动量和能量综合专题
- 格式:doc
- 大小:236.50 KB
- 文档页数:13
专题41 动量和能量的综合应用1.[2022·九师联盟质量检测]如图所示,质量为M的小车置于光滑的水平面上,车的上表面粗糙,有一质量为m的木块以初速度v0水平地滑至车的上表面,若车足够长,则木块的最终速度大小和系统因摩擦产生的热量分别为( )A.Mv0m+MmMv22(m+M)B.Mv0m+MmMv2m+MC.mv0m+MmMv22(m+M)D.mv0m+MmMv2m+M2.(多选)如图所示,两物体A、B用轻质弹簧相连静止在光滑水平面上,现同时对A、B两物体施加等大反向的水平恒力F1、F2,使A、B同时由静止开始运动.在以后的运动过程中,关于A、B两物体与弹簧组成的系统,下列说法正确的是(整个过程中弹簧不超过其弹性限度)( )A.虽然A、B两物体会有加速运动,但它们的总动量保持不变B.在以后的运动过程中F1、F2一直做正功,系统的机械能一直在增大C.当弹簧弹力的大小与F1、F2的大小相等时,A、B两物体总动能最大D.当弹簧弹力的大小与F1、F2的大小相等时,弹簧弹性势能最大3.[2022·山东省德州市期中]如图所示,光滑水平面上静止着一长为L的平板车,一人站在车尾将一质量为m的物体水平抛出,物体恰好落在车的前端.物体可看做质点,抛出位置位于车尾正上方,距车上表面的竖直高度为h ,不计空气阻力,已知人和车的总质量为M,重力加速度为g ,物体水平抛出时获得的冲量大小为( )A.mLg2hB.MLg2hC.m2LM+mg2hD.MmLM+mg2h4.[2022·八省八校第一次联考](多选)内部长度为L、质量为M的木箱静止在光滑的水平面上,木箱内部正中间放置一可视为质点的质量为m的木块,木块与木箱之间的动摩擦因数为μ.初始时木箱向右的速度为v0,木块无初速度.木箱运动的vt图像如图所示,所有碰撞均为弹性碰撞且碰撞时间极短,重力加速度为g,则在0~t0时间内,下列说法正确的是( )A.M=2mB.M与m间的相对路程为v2 04μgC.M对地的位移为v2 08μg +32LD.m对地的位移为3v28μg -32L5.[2022·江苏盐城期末]如图所示,光滑水平面上甲、乙两球间粘少许炸药,一起以速度0.5 m/s向右做匀速直线运动.已知甲、乙两球质量分别为0.1 kg和0.2 kg.某时刻炸药突然爆炸,分开后两球仍沿原直线运动,从爆炸开始计时经过3.0 s,两球之间的距离为x=2.7 m,则下列说法正确的是( )A.刚分离时,甲、乙两球的速度方向相同B.刚分离时,甲球的速度大小为0.6 m/sC.刚分离时,乙球的速度大小为0.3 m/sD.爆炸过程中释放的能量为0.027 J6.[2022·湖南省五市十校联考]如图所示,质量为M的小车静止在光滑的水平面上,小车AB段是半径为R的四分之一光滑圆弧轨道,BC段是水平粗糙轨道,两段轨道相切于B 点.一质量为m的滑块(可视为质点)从小车上的A点由静止开始沿轨道滑下,然后滑入BC 轨道,最后恰好停在C点.已知M=3m,滑块与轨道BC间的动摩擦因数为μ,重力加速度为g.则下列说法正确的是( )A.滑块从A滑到C的过程中,滑块和小车组成的系统动量守恒B .滑块滑到B 点时的速度大小为2gRC .滑块从A 滑到C 的过程中,小车的位移大小为13(R +L) D .水平轨道的长度L =R μ7.[2022·湖北十堰高三阶段练习]如图所示,足够长的光滑水平直轨道AB 与光滑圆弧轨道BC 平滑连接,B 为圆弧轨道的最低点.一质量为1 kg 的小球a 从直轨道上的A 点以大小为4 m /s 的初速度向右运动,一段时间后小球a 与静止在B 点的小球b 发生弹性正碰,碰撞后小球b 沿圆弧轨道上升的最大高度为0.2 m (未脱离轨道).取重力加速度大小g =10 m /s 2,两球均视为质点,不计空气阻力.下列说法正确的是( )A .碰撞后瞬间,小球b 的速度大小为1 m /sB .碰撞后瞬间,小球a 的速度大小为3 m /sC .小球b 的质量为3 kgD .两球会发生第二次碰撞8.如图所示,静止在光滑水平面上的小车质量为M =20 kg .从水枪中喷出的水柱的横截面积为S =10 cm 2,速度为v =10 m /s ,水的密度为ρ=1.0×103kg /m 3.若水枪喷出的水从车后沿水平方向冲击小车的前壁,且冲击到小车前壁的水全部沿前壁流进小车中.试求:(1)当有质量为m =5 kg 的水进入小车时,小车的速度大小;(2)若将小车固定在水平面上,且水冲击到小车前壁后速度立即变为零,求水对小车的冲击力大小.专题41 动量和能量的综合应用1.C 木块在小车上表面滑动的过程中动量守恒,有mv 0=(M +m )v ,系统因摩擦产生的热量Q =12mv 20 -12(M +m )v 2,两式联立解得木块的最终速度v =mv 0M +m,摩擦产生的热量Q =mMv 22(M +m ),C 正确.2.AC 由题意,水平恒力F 1、F 2等大反向,则系统受合外力为零,总动量守恒,故A 正确;拉力与物体的运动方向相同,则F 1、F 2一直做正功,系统的机械能一直在增大,当物体减速为零后此时弹簧的弹力大于拉力,物体会反向运动,此时拉力与运动方向相反,都做负功则机械能减少,B 错误;当弹簧弹力的大小与F 1、F 2的大小相等后,弹力大于拉力,则物体减速运动,故弹力的大小与F 1、F 2的大小相等时,A 、B 两物体速度最大,总动能最大,C 正确;当弹簧弹力的大小与F 1、F 2的大小相等后,物体减速运动,但仍然会使弹簧继续伸长,弹性势能继续增大,D 错误.3.D 系统水平方向动量守恒,mv 1=Mv 2,有mx 1=Mx 2,且x 1+x 2=L ,解得x 1=ML M +m,x 2=mL M +m .由平抛运动的规律得h =12gt 2,x 1=v 1t ,由动量定理得I =mv 1,解得I =MmL M +m g 2h.4.BCD 由v t 图像可知木块与木箱最终共速,则mv 0=(M +m )v 02,得m =M ,则A 错;由能量守恒可得:12Mv 20 =12(M +m )v 20 4+μmgs ,得到两物体的相对路程为v 20 4μg,B 正确;由图知共碰撞三次,都是弹性碰撞,到共速为止所花总时间为t =v 0-v 02μg=v 02μg,则木箱运动的位移为32L +v 20 8μg ,木块相对地面的位移为3v 20 8μg -32L ,C 、D 正确.5.D 设甲、乙两球的质量分别为m 1、m 2,刚分离时两球速度分别为v 1、v 2,以向右为正方向,则由动量守恒得(m 1+m 2)v 0=m 1v 1+m 2v 2,根据题意有v 2-v 1=xt,代入数据可解得v 2=0.8 m/s ,v 1=-0.1 m/s ,说明刚分离时两球速度方向相反,故A 、B 、C 错误;爆炸过程中释放的能量ΔE =12m 1v 21 +12m 2v 22 -12(m 1+m 2)v 20 ,将v 2=0.8 m/s ,v 1=-0.1 m/s ,代入计算可得ΔE =0.027 J ,故D 正确.6.D 滑块从A 滑到C 的过程中水平方向动量守恒,竖直方向上合力不为零,系统动量不守恒,故A 错误;滑块刚滑到B 点时速度最大,取水平向右为正方向,由水平方向动量守恒定律和机械能守恒定律得0=mv m -Mv M ,mgR =12mv 2m +12Mv 2M ,解得v m =3gR2,v M = gR6,滑块滑到B 点时的速度为3gR2,故B 错误;设全程小车相对地面的位移大小为s ,根据题意可知全程滑块水平方向相对小车的位移为R +L ,则滑块水平方向相对地面的位移为x ′=R +L -s ,滑块与小车组成的系统在水平方向动量守恒,取水平向右为正方向,在水平方向,由动量守恒定律得m (R +L -s )-Ms =0.已知M =3m ,解得s =14(R +L ),x ′=34(R +L ),故C 错误;系统在水平方向动量守恒,以向右为正方向,对整个过程,由动量守恒定律得0=(m +M )v ′,解得v ′=0,由能量守恒定律得mgR =μmgL ,解得L =Rμ,故D 正确.7.C 由机械能守恒m b gh =12mv 2B 可得碰后小球b 在B 点的速度为v B =2 m/s ,故A 错误;由动量守恒定律可得m a v 0=m a v 1+m b v B ,由机械能守恒可得12m a v 20 =12m a v 21 +12m b v 2B ,联立求得m b =3 kg ,v 1=-2 m/s ,碰撞后瞬间,小球a 的速度大小为2 m/s ,故B 错误,C 正确;碰后a 球立刻向左运动,b 球先向右运动到最高点,再向左返回到平面上运动,两球速度大小相等,所以两球不会发生第二次碰撞,故D 错误.8.(1)2 m/s (2)100 N解析:(1)流进小车的水与小车组成的系统动量守恒,当流入质量为m 的水后,小车速度为v 1,则mv =(m +M )v 1代入数据解得v 1=2 m/s.(2)在极短的时间Δt 内,冲击小车的水的质量为Δm =ρSv Δt 根据动量定理-F Δt =0-Δmv 联立解得F =100 N .。
动量与能量综合专题一、动量守恒定律动量守恒定律是物理学中的一个重要定律,它表述的是物体动量的变化遵循一定的规律。
当两个或多个物体相互作用时,它们的总动量保持不变。
这个定律的适用范围非常广泛,从微观粒子到宏观宇宙,只要有物体之间的相互作用,就可以应用动量守恒定律来描述。
在理解动量守恒定律时,需要注意以下几点:1、系统:动量守恒定律适用于封闭的系统,即系统内的物体之间相互作用,不受外界的影响。
2、总动量:动量的变化是指物体之间的总动量的变化,而不是单个物体的动量变化。
3、方向:动量是矢量,具有方向性。
在计算动量的变化时,需要考虑动量的方向。
二、能量守恒定律能量守恒定律是物理学中的另一个重要定律,它表述的是能量不能被创造或消灭,只能从一种形式转化为另一种形式。
这个定律的适用范围同样非常广泛,从微观粒子到宏观宇宙,只要有能量的转化和转移,就可以应用能量守恒定律来描述。
在理解能量守恒定律时,需要注意以下几点:1、封闭系统:能量守恒定律适用于封闭的系统,即系统内的能量之间相互转化和转移,不受外界的影响。
2、转化与转移:能量的转化和转移是不同的。
转化是指一种形式的能量转化为另一种形式的能量,而转移是指能量从一个物体转移到另一个物体。
3、方向:能量的转化和转移是有方向的。
在计算能量的变化时,需要考虑能量的方向。
三、动量与能量的综合应用在实际问题中,动量和能量往往是相互的。
当一个物体受到力的作用时,不仅会引起物体的运动状态的变化,还会引起物体能量的变化。
因此,在解决复杂问题时,需要综合考虑动量和能量的因素。
例如,在碰撞问题中,两个物体相互作用后可能会发生弹射、粘合、破碎等情况。
这些情况的发生不仅与物体的动量有关,还与物体的能量有关。
如果两个物体的总动量不为零,它们将会继续运动;如果两个物体的总能量不为零,它们将会继续发生能量的转化和转移。
因此,在解决碰撞问题时,需要综合考虑物体的动量和能量因素。
四、总结动量守恒定律和能量守恒定律是物理学中的两个重要定律,它们分别描述了物体动量的变化和能量的转化和转移遵循的规律。
专题07动量和能量的综合应用知识梳理考点一 动量与动量定理应用动量定理解题的一般步骤及注意事项线如图所示,则( )A .t=1 s 时物块的速率为1 m/sB .t=2 s 时物块的动量大小为4 kg·m/sC .t=3 s 时物块的动量大小为5 kg·m/sD .t=4 s 时物块的速度为零【答案】AB【解析】由动量定理可得:Ft=mv ,解得m Ft v = ,t=1 s 时物块的速率为s m m Ft v /212⨯===1 m/s ,故A 正确;在Ft 图中面积表示冲量,所以,t=2 s 时物块的动量大小P=Ft=2×2=4kg.m/s ,t=3 s 时物块的动量大小为P /=(2×21×1)kgm/s=3 kg·m/s ,t=4 s 时物块的动量大小为P //=(2×21×2)kgm/s=2 kg·m/s ,所以t=4 s 时物块的速度为1m/s ,故B正确 ,C 、D 错误 考点二 动量守恒定律一、应用动量守恒定律的解题步骤二、几种常见情境的规律碰撞(一维)动量守恒动能不增加即p122m1+p222m2≥p1′22m1+p2′22m2速度要合理①若两物体同向运动,则碰前应有v后>v前;碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。
②若两物体相向运动,碰后两物体的运动方向不可能都不改变。
爆炸动量守恒:爆炸物体间的相互作用力远远大于受到的外力动能增加:有其他形式的能量(如化学能)转化为动能位置不变:爆炸的时间极短,物体产生的位移很小,一般可忽略不计反冲动量守恒:系统不受外力或内力远大于外力机械能增加:有其他形式的能转化为机械能人船模型两个物体动量守恒:系统所受合外力为零质量与位移关系:m1x1=m2x2(m1、m2为相互作用的物体质量,x1、x2为其位移大小)例一(多选)(2021·甘肃天水期末)如图所示,木块B与水平面间的摩擦不计,子弹A沿水平方向射入木块并在极短时间内相对于木块静止下来,然后木块压缩弹簧至弹簧最短。
2021届高考物理一轮复习热点题型归纳与变式演练专题20动量与能量综合问题【专题导航】目录热点题型一应用动量能量观点解决“子弹打木块”模型 (1)热点题型二应用动量能量观点解决“弹簧碰撞”模型 (4)热点题型三应用动量能量观点解决“板块”模型 (9)热点题型四应用动量能量观点解决斜劈碰撞现象 (13)【题型演练】 (16)【题型归纳】热点题型一应用动量能量观点解决“子弹打木块”模型s 2d s 1v 0子弹打木块实际上是一种完全非弹性碰撞。
作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。
下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。
设质量为m 的子弹以初速度0v 射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
要点诠释:子弹和木块最后共同运动,相当于完全非弹性碰撞。
从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0……①从能量的角度看,该过程系统损失的动能全部转化为系统的内能。
设平均阻力大小为f ,设子弹、木块的位移大小分别为1s 、2s ,如图所示,显然有ds s =-21对子弹用动能定理:20212121mv mv s f -=⋅-……②对木块用动能定理:2221Mv s f =⋅……③②相减得:()()2022022121v m M Mm v m M mv d f +=+-=⋅……④对子弹用动量定理:0-mv mv t f -=⋅……⑤对木块用动量定理:Mv t f =⋅……⑥【例1】(2020·江苏苏北三市模拟)光滑水平地面上有一静止的木块,子弹水平射入木块后未穿出,子弹和木块的v -t 图象如图所示.已知木块质量大于子弹质量,从子弹射入木块到达稳定状态,木块动能增加了50J ,则此过程产生的内能可能是()A .10JB .50JC .70JD .120J【答案】D.【解】析:设子弹的初速度为v 0,射入木块后子弹与木块共同的速度为v ,木块的质量为M ,子弹的质量为m ,根据动量守恒定律得:mv 0=(M +m )v ,解得v =mv 0m +M .木块获得的动能为E k =122=Mm 2v 202(M +m )2=Mmv 202(M +m )·m M +m .系统产生的内能为Q =12mv 20-12(M +m )v 2=Mmv 202(M +m ),可得Q =M +m mE k >50J ,当Q =70J 时,可得M ∶m =2∶5,因已知木块质量大于子弹质量,选项A 、B 、C 错误;当Q =120J 时,可得M ∶m =7∶5,木块质量大于子弹质量,选项D 正确.【变式1】(2020·陕西咸阳模拟)如图所示,相距足够远完全相同的质量均为3m 的两个木块静止放置在光滑水平面上,质量为m 的子弹(可视为质点)以初速度v 0水平向右射入木块,穿出第一块木块时的速度为25v 0,已知木块的长为L ,设子弹在木块中所受的阻力恒定。
