第七章 受压构件截面承载力
- 格式:pdf
- 大小:191.19 KB
- 文档页数:12
第7章偏心受压构件的正截面承载力计算当轴向压力N的作用线偏离受压构件的轴线时[图7-1a)],称为偏心受压构件。
压力N的作用点离构件截面形心的距离e称为偏心距。
截面上同时承受轴心压力和弯矩的构件[图7-1b)],称为压弯构件。
根据力的平移法则,截面承受偏心距为e的偏心压力N相当于承受轴心压力N和弯矩M(=Ne)的共同作用,故压弯构件与偏心受压构件的基本受力特性是一致的。
β)图7-1 偏心受压构件与压弯构件a)偏心受压构件b)压弯构件钢筋混凝土偏心受压(或压弯)构件是实际工程中应用较广泛的受力构件之一,例如,拱桥的钢筋混凝土拱肋,桁架的上弦杆、刚架的立柱、柱式墩(台)的墩(台)柱等均属偏心受压构件,在荷载作用下,构件截面上同时存在轴心压力和弯矩。
钢筋混凝土偏心受压构件的截面型式如图7-2所示。
矩形截面为最常用的截面型式,截面高度h大于600mm的偏心受压构件多采用工字形或箱形截面。
圆形截面主要用于柱式墩台、桩基础中。
图7-2 偏心受压构件截面型式a)矩形截面b)工字形截面c)箱形截面d)圆形截面在钢筋混凝土偏心受压构件的截面上,布置有纵向受力钢筋和箍筋。
纵向受力钢筋在截面中最常见的配置方式是将纵向钢筋集中放置在偏心方向的两对面[图7-3a)],其数量通过正截面承载力计算确定。
对于圆形截面,则采用沿截面周边均匀配筋的方式[图7-3b)]。
箍筋的作用与轴心受压构件中普通箍筋的作用基本相同。
此外,偏心受压构件中还存在着一定的剪力,可由箍筋负担。
但因剪力的数值一般较小,故一般不予计算。
箍筋数量及间距按普通箍筋柱的构造要求确定。
图7-3 偏心受压构件截面钢筋布置形式a)纵筋集中配筋布置b)纵筋沿截面周边均匀布置7.1 偏心受压构件正截面受力特点和破坏形态钢筋混凝土偏心受压构件也有短柱和长柱之分。
本节以矩形截面的偏心受压短柱的试验结果,介绍截面集中配筋情况下偏心受压构件的受力特点和破坏形态。
7.1.1 偏心受压构件的破坏形态钢筋混凝土偏心受压构件随着偏心距的大小及纵向钢筋配筋情况不同,有以下两种主要破坏形态。
第七章受拉构件正截面承载力一、选择题1.仅配筋率不同的甲、乙两轴拉构件即将开裂时,其钢筋应力()A.甲乙大致相等; B甲乙相差很多; C 不能肯定2.轴心受拉构件从加载至开裂前()A.钢筋与砼应力均线性增加; B.钢筋应力的增长速度比砼快;C.钢筋应力的增长速度比砼慢; D.两者的应力保持相等。
3.在轴心受拉构件砼即将开裂的瞬间,钢筋应力大致为()A.400N/mm2; mm2; mm2; D210N/mm24.偏心受拉构件的受拉区砼塑性影响系数Y与轴心受拉构件的塑性影响系数Y相比()A. 相同;B.小;C.大.5.矩形截面对称配筋小偏拉构件在破坏时()A. A s´受压不屈服;B. A s´受拉不屈服;C. A s´受拉屈服;D. A s´受压屈服6.矩形截面不对称配筋小偏拉构件在破坏时()A. 没有受压区,A s´受压不屈服;B. 没有受压区,A s´受拉不屈服;C. 没有受压区,A s´受拉屈服;D. 没有受压区,A s´受压屈服二、思考题1. 如何划分受拉构件是大偏心受拉还是小偏心受拉?它们的各自的受力特点和破坏特征是什么?第七章受拉构件正截面承载力答案一、A B C C B B二、1、根据受拉构件偏心距的大小,并以轴向拉力的作用点在截面两侧纵向钢筋之间或在纵向钢筋之外作为区分界限,即:当轴向拉力N在纵向钢筋A合力点及s A'合力点范围以外时为大偏心受拉构s件;当轴向拉力N在纵向钢筋A合力点及s A'合力点范围以内时为小偏心受拉构s件。
