(完整版)电磁场复习题
- 格式:doc
- 大小:694.01 KB
- 文档页数:11
大学电磁场考试题及答案一、单项选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是:A. 300,000 km/sB. 299,792,458 m/sC. 1,000,000 km/sD. 299,792,458 km/s答案:B2. 麦克斯韦方程组中描述电磁场与电荷和电流关系的方程是:A. 高斯定律B. 法拉第电磁感应定律C. 麦克斯韦-安培定律D. 所有上述方程答案:D3. 以下哪项不是电磁场的基本概念?A. 电场B. 磁场C. 引力场D. 电磁波答案:C4. 根据洛伦兹力定律,一个带电粒子在磁场中的运动受到的力与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 磁场的强度D. 粒子的质量答案:D5. 电磁波的波长和频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积是常数答案:B6. 以下哪项是电磁波的主要特性?A. 需要介质传播B. 具有粒子性C. 具有波动性D. 以上都是答案:C7. 电磁波在介质中的传播速度比在真空中:A. 快B. 慢C. 相同D. 无法确定答案:B8. 根据电磁波的偏振特性,以下说法正确的是:A. 只有横波可以偏振B. 纵波也可以偏振C. 所有波都可以偏振D. 只有电磁波可以偏振答案:A9. 电磁波的反射和折射遵循的定律是:A. 斯涅尔定律B. 牛顿定律C. 欧姆定律D. 法拉第电磁感应定律答案:A10. 电磁波的干涉现象说明了:A. 电磁波具有粒子性B. 电磁波具有波动性C. 电磁波具有量子性D. 电磁波具有热效应答案:B二、填空题(每空1分,共10分)1. 电磁波的传播不需要________,可以在真空中传播。
答案:介质2. 麦克斯韦方程组由四个基本方程组成,分别是高斯定律、高斯磁定律、法拉第电磁感应定律和________。
答案:麦克斯韦-安培定律3. 根据洛伦兹力定律,一个带电粒子在磁场中受到的力的大小与粒子的电荷量、速度以及磁场强度的乘积成正比,并且与粒子速度和磁场方向的________垂直。
大学电磁场考试题及答案一、选择题(每题2分,共20分)1. 电磁场中,电场与磁场的相互作用遵循以下哪个定律?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定律D. 洛伦兹力定律答案:D2. 在真空中,电磁波的传播速度是多少?A. 100,000 km/sB. 300,000 km/sC. 1,000,000 km/sD. 3,000,000 km/s答案:B3. 一个点电荷产生的电场强度与距离的平方成什么关系?A. 正比B. 反比C. 对数关系D. 线性关系答案:B4. 以下哪种介质不能支持电磁波的传播?A. 真空B. 空气C. 玻璃D. 金属答案:D5. 麦克斯韦方程组中描述变化电场产生磁场的方程是?A. 高斯定律B. 高斯磁定律C. 法拉第电磁感应定律D. 安培环路定律答案:C6. 一个均匀带电球壳内部的电场强度是多少?A. 零B. 与球壳内的电荷分布有关C. 与球壳外的电荷分布有关D. 与球壳的总电荷量成正比答案:A7. 电磁波的频率和波长之间有什么关系?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率越大,波长越小答案:B8. 根据洛伦兹力公式,一个带电粒子在磁场中运动时,其受到的力的方向与什么因素有关?A. 粒子的速度B. 磁场的方向C. 粒子的电荷D. 所有上述因素答案:D9. 电磁波的偏振现象说明电磁波是横波,这是因为?A. 电磁波的振动方向与传播方向垂直B. 电磁波的振动方向与传播方向平行C. 电磁波的传播不需要介质D. 电磁波在真空中传播速度最快答案:A10. 一个闭合电路中的感应电动势遵循以下哪个定律?A. 欧姆定律B. 基尔霍夫电压定律C. 法拉第电磁感应定律D. 安培环路定律答案:C二、填空题(每题2分,共20分)11. 电磁波的传播不需要______,因此它可以在真空中传播。
答案:介质12. 根据麦克斯韦方程组,电荷守恒定律可以表示为:∇⋅ E =______。
一、填空题⒈电场强度的方向与( )的受力方向相同。
⒉电偶极子产生的电场为()。
⒊无限长带线电荷密度为τ的导线周围电场强度为( )。
⒋静电场中,选定Q点为电位参考点,则空间任一点P的电位值为( )。
⒌电力线的微分方程为( )。
⒍球坐标系中电力线的微分方程为( )。
⒎静电场中,电通密度与电场强度、极化强度之间的关系式为( )。
⒏各向同性的线性介质中,极化强度与电场强度的关系为( )。
⒐极化电介质中电通密度与电场强度和极化强度的关系式为( )。
⒑静电场中媒质分界面上的衔接条件为( )和( )。
⒒静电场中导体与电介质分界面上电位表示的衔接条件为( )和( )。
⒓真空中半径为a的孤立导体球的电容量为( )。
⒔半径为a的球形区域内均匀分布有电荷体密度为ρ,则此球内电场为( )。
⒕静电场中电位函数的泊松方程为( )。
⒖同轴电缆内外导体半径分别为a和b,电压为U,中间介质介电常数为ε,则中间介质的电场强度为( )。
⒗内外半径分别为a和b的同心球面间电容量为( )。
⒘已知带电体上连续电荷分布密度函数和电位分布,计算静电能量的公式为( )。
⒙已知n个分离带电体上电荷量和电位分布,计算总的静电能量的公式为( )。
⒚已知静电场分布区域中电场强度分布以及区域媒质介电常数,总的静电能量计算公式为( )。
⒛电荷为q的带电体在电场中受到电场力为( )。
21静电场中,对带电荷量不变的系统,虚位移法计算电场力的公式为( )。