高考定位力学中三大观点是指动力学观点,动量观点和能量观点.动力学观点主要是牛顿运动定律和运动学公式,动量观点主要是动量定理和动量守恒定律,能量观点包括动能定理、机械能守恒定律和能量守恒定律.此类问题过程复杂、综合性强,能较好地考查应用有关规律分析和解决综合问题的能力.考题1 动量和能量的观点在力学中的应用例1 如图1所示,长为L 的平台固定在地面上,平台的上平面光滑,平台上放有小物体A 和B ,两者彼此接触.物体A 的上表面是半径为R (R ≪L )的光滑半圆形轨道,轨道顶端有一小物体C ,A 、B 、C 的质量均为m .现物体C 从静止状态沿轨道下滑,已知在运动过程中,A 、C 始终保持接触.试求:图1(1)物体A 和B 刚分离时,物体B 的速度;(2)物体A 和B 刚分离后,物体C 所能达到距台面的最大高度; (3)判断物体A 从平台左边还是右边落地并简要说明理由.解析 (1)设C 物体到达最低点的速度是v C ,A 、B 、C 组成的系统在水平方向动量守恒,系统内机械能守恒.m v A +m v B -m v C =0①mgR =12m v 2A +12m v 2B +12m v 2C②在C 物体到达最低点之前一直有:v A =v B③ 联立①②③解得:v B =133gR ,方向水平向右④(2)设C 能够到达轨道最大高度为h ,A 、C 此时的水平速度相等,设它们的共同速度为v ,对系统应用动量守恒和机械能守恒规律可得:m v B -2m v =0⑤ mgR =mgh +12m v 2B +12·2m v 2⑥ 联立⑤⑥式解得:h =34R⑦(3)因为A 与B 脱离接触后B 的速度向右,A 、C 的总动量是向左的,又R ≪L ,所以A 从平台的左边落地.答案 (1)133gR ,方向水平向右 (2)34R (3)A 从平台的左边落地1.如图2,半径R =0.8 m 的四分之一圆弧形光滑轨道竖直放置,圆弧最低点D 与长为L =6 m 的水平面相切于D 点,质量M =1.0 kg 的小滑块A 从圆弧顶点C 由静止释放,到达最低点后,与D 点右侧m =0.5 kg 的静止物块B 相碰,碰后A 的速度变为v A =2.0 m /s ,仍向右运动.已知两物块与水平面间的动摩擦因数均为μ=0.1,若B 与E 处的竖直挡板相碰,没有机械能损失,取g =10 m/s 2.求:图2(1)滑块A 刚到达圆弧的最低点D 时对圆弧的压力; (2)滑块B 被碰后瞬间的速度; (3)讨论两滑块是否能发生第二次碰撞.答案 (1)30 N ,方向竖直向下 (2)4 m/s (3)见解析解析 (1)设小滑块运动到D 点的速度为v ,由机械能守恒定律有:MgR =12M v 2由牛顿第二定律有F N -Mg =M v2R联立解得小滑块在D 点所受支持力F N =30 N由牛顿第三定律有,小滑块在D 点时对圆弧的压力为30 N ,方向竖直向下. (2)设B 滑块被碰后的速度为v B ,由动量守恒定律: M v =M v A +m v B解得小滑块在D 点右侧碰后的速度v B =4 m/s(3)讨论:由于B 物块的速度较大,如果它们能再次相碰一定发生在B 从竖直挡板弹回后,假设两物块能运动到最后停止,达到最大的路程,则对于A 物块 -μMgs A =0-12M v 2A 解得s A =2 m对于B 物块,由于B 与竖直挡板的碰撞无机械能损失,则-μmgs B =0-12m v 2B解得s B =8 m(即从E 点返回2 m)由于s A +s B =10 m<2×6 m =12 m ,故它们停止运动时仍相距2 m ,不能发生第二次碰撞.1.弄清有几个物体参与运动,并划分清楚物体的运动过程.2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析. 4.如含摩擦生热问题,则考虑用能量守恒定律分析.考题2 应用动力学观点、能量观点、动量观点解决综合问题例2 如图3所示,一倾斜的传送带倾角θ=37°,始终以v =12 m /s 的恒定速度顺时针转动,传送带两端点P 、Q 间的距离L =2 m ,紧靠Q 点右侧有一水平面长为x =2 m ,水平面右端与一光滑的半径R =1.6 m 的竖直半圆轨道相切于M 点,MN 为竖直的直径.现有一质量M =2.5 kg 的物块A 以v 0=10 m/s 的速度自P 点沿传送带下滑,A 与传送带间的动摩擦因数μ1=0.75,到Q 点后滑上水平面(不计拐弯处的能量损失),并与静止在水平面最左端的质量m =0.5 kg 的B 物块相碰,碰后A 、B 粘在一起,A 、B 与水平面的动摩擦因数相同均为μ2,忽略物块的大小.已知sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2.求:图3(1)A 滑上传送带时的加速度a 和到达Q 点时的速度; (2)若AB 恰能通过半圆轨道的最高点N ,求μ2;(3)要使AB 能沿半圆轨道运动到N 点,且从N 点抛出后能落到传送带上,则μ2应满足什么条件?审题突破 (1)由牛顿第二定律求出加速度,由运动学公式求出A 的速度.(2)A 、B 碰撞过程动量守恒,由动量守恒定律可以求出碰后的速度;由牛顿第二定律求出AB 在最高点的速度,然后应用机械能守恒定律与动能定理求出动摩擦因数.(3)物块离开N 点后做平抛运动,应用平抛运动规律、机械能守恒定律与动能定理求出动摩擦因数的范围.解析 (1)A 刚滑上传送带时,由牛顿第二定律得: Mg sin θ+μ1Mg cos θ=Ma , 代入数据得:a =12 m/s 2,A 在传送带上运动,速度与传送带速度相等时,由匀变速运动的速度位移公式得:v 2-v 20=2 as代入数据得:s =116m <L =2 m ,A 没有到达Q 点前已经与传送带速度相等,到达Q 点的速度为:v =12 m/s ;(2)设AB 碰后的共同速度为v 1,以A 的初速度方向为正方向,A 、B 碰撞过程中,由动量守恒定律得: M v =(M +m )v 1,代入数据得:v 1=10 m/s ,AB 恰好滑到最高点N 时速度为v 3,在最高点,由牛顿第二定律得:(M +m )g =(M +m )v 23R设AB 在M 点速度为v 2,由机械能守恒定律得: 12(M +m )v 22=12(M +m )v 23+(M +m )g ·2R , 在水平面上由动能定理得: 12(M +m )v 21-12(M +m )v 22=μ2(M +m )gx , 代入数据得:μ2=0.5;(3)①若以v 3由N 点抛出,做平抛运动,在竖直方向上:2R =12gt 2,水平方向上:x 1=v 3t ,联立并代入数据得:x 1=3.2 m >x ,则要使AB 能沿半圆轨道运动到N 点,并能落在传动带上,则μ2≤0.5; ②若AB 恰能落在P 点,在竖直方向上:2R -L sin θ=12gt ′2,水平方向上:x +L cos θ=v 3′t ′,由机械能守恒定律得:12(M +m )v 2′2=12(M +m )v 3′2+(M +m )g ·2R ,在水平面上由动能定理得:12(M +m )v 21-12(M +m )v 2′2=μ2(M +m )gx , 联立并代入数据得:μ2=0.09, 综上所述,μ2应满足:0.09≤μ2≤0.5.答案 (1)12 m /s 2 12 m/s (2)0.5 (3)0.09≤μ2≤0.52.(2014·广东·35)如图4所示的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿光滑轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.图4(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案 (1)3 m /s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J解析 (1)设P 1和P 2发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1=2m v 2①解得:v 2=v 12=3 m/s碰撞过程中损失的动能为:ΔE =12m v 21-12×2m v 22②解得ΔE =9 J(2)P 滑动过程中,由牛顿第二定律知 ma =-μmg③ 可以把P 从A 点运动到C 点再返回B 点的全过程看作匀减速直线运动,根据运动学公式有3L =v 2t +12at 2④由①③④式得v 1=6L -at 2t①若t =2 s 时通过B 点,解得:v 1=14 m/s ②若t =4 s 时通过B 点,解得:v 1=10 m/s 故v 1的取值范围为:10 m /s ≤v 1≤14 m/s设向左经过A 点的速度为v A ,由动能定理知 12×2m v 2A -12×2m v 22=-μ·2mg ·4L 当v 2=12v 1=7 m/s 时,复合体向左通过A 点时的动能最大,E =17 J.根据题中设及的问题特点选择上述观点联合应用求解.一般地,要列出物体量间瞬时表达式,可用力和运动的观点即牛顿运动定律和运动学公式;如果碰撞及涉及时间的问题,优先考虑动量定理;涉及力做功和位移的情况时,优先考虑动能定理;若研究对象是互相作用的物体系统,优先考虑两大守恒定律.知识专题练 训练6题组1 动量和能量的观点在力学中的应用1.如图1所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,0点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B相碰后立即一起沿斜面向下运动,并恰好回到0点(A 、B 均初为质点).试求:图1(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧的具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆轨道与斜面相切于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,试问:v 为多大时物块A 恰能通过圆弧轨道的最高点?答案 (1)123gx 0 (2)14mgx 0 (3) (20+43)gx 0解析 (1)设A 与B 相碰前的速度为v 1,A 与B 相碰后共同速度为v 2由机械能守恒定律得mg 3x 0sin 30°=12m v 21由动量守恒定律得m v 1=2m v 2解以上二式得v 2=123gx 0(2)设A 、B 相碰前弹簧所具有的弹性势能为E p ,从A 、B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p +12(2m )v 22=2mgx 0sin 30° 解得E p =14mgx 0(3)设物块A 与B 相碰前的速度为v 3,碰后A 、B 的共同速度为v 4 12m v 2+mg 3x 0sin 30°=12m v 23 m v 3=2m v 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则 12(2m )v 24+E p =12(2m )v 25+2mgx 0sin 30° 此后A 继续上滑到半圆轨道最高点时速度为v 6,则 12m v 25=12m v 26+mg 2x 0sin 30°+mgR (1+sin 60°) 在最高点有mg =m v 26R联立以上各式解得v =(20+43)gx 0.2.如图2所示,质量为m 1的滑块(可视为质点)自光滑圆弧形槽的顶端A 处无初速度地滑下,槽的底端与水平传送带相切于左传导轮顶端的B 点,A 、B 的高度差为h 1=1.25 m .传导轮半径很小,两个轮之间的距离为L =4.00 m .滑块与传送带间的动摩擦因数μ=0.20.右端的轮子上沿距离地面高度h 2=1.80 m ,g 取10 m/s 2.图2(1)若槽的底端没有滑块m 2,传送带静止不运转,求滑块m 1滑过C 点时的速度大小v ;(结果保留两位有效数字)(2)在m 1下滑前将质量为m 2的滑块(可视为质点)停放在槽的底端.m 1下滑后与m 2发生弹性碰撞,且碰撞后m 1速度方向不变,则m 1、m 2应该满足什么条件?(3)满足(2)的条件前提下,传送带顺时针运转,速度为v =5.0 m/s.求出滑块m 1、m 2落地点间的最大距离(结果可带根号).答案 (1)3.0 m/s (2)m 1>m 2 (3)(6215-3) m解析 (1)滑块m 1滑到B 点有m 1gh 1=12m 1v 20 解得v 0=5 m/s滑块m 1由B 滑到C 点有-μm 1gL =12m 1v 2-12m 1v 20 解得v =3.0 m/s.(2)滑块m 2停放在槽的底端,m 1下滑并与滑块m 2弹性碰撞,则有 m 1v 0=m 1v 1+m 2v 2 12m 1v 20=12m 1v 21+12m 2v 22 m 1速度方向不变即v 1=m 1-m 2m 1+m 2v 0>0则m 1>m 2.(3)滑块经过传送带作用后做平抛运动h 2=12gt 2当两滑块速度相差最大时,它们的水平射程相差最大,当m 1≫m 2时,滑块m 1、m 2碰撞后的速度相差最大,经过传送带后速度相差也最大v 1=m 1-m 2m 1+m 2v 0=1-m 2m 11+m 2m 1v 0≈v 0=5.0 m/sv 2=2m 1m 1+m 2v 0=21+m 2m 1v 0≈2v 0=10.0 m/s 滑块m 1与传送带同速度,没有摩擦,落地点射程为 x 1=v 1t =3.0 m滑块m 2与传送带发生摩擦,有-μm 2gL =12m 2v 2′2-12m 2v 22 解得v 2′=221 m/s落地点射程为x 2=v 2′t =6215mm 2、m 1的水平射程相差最大值为Δx =(6215-3) m.题组2 应用动力学观点、能量观点、动量观点解决综合问题3.如图3所示,质量为M =4 kg 的木板静置于足够大的水平地面上,木板与地面间的动摩擦因数μ=0.01,板上最左端停放着质量为m =1 kg 可视为质点的电动小车,车与木板右端的固定挡板相距L =5 m .现通电使小车由静止开始从木板左端向右做匀加速运动,经时间t =2 s ,车与挡板相碰,车与挡板粘合在一起,碰撞时间极短且碰后自动切断小车的电源.(计算中取最大静摩擦力等于动摩擦力,并取g =10 m/s 2)图3(1)试通过计算说明:车与挡板相碰前,木板相对地面是静止还是运动的? (2)求出小车与挡板碰撞前,车的速率v 1和板的速率v 2; (3)求出碰后木板在水平地面上滑动的距离s . 答案 (1)向左运动 (2)4.2 m /s 0.8 m/s (3)0.2 m解析 (1)假设木板不动,电动车在板上运动的加速度为a 0,由L =12a 0t 2得:a 0=2Lt 2=2.5 m/s 2此时木板使车向右运动的摩擦力:f =ma 0=2.5 N 木板受车向左的反作用力:f ′=f =2.5 N木板受地面向右最大静摩擦力:f 0=μ(M +m )g =0.5 N 由于f ′>f 0,所以木板不可能静止,将向左运动;(2)设车与木板碰前,车与木板的加速度分别为a 1和a 2,相互作用力为F ,由牛顿定律与运动学公式: 对小车:F =ma 1 v 1=a 1t对木板:F -μ(m +M )g =Ma 2 v 2=a 2t两者的位移的关系:v 12t +v 22t =L联立并代入数据解得:v 1=4.2 m /s ,v 2=0.8 m/s ;(3)设车与木板碰后其共同速度为v ,两者相碰时系统动量守恒,以向右为正方向,有m v 1-M v 2=(m +M )v对碰后滑行s 的过程,由动能定理得: -μ(M +m )gs =0-12(M +m )v 2联立并代入数据,解得:s =0.2 m.4.如图4所示,光滑的水平面AB (足够长)与半径为R =0.8 m 的光滑竖直半圆轨道BCD 在B 点相切,D 点为半圆轨道最高点.A 点的右侧等高地放置着一个长为L =20 m 、逆时针转动且速度为v =10 m /s 的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1=3 kg ,乙的质量为m 2=1 kg ,甲、乙均静止在光滑的水平面上.现固定乙,烧断细线,甲离开弹簧后进入半圆轨道并可以通过D 点,且过D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为0.6,重力加速度g 取10 m/s 2,甲、乙两物体可看作质点.图4(1)求甲球离开弹簧时的速度;(2)若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离;(3)甲、乙均不固定,烧断细线以后,求甲和乙能否再次在AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因.解析 (1)设甲离开弹簧时的速度大小为v 0,运动至D 点的过程中机械能守恒: 12m 1v 20=m 1g ·2R +12m 1v 2D 在最高点D ,由牛顿第二定律,有2m 1g =m 1v 2D R联立解得:v 0=4 3 m/s(2)甲固定,烧断细线后乙的速度大小为v 乙,由能量守恒得E p =12m 1v 20=12m 2v 2乙得v 乙=12 m/s之后乙滑上传送带做匀减速运动:μm 2g =m 2a 得a =6 m/s 2乙速度为零时离A 端最远,最远距离为:s =v 2乙2a=12 m<20 m即乙在传送带上滑行的最远距离为12 m.(3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为v 1、v 2,甲、乙分离瞬间动量守恒:m 1v 1=m 2v 2甲、乙弹簧组成的系统能量守恒:E p =12m 1v 20=12m 1v 21+12m 2v 22 答案 (1)4 3 m/s (2)12 m (3)见解析 解得:v 1=2 3 m/s ,v 2=6 3 m/s 甲沿轨道上滑时,设上滑最高点高度为h , 则12m 1v 21=m 1gh 得h =0.6 m<0.8 m则甲上滑不到等圆心位置就会返回,返回AB 面上时速度大小仍然是v 1=2 3 m/s 乙滑上传送带,因v 2=6 3 m /s<12 m/s ,则乙先向右做匀减速运动,后向左匀加速. 由对称性可知乙返回AB 面上时速度大小仍然为v 2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为2 3 m/s ,方向向右,乙的速度为6 3 m/s ,方向向左。
