存与发展具有重要意义。
在立体几何初步部分,学生将先从对空间几何体观察入手、认识空间图形;再以长方体为载体,直观认识和理解空间点、线、面的位置关系。
本节内容既是义务教育阶段“空间与图形”课程的延续和提高,也是后续研究空间点、线、面位置关系的基础,既巩固了前面所学的内容,又为后面内容的学习做了知识上和方法上的准备,在教材中起着承前启后的作用。
课程目标1.认识圆柱、圆锥、圆台、球的结构特征.2.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.数学学科素养1.数学抽象:简单组合体概念的理解;2.逻辑推理:圆柱、圆锥、圆台、球的结构特点;3.直观想象:判断空间几何体;4.数学运算:球的相关计算、最短距离等;5.数学建模:通过平面展开图将空间问题转化为平面问题解决,体现了转化的思想方法.重点:掌握圆柱、圆锥、圆台、球的结构特征;难点:旋转体的相关计算.教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入上节课学了常见的多面体:棱柱、棱锥、棱台,那么常见的旋转体有哪些?又有什么结构特点?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本101-104页,思考并完成以下问题1、旋转体包含哪些图形?2、圆柱、圆锥、圆台、球是怎样定义的?又有什么结构特点?3、什么是简单组合体,特点是什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究一、常见的旋转体1、圆柱:定义:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体。
旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
第八章立体几何初步8.1基本立体图形第1课时棱柱、棱锥、棱台的结构特征课后篇巩固提升基础达标练1.(多选题)关于简单几何体的结构特征,下列说法正确的是()A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等,棱锥的侧棱相交于一点但长度不一定相等.2.下面多面体中,是棱柱的有()A.1个B.2个C.3个D.4个,知这4个图都满足.3.如图,在三棱台A'B'C'-ABC中,截去三棱锥A'-ABC,则剩余部分是() A.三棱锥 B.四棱锥C.三棱柱D.三棱台A'-BCC'B'.4.下列说法错误的有()①有一个面是多边形,其余各面都是三角形,由这些面围成的多面体是棱锥;②如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥;③如果一个棱柱的所有面都是长方形,那么这个棱柱是长方体.A.0个B.1个C.2个D.3个,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥,即其余各面的三角形必须有公共的顶点,故①错误;当棱锥的各个侧面的共顶点的角之和是360°时,各侧面构成平面图形,故②错误;若每个侧面都是长方形,则说明侧棱与底面垂直,又底面也是长方形,符合长方体的定义,故③正确.5.在下列四个平面图形中,每个小四边形皆为正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的图形是(),看哪一个可以折叠围成正方体即可.6.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定.∵平面AA1D1D∥平面BB1C1C,∴有水的部分始终有两个平面平行,而其余各面都是平行四边形(水面与两平行平面的交线),因此呈棱柱形状.7.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为cm.棱柱有2n个顶点,因为此棱柱有10个顶点,所以此棱柱为五棱柱.又棱柱的侧棱都相等,五条侧棱长的和为60 cm,可知每条侧棱长为12 cm.8.一个几何体的表面展开平面图如图.(1)该几何体是哪种几何体;(2)该几何体中与“祝”字面相对的是哪个面?与“你”字面相对的是哪个面?该几何体是四棱台.(2)与“祝”字面相对的面是“前”字面,与“你”字面相对的面是“程”字面.9.