大偏心受拉构件的受力特点是:当拉力增大到一定程度时,受拉钢筋首先达到抗拉屈服强度,随着受拉钢筋塑性变形的增长,受压区面积逐步缩小,最后构件由于受压区混凝土达到极限压应变而破坏。
其破坏形态与小偏心受压构件相似。
小偏心受拉构件的受力特点是:混凝土开裂后,裂缝贯穿整个截面,全部轴向拉力由纵向钢筋承担。
第3章 受压构件的截面承载力本章提要受压构件是钢筋混凝土结构中的重要章节,它分为轴心受压和偏心受压(单向偏心受压构件和双向偏心受压构件)两部分。
轴心受压构件截面应力分布均匀,两种材料承受压力之和,在考虑构件稳定影响系数后,即为构件承载力计算公式。
对于配有纵筋及螺旋箍筋的柱,由于螺旋箍筋约束混凝土的横向变形,因而其承载力将会有限度的提高。
偏心受压构件因偏心距大小和受拉钢筋多少的不同,截面将有两种破坏情况,即大偏心受压(截面破坏时受拉钢筋能屈服)和小偏心受压(截面破坏时受拉钢筋不能屈服)构件。
在考虑了偏心距增大系数后,根据截面力的平衡条件,即可得偏心受压构件的计算公式。
截面有对称配筋和不对称配筋两类,实用上对称配筋截面居多。
无论是对称配筋或不对称配筋,计算时均应判别大、小偏心的界限,分别用其计算公式对截面进行计算。
本章学习目标:了解轴心受压构件的受力全过程,偏心受压构件的受力工作特性;熟悉两种不同偏心受压构件的破坏特征及由此划分成的两类偏心受压构件,掌握两类偏心受压构件的判别方法;掌握轴心受压构件、两类偏心受压构件的正截面承载力计算方法;掌握偏心受压构件的斜截面承载力计算方法;熟悉受压构件的构造要求。
课堂教学学时:12学时主要教学内容:3.1 受压构件一般构造要求3.1.1 截面型式及尺寸1. 截面型式一般采用方形或矩形,有时也采用圆形或多边形。
偏心受压构件一般采用矩形截面,但为了节约混凝土和减轻柱的自重,较大尺寸的柱常常采用I形截面。
拱结构的肋常做成T形截面。
采用离心法制造的柱、桩、电杆以及烟囱、水塔支筒等常用环形截面。
2. 截面尺寸:(1) 方形或矩形截面柱截面不宜小于300mm×300mm。
为了避免矩形截面轴心受压构件长细比过大,承载力降低过多,通常取l0/b≤30,l0/h≤25。
此处l0为柱的计算长度,b为矩形截面短边边长,h为长边边长。
为了施工支模方便,柱截面尺寸宜使用整数,截面尺寸≤800mm,以50mm 为模数;截面尺寸>800 mm ,以100mm 为模数。
受压构件截面承载力计算
受压构件截面承载力计算是结构工程中的重要计算内容之一、在设计
受压构件时,需要保证构件的承载力不低于设计要求,以确保结构的安全
性和稳定性。
受压构件截面承载力的计算涉及到材料力学、截面形状和尺寸,以及截面临界状态等多个因素。
以下是受压构件截面承载力计算的基
本步骤和方法。
1.分析受压构件的材料力学性能:首先需要确定受压构件的材料类型
和性能参数,包括弹性模量、屈服强度、抗压强度等。
这些参数可以在材
料手册中查找或者进行材料试验获得。
2.确定构件的截面几何特征:受压构件的截面形状决定了其承载能力。
常见的受压构件截面形状包括矩形、圆形、T形、工字形等。
需要根据实
际情况确定构件的截面几何参数,如截面面积、惯性矩、受压边缘等。