动量和能量专题高考试题1.(2006年·全国理综Ⅰ)一位质量为m 的运动员从下蹲状态向上起跳,经Δt 时间,身体伸直并刚好离开地面,速度为v .在此过程中,A .地面对他的冲量为mv +mg Δt ,地面对他做的功为212mv B .地面对他的冲量为mv +mg Δt ,地面对他做的功为零C .地面对他的冲量为mv ,地面对他做的功为212mv D .地面对他的冲量为mv -mg Δt ,地面对他做的功为零提示:运动员向上起跳的过程中,由动量定理可得,I mg t mv -∆=,则I m v m g t =+∆;起跳过程中,地面对运动员的作用力向上且其作用点的位移为零(阿模型化,认为地面没有发生形变),所以,地面对运动员做的功为零.2.(2006年·全国理综Ⅱ)如图所示,位于光滑水平桌面上的小滑块P 和Q 都可视作质点,质量相等.Q 与轻质弹簧相连.设Q 静止,P 以某一初速度向Q 运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于A .P 的初动能B .P 的初动能的1/2C .P 的初动能的1/3D .P 的初动能的1/4提示:设P 的初速度为v 0,P 、Q 通过弹簧发生碰撞,当两滑块速度相等时,弹簧压缩到最短,弹性势能最大,设此时共同速度为v ,对P 、Q (包括弹簧)组成的系统,由动量守恒定律,有02mv mv = ①由机械能守恒定律,有22Pm 01122E mv mv =-×2 ② 联立①②两式解得22Pm 00111422E mv mv ==× 3.(2006年·江苏)一质量为m 的物体放在光滑的水平面上,今以恒力F 沿水平方向推该物体,在相同的时间间隔内,下列说法正确的是A .物体的位移相等B .物体动能的变化量相等C .F 对物体做的功相等D .物体动量的变化量相等提示:物体在恒力的作用下做匀加速直线运动,在相同的时间内,其位移不相等,故力对物体做的功不相等,由动能定理可知,物体动能的变化量不相等;根据动量定理,有F t p ∆=∆,所以,物体动量的变化量相等.4.(2003年·辽宁大综合)航天飞机在一段时间内保持绕地心做匀速圆周运动,则A .它的速度大小不变,动量也不变B .它不断克服地球对它的万有引力做功C .它的速度大小不变,加速度等于零D .它的动能不变,引力势能也不变5.(2003年·上海)一个质量为0.3kg的弹性小球,在光滑水平面上以6m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同.则碰撞前后小球速度变化量的大小Δv和碰撞过程中墙对小球做功的大小W为A.Δv=0 B.Δv=12m/s C.W=0 D.W=10.8J 6.(2002年·广东大综合)将甲、乙两物体自地面同时上抛,甲的质量为m,初速为v,乙的质量为2m,初速为v/2.若不计空气阻力,则A.甲比乙先到最高点B.甲和乙在最高点的重力势能相等C.落回地面时,甲的动量的大小比乙的大D.落回地面时,甲的动能比乙的大7.(2002年·全国理综)在光滑水平地面上有两个弹性小球A、B,质量都为m,现B球静止,A球向B球运动,发生正碰.已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P,则碰前A球的速度等于A B C.D.8.(2001年·全国理综)下列是一些说法:①一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同②一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内做的功或者都为零,或者大小相等符号相反③在同样时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反④在同样时间内,作用力和反作用力的功大小不一定相等,正负号也不一定相反以上说法正确的是A.①②B.①③C.②③D.②④9.(1998年·全国)在光滑水平面上,动能为E0、动量的大小为p0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反.将碰撞后球1的动能和动量的大小分别记为E1、p1,球2的动能和动量的大小分别记为E2、p2.则必有A.E1<E0B.p1<p0C.E2>E0D.p2>p0 10.(1996年·全国)半径相等的两个小球甲和乙,在光滑水平面上沿同一直线相向运动.若甲球的质量大于乙球的质量,碰撞前两球的动能相等,则碰撞后两球的运动状态可能是A.甲球的速度为零而乙球的速度不为零B.乙球的速度为零而甲球的速度不为零C.两球的速度均不为零D.两球的速度方向均与原方向相反,两球的动能仍相等11.(1995年·全国)一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停住的过程称为过程Ⅱ,则A.过程Ⅰ中钢珠动量的改变量等于重力的冲量B.过程Ⅱ中阻力的冲量的大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中钢珠克服阻力所做的功等于过程Ⅰ与过程Ⅱ中钢珠所减少的重力势能之和D.过程Ⅱ中损失的机械能等于过程Ⅰ中钢珠所增加的动能12.(1992年·全国)如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中A .动量守恒、机械能守恒B .动量不守恒、机械能不守恒C .动量守恒、机械能不守恒D .动量不守恒、机械能守恒13.(1991年·全国)有两个物体a 和b ,其质量分别为m a 和m b ,且m a >m b .它们的初动能相同.若a 和b 分别受到不变的阻力F a 和F b 的作用,经过相同的时间停下来,它们的位移分别为s a 和s b ,则A .F a >F b 且s a <s bB .F a >F b 且s a >s bC .F a <F b 且s a >s bD .F a <F b 且s a <s b 14.(1994年·全国)质量为4.0kg 的物体A 静止在水平桌面上,另一个质量为2.0kg 的物体B以5.0m/s 的水平速度与物体A 相撞,碰撞后物体B 以1.0m/s 的速度反向弹回.相撞过程中损失的机械能是_________J .【答案】6.015.(1993年·全国)如图所示,A 、B 是位于水平桌面上的两个质量相等的小木块,离墙壁的距离分别为L 和l ,与桌面之间的滑动摩擦系数分别为μA 和μB .今给A 以某一初速度,使之从桌面的右端向左运动.假定A 、B 之间,B 与墙之间的碰撞时间都很短,且碰撞中总动能无损失.若要使木块A 最后不从桌面上掉下来,则A 的初速度最大不能超过_______.16.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h ,质量为m 1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,一端与质量为m 2的档板B 相连,弹簧处于原长时,B 恰位于滑道的末端O 点.A 与B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM 段A 、B 与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g ,求:(1)物块A 在与挡板B 碰撞前瞬间速度v 的大小;(2)弹簧最大压缩量为d 时的弹性势能E p (设弹簧处于原长时弹性势能为零).【答案】(1)gh 2;(2)211212()m gh m m gd m m μ-++ 解析:(1)由机械能守恒定律,有21112m gh m v =解得v =gh 2 (2)A 、B 在碰撞过程中内力远大于外力,由动量守恒,有112()m v m m v '=+碰后A 、B 一起压缩弹簧,)到弹簧最大压缩量为d 时,A 、B 克服摩擦力所做的功 12()W m m gd μ=+由能量守恒定律,有212P 121()()2m m v E m m gd μ'+=++ 解得21P 1212()m E gh m m gd m m μ=-++ 17.(2006年·重庆理综)如图,半径为R 的光滑圆形轨道固定在竖直面内.小球A 、B 质量分别为m 、βm (β为待定系数).A 球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为14R ,碰撞中无机械能损失.重力加速度为g .试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度.【答案】(1)3;(2)1v =,方向水平向左;2v =4.5mg ,方向竖直向下.(3)见解析解析:(1)由于碰撞后球沿圆弧的运动情况与质量无关,因此,A 、B 两球应同时达到最大高度处,对A 、B 两球组成的系统,由机械能守恒定律得44mgR mgR mgR β=+,解得β=3 (2)设A 、B 第一次碰撞后的速度分别为v 1、v 2,取方向水平向右为正,对A 、B 两球组成的系统,有2212112mgR mv mv β=+12mv mv β=+解得1v =,方向水平向左;2v = 设第一次碰撞刚结束时轨道对B 球的支持力为N ,方向竖直向上为正,则22v N mg m Rββ-=,B 球对轨道的压力 4.5N N mg '=-=-,方向竖直向下.(3)设A 、B 球第二次碰撞刚结束时的速度分别为V 1、V 2,取方向水平向右为正,则 1212mv mv mV mV ββ--=+22121122mgR mV mV β=+ 解得V 1=-gR 2,V 2=0.(另一组解V 1=-v 1,V 2=-v 2不合题意,舍去) 由此可得:当n 为奇数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第一次碰撞刚结束时相同;当n 为偶数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第二次碰撞刚结束时相同.18.(2006年·江苏)如图所示,质量均为m 的A 、B 两个弹性小球,用长为2l 的不可伸长的轻绳连接.现把A 、B 两球置于距地面高H 处(H 足够大),艰巨为l .当A 球自由下落的同时,B 球以速度v0指向A 球水平抛出间距为l .当A 球自由下落的同时,B 球以速度v 0指向A 球水平抛出.求:(1)两球从开始运动到相碰,A 球下落的高度.(2)A 、B 两球碰撞(碰撞时无机械能损失)后,各自速度的水平分量.(3)轻绳拉直过程中,B 球受到绳子拉力的冲量大小.【答案】(1)2202gl v ;(2)A 0B ,0x x v v v ''==;(3)012mv 解析:(1)设到两球相碰时A 球下落的高度为h ,由平抛运动规律得0l v t =① 212h gt = ② 联立①②得2202gl h v = ③(2)A 、B 两球碰撞过程中,由水平方向动量守恒,得0A B x x mv mv mv ''=+ ④由机械能守恒定律,得22222220B A A A B B 1111()()()2222y y x y x y m v v mv m v v m v v ''''++=+++ ⑤式中A A B B ,y y y y v v v v ''== 联立④⑤解得A0B ,0x x v v v ''== (3)轻绳拉直后,两球具有相同的水平速度,设为v B x ,,由水平方向动量守恒,得 0B 2x mv mv = 由动量定理得B 012x I mv mv == 19.(2005年·广东)如图所示,两个完全相同的质量为m 的木板A 、B 置于水平地面上,它们的间距s=2.88m .质量为2m ,大小可忽略的物块C 置于A 板的左端.C 与A 之间的动摩擦因数为μ1=0.22,A 、B 与水平地面之间的动摩擦因数为μ2=0.10,最大静摩擦力可以认为等于滑动摩擦力.开始时,三个物体处于静止状态.现给C 施加一个水平向右,大小为mg 52的恒力F ,假定木板A 、B 碰撞时间极短且碰撞后粘连在一起,要使C 最终不脱离木板,每块木板的长度至少应为多少?【答案】0.3m解析:设A 、C 之间的滑动摩擦力大小f 1,A 与水平地面之间的滑动摩擦力大小为f 2 0.220.10μμ==12,,则11225F mg f mg μ=<= 且222(2)5F mg f m m g μ=>=+ 说明一开始A 和C 保持相对静止,在F 的作用下向右加速运动,有2211()(2)2F f s m m v -=+ A 、B 两木板的碰撞瞬间,内力的冲量远大于外力的冲量,由动量守恒定律得:mv 1=(m +m )v 2碰撞结束后三个物体达到共同速度的相互作用过程中,设木板向前移动的位移s 1,选三个物体构成的整体为研究对象,外力之和为零,则2mv 1+(m +m )v 2=(2m +m +m )v 3设A 、B 系统与水平地面之间的滑动摩擦力大小为f 3,则A 、B 系统,由动能定理: 2211313232112222(2)f s f s mv mv f m m m gm -=-=++对C 物体,由动能定理得221113111(2)(2)2222F l s f l s mv mv +-+=- 联立以上各式,再代入数据可得l =0.3m .20.(2005年·全国理综Ⅰ)如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向.现在挂钩上升一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升.若将C 换成另一个质量为(m 1+m 2)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g .解析:开始时,A 、B 静止,设弹簧压缩量为x 1,有kx 1=m 1g ①挂C 并释放后,C 向下运动,A 向上运动,设B 刚要离地时弹簧伸长量为x 2,有 kx 2=m 2g ②B 不再上升,表示此时A 和C 的速度为零,C 已降到其最低点.由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为ΔE =m 3g (x 1+x 2)-m 1g (x 1+x 2) ③C 换成D 后,当B 刚离地时弹簧势能的增量与前一次相同,由能量关系得22311311211211()()()()22m m v m v m m g x x m g x x E ++=++-+-D ④ 由③④式得2131121(2+)=(+)2m m v m g x x ⑤ 由①②⑤式得v = ⑥21.(2005年·全国理综Ⅱ)质量为M 的小物块A 静止在离地面高h 的水平桌面的边缘,质量为m 的小物块B 沿桌面向A 运动并以速度v 0与之发生正碰(碰撞时间极短).碰后A 离开桌面,其落地点离出发点的水平距离为L .碰后B 反向运动.求B 后退的距离.已知B 与桌面间的动摩擦因数为μ.重力加速度为g .【答案】201)2v g m解析:设t 为A 从离开桌面至落地经历的时间,V 表示刚碰后A 的速度,有212h gt =① L =Vt② 设v 为刚碰后B 的速度的大小,由动量守恒,mv 0=MV -mv③ 设B 后退的距离为l ,由功能关系,212mgl mv μ= ④由以上各式得201)2l v g m = ⑤22.