22静电场中,对电位不变系统,虚位移法计算电场力的公式为( )。
23在自由空间中,电荷运动形成的电流称为( )。
24恒定电场中电流连续性方程为( )。
25恒定电流指的是( )。
2020/3/27 26元电流段具有的形式为( )、( )、( )和( )。
27电流线密度与运动电荷之间的关系为( )。
28焦耳定律的微分形式为( )。
29欧姆定律的微分形式为( )。
30电源电动势与局外场强的关系为( )。
31导电媒质中(电源外)恒定电场的基本方程微分形式为( )和( )。
电磁场期末考试题及答案一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是()。
A. 3×10^8 m/sB. 2×10^8 m/sC. 1×10^8 m/sD. 4×10^8 m/s答案:A2. 电场强度的定义式为E=()。
A. F/qB. F/QC. Q/FD. F/C答案:A3. 磁场强度的定义式为B=()。
A. F/IB. F/iC. F/qD. F/Q答案:B4. 根据麦克斯韦方程组,变化的磁场会产生()。
A. 电场B. 磁场C. 电势D. 电势差答案:A5. 电磁波的波长、频率和波速之间的关系是()。
B. λ = f/cC. λ = c*fD. λ = f^2/c答案:A6. 两个点电荷之间的静电力与它们之间的距离的平方成()。
A. 正比B. 反比C. 无关D. 一次方答案:B7. 根据洛伦兹力公式,带电粒子在磁场中运动时,受到的力与磁场强度的关系是()。
A. 正比C. 无关D. 一次方答案:A8. 电容器的电容与两极板之间的距离成()。
A. 正比B. 反比C. 无关D. 一次方答案:B9. 根据楞次定律,当线圈中的磁通量增加时,感应电流产生的磁场方向是()。
A. 增加磁通量B. 减少磁通量D. 增加或减少磁通量答案:B10. 根据法拉第电磁感应定律,感应电动势的大小与磁通量变化率的关系是()。
A. 正比B. 反比C. 无关D. 一次方答案:A二、填空题(每题2分,共20分)1. 电场中某点的电势为V,将单位正电荷从该点移到无穷远处,电场力做的功为________。
2. 两个点电荷q1和q2之间的静电力常数为k,它们之间的距离为r,则它们之间的静电力大小为________。
答案:k*q1*q2/r^23. 磁场中某点的磁感应强度为B,将单位电流元i放置在该点,电流元与磁场方向垂直时,受到的磁力大小为________。
答案:B*i4. 根据麦克斯韦方程组,变化的电场会产生________。
湖北省襄樊四中高二物理期末复习练习题5、 如图3所示,磁场方向竖直向下, 通电直导线ab 由水平位置转到位置2,通电导线所受安培力是()A 、 数值变大,方向不变。
B 、 数值变小,方向不变。
C 、 数值不变,方向改变。
D 、 数值和方向均改变。
6、 如图甲11-3所示电路,电源电动势为 E ,内阻不计,滑动变阻器的最大电阻为R ,负载电阻为R o 。
当滑动变阻器的滑动端 S 在某位置时,R o 两端电压 为E/2,滑动变阻器上消耗的功率为 P 。
若将R o 与电源位置互换, 接成图乙所示电路时,滑动触头S 的位置不变,则()A 、 R o 两端的电压将小于 E/2B 、 R o 两端的电压将等于 E/2C 、 滑动变阻器上消耗的功率一定小于D 、 滑动变阻器上消耗的功率可能大于7、 如图4所示,在正交的匀强电场和匀强磁场中,一带负电的小球自绝缘光滑的竖直圆环的顶端由静止释放, 设小球受到的电场力和重力大小相 等,则当它滑过的弧度为下列何值时受到的洛伦兹力最大()3A 、一B 、C 、D 、4 2 48、 在比较精密的电子设备中,其电源跟负载之间的保护不是用普通的电磁场综合1、下列关于等势面的说法正确的是( )A 、 电荷在等势面上移动时不受电场力作用,所以不做功。
B 、 等势面上各点的场强相等。
C 、 点电荷在真空中形成的电场的等势面是以点电荷为圆心的一簇球面。
D 、 匀强电场中的等势面是相互平行的垂直于电场线的一簇平面。
电荷2、 在电场中逆着一条电场线从 B 、电荷的势能可能不变D 、电荷的加速度可能不A 运动到B ,则在此过程() A 、电荷的动能可能不变C 、电荷的速度可能不变 3、 有一根竖直长直导线和一个通电三角形金属框处于同一竖直平面内,如图 示,当竖直长导线内通以方向向上的电流时,若重力不计,则三角形金属框将(A 、水平向左运动B 、竖直向上C 、处于平衡位置D 、以上说法都不对4、 如图2所示,a 为带正电的小物块,b 是一不带电的绝缘物块, 水平地面上,地面上方有垂直纸面向里的匀强磁场,现用水平恒力 起无相对滑动地向左加速运动,在加速运动阶段b 一起运动的加速度减小。
电磁场理论期末复习题(附答案)一填空题1.静止电荷所产生的电场,称之为静电场;电荷Q在某点所受电场力为F,则该点电场强度的大小为QFE=。
2. 可以用电位的负梯度来表示电场强度;当电位的参考点选定之后,静电场中各点的电位值是唯一确定的。
3.__电荷_____的规则运动形成电流;将单位正电荷从电源负极移动到正极,非静电力__所做的功定义为电源的电动势4.由恒定电流或永磁体产生的磁场不随时间变化,称为恒定磁场。
5.磁感应强度B是无散场,它可以表示为另一个矢量场A的旋度,称A为矢量磁位,为了唯一地确定A,还必须指定A的散度为零,称为库仑规范。
6.静电场的边界条件,即边值问题通常分为三类:第一类为给定整个边界上的位函数值;第二类为给定边界上每一点位函数的法向导数值;第三类为给定一部分边界上每一点的位函数值,同时给定另一部分边界上每一点的位函数的法向导数值。