按下列条件分割三棱台ABC-A1B1C1(不需要画图,各写出一种分割方法即可).(1)一个三棱柱和一个多面体;(2)三个三棱锥.在AC上取点D,使DC=A1C1,在BC上取点E,使EC=B1C1,连接A1D,B1E,DE,则得三棱柱A1B1C1-DEC 与一个多面体A1B1BEDA.(答案不唯一)(2)连接AB1,AC1,BC1,则可分割成三棱锥A-A1B1C1,三棱锥A-BCC1,三棱锥A-BB1C1.(答案不唯一)能力提升练1.(2020检测)一个棱锥的各条棱都相等,那么这个棱锥必不是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥,正六边形共由6个等边三角形构成,设每个等边三角形的边长为r,正六棱锥的高为h,正六棱锥的侧棱长为l,由正六棱锥的高h、底面正六边形的边长r、侧棱长l构成直角三角形得,h2+r2=l2,故侧棱长l和底面正六边形的边长r不可能相等.故选D.2.(2020某某某某检测)设集合M={正四棱柱},N={长方体},P={直四棱柱},Q={正方体},则这四个集合之间的关系是()A.P⊆N⊆M⊆QB.Q⊆M⊆N⊆PC.P⊆M⊆N⊆QD.Q⊆N⊆M⊆P,正方体是特殊的正四棱柱,正四棱柱是特殊的长方体,长方体是特殊的直四棱柱,所以{正方体}⊆{正四棱柱}⊆{长方体}⊆{直四棱柱},故选B.3.(2020全国高一课时练习)下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是(),变成正方体后的图形中,相邻的平面中三条线段是平行线,排除A,C;相邻平面只有两个是空白面,排除D;故选B.4.(2020某某黄冈检测)下列说法正确的有个.①棱台的侧棱都相等;②正棱锥的侧面是等边三角形;③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.错误,根据棱台的定义可知,棱台的侧棱不一定都相等,故此说法是错误的;②错误,正棱锥的侧面都是等腰三角形,不一定是等边三角形,故错误;③错误,由已知条件知,此三棱锥的三个侧面未必全等,所以不一定是正三棱锥.如图所示的三棱锥中有AB=AD=BD=BC=CD,满足底面△BCD为等边三角形,三个侧面△ABD,△ABC,△ACD都是等腰三角形,但AC长度不一定,三个侧面不一定全等,故错误.5.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF 均为直角三角形.(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.素养培优练如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=4,A1A=5,现有一只甲壳虫从点A出发沿长方体表面爬行到点C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.,如图,有三种情况.对甲、乙、丙三种展开图利用勾股定理可得AC1的长分别为,由此可见乙是最短线路,所以甲壳虫可以先在长方形ABB1A1内由A到E BE=,再在长方形BCC1B1内由E到C1,也可以先在长方形AA1D1D内由A到F D1F=,再在长方形DCC1D1内由F到C1,其最短路程为.。
8.1.1 棱柱、棱锥、棱台的结构特征
课堂检测·素养达标
1.下列说法中正确的是( )
A.棱柱的侧面可以是三角形
B.正方体和长方体都是特殊的四棱柱
C.所有的几何体的表面都能展成平面图形
D.棱柱的各条棱都相等
【解析】选B.棱柱的侧面都是四边形,A不正确;正方体和长方体都是特殊的四棱柱,正确;不是所有的几何体的表面都能展成平面图形,球不能展开为平面图形,C不正确;棱柱的各条棱都相等,不对,应该为侧棱相等,所以D不正确.
2.三棱锥的四个面中可以作为底面的有( )
A.1个
B.2个
C.3个
D.4个
【解析】选D.三棱锥的每一个面均可作为底面.
3.下列特征不是棱台必须具有的是( )
A.两底面平行
B.侧面都是梯形
C.侧棱长都相等
D.侧棱延长后相交于一点
【解析】选C.用平行于棱锥底面的平面截棱锥,截面和底面之间的部分叫做棱台,A,B,D
正确,选C.
4.顶点最少的一个棱台有________条侧棱.
【解析】顶点最少的一个棱台是三棱台,它有3条侧棱.