(2005年·全国理综Ⅲ)如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .求男演员落地点C 与O 点的水平距离s .已知男演员质量m 1和女演员质量m 2之比122m m =,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .【答案】8R解析:设分离前男女演员在秋千最低点B 的速度为v B ,由机械能守恒定律,得212121()()2B m m gR m m v +=+ 设刚分离时男演员速度的大小为v 1,方向与v 0相同;女演员速度的大小为v 2,方向与v 0相反,由动量守恒:(m 1+m 2)v 0=m 1v 1-m 2v 2分离后,男演员做平抛运动,设男演员从被推出到落在C 点所需的时间为t,根据题给条件,从运动学规律,21142R gt s v t ==根据题给条件,女演员刚好回到A 点,由机械能守恒定律得222212m gR m v =已知m 1=2m 2,由以上各式可得s=8R23.(2005年·天津理综)如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能E kA 为8.0J ,小物块的动能E kB 为0.50J ,重力加速度取10m/s 2,求:(1)瞬时冲量作用结束时木板的速度v 0; (2)木板的长度L . 【答案】0.50m解析:(1)设水平向右为正方向,有I =m A v 0 ①代入数据得v 0=3.0m/s ②(2)设A 对B 、B 对A 、C 对A 的滑动摩擦力的大小分别为F AB 、F BA 和F CA ,B 在A 滑行的时间为t ,B 离开A 时A 和B 的速度分别为v A 和v B ,有-(F BA +F CA )t =m A v A -m A v A ③F AB t =m B v B ④其中F AB =F BA F CA =μ(m A +m B )g ⑤设A 、B 相对于C 的位移大小分别为s A 和s B , 有22011()22BA CA A A A A F F s m v m v -+=- ⑥ F AB s B =E kB ⑦动量与动能之间的关系为A A m v = ⑧B B m v =⑨ 木板A 的长度L =s A -s B ⑩代入数据解得L =0.50m24.(2005年·北京春招)下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为L ,撞车后共同滑行的距离825l L =.假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量M 为故障车质量m 的4倍. (1)设卡车与故障车相撞前的速度为v 1,两车相撞后的速度变为v 2,求12v v ; (2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生.【答案】(1)54;(2)32L 解析:(1)由碰撞过程动量守恒 M v 1=(M +m )v 2 ①则1254v v = (2)设卡车刹车前速度为v 0,轮胎与雪地之间的动摩擦因数为μ 两车相撞前卡车动能变化22011122Mv Mv MgL μ-= ② 碰撞后两车共同向前滑动,动能变化221()0()2M m v M m gl μ+-=+ ③ 由②式得v 02-v 12=2μgL由③式得v 22 =2μgL 又因208,325l L v gL μ==得 如果卡车滑到故障车前就停止,由20102Mv MgL μ'-= ④ 故32L L '= 这意味着卡车司机在距故障车至少32L 处紧急刹车,事故就能够免于发生. 25.(2004年·广东)如图所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态,另一质量与B 相同的滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离L 1时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连,已知最后A 恰好返回出发点P 并停止.滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为L 2,求A 从P 出发时的初速度v 0.解析:令A 、B 质量均为m ,A 刚接触B 时速度为v 1(碰前),由动能关系,有220111122mv mv mgl μ-= A 、B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为v 2,有mv 1=mv 2碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为v 3,在这过程中,弹簧势能始末两态都为零.2223211(2)(2)(2)(2)22m v m v m g l μ-= 此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有23112mv mgl μ=由以上各式解得0v =26.(2004年·全国理综Ⅱ)柴油打桩机的重锤由气缸、活塞等若干部件组成,气缸与活塞间有柴油与空气的混合物.在重锤与桩碰撞的过程中,通过压缩使混合物燃烧,产生高温高压气体,从而使桩向下运动,锤向上运动.现把柴油打桩机和打桩过程简化如下:柴油打桩机重锤的质量为m ,锤在桩帽以上高度为h 处如图(a )从静止开始沿竖直轨道自由落下,打在质量为M (包括桩帽)的钢筋混凝土桩子上.同时,柴油燃烧,产生猛烈推力,锤和桩分离,这一过程的时间极短.随后,桩在泥土中向下移动一距离l .已知锤反跳后到达最高点时,锤与已停下的桩帽之间的距离也为h如图(b ).已知m 1=1.0×103kg ,M =2.0×103kg ,h =2.0m ,l =0.2m ,重力加速度g=10m/s 2,混合物的质量不计.设桩向下移动的过程中泥土对桩的作用力F 是恒力,求此力的大小.【答案】2.1×105N解析:考察锤m 和桩M 组成的系统,在碰撞过程中动量守恒(因碰撞时间极短,内力远大于外力),选取竖直向下为正方向,则mv 1=Mv -mv 2其中12v v 碰撞后,桩M 以初速v 向下运动,直到下移距离l 时速度减为零,此过程中,根据动能定理,有2102Mgl Fl Mv -=-由上各式解得()[2mg m F mg h l l M=+-+ 代入数据解得F =2.1×105N27.(2004年·全国理综Ⅲ)如图所示,长木板ab 的b 端固定一挡板,木板连同档板的质量为M=4.0kg ,a 、b 间距离s=2.0m .木板位于光滑水平面上.在木板a 端有一小物块,其质量m =1.0kg ,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态.现令小物块以初速v 0=4.0m/s 沿木板向前滑动,直到和挡板相碰.碰撞后,小物块恰好回到a端而不脱离木板.求碰撞过程中损失的机械能.【答案】2.4J解析:设木块和物块最后共同的速度为v ,由动量守恒定律得v M m mv )(0+= ①设全过程损失的机械能为E ,则220)(2121v M m mv E +-= ②用s 1表示从物块开始运动到碰撞前瞬间木板的位移,W 1表示在这段时间内摩擦力对木板所做的功.用W 2表示同样时间内摩擦力对物块所做的功.用s 2表示从碰撞后瞬间到物块回到a 端时木板的位移,W 3表示在这段时间内摩擦力对木板所做的功.用W 4表示同样时间内摩擦力对物块所做的功.用W 表示在全过程中摩擦力做的总功,则W 1=1mgs μ ③W 2=)(1s s mg +-μ ④W 3=2mgs μ-⑤ (a ) (b )W 4=)(2s s mg -μ ⑥W =W 1+W 2+W 3+W 4 ⑦用E 1表示在碰撞过程中损失的机械能,则 E 1=E -W⑧ 由①~⑧式解得mgs v M m mM E μ221201-+= ⑨代入数据得E 1=2.4J ⑩28.(2004年·全国理综Ⅳ)如图所示,在一光滑的水平面上有两块相同的木板B 和C .重物A (视为质点)位于B 的右端,A 、B 、C 的质量相等.现A 和B 以同一速度滑向静止的C 、B 与C 发生正碰.碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 有摩擦力.已知A 滑到C 的右端而未掉下.试问:从B 、C 发生正碰到A刚移到C 右端期间,C 所走过的距离是C 板长度的多少倍. 【答案】73解析:设A 、B 、C 的质量均为m .碰撞前,A 与B 的共同速度为v 0,碰撞后B 与C 的共同速度为v 1.对B 、C ,由动量守恒定律得mv 0=2mv 1 ①设A 滑至C 的右端时,三者的共同速度为v 2.对A 、B 、C ,由动量守恒定律得2mv 0=3mv 2 ②设A 与C 的动摩擦因数为μ,从发生碰撞到A 移至C 的右端时C 所走过的距离为s ,对B 、C 由功能关系2122)2(21)2(21v m v m mgs -=μ ③ 设C 的长度为l ,对A ,由功能关系 22202121)(mv mv l s mg -=+μ④ 由以上各式解得73s l = ⑤ 29.(2004年·天津)质量m =1.5kg 的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t =2.0s 停在B 点,已知A 、B 两点间的距离s =5.0m ,物块与水平面间的动摩擦因数μ=0.20,求恒力F 多大.(g =10m/s 2).【答案】15N解析:设撤去力F 前物块的位移为s 1,撤去力F 时物块速度为v .物块受到的滑动摩擦力F 1=μmg撤去力F 后,由动量定理得-F 1t =-mv由运动学公式得s -s 1=vt /2全过程应用动能定理得Fs 1-F 1s =0 由以上各式得222mgsF s gt μμ=-代入数据得F =15N30.(2003年·江苏)如图(a )所示,为一根竖直悬挂的不可伸长的轻绳,下端拴一小物块A ,上端固定在C 点且与一能测量绳的拉力的测力传感器相连.已知有一质量为m 0的子弹B 沿水平方向以速度v 0射入A 内(未穿透),接着两者一起绕C 点在竖直面内做圆周运动.在各种阻力都可忽略的条件下测力传感器测得绳的拉力F 随时间t 变化关系如图(b )所示,已知子弹射入的时间极短,且图(b )中t =0为A 、B 开始以相同的速度运动的时刻.根据力学规律和题中(包括图)提供的信息,对反映悬挂系统本身性质的物理量(例如A 的质量)及A 、B 一起运动过程中的守恒量,你能求得哪些定量的结果?【答案】06m g F m m -=;g F v m l m22020536=;22003m m v E g F = 解析:由图2可直接看出,A 、B 一起做周期性运动,运动的周期T =2t 0 ①令m 表示A 的质量,l 表示绳长.1v 表示B 陷入A 内时即0=t 时A 、B 的速度(即圆周运动最低点的速度),2v 表示运动到最高点时的速度,F 1表示运动到最低点时绳的拉力,F 2表示运动到最高点时绳的拉力,根据动量守恒定律,得1000)(v m m v m += ② 在最低点和最高点处应用牛顿定律可得tv m m g m m F 21001)()(+=+- ③ tv m m g m m F 22002)()(+=++ ④根据机械能守恒定律可得 2202100)(21)(21)(2v m m v m m g m m l +-+=+ ⑤ 由图2可知 02=F ⑥ m F F =1⑦ 由以上各式可解得,反映系统性质的物理量是06m g F m m -= ⑧ g F v m l m 22020536= ⑨A 、B 一起运动过程中的守恒量是机械能E ,若以最低点为势能的零点,则2011()2E m m v =+ ⑩ 由②⑧⑩式解得22003m m v E gF =31.(2003年·江苏)(1)如图(a ),在光滑水平长直轨道上,放着一个静止的弹簧振子,它由一轻弹簧两端各联结一个小球构成,两小球质量相等.现突然给左端小球一个向右的速度μ0,求弹簧第一次恢复到自然长度时,每个小球的速度.(2)如图(b ),将N 个这样的振子放在该轨道上,最左边的振子1被压缩至弹簧为某一长度后锁定,静止在适当位置上,这时它的弹性势能为E 0.其余各振子间都有一定的距离,现解除对振子1的锁定,任其自由运动,当它第一次恢复到自然长度时,刚好与振子2碰撞,此后,继续发生一系列碰撞,每个振子被碰后刚好都是在弹簧第一次恢复到自然长度时与下一个振子相碰.求所有可能的碰撞都发生后,每个振子弹性势能的最大值.已知本题中两球发生碰撞时,速度交换,即一球碰后的速度等于另一球碰前的速度.【答案】(1)021,0u u u ==;(2)014E 解析:(1)设每个小球质量为m ,以1u 、2u 分别表示弹簧恢复到自然长度时左右两端小球的速度.由动量守恒和能量守恒定律有021mu mu mu =+(以向右为速度正方向)202221212121mu mu mu =+,解得021201,00,u u u u u u ====或 由于振子从初始状态到弹簧恢复到自然长度的过程中,弹簧一直是压缩状态,弹性力使左端小球持续减速,使右端小球持续加速,因此应该取解:021,0u u u ==(2)以v 1、v 1’分别表示振子1解除锁定后弹簧恢复到自然长度时左右两小球的速度,规定向右为速度的正方向,由动量守恒和能量守恒定律,mv 1+mv 1’=0021212121E v m mv ='+,解得1111v v v v ''=== 在这一过程中,弹簧一直是压缩状态,弹性力使左端小球向左加速,右端小球向右加速,故应取解:mE v m E v 0101,='-= 振子1与振子2碰撞后,由于交换速度,振子1右端小球速度变为0,左端小球速度仍为1v ,此后两小球都向左运动,当它们向左的速度相同时,弹簧被拉伸至最长,弹性势能最大,设此速度为10v ,根据动量守恒定律,有1102mv mv =用E 1表示最大弹性势能,由能量守恒有 211210210212121mv E mv mv =++解得0141E E 32.(2003年·全国理综)一传送带装置示意如图,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切.现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的高度差为h ,稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L ,每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以后也不再滑动(忽略经BC 段时的微小滑动).已知在一段相当长的时间T 内,共运送小货箱的数目为N .这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦.求电动机的平均输出功率P . 【答案】T Nm [222TL N +gh ] 解析:以地面为参考系(下同),设传送带的运动速度为v 0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s ,所用时间为t ,加速度为a ,则对小箱有s =1/2at 2 ①v 0=at ②在这段时间内,传送带运动的路程为s 0=v 0t ③由以上可得s 0=2s ④用f 表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为A =fs =1/2mv 02 ⑤传送带克服小箱对它的摩擦力做功A 0=fs 0=2·1/2mv 02 ⑥两者之差就是克服摩擦力做功发出的热量Q =1/2mv 02 ⑦可见,在小箱加速运动过程中,小箱获得的动能与发热量相等.T 时间内,电动机输出的功为W =P T ⑧此功用于增加小箱的动能、势能以及克服摩擦力发热,即W =1/2Nmv 02+Nmgh +NQ ⑨已知相邻两小箱的距离为L ,所以v 0T =NL ⑩联立⑦⑧⑨⑩解得P =T Nm [222TL N +gh ] 33.(2003年·春招理综)有一炮竖直向上发射炮弹,炮弹的质量为M =6.0kg (内含炸药的质量可以忽略不计),射出的初v 0=60m/s .当炮弹到达最高点时爆炸为沿水平方向运动的两片,其中一片质量为m =4.0kg .现要求这一片不能落到以发射点为圆心、以R。