7.位移电流扩大了电流的概念,它由电场的变化产生,相对于位移电流我们称由电荷规则运动形成的电流为传导电流和运流电流。
8. 在电磁波传播中,衰减常数α的物理意义为表示电磁波每传播一个单位的距离,其振幅的衰减量,相位常数β的物理意义为表示电磁波每传播一个单位距离相位偏移量。
10.静电场是有势场,静电场中各点的电场与电位关系用公式表示是__Eφ=-∇_______。
13._____恒定电流________________产生的磁场,叫做恒定磁场。
14.库仑规范限制了矢量磁位A的多值性,但不能唯一确定A。
为了唯一确定A,还必须给定A的____散度为零________________________。
16.时变电磁场分析中,引入洛仑兹规范是为了解决动态位的____惟一性__________。
18.载流导体在磁场中会受到电磁力的作用,电磁力的方向由__左手_____定则确定。
二、选择题1.磁感应强度B与磁场强度H的一般关系为 ( B )A.H=μBB.B=μHC.H=μr BD.B=μ0H2 导体在静电平衡下,其内部电场强度( B )A.为常数B.为零C.不为零D.不确定3 真空中磁导率的数值为( C )A. 4π×10-5H/mB. 4π×10-6H/mC. 4π×10-7H/mD. 4π×10-8H/m4.磁通Φ的单位为( B )A.特斯拉B.韦伯C.库仑D.安匝5.矢量磁位的旋度是 ( A )A.磁感应强度B.磁通量C.电场强度D.磁场强度6.真空中介电常数ε0的值为 ( D )A.8.85×10-9F/mB.8.85×10-10F/mC.8.85×10-11F/mD.8.85×10-12F/m7.下面说法正确的是 ( A )A.凡是有磁场的区域都存在磁场能量B.仅在无源区域存在磁场能量C.仅在有源区域存在磁场能量D.在无源、有源区域均不存在磁场能量8 静电场中试验电荷受到的作用力大小与试验电荷的电量( C )A.成反比B.成平方关系C.成正比D.无关9.平板电容器的电容量与极板间的距离 ( B )A.成正比B.成反比C.成平方关系D.无关10.在磁场B中运动的电荷会受到洛仑兹力F的作用,F与B的空间位置关系 ( B )A.是任意的B.相互垂直C.同向平行D.反向平行2.高斯定理的积分形式描述了 B 的关系;A.闭合曲面内电场强度与闭合曲面内电荷之间的关系B. 闭合曲面的电场强度通量与闭合曲面内电荷之间的关系C.闭合曲面内电场强度与闭合曲面外电荷之间的关系D. 闭合曲面的电场强度通量与闭合曲面附近电荷之间的关系13.以下阐述中,你认为正确的一项为 D ;A. 可以用电位的函数的梯度表示电场强度B. 感应电场是保守场,其两点间线积分与路径无关C.静电场是无散场,其在无源区域的散度为零D.静电场是无旋场,其在任意闭合回路的环量为零14. 以下关于电感的阐述中,你认为错误的一项为 C ;A.电感与回路的几何结构有关B. 电感与介质的磁导率有关C.电感与回路的电流有关D.电感与回路所处的磁场强度无关17.若电介质中的极化强度矢量和电场强度成正比关系,则称这种电介质为 BC ;A.均匀的B.各向同性的C.线性的D.可极化的18. 均匀导电媒质是指其电导率无关于 B ;A.电流密度B.空间位置C.时间D.温度19.关于镜像法,以下不正确的是 B ;A.它是解静电边值问题的一种特殊方法B.用假想电荷代替原电荷C.假想电荷位于计算区域之外D.假想电荷与原电荷共同作用满足原边界条件20. 交变电磁场中,回路感应电动势与回路材料电导率的关系为 D ;A.电导率越大,感应电动势越大B.电导率越小,感应电动势越大C.电导率越大,感应电动势越小D.感应电动势大小与导电率无关22.相同尺寸和匝数的空心线圈的电感系数与铁心线圈的电感系数之比( C )A.大于1B.等于1C.小于1D.无确定关系24.真空中均匀平面波的波阻抗为 A ;A.377ΩB.237ΩC.277ΩD.337Ω25. 在磁场B 中运动的电荷会受到洛仑兹力F 的作用,F 与B 的空间位置关系 B ; A.是任意的 B.相互垂直 C.同向平行 D.反向平行三、简答题1.什么是接地电阻?其大小与哪些因素有关?答:接地设备呈现出的总电阻称之为接地电阻;其大小与土壤电导率和接地体尺寸(等效球半径)成反比2.写出微分形式的麦克斯韦的数学表达式。
电磁场与电磁波复习资料填空题1.梯度的物理意义为,等值面、方向导数与梯度的关系是。
2.用方向余弦γβαcos ,cos ,cos 写出直角坐标系中单位矢量l e的表达式。
3.某二维标量函数x y u -=2,则其梯度u ∇=,梯度在正x 方向的投影为。
4.自由空间中一点电荷位于()4,1,3-S ,场点位于()3,2,2-P ,则点电荷的位置矢量为,场点的位置矢量为,点电荷到场点的距离矢量R为。
5.矢量场z e y e x eA z y x ˆˆˆ++=,其散度为,矢量场A在点()2,2,1处的大小为。
6.直角坐标系下方向导数lu∂∂的数学表达式 ,梯度的表达式为 ,任意标量的梯度的旋度恒为 ,任意矢量的旋度的散度恒为 。
7.矢量散度在直角坐标系的表达式为 ,在圆柱坐标系的表达式为 ,在球坐标系的表达式为 。
8.矢量微分运算符∇在直角坐标系、圆柱坐标系和球坐标系的表达式分别为 , , 。
9.高斯散度定理数学表达式为 ,斯托克斯定理数学表达式为 。
10.矢量通量的定义为 ,散度的定义为 ,环流的定义为 ,旋度的定义为 。
11.矢量的旋度在直角坐标系下的表达式为 。
12.矢量场F为无旋场的条件为,该矢量场是由 源所产生。
13.矢量场F为无散场的条件为,该矢量场是由源所产生。
14.电流连续性方程的微分形式为 。
15.在国际单位制中,电场强度的单位是 ,电位移的单位是 ,磁场强度的单位是 ,磁感应强度的单位是 ,介电常数的单位是 ,磁导率的单位是 ,电导率的单位是 。