答案:3。
学习资料课时素养评价十九棱柱、棱锥、棱台的结构特征(15分钟30分)1.下列几何体中棱柱有(A.5个B.4个C。
3个 D.2个【解析】选D。
由棱柱定义知,①③为棱柱。
2.下面图形中,为棱锥的是()A.①③B.①③④C.①②④D。
①②【解析】选C。
根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥。
3.将一个长方体的四个侧面和两个底面延展成平面后,可将空间分成部分。
【解析】将一个长方体的四个侧面延伸后,可将空间分成9个空间,然后上下两个又将9个空间每个分成3个部分,所以将一个长方体的四个侧面和两个底面延展成平面后,可将空间分成3×9=27部分.答案:27【补偿训练】将一个三棱台的三个侧面和两个底面延展成平面后,可将空间分成部分.【解析】三棱台的三个侧面延伸后,可将空间分成7个部分,然后上下两个又将7个部分每个分成3个部分,所以将一个三棱台的三个侧面和两个底面延展成平面后,可将空间分成3×7=21部分.答案:214。
一个无盖的正方体盒子的平面展开图如图,A,B,C是展开图上的三点,则在正方体盒子中∠ABC=.【解析】将平面图形折成空间图形可得∠ABC=60°。
答案:60°5。
根据下列对几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其他各面都是矩形;(2)由五个面围成,其中一个面是正方形,其他各面都是有一个公共顶点的全等三角形。
【解析】(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其他各面都是矩形,由各个侧面都是矩形,得出侧棱垂直于底面,是直棱柱,所以这样的几何体是正六棱柱。
(2)由五个面围成,其中一个面是正方形,其他各面都是有一个公共顶点的全等三角形,这样的几何体是正四棱锥.(30分钟60分)一、单选题(每小题5分,共20分)1.下面图形中是正方体展开图的是()【解析】选A。
由正方体表面展开图的性质知A是正方体的展开图;B折叠后第一行两个面无法折起来,而且还少一个面,故不能折成正方体;C缺少一个正方形;D折叠后有一个面重合,另外还少一个面,故不能折成正方体。
新教材高中数学第八章立体几何初步8.1基本立体图形(第1课时)棱柱、棱锥、棱台的结构特征学案新人教A版必修第二册考点学习目标核心素养棱柱的结构特征理解棱柱的定义,知道棱柱的结构特征,并能识别直观想象棱锥、棱台的结构特征理解棱锥、棱台的定义,知道棱锥、棱台的结构特征,并能识别直观想象应用几何体的平面展开图能将棱柱、棱锥、棱台的表面展开成平面图形直观想象问题导学预习教材P97-P100的内容,思考以下问题:1.空间几何体的定义是什么?2.空间几何体分为哪几类?3.常见的多面体有哪些?4.棱柱、棱锥、棱台有哪些结构特征?1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.空间几何体类别定义图示多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点旋转体一条平面曲线(包括直线)绕它所在平面内的这条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体.这条定直线叫做旋转体的轴3.棱柱、棱锥、棱台的结构特征结构特征及分类图形及记法棱柱结构特征(1)有两个面(底面)互相平行(2)其余各面都是四边形(3)相邻两个四边形的公共边都互相平行记作棱柱ABCDEFA′B′C′D′E′F′分类按底面多边形的边数分为三棱柱、四棱柱…续表结构特征及分类图形及记法棱锥结构特征(1)有一个面(底面)是多边形(2)其余各面(侧面)都是有一个公共顶点的三角形记作棱锥SABCD 分类按底面多边形的边数分为三棱锥、四棱锥……棱台结构特征(1)上下底面互相平行,且是相似图形(2)各侧棱延长线相交于一点(或用一个平行于棱锥底面的平面去截棱锥,底面与截面之间那部分多面体叫做棱台)记作棱台ABCDA′B′C′D′分类由三棱锥、四棱锥、五棱锥……截得的棱台分别为三棱台、四棱台、五棱台……(1)棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).(2)各种棱柱之间的关系 ①棱柱的分类棱柱⎩⎪⎨⎪⎧直棱柱⎩⎪⎨⎪⎧正棱柱(底面为正多边形)一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系判断(正确的打“√”,错误的打“×”) (1)棱柱的侧面都是平行四边形.( )(2)用一个平面去截棱锥,底面和截面之间的部分叫棱台. ( ) (3)将棱台的各侧棱延长可交于一点.( ) 答案:(1)√ (2)× (3)√ 下面多面体中,是棱柱的有( )A .1个B .2个C .3个D .4个解析:选D.根据棱柱的定义进行判定知,这4个都满足. 下面四个几何体中,是棱台的是( )解析:选C.A 项中的几何体是棱柱.B 项中的几何体是棱锥;D 项中的几何体的棱AA ′,BB ′,CC ′,DD ′没有交于一点,则D 项中的几何体不是棱台;很明显C 项中的几何体是棱台.在三棱锥A BCD 中,可以当作棱锥底面的三角形的个数为 ( ) A .1 B .2 C .3D .4解析:选D.每个面都可作为底面,有4个.下列说法正确的有________.(填序号)①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点.解析:棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故①对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故②错,③对.因而正确的有①③.答案:①③棱柱的结构特征下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确说法的序号是__________.