力学三大观点综合应用高考定位力学中三大观点是指动力学观点,动量观点和能量观点.动力学观点主要是牛顿运动定律和运动学公式,动量观点主要是动量定理和动量守恒定律,能量观点包括动能定理、机械能守恒定律和能量守恒定律.此类问题过程复杂、综合性强,能较好地考查应用有关规律分析和解决综合问题的能力.考题 1动量和能量观点在力学中的应用例1(2014 ·安徽·24)在光滑水平地面上有一凹槽A,中央放一小物块B,物块与左右两边槽壁的距离如图1所示,L为 1.0 m ,凹槽与物块的质量均为m,两者之间的动摩擦因数μ为0.05.开始时物块静止,凹槽以v 0=5 m/s的初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g 取10 m/s2.求:图1(1)物块与凹槽相对静止时的共同速度;(2)从凹槽开始运动到两者刚相对静止物块与右侧槽壁碰撞的次数;(3)从凹槽开始运动到两者相对静止所经历的时间及该时间内凹槽运动的位移大小.答案(1)2.5 m/s(2)6次(3)5 s12.75 m解析(1) 设两者间相对静止时速度为v,由动量守恒定律得m v0= 2m vv=2.5 m/s.(2)解得物块与凹槽间的滑动摩擦力F =μF=μmgf N设两者相对静止前相对运动的路程为s1,由功能关系得1212- F f·s1=(m+m)v- m v022解得 s1= 12.5 m已知 L= 1 m,可推知物块与右侧槽壁共发生 6 次碰撞.(3)设凹槽与物块碰前的速度分别为 v1、 v2,碰后的速度分别为 v 1′、 v2′.有m v1+ m v2=m v1′+ m v2′121m v22121m v2′2m v1+=m v1′+2222得 v 1′= v2, v2′= v 1即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者的速度图线如图所示,根据碰撞次数可分为 13 段,凹槽、物块的v —t图象在两条连续的匀变速运动图线间转换,故可用匀变速直线运动规律求时间.则v= v 0+ata =- μg解得 t = 5 s凹槽的 v —t 图象所包围的阴影部分面积即为凹槽的位移大小 s 2.(等腰三角形面积共分13 份,第一份面积为 0.5 L ,其余每两份面积和均为 L.)1 v 0)t + 6.5L ,解得 s 2= 12.75 m.s 2=(221.如图 2 所示,倾角 45°高 h 的固定斜面.右边有一高3h的平台,平台顶部左边水平,上面有一质量为1圆弧.质量为2m 的小球 A 从斜面底端以某一初速度沿斜面上滑,M 的静止小球 B ,右边有一半径为 h 的 4从斜面最高点飞出后恰好沿水平方向滑上平台,与 B 发生弹性碰撞, 碰后 B 从圆弧上的某点离开圆弧. 所有接触面均光滑, A 、 B 均可视为质点,重力加速度为 g.图 2(1) 求斜面与平台间的水平距离s 和 A 的初速度 v 0;(2) 若 M = 2m ,求碰后 B 的速度;(3) 若 B 的质量 M 可以从小到大取不同值,碰后B 从圆弧上不同位置脱离圆弧,该位置与圆心的连线和竖直方向的夹角为 α.求 cos α的取值范围.答案(1) h 2gh (2) 2gh(3)2≤ cos α≤ 133解析(1) 设小球 A 飞上平台的速度为 v 1,小球由斜面顶端飞上平台,可看成以速度v 1 反向平抛运动,由平抛运动规律得:1h = 1gt 2, s =v 1t , tan 45 =°gt2 2v 1解得: v 1= gh , s = h由机械能守恒定律得:1m v 0 2= 3mgh + 1m v 1 222 2解得: v 0= 2 gh.(2) 设碰后 A 、 B 的速度分别为 v A 、 v B ,由动量、能量守恒得m v 1= m v A + M v B1 2 1 21 2m v 1 =m v A + M v B2222m2v B = m + M v 1= 3gh.(3) 由 (2) 可知,当 M ? m 时 v B ≈ 2 gh > gh 从顶端飞离则 cos α= 1 当 M ? m 时, v B = 0,设 B 球与圆弧面在 C 处分离,则:1 2 Mgh (1- cos α)=2M v Cv C 2 , cos α= 2,故 2≤ cos α≤ 1Mg cos α= M h331.弄清有几个物体参与运动,并划分清楚物体的运动过程.2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.4.如含摩擦生热问题,则考虑用能量守恒定律分析.考题 2应用动力学、能量、动量解决综合问题例 2如图3所示,在光滑的水平面上有一质量为m= 1 kg 的足够长的木板C,在 C 上放置有A、 B 两物体, A 的质量 m A= 1 kg,B 的质量为 m B= 2 kg.A、B 之间锁定一被压缩了的轻弹簧,弹簧储存的弹性势能 E p= 3 J,现突然给A、B 一瞬时冲量作用,使A、B同时获得v 0=2 m/s的初速度,速度方向水平向右,且同时弹簧由于受到扰动而解除锁定,并在极短的时间内恢复原长,之后与 A、B 分离.已知 A 和的摩擦因数为μ= 0.2,B、 C 之间的动摩擦因数为μ= 0.1,且滑动摩擦力略小于最大静摩擦力.求:1 2C 之间图3(1)弹簧与 A、 B 分离的瞬间, A、 B 的速度分别是多大?(2) 已知在 C 第一次碰到右边的固定挡板之前,A、B 和 C 已经达到了共同速度,求在到达共同速度之前B、 C 的加速度分别是多大及该过程中产生的内能为多少?(3) 已知 C 与挡板的碰撞无机械能损失,求在第一次碰撞后到第二次碰撞前 A 在 C 上滑行的距离?审题突破(1) 根据动量守恒和能量守恒列方程组求A、B 分离时的速度; (2) 由牛顿第二定律求三者的加速A、度,该过程中产生的内能等于系统损失的机械能,只需求出三者达到的共同速度便可以由能量守恒求解;(3)根据牛顿第二定律和运动学公式联立求解.答案(1)0 3 m/s(2)4.5 J 1.5 m/s (3)0.75 m解析(1) 在弹簧弹开两物体的过程中,由于作用时间极短,对A、B 和弹簧组成的系统由动量和能量守恒定律可得:(m A+m B)v0= m A v A+ m B v B121212E p+ (m A+ m B)v0=m A v A+ m B v B222联立解得: v A=0, v B=3 m/s.2(2) 对物体 B 有: a =μg= 1 m/s ,方向水平向左B2对 A、 C 有:μ+ m)a2m B g=(m A又因为: m A a<μ1m A g故物体 A、 C 的共同加速度为a= 1 m/s 2,方向水平向右对 A、 B、 C 整个系统来说,水平方向不受外力,故由动量和能量守恒定律可得:m B v B= ( m A+ m B+ m)v 121(m A+ m B+ m)v2Q= m B v B-22解得: Q= 4.5 J,v= 1.5 m/s.(3)C 和挡板碰撞后,先向左匀减速运动,速度减至0 后向右匀加速运动,分析可知,在向右加速过程中先和 A 达到共同速度v1,之后 A、C 再以共同的加速度向右匀加速, B 一直向右匀减速,最后三者达共同速度 v 2后做匀速运动.在此过程中由于摩擦力做负功,故 C 向右不能一直匀加速至挡板处,所以和挡板再次碰撞前三者已经达共同速度.a A=μ1g= 2 m/s2, a B=μ2g= 1 m/s2μ,解得: a = 4 m/s 21m A g + μ2m B g = ma C C v 1= v - a A t =- v + a C t解得: v 1= 0.5 m/st = 0.5 s- v + v 1 x A1=v + v 12 t = 0.5 m , x C1= 2 t =- 0.25 m故 A 、 C 间的相对运动距离为x AC = x A1+ |x C1|= 0.75 m.2. (2014 广·东 ·35)如图 4 所示,的水平轨道中, AC 段的中点 B 的正上方有一探测器, C 处有一竖直挡板,物体 P 1 沿光滑轨道向右以速度v 1 与静止在 A 点的物体 P 2 碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在 t 1= 2 s 至 t 2= 4 s 内工作.已知 P 1、 P 2 的质量都为 m = 1 kg , P 与 AC 间的动摩擦因数2为 μ= 0.1, AB 段长 L = 4 m , g 取 10 m/s , P 1、 P 2 和 P 均视为质点, P 与挡板的碰撞为弹性碰撞.图 4(1) 若 v 1= 6 m/s ,求 P 1、 P 2 碰后瞬间的速度大小 v 和碰撞损失的动能E ;(2) 若 P 与挡板碰后, 能在探测器的工作时间内通过 B 点,求 v 1 的取值范围和 P 向左经过 A 点时的最大动能 E .答案 (1)3 m/s 9 J (2)10 m/s ≤ v 1≤ 14 m/s 17 J解析(1) 设 P 1 和 P 2 发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1= 2m v 2①解得: v 2=v 1= 3 m/s2E = 1m v 11× 2m v 2碰撞过程中损失的动能为:2- 2②2 2解得E =9 J.(2) P 滑动过程中,由牛顿第二定律知2ma =- 2μ mg③可以把 P 从 A 点运动到 C 点再返回 B 点的全过程看作匀减速直线运动,根据运动学公式有1 2 3L = v 2t + at2④26L - at由 ①③④ 式得 v 1=t① 若 2 s 时通过 B 点,解得: v 1= 14 m/s ② 若 4 s 时通过 B 点,解得: v 1= 10 m/s 故 v 1 的取值范围为: 10 m/s ≤ v 1≤ 14 m/s设向左经过 A 点的速度为 v A ,由动能定理知1× 2m v A 2- 1× 2m v 2 2=- μ·2mg ·4L22 当 v = 1v 1 = 7 m/s 时,复合体向左通过 A 点时的动能最大, E =17 J.22根据题中涉及的问题特点选择上述观点联合应用求解.一般地,要列出物体量间瞬时表达式,可用力和运动的观点即牛顿运动定律和运动学公式;如果是碰撞并涉及时间的问题,优先考虑动量定理;涉及力做功和位移的情况时,优先考虑动能定理;若研究对象是互相作用的物体系统,优先考虑两大守恒定律.知识专题练训练 6题组 1动量和能量的观点在力学中的应用1.如图 1 所示,在倾角为 30°的光滑斜面上放置一质量为 m 的物块 B , B 的下端连接一轻质弹簧,弹簧下端与挡板相连接, B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块 A ,距物块 B 为 3x 0,现让 A 从静止开始沿斜面下滑, A 与 B 相碰后立即一起沿斜面向下运动,并恰好回到 O 点(A 、 B 均视为质点 ).试求:图 1(1) A 、 B 相碰后瞬间的共同速度的大小;(2) A 、 B 相碰前弹簧具有的弹性势能;(3) 若在斜面顶端再连接一光滑的半径 R = x 0 的半圆轨道 PQ ,圆轨道与斜面相切于最高点 P ,现让物块 A以初速度 v 从 P 点沿斜面下滑,与 B 碰后返回到 P 点还具有向上的速度,试问:v 为多大时物块 A 恰能通过圆弧轨道的最高点?答案 (1) 1 3gx 0 120+ 4 3 gx 02(2) mgx 0 (3)4解析(1) 设 A 与 B 相碰前 A 的速度为 v 1, A 与 B 相碰后共同速度为 v 2由机械能守恒定律得 3mgx 0 sin 30 1 2=°m v 12由动量守恒定律得m v 1= 2m v 21解以上二式得 v 2= 2 3gx 0.(2) 设 A 、B 相碰前弹簧所具有的弹性势能为 E p ,从 A 、 B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p + 1·2m v 2 2= 2mgx 0 sin 30 °2解得 E p = 1mgx 0.4(3) 设物块 A 与 B 相碰前的速度为 v 3,碰后 A 、 B 的共同速度为 v 41 21 2m v + 3mgx 0 sin 30 =°m v 322m v 3= 2m v 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则1·2m v 4 2+ E p = 1·2m v 5 2+ 2mgx 0sin 30 °2 211此后 A 继续上滑到半圆轨道最高点时速度为v 6,则2 2+ 2mgx 0 sin 30 +°mgR(1+ sin 60 ) °2m v 5= m v 62在最高点有 mg =m v 6 R 2联立以上各式解得v =20+ 4 3 gx 0.2.如图 2 所示,质量为 m 1 的滑块 (可视为质点 )自光滑圆弧形槽的顶端 A 处无初速度地滑下,槽的底端与水平传送带相切于左传导轮顶端的B 点, A 、 B 的高度差为 h 1= 1.25 m .传导轮半径很小,两个轮之间的距离为 L = 4.00 m .滑块与传送带间的动摩擦因数 μ= 0.20.右端的轮子上沿距离地面高度h 2= 1.80 m ,g取 10 m/s 2.(1) 若槽的底端没有滑块图m 2,传送带静止不运转,求滑块2m 1 滑过C 点时的速度大小v ; (结果保留两位有效数字)(2)在m 1 下滑前将质量为 m 2 的滑块(可视为质点)停放在槽的底端.m 1 下滑后与 m 2 发生弹性碰撞,且碰撞后 m 1 速度方向不变,则m 1、 m 2 应该满足什么条件?(3) 满足 (2) 的条件前提下, 传送带顺时针运转, 速度为 v = 5.0 m/s.求出滑块 m 1、m 2 落地点间的最大距离 (结果可带根号 ).答案(1)3.0 m/s (2)m 1> m 2 (3)(621 - 3) m5 解析(1) 滑块 m 11 2滑到 B 点有 m 1gh 1= m 1v 02解得 v 0= 5 m/s滑块 m 由 B 滑到 C 点有- μm1 2-1211gL = m 1 vm 1v 022解得 v = 3.0 m/s.(2) 滑块 m 2 停放在槽的底端, m 1 下滑并与滑块 m 2 弹性碰撞,则有m 1v 0=m 1v 1+ m 2v 211 v 0 2= 11v 1 2 + 1 2v 2 22m2m2mm 1 速度方向不变即v 1= m 1- m 2+ m v 0> 0m 12 则 m 1> m 2.(3) 滑块经过传送带作用后做平抛运动12h 2=2gt当两滑块速度相差最大时,它们的水平射程相差最大,当 m 1? m 2 时,滑块 m 1、 m 2 碰撞后的速度相差最大,经过传送带后速度相差也最大m 2m 1- m 2 1- m 1 v 0≈ v 0= 5.0 m/s v 1= + m v 0=2m 1+m 1v 2= 2m 1v 0= 2v 0≈ 2v 0= 10.0 m/s+ m 2m2m1+m 1滑块 m 1 与传送带同速度,没有摩擦,落地点射程为x 1= v 1t = 3.0 m滑块 m 2 与传送带发生摩擦,有 - μm1′ 2- 122gL =2m 2v 2 2m 2v 2解得 v 2′= 2 21 m/s落地点射程为 x 2= v 2′ t =621 m5m 2、m 1 的水平射程相差最大值为x = (6 21- 3) m.5题组 2应用动力学观点、能量观点、动量观点解决综合问题3.如图 3 所示,质量 M = 4 kg 的平板小车停在光滑水平面上,车上表面高 h 1= 1.6 m .水平面右边的台阶高 h 2= 0.8 m ,台阶宽l = 0.7 m ,台阶右端B 恰好与半径r = 5 m的光滑圆弧轨道连接,B 和圆心O 的连线与竖直方向夹角θ= 53°,在平板小车的A 处有质量m 1= 2 kg 的甲物体和质量m 2= 1 kg 的乙物体紧靠在一起,中间放有少量炸药(甲、乙两物体都可以看作质点).小车上 A 点左侧表面光滑,右侧粗糙且动摩擦因数为 μ= 0.2.现点燃炸药,炸药爆炸后两物体瞬间分开,甲物体获得5 m/s 的水平初速度向右运动,离开平板车后恰能从光滑圆弧轨道的左端B 点沿切线进入圆弧轨道.已知车与台阶相碰后不再运动(g 取 10 m/s 2,sin 53=°0.8, cos 53 =°0.6).求:图 3(1) 炸药爆炸使两物体增加的机械能E ;(2) 物体在圆弧轨道最低点 C 处对轨道的压力 F ;(3) 平板车上表面的长度 L 和平板车运动位移 s 的大小.