16.在自由空间中,点电荷产生的电场强度与其电荷量成 比,与场点到源点的距离平方成 比。
17.从宏观效应来看,物质对电磁场的响应可分为 , , 三种现象。
18.线性且各向同性媒质的本构关系方程是: , , 。
19.麦克斯韦方程组的微分形式是: , , , 。
20.麦克斯韦方程组的积分形式是: , , , 。
21.求解时变电磁场或解释一切宏观电磁现象的理论依据是 。
电磁波与电磁场期末复习题(试题+答案)电磁波与电磁场期末试题一、填空题(20分)1.旋度矢量的散度恒等与零,梯度矢量的旋度恒等与零。
2.在理想导体与介质分界面上,法线矢量n r由理想导体2指向介质1,则磁场满足的边界条件:01=?B n ρρ,s J H n =?1ρρ。
3.在静电场中,导体表面的电荷密度σ与导体外的电位函数?满足的关系式n ??=?εσ-。
4.极化介质体积内的束缚电荷密度σ与极化强度P 之间的关系式为P ?-?=σ。
5.在解析法求解静态场的边值问题中,分离变量法是求解拉普拉斯方程的最基本方法;在某些特定情况下,还可用镜像法求拉普拉斯方程的特解。
6.若密绕的线圈匝数为N ,则产生的磁通为单匝时的N 倍,其自感为单匝的2N 倍。
7.麦克斯韦关于位移电流的假说反映出变化的电场要产生磁场。
8.表征时变场中电磁能量的守恒关系是坡印廷定理。
9.如果将导波装置的两端短路,使电磁波在两端来回反射以产生振荡的装置称为谐振腔。
10.写出下列两种情况下,介电常数为ε的均匀无界媒质中电场强度的量值随距离r 的变化规律:带电金属球(带电荷量为Q )E = 24r Qπε;无限长线电荷(电荷线密度为λ)E =r2。
11.电介质的极性分子在无外电场作用下,所有正、负电荷的作用中心不相重合,而形成电偶极子,但由于电偶极矩方向不规则,电偶极矩的矢量和为零。
在外电场作用下,极性分子的电矩发生转向,使电偶极矩的矢量和不再为零,而产生极化。
12.根据场的唯一性定理在静态场的边值问题中,只要满足给定的边界条件,则泊松方程或拉普拉斯方程的解是唯一的。
二、判断题(每空2分,共10分)1.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。
(×)2.一个点电荷Q 放在球形高斯面中心处。
如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。
(×)3.在线性磁介质中,由IL ψ=的关系可知,电感系数不仅与导线的几何尺寸、材料特性有关,还与通过线圈的电流有关。
电磁场考试试题及答案一、选择题(每题5分,共20分)1. 麦克斯韦方程组描述了电磁场的基本规律,下列哪一项不是麦克斯韦方程组中的方程?A. 高斯定律B. 法拉第电磁感应定律C. 欧姆定律D. 安培环路定律答案:C2. 在电磁波传播过程中,电场和磁场的相位关系是:A. 相位相同B. 相位相反C. 相位相差90度D. 相位相差180度答案:C3. 根据洛伦兹力定律,带电粒子在磁场中运动时受到的力的方向是:A. 与速度方向相同B. 与速度方向相反C. 与速度方向垂直D. 与磁场方向垂直答案:C4. 以下哪种介质的磁导率不是常数?A. 真空B. 铁C. 铜D. 空气答案:B二、填空题(每题5分,共20分)1. 根据高斯定律,通过任何闭合表面的电通量与该闭合表面所包围的总电荷量成正比,比例常数为____。
答案:\(\frac{1}{\varepsilon_0}\)2. 法拉第电磁感应定律表明,闭合回路中的感应电动势等于通过该回路的磁通量变化率的负值,其数学表达式为 \(\mathcal{E} = -\frac{d\Phi_B}{dt}\),其中 \(\Phi_B\) 表示____。
答案:磁通量3. 根据安培环路定律,磁场 \(\vec{B}\) 在闭合回路上的线积分等于该回路所包围的总电流乘以比例常数 \(\mu_0\),其数学表达式为\(\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enc}}\),其中\(I_{\text{enc}}\) 表示____。
答案:回路所包围的总电流4. 电磁波在真空中的传播速度为 \(c\),其值为 \(3 \times 10^8\) 米/秒,该速度也是光速,其物理意义是____。
答案:电磁波在真空中传播的速度三、简答题(每题15分,共40分)1. 简述电磁波的产生机制。
答案:电磁波是由变化的电场和磁场相互作用产生的。
当电场变化时,会在周围空间产生磁场;同样,变化的磁场也会在周围空间产生电场。
《电磁场理论》考试试卷(A 卷)(时间120分钟)1. 关于有限区域内的矢量场的亥姆霍兹定理,下列说法中正确的是 (A )任意矢量场可以由其散度和旋度唯一地确定; (B )任意矢量场可以由其散度和边界条件唯一地确定; (C ) 任意矢量场可以由其旋度和边界条件唯一地确定; (D ) 任意矢量场可以由其散度、旋度和边界条件唯一地确定。
2. 谐变电磁场所满足的麦克斯韦方程组中,能反映“变化的电场产生磁场”和“变化的磁场产生电场” 这一物理思想的两个方程是 (B5关于高斯定理的理解有下面几种说法, 其中正确的是、选择题(每小题2分,共20 分)(A)H 0, E —(B ) H J E, E(C H J,E 0(D )H 0, E -3.—圆极化电磁波从媒质参数为分量不产生反射,入射角应为 3 r 1的介质斜入射到空气中,要使电场的平行极化(B )(A) 15°(B ) 30°(C ) 45(D) 604.在电磁场与电磁波的理论中分析中,常引入矢量位函数A ,并令B A ,其依据是(C )(A)B 0 ;(C ) B 0;(B)B J ;(D) B J电磁学》试卷 第 2 页 共 7 页(A) 如果高斯面内无电荷,则高斯面上 E 处处为零; (B) 如果高斯面上 E 处处不为零,则该面内必有电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零; (D) 如果高斯面上 E 处处为零,则该面内必无电荷。