【解析】①错误,棱柱的底面不一定是平行四边形;②错误,棱柱的底面可以是三角形;③正确,由棱柱的定义易知;④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以正确说法的序号是③④.【答案】③④棱柱结构特征的辨析技巧(1)扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.1.下列命题中正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫棱柱的底面C.棱柱的侧面都是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形解析:选D.由棱柱的定义可知,选D.2.如图所示的三棱柱ABCA1B1C1,其中E,F,G,H是三棱柱对应边上的中点,过此四点作截面EFGH,把三棱柱分成两部分,各部分形成的几何体是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解:截面以上的几何体是三棱柱AEFA1HG,截面以下的几何体是四棱柱BEFCB1HGC1.棱锥、棱台的结构特征下列关于棱锥、棱台的说法:①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④由四个面围成的封闭图形只能是三棱锥;⑤棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.【解析】①错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台.②正确,棱台的侧面一定是梯形,而不是平行四边形.③正确,由棱锥的定义知棱锥的侧面只能是三角形.④正确,由四个面围成的封闭图形只能是三棱锥.⑤错误,如图所示四棱锥被平面截成的两部分都是棱锥.所以正确说法的序号为②③④.【答案】②③④判断棱锥、棱台形状的两种方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点1.棱台不具有的性质是( )A.两底面相似B.侧面都是梯形C.侧棱长都相等D.侧棱延长后相交于一点解析:选C.由棱台的概念(棱台的产生过程)可知A,B,D都是棱台具有的性质,而侧棱长不一定相等.2.下列说法中,正确的是( )①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长相等.A.①②B.①③C.②③D.②④解析:选B.由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错;四面体就是由四个三角形所围成的封闭几何体,因此以四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错.空间几何体的平面展开图(1)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中的“2”在正方体的上面,则这个正方体的下面是( )A.1 B.9C.快D.乐(2)如图是三个几何体的侧面展开图,请问各是什么几何体?【解】(1)选B.由题意,将正方体的展开图还原成正方体,“1”与“乐”相对,“2”与“9”相对,“0”与“快”相对,所以下面是“9”.(2)题图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱的特点;题图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥的特点;题图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点,把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.多面体展开图问题的解题策略(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推,同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.1.某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的平面展开图应该为( )解析:选A.其展开图是沿盒子的棱剪开,无论从哪条棱剪开,剪开的相邻面在展开图中可以不相邻,但未剪开的相邻面在展开图中一定相邻.相同的图案是盒子上相对的面,展开后不能相邻.2.根据如图所示的几何体的表面展开图,画出立体图形.解:如图是以四边形ABCD为底面,P为顶点的四棱锥.其图形如图所示.1.下面的几何体中是棱柱的有( )A.3个B.4个C.5个D.6个解析:选C.棱柱有三个特征:(1)有两个面相互平行.(2)其余各面是四边形.(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.2.下面图形中,为棱锥的是( )A.①③ B.③④ C.①②④ D.①②解析:选C.根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.3.有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为( ) A.四棱柱 B.四棱锥 C.三棱柱 D.三棱锥解析:选D.根据棱锥的定义可知该几何体是三棱锥.4.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为__________cm.解析:因为棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为605=12(cm).答案:125.画一个三棱台,再把它分成:(1)一个三棱柱和另一个多面体.(2)三个三棱锥,并用字母表示.解:画三棱台一定要利用三棱锥.