答案 (1)75 J (2)46 N ,方向竖直向下(3)1 m解析(1) 甲、乙物体在爆炸瞬间动量守恒:m 1v 1-m 2v 2= 01 2 1 m 2v 22=75 J.E = m 1v 1 +22(2) 设甲物体平抛到 B 点时,水平方向速度为 v x ,竖直分速度为 v yv y = 2g h 1- h 2 = 4 m/s v x =v y= 3 m/stan θ合速度为: v B = 5 m/s物体从 B 到 C 过程中:m 1gr(1- cos θ)= 1m 1v C 2- 1m 1v B222v C 2F N - m 1 g = m 1 rF N =46 N由牛顿第三定律可知:F = F N = 46 N ,方向竖直向下.v y(3) 甲物体平抛运动时间: t = g = 0.4 s 平抛水平位移: x = v x t = 1.2 m > 0.7 m甲物体在车上运动时的加速度为: a 1= μg = 2 m/s2甲物体在车上运动时间为:t 1= v 0- v x = 1 sa 1甲物体的对地位移: x =1+ v = 4 m12 (v 0 x )t 1a 2= μm 1g = 1 m/s 2甲物体在车上运动时,车的加速度为:1M甲离开车时,车对地的位移:2= 0.5 mx 2= a 2t 12车长为: L = 2(x 1- x 2)= 7 m车的位移为: s = x 2+ (x - l)= 1 m.4.如图 4 所示,光滑的水平面 AB(足够长 )与半径为 R = 0.8 m 的光滑竖直半圆轨道 BCD 在 B 点相切, D点为半圆轨道最高点.A 点的右侧等高地放置着一个长为 L = 20 m 、逆时针转动且速度为v = 10 m/s 的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1= 3 kg ,乙的质量为 m 2= 1 kg ,甲、乙均静止在光滑的水平面上.现固定乙球,烧断细线,甲离开弹簧后进入半圆轨道并可以通过 D 点,且过 D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为 0.6,重力加速度 g 取 10 m/s 2,甲、乙两物体可看做质点.图 4(1) 求甲球离开弹簧时的速度.(2) 若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离.(3) 甲、乙均不固定,烧断细线以后,求甲和乙能否再次在 AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因.答案(1)4 3 m/s (2)12 m (3)甲、乙会再次碰撞,碰撞时甲的速度为23 m/s ,方向水平向右,乙的速度为 6 3m/s ,方向水平向左解析(1) 甲离开弹簧时的速度大小为v 0,运动至 D 点的过程中机械能守恒:12 1 2m 1 v 0 = m 1g ·2R +m 1v D ,22 在最高点 D ,由牛顿第二定律,v D 2 有 2m 1g = m 1 R联立解得: v 0= 4 3 m/s.(2) 甲固定,烧断细线后乙的速度大小为 v 乙 ,由能量守恒:E p =1m 1v 0 2=1m 2v 乙 2,2 2得 v 乙 = 12 m/s之后乙滑上传送带做匀减速运动:μm 2g = m 2a得 a = 6 m/s 2乙的速度为零时,在传送带滑行的距离最远,最远距离为:2v 乙s=2a= 12 m < 20 m即乙在传送带上滑行的最远距离为12 m. (3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为 v1、 v 2,甲、乙分离瞬间动量守恒: m1v1= m2v2甲、乙弹簧组成的系统能量守恒:121212E p= m1v0= m1v1+m2v2222解得: v1=2 3 m/s,v2= 6 3 m/s之后甲沿轨道上滑,设上滑最高点高度为h,12则2m1v1=m1gh得 h= 0.6 m< 0.8 m则甲上滑不到同圆心等高位置就会返回,返回AB 面上时速度大小仍然是v2=2 3 m/s乙滑上传送带,因v 2=6 3 m/s< 12 m/s,则乙先向右做匀减速运动,后向左匀加速.由对称性可知乙返回 AB 面上时速度大小仍然为v2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为 2 3 m/s,方向水平向右,乙的速度为 6 3 m/s,方向水平向左.。
微专题49 动量与能量的综合问题1.如果要研究在某一时刻物理量的关系,可用牛顿第二定律列式.2.研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.3.若研究对象为一系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件.4.在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,这些过程一般均隐含有系统机械能与其他形式能量之间的转换.这种问题由于作用时间都极短,满足动量守恒定律.1.(2020·河南名校联考)在光滑的水平面上,质量为m 1的小球A 以速率v 0向右运动.在小球的前方O 点处有一质量为m 2的小球B 处于静止状态,如图1所示.小球A 与小球B 发生正碰后,小球A 、B 均向右运动.小球B 被在Q 点处的墙壁弹回后与小球A 在P 点相遇,PQ =1.5 PO .假设小球间的碰撞及小球与墙壁之间的碰撞都是弹性碰撞,小球均可看成质点,求:图1(1)两小球质量之比m 1m 2; (2)若小球A 与小球B 碰后的运动方向以及小球B 反弹后与A 相遇的位置均未知,两小球A 、B 质量满足什么条件,就能使小球B 第一次反弹后一定与小球A 相碰.答案 (1)2∶1 (2)m 1>m 23解析 (1)两球发生弹性碰撞,设碰后A 、B 两球的速度分别为v 1、v 2,规定向右为正方向,根据系统动量守恒得m 1v 0=m 1v 1+m 2v 2已知小球间的碰撞及小球与墙壁之间的碰撞均无机械能损失,由机械能守恒定律得12m 1v 02= 12m 1v 12+12m 2v 22 从两球碰撞后到它们再次相遇,甲和乙的速度大小保持不变,由于PQ =1.5PO , 则小球A 和B 通过的路程之比为s 1∶s 2=v 1t ∶v 2t =1∶4,联立解得m 1m 2=21(2)由(1)中两式解得:v 1=m 1-m 2m 1+m 2v 0,v 2=2m 1m 1+m 2v 0若小球A 碰后静止或继续向右运动,一定与小球B 第一次反弹后相碰,此时有v 1≥0,即m 1≥m 2 若小球A 碰后反向运动,则v 1<0,此时m 1<m 2,则小球A 与B 第一次反弹后相碰需满足|v 1|<|v 2| 即m 2-m 1m 1+m 2v 0<2m 1m 1+m 2v 0 解得m 1>m 23综上所述,只要小球A 、B 质量满足m 1>m 23,就能使小球B 第一次反弹后一定与小球A 相碰. 2.(2020·河北邢台市期末)如图2所示,竖直平面内粗糙水平轨道AB 与光滑半圆轨道BC 相切于B 点,一质量m 1=1 kg 的小滑块P (视为质点)在水平向右的力F 作用下,从A 点以v 0= 0.5 m/s 的初速度滑向B 点,当滑块P 滑到AB 正中间时撤去力F ,滑块P 运动到B 点时与静止在B 点的质量m 2=2 kg 的小滑块Q (视为质点)发生弹性碰撞(碰撞时间极短),碰撞后小滑块Q 恰好能滑到半圆轨道的最高点C ,并且从C 点飞出后又恰好落到AB 的中点,小滑块P 恰好也能回到AB 的中点.已知半圆轨道半径R =0.9 m ,重力加速度g =10 m/s 2.求:图2(1)与Q 碰撞前的瞬间,小滑块P 的速度大小;(2)力F 所做的功.答案 (1)925 m/s (2)61.75 J 解析 (1)滑块P 、Q 碰撞过程机械能守恒、动量守恒,则有12m 1v 12=12m 1v 1′2+12m 2v 22 m 1v 1=m 1v 1′+m 2v 2滑块Q 从B 运动到C 的过程机械能守恒,则有12m 2v 22=12m 2v 32+m 2g ×2R 滑块Q 在C 点时,有m 2g =m 2v 32R解得v 3=3 m/s ,v 1′=-352m/s 与Q 碰撞前的瞬间,小滑块P 的速度大小v 1=952m/s.(2)滑块P从A到B过程,由动能定理,有W F-μm1gx AB=12m1(v12-v02)滑块P与Q碰撞后返回过程,有v1′2=2μg·x AB2解得W F=61.75 J.3.(2020·河南中原名校第五次考评)如图3所示,固定点O上系一长L=0.6 m的细绳,细绳的下端系一质量m=1.0 kg的小球(可视为质点),原来处于静止状态,球与平台的B点接触但对平台无压力,平台高h=0.80 m,一质量M=2.0 kg的物块开始静止在平台上的P点,现使M 获得一水平向右的初速度v0,物块M沿粗糙平台自左向右运动到平台边缘B处与小球m发生正碰,碰后小球m在绳的约束下做圆周运动,经最高点A时,绳上的拉力恰好等于小球的重力,而M落在水平地面上的C点,其水平位移s=1.2 m,不计空气阻力,g=10 m/s2,求:图3(1)质量为M的物块落地时的动能;(2)若物块M在P处的初速度大小为8.0 m/s,平台表面与物块间动摩擦因数μ=0.5,物块M 与小球的初始距离s1为多少?答案(1)25 J(2)2.8 m解析(1)碰后物块M做平抛运动,设其平抛运动的初速度为v3由h=12gt2,s=v3t,得:v3=s g2h=3.0 m/s落地时的竖直速度为:v y=2gh=4.0 m/s所以物块落地时的速度为:v=v32+v y2=5.0 m/s物块落地时的动能为:E k=12M v2=25 J(2)物块与小球在B处碰撞,设碰撞前物块的速度为v1,碰撞后小球的速度为v2,由动量守恒定律:M v1=m v2+M v3碰后小球从B处运动到最高点A过程中机械能守恒,设小球在A点的速度为v A:12=12m v A2+2mgL2m v2小球在最高点时有:2mg=m v A2L联立解得:v2=6.0 m/sv1=6.0 m/s物块M从P运动到B处过程中,由动能定理得:-μMgs1=12-12M v022M v1解得:s1=2.8 m.4.如图4所示为研究某种弹射装置的示意图,光滑的水平导轨MN右端N处与水平传送带理想连接,传送带足够长,传送带的轮子沿逆时针方向转动,带动传送带以恒定速度v=2.0 m/s匀速运动.三个质量均为m=1.0 kg的滑块A、B、C置于水平导轨上,开始时在B、C 间有一压缩的轻弹簧,两滑块用细绳相连处于静止状态.滑块A以初速度v0=4.0 m/s沿B、C连线方向向B运动,A与B碰撞后粘合在一起,碰撞时间极短,可认为A与B碰撞过程中滑块C的速度仍为零.因碰撞使连接B、C的细绳受到扰动而突然断开,弹簧伸展,从而使C与A、B分离.滑块C脱离弹簧后以速度v C=4.0 m/s滑上传送带,已知滑块C与传送带间的动摩擦因数μ=0.20,重力加速度g取10 m/s2.求:图4(1)滑块C在传送带上向右滑动距N点的最远距离s max;(2)弹簧锁定时的弹性势能E p;(3)滑块C在传送带上运动的整个过程中与传送带之间因摩擦产生的内能Q.答案(1)4.0 m(2)4.0 J(3)18 J解析(1)滑块C滑上传送带做匀减速运动,当速度减为零时,滑动的距离最远.由动能定理得-μmgs max=0-122m v C解得s max=4.0 m.(2)设A、B碰撞后的速度为v1,A、B与C分离时的速度为v2,由动量守恒定律有m v 0=2m v 12m v 1=2m v 2+m v C解得v 1=2 m/s ,v 2=0由能量守恒定律有E p +12×2m v 12=12×2m v 22+12m v C 2 解得E p =4.0 J.(3)滑块C 在传送带上向右做匀减速运动,设滑块C 在传送带上运动的加速度大小为a ,滑块C 在传送带上经时间t 1速度减为零,在同样时间内传送带向左的位移大小为x 1.根据牛顿第二定律和运动学公式可知a =μmg m=2 m/s 2 滑块C 速度减小到零所需的时间t 1=v C a=2 s 传送带的位移大小x 1=v t 1=2×2 m =4 m相对路程Δx 1=s max +x 1=8 m滑块C 在传送带上向右运动至速度为0后开始向左做匀加速直线运动,当速度达到与传送带速度相同时,与传送带一起做匀速直线运动.滑块C 在传送带上向左做匀加速直线运动的时间t 2=v a=1 s 滑块C 的位移大小s 1=12at 22=1 m 传送带的位移大小x 2=v t 2=2 m相对路程Δx 2=x 2-s 1=1 m则滑块C 在传送带上运动的整个过程中与传送带之间因摩擦产生的内能Q =μmg (Δx 1+Δx 2)=0.2×1×10×9 J =18 J .。
第16章 动量守恒定律 专题 动量和能量的综合应用题型一 滑块—木板模型例1.如图所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?练习1.如图所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )A .L B.3L 4C.L 4D.L 2【小结】:1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.班级: 姓名:题型二子弹打木块模型例2.如图所示,在水平地面上放置一质量为M的木块,一质量为m的子弹以水平速度v射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g)(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.练习2.矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m的子弹以速度v0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图所示,则上述两种情况相比较,下列说法不正确的是()A.子弹的末速度大小相等B.系统产生的热量一样多C.子弹对滑块做的功相同D.子弹和滑块间的水平作用力一样大【小结】:1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.题型三 弹簧类模型例3.两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k 的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m 4,速度为v 0,子弹射入木块A 并留在其中.求:(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小.(2)在子弹击中木块后的运动过程中弹簧的最大弹性势能.练习3.如图所示,与水平轻弹簧相连的物体A 停放在光滑的水平面上,物体B 沿水平方向向右运动,跟与A 相连的轻弹簧相碰.在B 跟弹簧相碰后,对于A 、B 和轻弹簧组成的系统,下列说法中正确的是( )A .弹簧压缩量最大时,A 、B 的速度相同B .弹簧压缩量最大时,A 、B 的动能之和最小C .弹簧被压缩的过程中系统的总动量不断减少D .物体A 的速度最大时,弹簧的弹性势能为零【小结】:1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大.例4.(动量与能量的综合应用)如图所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:(1)滑块A与B碰撞后瞬间的共同速度的大小;(2)小车C上表面的最短长度.第16章 动量守恒定律专题 动量和能量的综合应用课后练习(一)1.如图所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )A.12m v 2 B .μmgLC.12NμmgLD.mM v 22(m +M )3.用不可伸长的细线悬挂一质量为M 的小木块,木块静止,如图4所示.现有一质量为m 的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v 0,重力加速度为g ,则下列说法正确的是( )A .从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B .子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v 0M +mC .忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D .子弹和木块一起上升的最大高度为m 2v 022g (M +m )24.如图所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )A .3 JB .4 JC .12 JD . 6 J班级: 姓名:5.如图所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 与A 分开后能达到的最大高度为h 4D .B 与A 分开后能达到的最大高度不能计算6.