6.若在某区域已知电位移矢量 ( A)2( B ) 2D xe x( C )ye y ,则该区域的电何体密度为 ( B )2( D )27. 两个载流线圈之间存在互感,对互感没有影响的是( C )(A )线圈的尺寸(B ) 两个线圈的相对位置(C )线圈上的电流 (D )线圈中的介质8 . 以下关于时变电磁场的叙述中,正确的是( B )(A )电场是无旋场 (B )电场和磁场相互激发(C)电场和磁场无关 (D )磁场是有源场9. 两个相互平行的导体平板构成一个电容器, 与电容无关的是10. 用镜像法求解静电场边值问题时, 判断镜像电荷设置是否正确的依据是 ( C )(A) 镜像电荷的位置是否与原电荷对称 (B) 镜像电荷是否与原电荷等值异号(C) 待求区域内的电位函数所满足的方程与边界条件是否保持不变 (D) 同时满足A 和B(A )导体板上的电荷(C )导体板的几何形状 (B) 平板间的介质(D) 两个导体板的相对位1 •电磁波在波导中传播的条件是波导管只能让频率 __________ 一特定值的电磁波通过,该特 定频率称为 _____________ 。
《电磁场和电磁波》复习题一、选择题1.图所示两个载流线圈,所受的电流力使两线圈间的距离扩大缩小不变2.毕奥—沙伐定律在任何媒质情况下都能应用在单一媒质中就能应用必须在线性,均匀各向同性媒质中应用。
3. 真空中两个点电荷之间的作用力A. 若此两个点电荷位置是固定的,则不受其他电荷的引入而改变B. 若此两个点电荷位置是固定的,则受其他电荷的引入而改变C. 无论固定与不固定,都不受其他电荷的引入而改变4.真空中有三个点电荷、、。
带电荷量,带电荷量,且。
要使每个点电荷所受的电场力都为零,则:A. 电荷位于、电荷连线的延长线上,一定与同号,且电荷量一定大于B. 电荷可位于连线的任何处,可正、可负,电荷量可为任意大小C. 电荷应位于、电荷连线的延长线上,电荷量可正、可负,且电荷量一定要大于5.静电场中电位为零处的电场强度A. 一定为零B. 一定不为零C. 不能确定6.空气中某一球形空腔,腔内分布着不均匀的电荷,其电荷体密度与半径成反比,则空腔外表面上的电场强度A. 大于腔内各点的电场强度B. 小于腔内各点的电场强度C. 等于腔内各点的电场强度7.图示长直圆柱电容器中,内圆柱导体的半径为,外圆柱导体的半径为,内、外导体间的上、下两半空间分别充有介电常数为与的电介质,并外施电压源。
若以外导体圆柱为电位参考点,则对应该问题电位的唯一正确解是A.B.C.8.电源以外恒定电流场基本方程微分形式说明它是有散无旋场无散无旋场无散有旋场9.设半径为a 的接地导体球外空气中有一点电荷Q,距球心的距离为,如图所示。
现拆除接地线,再把点电荷Q移至足够远处,可略去点电荷Q对导体球的影响。
若以无穷远处为电位参考点,则此时导体球的电位A.B.C.10.图示一点电荷Q与一半径为a 、不接地导体球的球心相距为,则导体球的电位A. 一定为零B. 可能与点电荷Q的大小、位置有关C. 仅与点电荷Q的大小、位置有关11.以位函数为待求量的边值问题中,设、、都为边界点的点函数,则所谓第二类边值问题是指给定12.以位函数为待求量的边值问题中,设、、都为边界点的点函数,则所谓第三类边值问题是指给定13.以位函数为待求量边值问题中,设、、都为边界点的点函数,则所谓第一类边值问题是指给定(为在边界上的法向导数值)14.在无限大被均匀磁化的磁介质中,有一圆柱形空腔,其轴线平行于磁化强度, 则空腔中点的与磁介质中的满足15.两块平行放置载有相反方向电流线密度与的无限大薄板,板间距离为, 这时A. 两板间磁感应强度为零。
《电磁场》一、填空题1.静止电荷产生的电场称为 __ 场。
它的特点是。
2.两个点电荷之间的作用力大小与两点电荷电量之积成关系。
3.高斯定律的微分形式是,它表明静电场中任一点上电通密度的散度等于。
4.若电磁波从一种媒质进入另一种媒质,当入射角等于布儒斯特角时,两种媒质分界面会发生现象。
5.静止媒质中时变电磁场基本方程(微分形式)组为、、、。
时变电磁场在不同媒质分界面上的衔接条件是、、、。
6.两种不同媒质分界面上的衔接条件是和。
7.磁位相等的各点形成的曲面称为,它与磁场强度线。
8.导体中磁的扩散过程是按指数规律随时间衰减的。
长薄导电圆管的扩散时间的表达式为。
9. 坡印亭定理反映了电磁场中的定律,其表达式为。
10. 状态是传输能量所希望的一种工作状态。
11.波导的本征值与波导的和有关,波在波导中传播时,从传播模式变为非传播模式发生在处,此时的频率称为,其表达式为。
12.静电场中导体内的电场为,导体电位为,导体表面电荷分布可由公式计算。
简答、证明题(每题5分,共4题)1.说明E、P二矢量的物理意义。
E与介质有关,D与介质无关的说法对吗?2.证明两个振幅相同,旋向相反的圆极化波可合成为一直线极化波。
3.坡印亭定理的数学表达式是什么?简要说明表达式中各项的物理含义。
第3页,共4页 第4页,共4页4.什么是电准静态场?什么是磁准静态场?四、计算题(每题10分,共3题)1.真空中一半径为a 的球体内分布有体密度为常量ρ的电荷,试求静电能量。
2.设y=0的平面是两种媒质的分界面。
在y>0处媒质的磁导率105μμ=;在y<0处,媒质的磁导率203μμ=。
设已知分界面上无电流分布,且H 2=()1020x y e e +A/m ,求B 2 ,B 1和H 1。