(1)如图①所示,三棱柱是棱柱A′B′C′AB″C″,另一个多面体是B′C′C″B″BC.(2)如图②所示,三个三棱锥分别是A′ABC,B′A′BC,C′A′B′C.[A 基础达标]1.下列说法正确的是( )A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可能都是棱柱解析:选D.棱柱和棱锥的底面可以是任意多边形,故选项A、B均不正确;可沿棱锥的侧棱将其分割成两个棱锥,故C错误;用平行于棱柱底面的平面可将棱柱分割成两个棱柱.2.具备下列条件的多面体是棱台的是( )A.两底面是相似多边形的多面体B.侧面是梯形的多面体C.两底面平行的多面体D.两底面平行,侧棱延长后交于一点的多面体解析:选D.由棱台的定义可知,棱台的两底面平行,侧棱延长后交于一点.3.如图,能推断这个几何体可能是三棱台的是( )A .A 1B 1=2,AB =3,B 1C 1=3,BC =4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3 C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1解析:选C.根据棱台是由棱锥截成的进行判断. 选项A 中A 1B 1AB ≠B 1C 1BC ,故A 不正确;选项B 中B 1C 1BC ≠A 1C 1AC ,故B 不正确;选项C 中A 1B 1AB =B 1C 1BC=A 1C 1AC,故C 正确;选项D 中满足这个条件的可能是一个三棱柱,不是三棱台.故选C. 4.一个棱锥的各棱长都相等,那么这个棱锥一定不是( ) A .三棱锥 B .四棱锥 C .五棱锥D .六棱锥解析:选D.由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.5.下列图形中,不能折成三棱柱的是( )解析:选C.C 中,两个底面均在上面,因此不能折成三棱柱,其余均能折成三棱柱. 6.四棱柱有________条侧棱,________个顶点.解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得). 答案:4 87.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱. 解析:面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱. 答案:5 6 98.在下面的四个平面图形中,是侧棱都相等的四面体的展开图的为__________.(填序号)解析:由于③④中的图组不成四面体,只有①②可以. 答案:①②9.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥.(3)这是一个三棱台.10.画出如图所示的几何体的表面展开图.解:表面展开图如图所示:(答案不唯一)[B 能力提升]11.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线( )A.20条B.15条C.12条D.10条解析:选D.如图,在五棱柱ABCDE A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共有2×5=10(条).12.一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面( )A.至多有一个是直角三角形B.至多有两个是直角三角形C.可能都是直角三角形D.必然都是非直角三角形解析:选C.注意到答案特征是研究侧面最多有几个直角三角形,这是一道开放性试题,需要研究在什么情况下侧面的直角三角形最多.在如图所示的长方体中,三棱锥AA1C1D1的三个侧面都是直角三角形.13.长方体ABCDA1B1C1D1的长、宽、高分别为3,2,1,从A到C1沿长方体的表面的最短距离为________.解析:结合长方体的三种展开图不难求得AC1的长分别是:32,25,26,显然最小值是3 2.答案:3 214.如图,已知长方体ABCDA1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分几何体的形状是什么?解:(1)是棱柱.是四棱柱.因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)各部分几何体都是棱柱,分别为棱柱BB1FCC1E和棱柱ABFA1DCED1.[C 拓展探究]15.如图,在一个长方体的容器中装有少量水,现在将容器绕着其底部的一条棱倾斜,在倾斜的过程中:(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,试着讨论水面和水的形状.解:(1)不对,水面的形状就是用一个与棱(倾斜时固定不动的棱)平行的平面截长方体时截面的形状,因而是矩形,不可能是其他非矩形的平行四边形.(2)不对,水的形状就是用与棱(将长方体倾斜时固定不动的棱)平行的平面将长方体截去一部分后,剩余部分的几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱;但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.。