如图所示,光滑水平面上一质量为M 、长为L 的木板右端紧靠竖直墙壁.质量为m 的小滑块(可视为质点)以水平速度v 0滑上木板的左端,滑到木板的右端时速度恰好为零.(1)求小滑块与木板间的摩擦力大小;(2)现小滑块以某一速度v 滑上木板的左端,滑到木板的右端时与竖直墙壁发生弹性碰撞,然后向左运动,刚好能够滑到木板左端而不从木板上落下,试求v v 0的值.动量守恒定律专题 动量和能量的综合应用课后练习(二)1.如图,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)(1)小滑块的最终速度大小;(2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少?2.两物块A 、B 用水平轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m/s 的速度在光滑的水平地面上运动,质量为4 kg 的物块C 静止在前方,如图所示.B 与C 碰撞后二者会粘在一起运动.则在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大?(2)系统中弹性势能的最大值是多少?班级: 姓名:3.如图所示,物体A置于静止在光滑水平面上的平板小车B的左端,在A的上方O点用不可伸长的细线悬挂一小球C(可视为质点),线长L=0.8 m.现将小球C拉至水平(细线绷直)无初速度释放,并在最低点与A物体发生水平正碰,碰撞后小球C反弹的最大高度为h=0.2 m.已知A、B、C的质量分别为m A=4 kg、m B=8 kg和m C=1 kg,A、B间的动摩擦因数μ=0.2,A、C碰撞时间极短,且只碰一次,取重力加速度g =10 m/s2.(1)求小球C与物体A碰撞前瞬间受到细线的拉力大小;(2)求A、C碰撞后瞬间A的速度大小;(3)若物体A未从小车B上掉落,则小车B的最小长度为多少?4.如图所示,质量m B=2 kg的平板车B上表面水平,在平板车左端相对于车静止着一块质量m A=2 kg 的物块A,A、B一起以大小为v1=0.5 m/s的速度向左运动,一颗质量m0=0.01 kg的子弹以大小为v0=600 m/s的水平初速度向右瞬间射穿A后,速度变为v=200 m/s .已知A与B之间的动摩擦因数不为零,且A 与B最终达到相对静止时A刚好停在B的右端,车长L=1 m,g=10 m/s2,求:(1)A、B间的动摩擦因数;(2)整个过程中因摩擦产生的热量为多少?微型专题 动量和能量的综合应用[学习目标] 1.进一步熟练掌握动量守恒定律的应用.2.综合应用动量和能量观点解决力学问题.一、滑块—木板模型1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.例1 如图1所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )图1(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?答案 (1)v 04 (2)15v 0232μg (3)3v 028μg解析 (1)由题意知,A 向右减速,B 向右加速,当A 、B 速度相等时B 速度最大.以v 0的方向为正方向,根据动量守恒定律:m v 0=(m +3m )v ①得:v =v 04② (2)A 向右减速的过程,根据动能定理有-μmgx 1=12m v 2-12m v 02③ 则木块A 所发生的位移为x 1=15v 0232μg④ (3)方法一:B 向右加速过程的位移设为x 2.则μmgx 2=12×3m v 2⑤ 由⑤得:x 2=3v 0232μg木板的最小长度:L =x 1-x 2=3v 028μg方法二:从A 滑上B 至达到共同速度的过程中,由能量守恒得:μmgL =12m v 02-12(m +3m )v 2 得:L =3v 028μg. 二、子弹打木块模型1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.例2 如图2所示,在水平地面上放置一质量为M 的木块,一质量为m 的子弹以水平速度v 射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g )图2(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.答案 (1)Mm v 22(M +m )(2)m 2v 22(M +m )2μg解析 因子弹未射出,故碰撞后子弹与木块的速度相同,而系统损失的机械能为初、末状态系统的动能之差.(1)设子弹射入木块后,二者的共同速度为v ′,取子弹的初速度方向为正方向,则由动量守恒得:m v =(M +m )v ′①射入过程中系统损失的机械能ΔE =12m v 2-12(M +m )v ′2② 解得:ΔE =Mm v 22(M +m ). (2)子弹射入木块后二者一起沿地面滑行,设滑行的距离为x ,由动能定理得:-μ(M +m )gx =0-12(M +m )v ′2③ 由①③两式解得:x =m 2v 22(M +m )2μg.子弹打木块模型与滑块—木板模型类似,都是通过系统内的滑动摩擦力相互作用,系统动量守恒.当子弹不穿出木块时,相当于完全非弹性碰撞,机械能损失最多. 三、弹簧类模型1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大. 例3 两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m4,速度为v 0,子弹射入木块A 并留在其中.求:图3(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小. (2)在子弹击中木块后的运动过程中弹簧的最大弹性势能. 答案 (1)v 05 v 02 (2)140m v 02解析 (1)在子弹打入木块A 的瞬间,由于相互作用时间极短,弹簧来不及发生形变,A 、B 都不受弹簧弹力的作用,故v B =v 02;由于此时A 不受弹簧的弹力,木块A 和子弹构成的系统在这极短过程中所受合外力为零,系统动量守恒,选向左为正方向,由动量守恒定律得: m v 02-m v 04=(m4+m )v A 解得v A =v 05(2)由于子弹击中木块A 后木块A 、木块B 运动方向相同且v A <v B ,故弹簧开始被压缩,分别给A 、B 木块施以弹力,使得木块A 加速、B 减速运动,弹簧不断被压缩,弹性势能增大,直到二者速度相等时弹簧弹性势能最大,在弹簧压缩过程木块A (包括子弹)、B 与弹簧构成的系统动量守恒,机械能守恒. 设弹簧压缩量最大时共同速度为v ,弹簧的最大弹性势能为E pm , 选向左为正方向,由动量守恒定律得:54m v A +m v B =(54m +m )v 由机械能守恒定律得:12×54m v A 2+12m v B 2=12×(54m +m )v 2+E pm 联立解得v =13v 0,E pm =140m v 02.1.(滑块—木板模型)如图4所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )图4A .L B.3L 4 C.L 4 D.L2答案 D解析 长木板固定时,由动能定理得:-μMgL =0-12M v 02,若长木板不固定,以物块初速度的方向为正方向,有M v 0=2M v ,μMgs =12M v 02-12×2M v 2,得s =L2,D 项正确,A 、B 、C 项错误.2.(子弹打木块模型)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图5所示,则上述两种情况相比较,下列说法不正确的是( )图5A .子弹的末速度大小相等B .系统产生的热量一样多C .子弹对滑块做的功相同D .子弹和滑块间的水平作用力一样大 答案 D解析 设子弹的质量是m ,初速度是v 0,滑块的质量是M ,选择子弹初速度的方向为正方向,由动量守恒定律知滑块获得的最终速度(最后滑块和子弹的共同速度)为v.则:m v0=(m+M)v所以:v=m v0M+m可知两种情况下子弹的末速度是相同的,故A正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,而子弹减少的动能一样多(子弹初、末速度相等),滑块增加的动能也一样多,则系统减少的动能一样,故系统产生的热量一样多,故B正确;滑块的末速度是相等的,所以获得的动能是相同的,根据动能定理,滑块动能的增量是子弹做功的结果,所以两次子弹对滑块做的功一样多,故C正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,Q=F f·x相对,由于两种情况相比较子弹能射穿的厚度不相等,即相对位移x相对不相等,所以两种情况下子弹和滑块间的水平作用力不一样大,故D错误.3.(弹簧类模型)(多选)如图6所示,与水平轻弹簧相连的物体A停放在光滑的水平面上,物体B沿水平方向向右运动,跟与A相连的轻弹簧相碰.在B跟弹簧相碰后,对于A、B和轻弹簧组成的系统,下列说法中正确的是()图6A.弹簧压缩量最大时,A、B的速度相同B.弹簧压缩量最大时,A、B的动能之和最小C.弹簧被压缩的过程中系统的总动量不断减少D.物体A的速度最大时,弹簧的弹性势能为零答案ABD解析物体B与弹簧接触时,弹簧发生形变,产生弹力,可知B做减速运动,A做加速运动,当两者速度相等时,弹簧的压缩量最大,故A正确.A、B和弹簧组成的系统动量守恒,压缩量最大时,弹性势能最大,根据能量守恒,此时A、B的动能之和最小,故B正确.弹簧在压缩的过程中,A、B和弹簧组成的系统动量守恒,故C错误.当两者速度相等时,弹簧的压缩量最大,然后A继续加速,B继续减速,弹簧逐渐恢复原长,当弹簧恢复原长时,A的速度最大,此时弹簧的弹性势能为零,故D正确.4.(动量与能量的综合应用)如图7所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:图7(1)滑块A 与B 碰撞后瞬间的共同速度的大小; (2)小车C 上表面的最短长度. 答案 (1)2.5 m/s (2)0.375 m解析 (1)设滑块A 滑到圆弧末端时的速度大小为v 1,由机械能守恒定律得:m A gh =12m A v 12①代入数据解得v 1=2gh =5 m/s ②设A 、B 碰后瞬间的共同速度为v 2,滑块A 与B 碰撞瞬间与车C 无关,滑块A 与B 组成的系统动量守恒,以向右的方向为正方向, m A v 1=(m A +m B )v 2③ 代入数据解得v 2=2.5 m/s ④(2)设小车C 上表面的最短长度为L ,滑块A 与B 最终恰好没有从小车C 上滑出,三者最终速度相同设为v 3,以向右的方向为正方向 根据动量守恒定律有: (m A +m B )v 2=(m A +m B +m C )v 3⑤ 根据能量守恒定律有:μ(m A +m B )gL =12(m A +m B )v 22-12(m A +m B +m C )v 32⑥联立⑤⑥式代入数据解得L =0.375 m.一、选择题考点一 滑块-木板模型1.如图1所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )图1A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能答案 A解析 开始阶段,物块向左减速,薄板向右减速,当物块的速度为零时,设此时薄板的速度为v 1,规定向右为正方向,根据动量守恒定律得:(M -m )v =M v 1代入数据解得:v 1≈2.67 m/s <2.9 m/s ,所以物块处于向左减速的过程中.2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图2所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )图2A.12m v 2 B .μmgL C.12NμmgL D.mM v 22(m +M )答案 D解析 由于箱子M 放在光滑的水平面上,则由箱子和小物块组成的整体动量始终是守恒的,直到箱子和小物块的速度相同时,小物块与箱子之间不再发生相对滑动,以v 的方向为正方向,有m v =(m +M )v 1 系统损失的动能是因为摩擦力做负功ΔE k =-W f =μmg ·NL =12m v 2-12(M +m )v 12=mM v 22(m +M ),故D 正确,A 、B 、C 错误.考点二 子弹打木块模型3.如图3所示,木块静止在光滑水平桌面上,一子弹水平射入木块的深度为d 时,子弹与木块相对静止,在子弹入射的过程中,木块沿桌面移动的距离为L ,木块对子弹的平均阻力为F f ,那么在这一过程中下列说法不正确的是( )图3A .木块的机械能增量为F f LB .子弹的机械能减少量为F f (L +d )C .系统的机械能减少量为F f dD .系统的机械能减少量为F f (L +d )答案 D解析子弹对木块的作用力大小为F f,木块相对于桌面的位移为L,则子弹对木块做功为F f L,根据动能定理得知,木块动能的增加量,即机械能的增量等于子弹对木块做的功,即为F f L.故A正确.木块对子弹的阻力做功为-F f(L+d),根据动能定理得知:子弹动能的减少量,即机械能的减少量等于子弹克服阻力做功,大小为F f(L+d),故B正确.子弹相对于木块的位移大小为d,则系统克服阻力做功为F f d,根据功能关系可知,系统机械能的减少量为F f d,故C正确,D错误.4.(多选)用不可伸长的细线悬挂一质量为M的小木块,木块静止,如图4所示.现有一质量为m的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v0,重力加速度为g,则下列说法正确的是()图4A.从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B.子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v0M+mC.忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D.子弹和木块一起上升的最大高度为m2v022g(M+m)2答案BD解析从子弹射向木块到一起运动到最高点的过程可以分为两个阶段:子弹射入木块的瞬间系统动量守恒,但机械能不守恒,有部分机械能转化为系统内能,之后子弹在木块中与木块一起上升,该过程只有重力做功,机械能守恒但总能量小于子弹射入木块前的动能,故A、C错误;规定向右为正方向,由于弹簧射入木块瞬间系统动量守恒可知:m v0=(m+M)v′所以子弹射入木块后的共同速度为:v′=m v0M+m,故B正确;之后子弹和木块一起上升,该阶段根据机械能守恒得:12(M+m)v′2=(M+m)gh,可得上升的最大高度为:h=m2v022g(M+m)2,故D正确.考点三弹簧类模型5.如图5所示,位于光滑水平桌面上的小滑块P和Q质量相等,都可视作质点.Q与水平轻质弹簧相连.设Q静止,P以某一初速度向Q运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于( )图5A .P 的初动能B .P 的初动能的12C .P 的初动能的13D .P 的初动能的14答案 B解析 把小滑块P 和Q 以及弹簧看成一个系统,系统的动量守恒.在整个碰撞过程中,当小滑块P 和Q 的速度相等时,弹簧的弹性势能最大.设小滑块P 的初速度为v 0,两滑块的质量均为m ,以v 0的方向为正方向,则m v 0=2m v ,v =v 02所以弹簧具有的最大弹性势能E pm =12m v 02-12×2m v 2=14m v 02=12E k0,故B 正确.6.如图6所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )图6A .3 JB .4 JC .12 JD .6 J 答案 D7.(多选)如图7所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )图7A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh2C .B 与A 分开后能达到的最大高度为h4D .B 与A 分开后能达到的最大高度不能计算答案 BC解析 根据机械能守恒定律可得B 刚到达水平面的速度v 0=2gh ,根据动量守恒定律可得A 与B 碰撞后的速度为v =12v 0,所以弹簧被压缩时所具有的最大弹性势能为E pm =12×2m v 2=12mgh ,即A 错误,B 正确;当弹簧再次恢复原长时,A 与B 分开,B 以大小为v 的速度向左沿曲面上滑,根据机械能守恒定律可得mgh ′=12m v 2,B 能达到的最大高度为h ′=14h ,即C 正确,D 错误. 二、非选择题8.(滑块—木板模型)如图8,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)图8(1)小滑块的最终速度大小; (2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少? 答案 (1)0.6 m/s (2)0.072 J (3)0.135 m 解析 (1)小滑块与长木板组成的系统动量守恒, 规定向右为正方向,由动量守恒定律得: m v 0=(m +M )v 解得最终速度为:v =m v 0M +m =0.2×1.20.2+0.2 m/s =0.6 m/s (2)由能量守恒定律得: 12m v 02=12(m +M )v 2+Q 代入数据解得热量为:Q =0.072 J (3)对小滑块应用动能定理: -μmgs =12m v 2-12m v 02代入数据解得距离为s =0.135 m.9.(子弹打木块模型)如图9所示,质量m B =2 kg 的平板车B 上表面水平,在平板车左端相对于车静止着一块质量m A =2 kg 的物块A ,A 、B 一起以大小为v 1=0.5 m/s 的速度向左运动,一颗质量m 0=0.01 kg 的。