3.在无源(ρ=0,J =0)的自由空间中,已知电磁场的电场强度复矢量()j z y E z Ee e β∙-=,式中β、E 为常数。
求:(1)磁场强度复矢量H ∙(z) (2)坡印亭矢量的瞬时值。
电磁场期末考试试题及答案一、选择题(每题2分,共20分)1. 麦克斯韦方程组包括以下哪四个方程?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定律D. 所有上述选项答案:D2. 电磁波在真空中传播的速度是多少?A. 299792458 m/sB. 300000000 m/sC. 3×10^8 m/sD. 3×10^5 km/s答案:C3. 以下哪个不是电磁波的类型?A. 无线电波B. 微波C. 光波D. 声波答案:D4. 电磁波的频率和波长之间有什么关系?A. 频率与波长成反比B. 频率与波长相等C. 频率与波长成正比D. 没有关系答案:A5. 什么是电磁感应?A. 电流通过导线产生磁场B. 磁场变化产生电流C. 电流变化产生磁场D. 磁场变化产生电压答案:B6. 以下哪个不是电磁场的基本性质?A. 能量守恒B. 动量守恒C. 电荷守恒D. 质量守恒答案:D7. 什么是洛伦兹力?A. 电荷在电场中受到的力B. 电荷在磁场中受到的力C. 电荷在电场和磁场中受到的合力D. 电荷在磁场中受到的力,与电荷速度成正比答案:C8. 电磁波的偏振是指什么?A. 电磁波的传播方向B. 电磁波的振动方向C. 电磁波的频率D. 电磁波的波长答案:B9. 什么是电磁波的反射?A. 电磁波在不同介质界面上部分能量返回原介质的现象B. 电磁波在不同介质界面上全部能量返回原介质的现象C. 电磁波在不同介质界面上部分能量进入新介质的现象D. 电磁波在不同介质界面上全部能量进入新介质的现象答案:A10. 什么是电磁波的折射?A. 电磁波在不同介质界面上传播方向的改变B. 电磁波在不同介质界面上频率的改变C. 电磁波在不同介质界面上波长的改变D. 电磁波在不同介质界面上振幅的改变答案:A二、填空题(每空2分,共20分)11. 根据法拉第电磁感应定律,当磁通量变化时,会在闭合电路中产生_______。
答案:感应电动势12. 麦克斯韦方程组中,描述电场与电荷关系的方程是_______。
电磁场复习题及答案1. 什么是电磁波?电磁波的传播速度是多少?电磁波是由变化的电场和磁场相互作用产生的一种波动现象。
电磁波在真空中的传播速度是光速,约为3×10^8米/秒。
2. 描述麦克斯韦方程组,并解释它们在电磁学中的作用。
麦克斯韦方程组包括四个基本方程:高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定律。
这四个方程描述了电场和磁场的产生、传播和相互作用。
高斯定律说明了电场线的发散与电荷的关系;高斯磁定律表明磁场线是闭合的,不存在磁单极子;法拉第电磁感应定律描述了变化的磁场产生电场的过程;安培环路定律则描述了电流和变化电场产生磁场的情况。
麦克斯韦方程组是电磁学的基础,为电磁场的分析和应用提供了理论基础。
3. 什么是电磁感应?请简述法拉第电磁感应定律。
电磁感应是指在变化的磁场中,导体中会产生电动势的现象。
法拉第电磁感应定律表明,闭合回路中的感应电动势等于通过该回路的磁通量变化率的负值。
数学表达式为:\(\mathcal{E} = -\frac{d\Phi_B}{dt}\),其中\(\mathcal{E}\)是感应电动势,\(\Phi_B\)是磁通量。
4. 简述洛伦兹力定律,并给出其数学表达式。
洛伦兹力定律描述了带电粒子在电磁场中受到的力。
该力由电场力和磁场力两部分组成。
数学表达式为:\(\vec{F} = q(\vec{E} +\vec{v} \times \vec{B})\),其中\(\vec{F}\)是洛伦兹力,\(q\)是粒子的电荷量,\(\vec{E}\)是电场强度,\(\vec{v}\)是粒子的速度,\(\vec{B}\)是磁场强度。
5. 什么是电磁波的偏振?偏振现象说明了什么?电磁波的偏振是指电磁波的电场矢量在空间中的取向。
当电磁波的电场矢量仅在一个特定平面内振动时,称该电磁波为偏振波。
偏振现象说明电磁波是横波,即其振动方向垂直于传播方向。
6. 描述波导和谐振腔的概念及其在电磁波传输中的作用。
电磁场与电磁波复习题 一、填空题1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率。
散度与通量的关系是矢量场中任意一点处通量对体积的变化率。
2、 散度在直角坐标系的表达式 z A y A x A z yxA A ∂∂∂∂∂∂++=⋅∇= div ;散度在圆柱坐标系下的表达;3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。
当S 点P 时,存在极限环量密度。
二者的关系n dS dC e A ⋅=rot ;旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该点最 大环量密度的方向。
4.矢量的旋度在直角坐标系下的表达式。
5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。
梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e 的表达式 ; 7、直角坐标系下方向导数u ∂的数学表达式是cos cos cos l αβγ∂∂∂∂∂∂∂∂uuuu=++xyz ,梯度的表达式x y z G e e e grad x y z φφφφφ∂∂∂=++=∇=∂∂∂;8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。