课时素养检测十九棱柱、棱锥、棱台的结构特征(30分钟60分)一、选择题(每小题4分,共24分,多选题全部选对得4分,选对但不全对的得2分,有选错的得0分)1.下面多面体中,是棱柱的有( )A.1个B.2个C.3个D.4个【解析】选D.根据棱柱的定义进行判定知,这4个图都满足.2.下列说法正确的是( )A.有2个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有3个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形【解析】选D.选项A错误,反例如图1;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B错误;选项C错误,反例如图2,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D正确.3.下列说法正确的是( )A.棱柱的面中,至少有两个互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中各条棱长都相等D.棱柱的侧面是平行四边形,但它的底面一定不是平行四边形【解析】选A.由棱柱的定义知,棱柱的底面平行,故A正确;六棱柱有三对相对的两个面平行,但都是侧面,故B错误;棱柱的侧棱相等,但是各条棱不一定都相等,故C错误;棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错误.4.有一个多面体,共由四个面围成,每一个面都是三角形,则这个几何体为( )A.四棱柱B.四棱锥C.三棱柱D.三棱锥【解析】选D.四个面都是三角形的几何体只能是三棱锥.5.(多选题)下列说法中不正确的是( )A.所有的棱柱都有一个底面B.棱柱的顶点至少有6个C.棱柱的侧棱至少有4条D.棱柱的棱至少有4条【解析】选ACD.棱柱有两个底面,所以A项不正确;棱柱底面的边数至少是3,则在棱柱中,三棱柱的顶点数最少是6,三棱柱的侧棱数最少是3,三棱柱的棱数最少是9,所以C、D项不正确,B 项正确.6.用一个平面去截一个三棱锥,截面形状是( )A.四边形B.三角形C.三角形或四边形D.不可能为四边形【解析】选C.按如图①所示用一个平面去截三棱锥,截面是三角形;按如图②所示用一个平面去截三棱锥,截面是四边形.二、填空题(每小题4分,共8分)7.一个正方体的六个面上分别标有字母A,B,C,D,E,F,如图是此正方体的两种不同放置,则与D 面相对的面上的字母是________.【解析】由正方体的两种不同放置可知:与C相对的是F,由题干图A、D与C排列的位置可知D与B相对.答案:B8.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.【解析】面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱.答案:5 6 9三、解答题(每小题14分,共28分)9.如图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?【解析】这个几何体是由两个同底面的四棱锥组合而成的八面体,有8个面,都是全等的正三角形;有6个顶点;有12条棱.10.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形;(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.(35分钟70分)一、选择题(每小题4分,共16分,多选题全部选对得4分,选对但不全对的得2分,有选错的得0分)1.(多选题)下面说法不正确的是( )A.棱锥的侧面不一定是三角形B.棱柱的各侧棱长不一定相等C.棱台的各侧棱延长必交于一点D.用一个平面截棱锥,得到两个几何体,一个是棱锥,另一个是棱台【解析】选ABD.棱台的各侧棱延长后必交于一点,C正确,其余都不正确.故选ABD.2.有下列三组定义:①有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱;②用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台;③有一个面是多边形,其余各面都是三角形的几何体是棱锥.其中正确定义的个数为( )A.0B.1C.2D.3【解析】选B.由棱柱的定义可知只有①正确,②中截面必须平行于底面,③中其余各三角形应有一个公共顶点,所以②③都不正确.3.观察如图所示的四个几何体,其中判断不正确的是( )A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台【解析】选B.结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.4.如图,能推断这个几何体可能是三棱台的是( )A.A1B1=2,AB=3,B1C1=3,BC=4B.A1B1=1,AB=2,B1C1=1.5,BC=3,A1C1=2,AC=3C.A1B1=1,AB=2,B1C1=1.5,BC=3,A1C1=2,AC=4D.AB=A1B1,BC=B1C1,CA=C1A1【解析】选C.不满足==的一定不是棱台,满足==的也不一定是棱台.根据提供的数据,A,B中对应边不成比例,D中对应边相等,故A,B,D一定不是棱台,C 中对应边成比例,可能是棱台.二、填空题(每小题4分,共16分)5.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线共有________条.【解析】在上底面选一个顶点,有5种,同时在下底选一个顶点,且这两个顶点不在同一侧面上,这样上底面每个顶点对应两条对角线,所以共有5×2=10条.答案:106.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是____________(写出所有正确结论的序号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.【解析】在如图正方体ABCD-A1B1C1D1中,若所取四点共面,则只能是正方体的表面或对角面.即正方形或长方形,所以①正确,②错误.棱锥A-BDA1符合③,所以③正确;棱锥A1-BDC1符合④,所以④正确;棱锥A-A1B1C1符合⑤,所以⑤正确.答案:①③④⑤7.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请根据上述定义,回答下面的问题(填“一定”“不一定”或“一定不”):(1)直四棱柱__________是长方体.