3.计算截面承载能力:使用截面承载能力公式或者截面性能表格,根
据受压构件的材料性能和截面几何特征计算截面的承载能力。
常用的计算
方法有强度设计法、极限状态设计法和变形极限设计法等。
4.考虑临界状态和稳定性:受压构件在承载过程中可能会出现临界状
态和稳定性问题,如屈曲、侧扭、局部稳定等。
需根据受压构件的长度、
约束条件、支承条件等因素,对构件进行临界状态和稳定性分析,以确保
构件在正常使用条件下不会失稳。
总结起来,受压构件截面承载力计算是一项复杂的工作,需要综合考
虑材料力学、截面形状和尺寸、临界状态和稳定性等多个因素。
设计工程
师需要有扎实的结构力学和材料力学基础,以及丰富的实际工程经验,才
能进行准确可靠的受压构件截面承载力计算。
偏心受压构件正截面受压破坏形态偏心受压短柱的破坏形态试验表明,钢筋混凝土偏心受压短柱的破坏形态有受拉破坏和受压破坏两种情况。
1.受拉破坏形态受拉破坏又称大偏心受压破坏,它发生于轴向力N的相对偏心距较大,且受拉钢筋配置得不太多时。
受拉破坏形态的特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎,是与适筋梁破坏形态相似的延性破坏类型。
构件破坏时,其正截面上的应力状态如上图(a)所示;构件破坏时的立面展开图见下图(b)。
2.受压破坏形态受压破坏形态又称小偏心受压破坏,截面破坏是从受压区开始的,发生于以下两种情况。
(1)当轴向力N的相对偏心距较小时,构件截面全部受压或大部分受压,如图(a)或下图(b)所示的情况。
(2)当轴向力的相对偏心距虽然较大,但却配置了特别多的受拉钢筋,致使受拉钢筋始终不屈服。
破坏时,受压区边缘混凝土达到极限压应变值,受压钢筋应力达到抗压屈服强度,而远侧钢筋受拉而不屈服,其截面上的应力状态如下图(a)所示。
破坏无明显预兆,压碎区段较长,混凝土强度越高,破坏越带突然性,见下图(c)。
总之,受压破坏形态或称小偏心受压破坏形态的特点是混凝土先被压碎,远侧钢筋可能受拉也可能受压,但都不屈服,属于脆性破坏类型。
在“受拉破坏形态”与“受压破坏形态”之间存在着一种界限破坏形态,称为“界限破坏”。
它不仅有横向主裂缝,而且比较明显.。
其主要特征是:在受拉钢筋应力达到屈服强度的同时、受压区混凝土被压碎。
界限破坏形态也属子受拉破坏形态。
长柱的正截面受压破坏试验表明,钢筋混凝土柱在承受偏心受压荷载后,会产生纵向弯曲。
但长细比小的柱,即所谓“短柱”,由于纵向弯曲小,在设计时一般可忽略不计。
对于长细比较大的柱则不同,它会产生比较大的纵向弯曲,设计时必须予以考虑。
下图是一根长柱的荷载一侧向变形(N -f)实验曲线。
偏心受压长柱在纵向弯曲影响下‘可能发生两种形式的破坏。
长细比很大时,构件的破坏不是由于材料引起的,而是由于构件纵向弯曲失去平衡引起的,称为“失稳破坏”。
第7章 受压构件正截面受压承载力知识点1.配有纵筋和箍筋的轴心受压柱的受力全过程及其破坏特征;2.配有纵筋和箍筋的轴心受压柱的承载力计算;3.配有纵筋和螺旋筋的轴心受压柱的承载力及计算公式;4.偏心受压构件的破坏形态及其分类,界限破坏,纵向弯曲(二阶弯矩)的影响;5.矩形、工字形截面偏心受压构件的正截面承载力计算,矩形截面不对称和对称配筋的计算方法;6.偏心受压构件斜截面受剪承载力计算;7.双向偏心受压矩形正截面承载力的简化计算方法;8.受压构件的构造要求;9.偏心受压构件的截面延性的特点。
