武汉市中考数学几何综合题专题汇编

  • 格式:doc
  • 大小:140.50 KB
  • 文档页数:4

下载文档原格式

  / 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉市中考数学几何综合题专题汇编(2)

1、(2013•绍兴)矩形ABCD 中,AB=4,AD=3,P ,Q 是对角线BD 上不重合的两点,点P 关于直线AD ,AB 的对称点分别是点E 、F ,点Q 关于直线BC 、CD 的对称点分别是点G 、H .若由点E 、F 、G 、H 构成的四边形恰好为菱形,求PQ 的长。

2、(2013陕西压轴题)问题探究

(1)请在图①中作出两条直线,使它们将圆面四等分;

(2)如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由. 问题解决

(3)如图③,在四边形ABCD 中,AB ∥CD ,AB+CD=BC ,点P 是AD 的中点,如果AB=a ,CD=b ,且a b ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由.

图①

图②

A

B

C

D

M

B

图③

A

C

D

P

(第25题图)

3、(2013•温州压轴题)如图,在平面直角坐标系中,直线AB 与x 轴,y 轴分别交于点A (6,0),B (0.8),点C 的坐标为(0,m ),过点C 作CE ⊥AB 于点E ,点D 为x 轴上的一动点,连接CD ,DE ,以CD ,DE 为边作▱CDEF .

(1)当0<m <8时,求CE 的长(用含m 的代数式表示);

(2)当m=3时,是否存在点D ,使▱CDEF 的顶点F 恰好落在y 轴上?若存在,求出点D 的坐标;若不存在,请说明理由;

(3)点D 在整个运动过程中,若存在唯一的位置,使得▱CDEF 为矩形,请求出所有满足条件的m 的值.

4、(13年北京)在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B

逆时针旋转60°得到线段BD 。

(1)如图1,直接写出∠ABD 的大小(用含α的式子表示);

(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连结DE ,若∠DEC=45°,求α的值。

5、(13年山东青岛、24压轴题)已知,如图,□ABCD 中,AD=3cm ,CD=1cm ,∠B=45°,点P 从点A 出发,沿AD 方向匀速运动,速度为3cm/s ;点Q 从点C 出发,沿CD 方向匀速运动,速度为1cm/s ,连接并延长QP 交BA 的延长线于点M ,过M 作MN ⊥BC ,垂足是N ,设运动时间为t (s )(0<t <1),解答下列问题: (1)当t 为何值时,四边形AQDM 是平行四边形? (2)设四边形ANPM 的面积为y (cm ²),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使四边形ANPM 的面积是□ABCD 面积的一半,若存在,求出相应的t 值,若不存在,说明理由

(4)连接AC ,是否存在某一时刻t ,使NP 与AC 的交点把线段AC 分成1:2的两部分?若存在,求出相应的t 值,若不存在,说明理由

6.(本题12分)如图1,点A 是x 轴正半轴上的动点,点B 坐标为(0,4),M 是线段AB 的中点,将点M 绕点A 顺时针方向旋转90°得到点C ,过点C 作x 轴的垂线,垂足为F , 过点B 作y 轴的垂线与直线CF 相交于点E ,点D 点A 关于直线CF 的对称点,连结AC , BC ,CD ,设点A 的横坐标为t

(1)当2 t 时,求CF 的长;(2)①当t 为何值时,点C 落在线段BD 上? ②设△BCE 的面积为S ,求S 与t 之间的函数关系式;

(3)如图2,当点C 与点E 重合时,△CDF 沿x 轴左右平移得到△C ’D ’F ’,再将A ,B ,C ’,D ’为顶点的四边形沿C ’F ’剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形,请直接写出所有符合上述条件的点C ’的坐标。

O

P

B

A

N

Q

B

A

第24题备

B A

第24题备

7、已知,在矩形ABCD 中,E 为BC 边上一点,DE AE ⊥,AB=12,BE=16,F 为线段BE 上一点,EF=7,连接AF.如图1,现有一张硬质纸片GMN ∆,090=∠NGM ,NG=6,MG=8,斜边MN 与边BC 在同一直线上,点N 与点E 重合,点G 在线段DE 上.如图2,GMN ∆从图1的位置出发,以每秒1个单位的速度沿EB 向点B 匀速移动,同时,点P 从A 点出发,以每秒1个单位的速度沿AD 向点D 匀速移动,点Q 为直线GN 与线段AE 的交点,连接PQ.当点N 到达终点B 时,GMN ∆和点P 同时停止运动.设运动时间为t 秒,解答下列问题: (1)在整个运动过程中,当点G 在线段AE 上时,求t 的值;

(2)在整个运动过程中,是否存在点P ,使APQ ∆是等腰三角形,若存在,求出t 的值;若不存在,说明理由;

(3)在整个运动过程中,设GMN ∆与AEF ∆重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式以及自变量t 的取值范围.