(2)正四棱柱__________是正方体.【解析】根据上述定义知:长方体一定是直四棱柱,但是直四棱柱不一定是长方体;正方体一定是正四棱柱,但是正四棱柱不一定是正方体.答案:(1)不一定(2)不一定8.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________ cm.【解析】依题意,此棱柱为五棱柱,5条侧棱长均相等,故每条侧棱长为60÷5=12(cm).答案:12三、解答题(共38分)9.(12分)如图四棱柱ABCD A′B′C′D′被平面BCEF所截得的两部分分别是怎样的几何体?几何体ABCD A′FED′若是棱柱,指出它的底面和侧面.【解析】所截两部分分别是四棱柱和三棱柱;几何体ABCD A′FED′是四棱柱,它的底面是平面ABFA′和平面DCED′,侧面为平面ABCD,平面BCEF,平面ADD′A′和平面A′D′EF,侧面均为平行四边形.10.(12分)如图,正方形ABCD的边长为a,E,F,G,H分别为AB,BC,CD,DA的中点.若沿EF,FG,GH,HE将四角折起,试问能折成一个四棱锥吗?为什么?【解析】不能.连接EG,FH,将正方形分成四个一样的小正方形.若将正方形ABCD沿EF,FG,GH,HE折起,则四个顶点必重合于正方形的中心,故不能折成一个四棱锥.11.(14分)在以O为顶点的三棱锥中,过O的三条棱两两的交角都是30°,在一条侧棱上有A,B 两点,OA=4,OB=3,以A,B为端点的一条绳子紧绕三棱锥的侧面一周(绳和侧面无摩擦),求此绳在A,B之间的最短绳长.【解析】作出三棱锥的平面展开图,如图,A,B两点间的最短绳长就是线段AB的长度.OA=4,OB=3,∠AOB=90°,所以AB==5,即此绳在A,B间最短的绳长为5.。
8.1.1 棱柱、棱锥、棱台的结构特征
一、选择题
1.下列关于棱锥、棱台的说法,其中不正确的是( )
A.棱台的侧面一定不会是平行四边形
B.棱锥的侧面只能是三角形
C.由四个面围成的封闭图形只能是三棱锥
D.棱锥被平面截成的两部分不可能都是棱锥
解析:
选项A正确,棱台的侧面一定是梯形,而不是平行四边形;选项B正确,由棱锥的定义知棱锥的侧面只能是三角形;选项C正确,由四个面围成的封闭图形只能是三棱锥;选项D 错误,如图所示四棱锥被平面截成的两部分都是棱锥.
答案:D
2.下列实物不能近似看成多面体的是( )
A.钻石 B.粉笔盒
C.篮球 D.金字塔
解析:钻石、粉笔盒、金字塔的表面都可以近似看成平面多边形,所以它们都能近似看成多面体.篮球的表面不是平面多边形,故不能近似看成多面体.
答案:C
3.下列三种叙述,正确的有( )
①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;
②两个底面平行且相似,其余各面都是梯形的多面体是棱台;
③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.
A.0个 B.1个
C.2个 D.3个
解析:本题考查棱台的结构特征,①中的平面不一定平行于底面,故①错;②③可用如图的反例检验,故②③不正确.故选A.
答案:A
4.一个棱锥的各棱长都相等,那么这个棱锥一定不是( )
A.三棱锥 B.四棱锥
C.五棱锥 D.六棱锥
解析:由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.
答案:D
二、填空题
5.四棱柱有________条侧棱,________个顶点.
解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得).
答案:4 8
6.下列几个命题:
①棱柱的底面一定是平行四边形;
②棱锥的底面一定是三角形;
③棱柱被平面分成的两部分可以都是棱柱.
其中正确的是________.(填序号)
解析:①棱柱的底面可以为任意多边形.②棱锥的底面可以为四边形、五边形等.
答案:③
7.下列说法正确的有________.
①棱锥的侧面为三角形,且所有侧面都有一个公共点;
②棱台的侧面有的是平行四边形,有的是梯形;
③棱台的侧棱所在直线均相交于同一点;
④多面体至少有四个面.
解析:棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故①对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故②错,③对.④显然正确.因而正确的有①③④.
答案:①③④
三、解答题
8.根据下列关于空间几何体的描述,说出几何体的名称:
(1)由6个平行四边形围成的几何体;
(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;
(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.
解析:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.
(2)这是一个六棱锥.
(3)这是一个三棱台.
9.如图所示是一个三棱台ABC-A′B′C′,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.
解析:过A′,B,C三点作一个平面,再过A′,B,C′作一个平面,就把三棱台ABC -A′B′C′分成三部分,形成的三个三棱锥分别是A′-ABC,B-A′B′C′,A′-BCC′.(答案不唯一)
[尖子生题库]
10.如图所示,长方体的长、宽、高分别为5 cm,4 cm,3 cm.一只蚂蚁从A点到C1点沿着表面爬行的最短路程是多少?
解析:依题意,长方体ABCD-A1B1C1D1的表面可有如图所示的三种展开图.
展开后,A,C1两点间的距离分别为:3+42+52=74 (cm),5+32+42=4 5 (cm),5+42+32=310 (cm),三者比较得74 cm为蚂蚁从A点沿表面爬行到C1点的最短路程.。