要点1.螺旋箍筋柱较普通箍筋柱承载力提高的原因是螺旋筋约束了混凝土的横向变形。
2.轴心受压构件,配置纵筋的作用是帮助混凝土承受压力,减力构件截面尺寸。
3.《混凝土结构设计规范》规定,配有螺旋式或焊接环式间接钢筋柱的承载能力不能高于配有普通箍筋柱承载能力的50%。
4.偏心受压构件界限破坏的特点:偏心受压构件界限破坏时远离轴向力一侧的钢筋屈服与受压区混凝土压碎同时发生。
5.如何确定大偏心受压构件:计算偏心受压构件,当b ξξ≤时,构件确定属于大偏心受压构件。
6.偏心受压构件的破坏形态有大偏心受压和小偏心受压两种情况。
7.轴心受压承载力的计算公式:N =0.9φ(f c A +f ′′y A ′s )。
8.偏心受压构件斜截面受剪承载力计算公式是在受弯构件斜截面受剪承载力公式基础上多了一项0.07N ,同时要求当轴向力N>0.3f c A 时,取A f N c 3.0=。
9.《混凝土结构设计规范》采用稳定系数ϕ表示长柱承载能力的降低程度,所以,ϕ为长柱的承载力)(l u N 与短柱的承载力)(su N 之比。
<0.55h 0 >2a ′10.轴心受压构件中,配置纵筋的作用是帮助混凝土承受压力,减小构件截面尺寸。
11.偏心受压构件的破坏特征:大偏心受压破坏,属延性破坏;破坏特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎。
第七章受压构件的截面计算解析受压构件是指受到压力加载的结构构件,如柱子、墙体等。
在设计和施工中,需要对受压构件的截面进行计算解析,以保证其承载能力和稳定性。
受压构件截面计算解析主要包括以下几个方面:1.截面尺寸的确定:首先需要确定受压构件的截面尺寸,包括高度、宽度等。
一般来说,截面尺寸的确定要满足一定的几何限制,如对于矩形截面,要求宽度大于等于高度的1/6,以避免构件过于细长。
2.材料的选取:受压构件的材料一般选用混凝土、钢材等,根据设计要求和使用环境的不同,需要选择合适的材料。
在选取材料时,要考虑其强度、耐久性、抗震性等指标。
3.截面的承载力计算:截面的承载力是指受压构件在承受压力加载时能够抵抗破坏的能力。
对于不同的受压构件,有不同的承载力计算方法。
例如,对于矩形截面的受压构件,可以采用材料的抗压强度和构件的几何特性来计算承载力。
4.屈曲稳定性的考虑:受压构件在受到压力加载时,可能会发生屈曲现象,即构件整体发生弯曲。
屈曲的稳定性是指构件在发生弯曲后能够保持稳定的能力。
在设计中,需要计算受压构件的稳定系数,以判断其是否具有足够的稳定性,并采取适当的措施进行加固。
5.构件的连接方式:受压构件与其他构件的连接方式也需要考虑。
连接方式的选择应符合设计要求和结构安全性的要求,并考虑施工的便利性。
在计算解析中,需要对连接方式进行分析,包括焊接、螺栓连接等。
在进行受压构件的截面计算解析时,需要遵循相关的设计规范和标准,如国家标准《混凝土结构设计规范》、《钢结构设计规范》等。
同时,还需要考虑实际工程中的具体情况,如荷载、使用环境等因素,以保证构件的安全性和可靠性。
总之,受压构件的截面计算解析是保证结构安全性和稳定性的重要工作。
通过合理的截面尺寸、材料选取和构件连接方式的选择,以及承载力和稳定性的计算分析,可以保证受压构件在受压加载下能够满足设计要求,并确保结构的安全可靠。
第七章受压构件截面承载力一、判断题1.轴心受压构件纵向受压钢筋配置越多越好。