9、麦克斯韦方程组的积分形式分别为0()s l s s l s D dS Q B E dl dS t B dS D H dl J dS t ⋅=∂⋅=-⋅∂=∂=+⋅∂⎰⎰⎰⎰⎰⎰其物理描述分别为10、麦克斯韦方程组的微分形式分别为20E /E /tB 0B //tB c J E ρεε∇⋅=∇⨯=-∂∂∇⋅=∇⨯=+∂∂其物理意义分别为 11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场, 一般采用时谐场来分析时变电磁场的一般规律,是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下,可以使用叠加原理。
《电磁场与电磁波基础》复习题一、 填空题: (第一章)(第二章)(第三章)(第四章)(第五章)(第六章) (第一章) 1、直角坐标系下,微分线元表达式 z e y e x e l z y x d d d d 面积元表达式2、圆柱坐标系下,微分线元表达式z e e e l z d d d d , 面积元表达式z e l l e S z d d d d d z e l l e S z d d d d d d d d d d z z z e l l e S3、圆柱坐标系中, e 、e r 随变量 的变化关系分别是e e , e -e 4、矢量的通量物理含义是 矢量穿过曲面的矢量线的总和;散度的物理意义是 矢量场中任意一点处通量对体积的变化率;散度与通量的关系是 散度一个单位体积内通过的通量。
5、散度在直角坐标系 F zF y F x F V S d F F div Z Y X S V 0lim 散度在圆柱坐标系 zF F F F div Z 1)(1 6、矢量微分算符(哈密顿算符) 在直角坐标系的表达式为 z z y y x x e e e 圆柱坐标系 ze z e e 球坐标系分别sin e e r e r r r 7、高斯散度定理数学表达式 V sS d F dV F ,本课程主要应用的两个方面分别是 静电场的散度 、 恒定磁场的散度 ;8、矢量函数的环量定义 C l z y x F d ),,(;旋度的定义MAX l S S l d F F rot lim 0; 二者的关系 • • C S l d F S d F)(;旋度的物理意义:描述矢量场中某一点漩涡源密度。
9、旋度在直角坐标系下的表达式F =)()()(yF x F e x F z F e z F y F e z y z z x y y Z x 10、旋度的重要恒等式,其物理意义是旋涡源密度矢量; 11、斯托克斯定理数学表达式 • • CS l d F S d F )(,本课程主要应用的两个方面分别是 静电场的旋度 、 恒定磁场的旋度 ; 12、梯度的物理意义 描述标量场在某点的最大变化率及其变化最大的方向;等值面、方向导数与梯度的关系是 空间某一点的梯度垂直过该点的等值面;梯度在某方向上的投影即为方向导数;13、用方向余弦cos ,cos ,cos 写出直角坐标系中单位矢量l e r 的表达式cos cos cos e l z y x e e e ;14、直角坐标系下方向导数的数学表达式lM u M u M )()(lim |l u 00l 0, 梯度的表达式;15、梯度的一个重要恒等式u u grad ,其主要应用是求出任意方向的方向导数 ;16、亥姆霍茨定理表述在有限区域的任一矢量场由它的散度,旋度以及边界条件唯一地确定; 说明的问题是 要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度17、描述一个矢量场的矢量函数能够用一个标量函数来描述的必要条件是 旋度处处为零 ,这是因为恒等式 0u F 。
(第二章)17、麦克斯韦方程组的积分表达式分别为 1. •S V dV S d D ;2.S d tB l d E l S •; 3.0 • S S d B ; 4. • •S l S d tD J l d H )( 其物理描述分别为1.电荷是产生电场的通量源 2.变换的磁场是产生电场的漩涡源3.磁感应强度的散度为0,说明磁场不可能由通量源产生;4.传导电流和位移电流产生磁场,他们是产生磁场的漩涡源。
18、麦克斯韦方程组的微分表达式分别为 1. • D ;2.t B E; 3.0 • B ; 4.t D J H其物理描述分别为(同上) 19、传导电流、运流电流和位移电流的形成分别是 导电煤质内有许多能自由活动的带电粒子,它们在外电场的作用下做宏观定向运动而形成的电流叫传导电流 、 电荷在不导电的空间,如真空或极稀薄气体中的有规则运动所形成的电流 、 由时变电场引起的电流称为位移电流 。
20、电流连续性原理的数学表达式: 积分形式 VS V t t q S J d d d d d d , 微分形式tJ ,该原理表明 从任意闭合面穿出的恒定电流为0,或恒定 电流场是一个无散度的场。
21、电介质是 具有电效应的物体,分为两类 无极分子、 有极分子。
22、电介质的极化是指在外电场作用下,电介质中出现有序排列的电偶极子,表面上出现束缚电荷的现象。
两种极化现象分别是 位移极化(无极分子的极化) ;转向极化(有极分子的极化)。
产生的现象分别有 1.电偶极子有序排列 2.表面上出现束缚电荷 3.影响外电场分布; 描述电介质极化程度或强度的物理量是 极化矢量P23、介质中的电位移矢量数学表达式 E D 0 ,其物理意义是 静电场中存在电介质的情况下,电荷分布和电场强度的关系 。
位移电流密度矢量与电场强度的关系t DJ H 。
25、相对介电常数的表达式0r 0e 1)(, 相对磁导率的表达式0r 0m )1( 。