()2.轴心受压构件中的箍筋应作成封闭式的。
()3.实际工程中没有真正的轴心受压构件。
()4.轴心受压构件的长细比越大,稳定系数值越高。
()5.轴心受压构件计算中,考虑受压时纵筋容易压曲,所以钢筋的抗压强度设计值最大取为2/400mm N 。
()6.螺旋箍筋柱既能提高轴心受压构件的承载力,又能提高柱的稳定性。
()7.小偏心受压破坏的的特点是,混凝土先被压碎,远端钢筋没有受拉屈服。
()8.轴向压力的存在对于偏心受压构件的斜截面抗剪能力是有提高的,但是不是无限制的。
()9.小偏心受压情况下,随着N 的增加,正截面受弯承载力随之减小。
()10.对称配筋时,如果截面尺寸和形状相同,混凝土强度等级和钢筋级别也相同,但配筋数量不同,则在界限破坏时,它们的u N 是相同的。
()11.钢筋混凝土大偏压构件的破坏特征是远侧钢筋受拉屈服,随后近侧钢筋受压屈服,混凝土也压碎。
()12.界限破坏时,正截面受弯承载力达到最大值。
()13.偏压构件的抗弯承载力随着轴向力的增加而增加。
()14.判别大偏心受压破坏的本质条件是03.0h e i >η。
()15.如果b ξξ>,说明是小偏心受拉破坏。
()二、单选题1.钢筋混凝土轴心受压构件,稳定系数是考虑了()。
A.初始偏心距的影响;B.荷载长期作用的影响;C.两端约束情况的影响;D.附加弯矩的影响。
2.对于高度、截面尺寸、配筋完全相同的柱,以支承条件为()时,其轴心受压承载力最大。
A.两端嵌固;B.一端嵌固,一端不动铰支;C.两端不动铰支;D.一端嵌固,一端自由;3.钢筋混凝土轴心受压构件,两端约束情况越好,则稳定系数()。
A.越大;B.越小;C.不变;D.变化趋势不定。
4.一般来讲,其它条件相同的情况下,配有螺旋箍筋的钢筋混凝土柱同配有普通箍筋的钢筋混凝土柱相比,前者的承载力比后者的承载力()。
A.低;B.高;C.相等;D.不确定。
5.对长细比大于12的柱不宜采用螺旋箍筋,其原因是()。
A.这种柱的承载力较高;B.施工难度大;C.抗震性能不好;D.这种柱的强度将由于纵向弯曲而降低,螺旋箍筋作用不能发挥;6.轴心受压短柱,在钢筋屈服前,随着压力而增加,混凝土压应力的增长速率()。
A.比钢筋快;B.线性增长;C.比钢筋慢;D.与钢筋相等。
7.两个仅配筋率不同的轴压柱,若混凝土的徐变值相同,柱A配筋率大于柱B,则引起的应力重分布程度是()。
A.柱A=柱B;B.柱A>柱B;C.柱A<柱B;D.不确定。
8.与普通箍筋的柱相比,有间接钢筋的柱主要破坏特征是()。
A.混凝土压碎,纵筋屈服;B.混凝土压碎,钢筋不屈服;C.保护层混凝土剥落;D.间接钢筋屈服,柱子才破坏。
是因为()。
9.螺旋筋柱的核心区混凝土抗压强度高于fcA.螺旋筋参与受压;B.螺旋筋使核心区混凝土密实;C.螺旋筋约束了核心区混凝土的横向变形;D.螺旋筋使核心区混凝土中不出现内裂缝。
10.为了提高钢筋混凝土轴心受压构件的极限应变,应该()。
A.采用高强混凝土;B.采用高强钢筋;C.采用螺旋配筋;D.加大构件截面尺寸。
11.规范规定:按螺旋箍筋柱计算的承载力不得超过普通柱的1.5倍,这是为()。
A.在正常使用阶段外层混凝土不致脱落B.不发生脆性破坏;C.限制截面尺寸;D.保证构件的延性A。
12.一圆形截面螺旋箍筋柱,若按普通钢筋混凝土柱计算,其承载力为300KN,若按螺旋箍筋柱计算,其承载力为500KN,则该柱的承载力应示为()。
A.400KN;B.300KN;C.500KN;D.450KN。
13.配有普通箍筋的钢筋混凝土轴心受压构件中,箍筋的作用主要是()。
A.抵抗剪力;B.约束核心混凝土;C.形成钢筋骨架,约束纵筋,防止纵筋压曲外凸;D.以上三项作用均有。
14.偏心受压构件计算中,通过哪个因素来考虑二阶偏心矩的影响()。
A.0e ; B.a e ; C.i e ;D.η。
15.判别大偏心受压破坏的本质条件是:()。
A.03.0h e i >η;B.03.0h e i <η;C.B ξξ<;D.B ξξ>。
16.由u u M N −相关曲线可以看出,下面观点不正确的是:()。
A.小偏心受压情况下,随着N 的增加,正截面受弯承载力随之减小;B.大偏心受压情况下,随着N 的增加,正截面受弯承载力随之减小;C.界限破坏时,正截面受弯承载力达到最大值;D.对称配筋时,如果截面尺寸和形状相同,混凝土强度等级和钢筋级别也相同,但配筋数量不同,则在界限破坏时,它们的u N 是相同的。
17.钢筋混凝土大偏压构件的破坏特征是:()。
A.远侧钢筋受拉屈服,随后近侧钢筋受压屈服,混凝土也压碎;B.近侧钢筋受拉屈服,随后远侧钢筋受压屈服,混凝土也压碎;C.近侧钢筋和混凝土应力不定,远侧钢筋受拉屈服;D.远侧钢筋和混凝土应力不定,近侧钢筋受拉屈服。
18.一对称配筋的大偏心受压构件,承受的四组内力中,最不利的一组内力为:()。
A.m kN M ⋅=500kN N 200=;B.m kN M ⋅=491kN N 304=;C.m kN M ⋅=503kN N 398=;D.mkN M ⋅−=512kN N 506=。
19.一对称配筋的小偏心受压构件,承受的四组内力中,最不利的一组内力为:()。
A.m kN M ⋅=525kN N 2050=;B.m kN M ⋅=520kN N 3060=;C.m kN M ⋅=524kN N 3040=;D.mkN M ⋅=525kN N 3090=。
20.偏压构件的抗弯承载力()。
A.随着轴向力的增加而增加;B.随着轴向力的减少而增加;C.小偏压时随着轴向力的增加而增加;D.大偏压时随着轴向力的增加而增加。
三、简答题1.轴心受压构件设计时,如果用高强度钢筋,其设计强度应如何取值?答:纵向受力钢筋一般采用HRB400级、HRB335级和RRB400级,不宜采用高强度钢筋,因为与混凝土共同受压时,不能充分发挥其高强度的作用。
混凝土破坏时的压应变0.002,此时相应的纵筋应力值бs ’=Esεs’=200×103×0.002=400N/mm2;对于HRB400级、HRB335级、HPB235级和RRB400级热扎钢筋已达到屈服强度,对于Ⅳ级和热处理钢筋在计算fy’值时只能取400N/mm2。
2.轴心受压构件设计时,纵向受力钢筋和箍筋的作用分别是什么?答:纵筋的作用:①与混凝土共同承受压力,提高构件与截面受压承载力;②提高构件的变形能力,改善受压破坏的脆性;③承受可能产生的偏心弯矩、混凝土收缩及温度变化引起的拉应力;④减少混凝土的徐变变形。
横向箍筋的作用:①防止纵向钢筋受力后压屈和固定纵向钢筋位置;②改善构件破坏的脆性;③当采用密排箍筋时还能约束核芯内混凝土,提高其极限变形值。
3.简述轴心受压构件徐变引起应力重分布?(轴心受压柱在恒定荷载的作用下会产生什么现象?对截面中纵向钢筋和混凝土的应力将产生什么影响?)答:当柱子在荷载长期持续作用下,使混凝土发生徐变而引起应力重分布。