26、介质的三个物态方程分别是E D 、H B 、E J C27、电磁场的边界条件是指 把电磁场矢量E 、D 、B 、H 在不同媒质分界面上各自满足的关系。
28、一般介质分界面的边界条件分别为29、两种理想介质分界面的边界条件分别是,理想介质与理想导体分界面的边界条件分别是 。
(课本P79) (第三章)30、静态场是指 不随时间变化的场;静态场包括 静电场 、恒定电场 、恒定磁场;分别是由静止电荷或静止带电体 、在导电媒质中恒定运动电荷 、恒定电流产生的。
31、静电场中的麦克斯韦方程组的积分形式分别为1. •V S dV S d D 2.0 • ll d E 静电场中的麦克斯韦方程组的微分形式分别为1. • D 2.0 E32、对偶原理的内容是 如果描述两种物理现象的方程具有相同的数学形式,并且具有相似或对应的边界条件,那么它们的数学解形式相同;叠加原理的内容是)b a (,0)(0,02122212均为常数,,那么如果 b a ; 唯一性定理的内容是内具有惟一解普拉斯方程在场域的值,则泊松方程或拉n 或给定在场域V的边界面S上V33、电磁场的亥姆霍兹方程组是1。
022002t E E 2。
022002 t B B (第四章)34、求解时变电磁场或解释一切宏观电磁现象的理论依据是 麦克斯韦方程组 。
35、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场; 一般采用时谐场来分析时变电磁场的一般规律,是因为1.任何时变周期函数都可以用正弦函数表示的傅里叶级数来描述 2.在线性条件下可以使用叠加原理36、坡印廷矢量的数学表达式 H E S ;其物理意义 电磁能量在空间的能流密度; 表达式 SS d H E )(的物理意义单位时间内穿出闭合曲面S 的电磁能流大小 37、对于时变电磁场,电场强度与标量位 函数的关系为 t A E 。
38、磁场中,定义矢量位函数B A r r 的前提条件是因为有恒等式0 B ,这里只确定了矢量位函数A r 的旋度。
在时变电磁场中,A r 的散度定义为0 t A ,这个条件叫洛仑兹规范。
39、标量位函数的达朗贝尔方程是 222t ;矢量位函数的达朗贝尔方程是J tA A 222。
(第五章)40、电磁波的极化是指在空间任意给定点上,合成波电场强度矢量的大小和方向都可能随时间变化的现象。
其三种基本形式分别是直线极化波 、圆极化波 、椭圆极化波41、按照波长或频率的顺序把电磁波排列起来,成为电磁波谱。
在电磁波谱中,频率越小,辐射强度越 小 ;42、一般介质中电磁波的波动方程是 0222 t E E 、 0222 t H H 。
均匀平面电磁波的波动方程是。
43、工程上经常用到的损耗正切( /tan C ,传导电流和位移电流密度的比值),其无耗介质的表达式是 0tan C ,其表示的物理含义是是无耗介质内部没有传导电流;损耗正切越大说明 介质中传导电流越大,电磁波能量损耗越大;有耗介质的损耗介质是个复数,说明均匀平面波中电场强度矢量和磁场强度矢量之间存在相位差。
44、一般用介质的损耗正切不同取值说明介质在不同情况下的性质,一个介质是良介质的损耗正切远小于1 ,属于非色散介质;当表现为良导体时,损耗正切远大于1,属于色散介质。
45、波的色散是指同一媒质中,不同频率的波将以不同的速率在介质中传播,其相应的介质为色散介质,波的色散是由 介质 特性所决定的。
色散介质分为正常色散和非正常色散介质,前者波长大的波,其相速度大,群速 小于 相速;后者是波长大的波,其相速度 小,群速 大于 相速;在无色散介质中,不同波长的波相速度 相等 ,其群速 等于 相速。
46、色散介质与介质的折射率的关系是 i r in n n ;耗散介质是指波在其中传播会发生能量损耗的介质47、基波的相速为 k / ;群速就是波包或包络的传播速度,其表达式为 dkd v g ; 一般情况下,相速与群速不相等,它是由于波包通过有色散的介质,不同单色波分量以不同相速向前传播引起的。
48、趋肤效应是指 当交变电流通过导体时,随着电流变化频率的升高,导体上所流过的电流将越来越集中于导体表面附近,导体内部的电流越来越小的现象; 趋肤深度的定义是 电磁波的振幅衰减到1 e 时,它透入导电介质的深度;趋肤深度的表达式 21 (第六章)49、折射率的定义是 n=c/v ,折射率与波速和相对介电常数之间的关系分别为r 2n 、nc v 。
三、简答题1、一个矢量场一般是需要采用矢量函数描述,要用一个标量函数描述这个矢量场的条件是什么?对于一个矢量,如果已知它的旋度处处为零,则可以把它表示为一个标量函数的梯度。
即一个矢量场可以用标量函数描述的条件。
2、散度和旋度均是用来描述矢量场的,它们之间有什么不同?A 、矢量场的散度是一个标量函数,而旋度是一个矢量函数B 、散度表示场中某点通量密度。
而旋度表示场中某点最大环量强度C 、散度由各场分量沿各自方向上的变化率来决定。
旋度由各场分量在与之正交的方向上的变化率来决定。
D 、散度描述的是场中任意一点通量对体积的变化率;旋度描述的是场中任意一点最大环量密度和最大环量密度方向3、亥姆霍兹定理的描述及其物理意义是什么?在有限的区域τ内,任意矢量场由它的散度、旋度、和边界条件唯一的确定。
物理意义:要确定一个矢量或者一个矢量描述的矢量场,必须同时确定该矢量的散度和旋度。
相反,当一个矢量的散度和旋度被同时确定之后,该矢量或矢量场才被唯一的确定。
即:矢量场的散度应满足的关系及其旋度应满足的关系决定了矢量场的基本性质。
4、分别叙述麦克斯韦方程组微分形式的物理意义?第一方程 E • v v,表明电荷是产生电场的通量源 第二方程 E v v 表明了变化的磁场会产生电场。