此时,如果构件在持续荷载过程中突然卸载,则混凝土只能恢复其全部压缩变形中的弹性变形部分,其徐变变形大部分不能恢复,而钢筋将能恢复其全部压缩变形,这就引起二者之间变形的差异。
当构件中纵向钢筋的配筋率愈高,混凝土的徐变较大时,二者变形的差异也愈大。
此时由于钢筋的弹性恢复,有可能使混凝土内的应力达到抗拉强度而立即断裂,产生脆性破坏。
4.对受压构件中纵向钢筋的直径和根数有何构造要求?对箍筋的直径和间距又有何构造要求?答:纵向受力钢筋直径d不宜小于12mm,通常在12mm~32mm范围内选用。
矩形截面的钢筋根数不应小于4根,圆形截面的钢筋根数不宜少于8根,不应小于6根。
纵向受力钢筋的净距不应小于50mm,最大净距不宜大于300mm。
其对水平浇筑的预制柱,其纵向钢筋的最小净距为上部纵向受力钢筋水平方向不应小于30mm 和1.5d (d 为钢筋的最大直径),下部纵向钢筋水平方向不应小于25mm 和d 。
上下接头处,对纵向钢筋和箍筋各有哪些构造要求?5.进行螺旋筋柱正截面受压承载力计算时,有哪些限制条件?为什么要作出这些限制条件?答:凡属下列条件的,不能按螺旋筋柱正截面受压承载力计算:1当l 0/b >12时,此时因长细比较大,有可能因纵向弯曲引起螺旋箍筋不起作用;2如果因混凝土保护层退出工作引起构件承载力降低的幅度大于因核芯混凝土强度提高而使构件承载力增加的幅度,3当间接钢筋换算截面面积A ss 0小于纵筋全部截面面积的25%时,可以认为间接钢筋配置得过少,套箍作用的效果不明显。
6.判别大、小偏心受压破坏的条件是什么?大、小偏心受压的破坏特征分别是什么?答:(1)b ξξ≤,大偏心受压破坏;b ξξ>,小偏心受压破坏;(2)破坏特征:大偏心受压破坏:破坏始自于远端钢筋的受拉屈服,然后近端混凝土受压破坏;小偏心受压破坏:构件破坏时,混凝土受压破坏,但远端的钢筋并未屈服;7.偏心受压短柱和长柱有何本质的区别?偏心距增大系数的物理意义是什么?答:1)偏心受压短柱和长柱有何本质的区别在于,长柱偏心受压后产生不可忽略的纵向弯曲,引起二阶弯矩。
(2)偏心距增大系数的物理意义是,考虑长柱偏心受压后产生的二阶弯矩对受压承载力的影响。
8.附加偏心距a e 的物理意义是什么?如何取值?答:附加偏心距a e 的物理意义在于,考虑由于荷载偏差、施工误差等因素的影响,0e 会增大或减小,另外,混凝土材料本身的不均匀性,也难保证几何中心和物理中心的重合。
其值取20mm 和偏心方向截面尺寸的1/30两者中的较大者。
四、计算题1.某多层现浇框架结构的底层内柱,轴向力设计值N=2650kN,计算长度mH l 6.30==,混凝土强度等级为C30(f c =14.3N/mm 2),钢筋用HRB400级(2'/360mm N f y=),环境类别为一类。
确定柱截面积尺寸及纵筋面积。
解:根据构造要求,先假定柱截面尺寸为400mm×400mm由9400/3600/0==b l ,查表得99.0=ϕ根据轴心受压承载力公式确定's A 23''1906)4004003.1499.09.0102650(3601)9.0(1mm A f N f A c y s=××−××=−=ϕ%6.0%2.14004001906'min ''=>=×==ρρA A s ,对称配筋截面每一侧配筋率也满足0.2%的构造要求。