专题定位本专题综合应用动力学、动量和能量的观点来解决物体运动的多过程问题.本专题是高考的重点和热点,命题情景新、联系实际密切、综合性强,是高考的压轴题.应考策略本专题在高考中主要以两种命题形式出现:一是综合应用动能定理、机械能守恒定律和动量守恒定律,结合动力学方法解决运动的多过程问题;二是运用动能定理和能量守恒定律解决电场、磁场内带电粒子的运动或电磁感应问题.由于本专题综合性强,因此要在审题上狠下功夫,弄清运动情景,挖掘隐含条件,有针对性地选择相应的规律和方法.第1课时几个重要功能关系的应用1.常见的几种力做功的特点(1)重力、弹簧弹力、静电力做功与路径无关.(2)摩擦力做功的特点①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零,在静摩擦力做功的过程中,只有机械能的转移,没有机械能转化为其他形式的能;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.在一对滑动摩擦力做功的过程中,不仅有相互摩擦物体间机械能的转移,还有部分机械能转化为内能.转化为内能的量等于系统机械能的减少量,等于滑动摩擦力与相对位移的乘积.③摩擦生热是指滑动摩擦生热,静摩擦不会生热.(3)静电力做功一般利用W=qU来求,在匀强电场中也可以利用W=Eqs cos α求解.(4)洛伦兹力在任何情况下对运动的电荷都不做功;安培力可以做正功、负功,还可以不做功.(5)电流做功的实质是电场对移动电荷做功,即W=UIt=qU.2.几个重要的功能关系(1)重力的功等于重力势能的变化,即W G=-ΔE p.(2)弹力的功等于弹性势能的变化,即W弹=-ΔE p.(3)合力的功等于动能的变化,即W=ΔE k.(4)重力(或弹簧弹力)之外的其他力的功等于机械能的变化,即W其他=ΔE.(5)一对滑动摩擦力做的功等于系统中内能的变化,即Q=F·s相对.(6)电场力做功等于电势能的变化,即W AB=-ΔE p.(7)电流做功等于电能的变化,即ΔE=UIt.(8)安培力做功等于电能的变化,即W安=-ΔE电.1.动能定理的应用(1)动能定理的适用情况:解决单个物体(或可看成单个物体的物体系统)受力与位移、速率关系的问题.动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用.(2)应用动能定理解题的基本思路①选取研究对象,明确它的运动过程.②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和.③明确物体在运动过程始、末状态的动能E k1和E k2.④列出动能定理的方程W合=E k2-E k1,及其他必要的解题方程,进行求解.2.机械能守恒定律的应用(1)机械能是否守恒的判断①用做功来判断,看重力(或弹簧弹力)以外的其他力做功的代数和是否为零.②用能量转化来判断,看是否有机械能转化为其他形式的能.③对一些“绳子突然绷紧”、“物体间碰撞”等问题,机械能一般不守恒,除非题目中有特别说明及暗示.(2)应用机械能守恒定律解题的基本思路①选取研究对象——物体系统.②根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.③恰当地选取参考平面,确定研究对象在运动过程的始、末状态时的机械能.④根据机械能守恒定律列方程,进行求解.3.动能定理和能量守恒定律在处理电学中能量问题时仍然是首选的方法.题型1力学中的几个重要功能关系的应用例1(双选)如图1所示,轻质弹簧的一端与固定的竖直板P拴接,另一端与物体A相连,物体A静止于光滑水平桌面上,右端接一细线,细线绕过光滑的定滑轮与物体B相连.开始时用手托住B,让细线恰好伸直,然后由静止释放B,直至B获得最大速度.下列有关该过程的分析正确的是()图1A.B物体的机械能先增大后减小B.B物体的动能的增加量等于它所受重力与拉力做的功之和C.B物体机械能的减少量等于弹簧的弹性势能的增加量D.细线拉力对A物体做的功等于A物体与弹簧所组成的系统机械能的增加量解析把A、B和弹簧看做一个系统,该系统机械能守恒,在B下落直至B获得最大速度的过程中,A的动能增大,弹簧弹性势能增大,所以B物体的机械能一直减小,选项A错误;由动能定理知,B物体的动能的增加量等于它所受重力与拉力做的功之和,选项B正确;B物体机械能的减少量等于弹簧的弹性势能的增加量与A物体动能的增加量之和,选项C错误;对A物体和弹簧组成的系统,由功能关系得,细线拉力对A物体做的功等于A物体与弹簧所组成的系统机械能的增加量,选项D正确.答案BD以题说法 1.本题要注意几个功能关系:重力做的功等于重力势能的变化量;弹簧弹力做的功等于弹性势能的变化量;重力以外的其他力做的功等于机械能的变化量;合力做的功等于动能的变化量.2.本题在应用动能定理时,应特别注意研究过程的选取.并且要弄清楚每个过程各力做功的情况.(双选)(2013·山东·16)如图2所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()图2A.两滑块组成的系统机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加D.两滑块组成系统的机械能损失等于M克服摩擦力做的功答案CD解析两滑块释放后,M下滑、m上滑,摩擦力对M做负功,M和m组成的系统机械能减小,减小的机械能等于M克服摩擦力所做的功,选项A错误,D正确.除重力对滑块M做正功外,还有摩擦力和绳的拉力对滑块M做负功,选项B错误.绳的拉力对滑块m做正功,滑块m机械能增加,且增加的机械能等于拉力做的功,选项C正确.题型2几个重要的功能关系在电学中的应用例2(双选)如图3所示,在竖直平面内有一匀强电场,其方向与水平方向成α=30°斜向上,在电场中有一质量为m、电量为q的带电小球,用长为L的不可伸长的绝缘细线挂于O点,当小球静止于M点时,细线恰好水平.现用外力将小球拉到最低点P,然后无初速度释放,则以下判断正确的是()图3A.小球再次到达M点时,速度刚好为零B.小球从P到M过程中,合外力对它做了3mgL的功C.小球从P到M过程中,小球的机械能增加了3mgLD.如果小球运动到M点时,细线突然断裂,小球以后将做匀变速曲线运动审题突破小球静止在M时,受几个力的作用?重力和电场力的大小关系是什么?小球由P到M的过程中,各力做功是多少?解析小球从P到M的过程中,线的拉力不做功,只有电场力和小球重力做功,它们的合力也是恒力,大小为3mg,方向水平向右,所以小球再次到达M点时,速度最大,而不是零,选项A错.小球从P到M过程中,电场力与重力的合力大小为3mg,这个方向上位移为L,所以做功为3mgL,选项B正确.小球从P到M过程中,机械能的增加量等于电场力做的功,由于电场力为2mg,由P到M沿电场线方向的距离为d=L sin 30°+L cos 30°=L2(1+3),故电场力做功为2mg·d=mgL(1+3),故选项C错误.如果小球运动到M点时,细线突然断裂,小球的速度方向竖直向上,所受合外力水平向右,小球将做匀变速曲线运动,选项D正确.答案BD以题说法在解决电学中功能关系问题时应注意以下几点:(1)洛伦兹力在任何情况下都不做功;(2)电场力做功与路径无关,电场力做的功等于电势能的变化;(3)力学中的几个功能关系在电学中仍然成立.(单选)如图4所示,竖直向上的匀强电场中,绝缘轻质弹簧竖直立于水平地面上,一质量为m的带正电小球在外力F的作用下静止于图示位置,小球与弹簧不连接,弹簧处于压缩状态.现撤去F,小球从静止开始运动到离开弹簧的过程中,重力、电场力、弹簧弹力对小球做的功分别为W1、W2和W3,不计空气阻力,则上述过程中()图4A .小球与弹簧组成的系统机械能守恒B .小球重力势能的变化为W 1C .小球动能的变化为W 1+W 2+W 3D .小球机械能的变化为W 1+W 2+W 3 答案 C解析 由于电场力做功,小球与弹簧组成的系统机械能不守恒,选项A 错误.重力对小球做的功为W 1,小球重力势能的变化为-W 1,选项B 错误.由动能定理可知,小球动能的变化为W 1+W 2+W 3,选项C 正确.由功能关系可知,小球机械能的变化为W 2,选项D 错误.题型3 动力学方法和动能定理的综合应用图5例3 (15分)如图5所示,上表面光滑、长度为3 m 、质量M =10 kg 的木板,在F =50 N 的水平拉力作用下,以v 0=5 m/s 的速度沿水平地面向右匀速运动.现将一个质量为m =3 kg 的小铁块(可视为质点)无初速度地放在木板最右端,当木板运动了L =1 m 时,又将第二个同样的小铁块无初速地放在木板最右端,以后木板每运动1 m 就在其最右端无初速度地放上一个同样的小铁块.(g 取10 m/s 2)求: (1)木板与地面间的动摩擦因数; (2)刚放第三个小铁块时木板的速度;(3)从放第三个小铁块开始到木板停止的过程,木板运动的距离.审题突破 木板在F =50 N 的水平拉力作用下,沿水平地面匀速运动,隐含什么条件?放上小铁块后木板的受力如何变化?解析 (1)木板做匀速直线运动时,受到地面的摩擦力设为f 由平衡条件得: F =f①(1分) 又f =μMg ②(2分) 联立①②并代入数据得:μ=0.5③(1分)(2)每放一个小铁块,木板所受的摩擦力增加μmg设刚放第三个小铁块时木板的速度为v 1,对木板从放第一个小铁块到刚放第三个小铁块的过程,由动能定理得:-μmgL -2μmgL =12M v 21-12M v 2④(5分)联立③④并代入数据得: v 1=4 m/s⑤(1分)(3)从放第三个小铁块开始到木板停止之前,木板所受的合外力大小均为3μmg .从放第三个小铁块开始到木板停止的过程,设木板运动的距离为s ,对木板由动能定理得:-3μmgs =0-12M v 21⑥(4分) 联立③⑤⑥并代入数据得s =169m ≈1.78 m⑦(1分)答案 (1)0.5 (2)4 m/s (3)1.78 m以题说法 1.在应用动能定理解题时首先要弄清物体的受力情况和做功情况.此题特别要注意每放一个小铁块都会使滑动摩擦力增加μmg .2.应用动能定理列式时要注意运动过程的选取,可以全过程列式,也可以分过程列式.如图6所示,倾角为37°的粗糙斜面AB 底端与半径R =0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m =1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.图6(1)求滑块与斜面间的动摩擦因数μ;(2)若使滑块能到达C 点,求滑块从A 点沿斜面滑下时的初速度v 0的最小值;(3)若滑块离开C 点的速度大小为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间t .答案 (1)0.375 (2)2 3 m/s (3)0.2 s解析 (1)滑块从A 点到D 点的过程中,根据动能定理有mg ·(2R -R )-μmg cos 37°·2Rsin 37°=0-0解得:μ=12tan 37°=0.375(2)若使滑块能到达C 点,根据牛顿第二定律有mg +F N =m v 2CR由F N ≥0得v C ≥Rg =2 m/s滑块从A 点到C 点的过程中,根据动能定理有-μmg cos 37°·2R sin 37°=12m v 2C -12m v 20 则v 0=v 2C +4μgR cot 37°≥2 3 m/s 故v 0的最小值为2 3 m/s(3)滑块离开C 点后做平抛运动,有x =v C ′t ,y =12gt 2由几何知识得tan 37°=2R -yx整理得:5t 2+3t -0.8=0 解得t =0.2 s(t =-0.8 s 舍去)题型4 应用动能定理分析带电体在电场中的运动例4 如图7所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:图7(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.审题突破 带电粒子在水平匀强电场中做什么运动?速度与电场方向成30°角,隐含条件是什么?解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得:E =3×103 N/C =1.732×103 N/C(3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V . 答案 (1)104 m/s (2)1.732×103 N/C (3)400 V以题说法 1.电场力做功与重力做功的特点类似,都与路径无关.2.对于电场力做功或电势差的计算,选用动能定理往往最简便快捷,但运用动能定理时要特别注意运动过程的选取.如图8所示,在光滑绝缘水平面上,用长为2L 的绝缘轻杆连接两个质量均为m 的带电小球A 和B .A 球的带电量为+2q ,B 球的带电量为-3q ,两球组成一带电系统.虚线MN 与PQ 平行且相距3L ,开始时A 和B 分别静止于虚线MN 的两侧,虚线MN 恰为AB 两球连线的垂直平分线.若视小球为质点,不计轻杆的质量,在虚线MN 、PQ 间加上水平向右的电场强度为E 的匀强电场后,系统开始运动.试求:图8(1)B 球刚进入电场时,带电系统的速度大小;(2)带电系统向右运动的最大距离和此过程中B 球电势能的变化量; (3)A 球从开始运动至刚离开电场所用的时间.答案 (1) 2qEL m (2)73L 4qEL (3)(32-2)mLqE解析 (1)设B 球刚进入电场时带电系统的速度为v 1,由动能定理得2qEL =12×2m v 21 解得:v 1= 2qELm(2)带电系统向右运动分为三段:B 球进入电场前、带电系统在电场中、A 球出电场后. 设A 球出电场后移动的最大位移为s ,对于全过程,由动能定理得 2qEL -qEL -3qEs =0解得s =L3,则B 球移动的总位移为s B =73LB 球从刚进入电场到带电系统从开始运动到速度第一次为零时的位移为43L其电势能的变化量为ΔE p =-W =3qE ·43L =4qEL(3)取向右为正方向,B 球进入电场前,带电系统做匀加速运动:a 1=2qE 2m =qE m ,t 1=v 1a 1= 2mLqE带电系统在电场中时,做匀减速运动:a 2=-qE 2m设A 球刚出电场时速度为v 2,由动能定理得:-qEL =12×2m (v 22-v 21) 解得:v 2= qELmt 2=v 2-v 1a 2=2(2-1) mL qE解得总时间t =t 1+t 2=(32-2) mLqE6.综合应用动力学和能量观点分析多过程问题审题示例(12分)如图9所示,半径为R 的光滑半圆轨道ABC 与倾角为θ=37°的粗糙斜面轨道DC 相切于C 点,半圆轨道的直径AC 与斜面垂直.质量为m 的小球从A 点左上方距A 点高为h 的斜面上方P 点以某一速度v 0水平抛出,刚好与半圆轨道的A 点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D 点.已知当地的重力加速度为g ,取R =509h ,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:图9(1)小球被抛出时的速度v 0;(2)小球到达半圆轨道最低点B 时,对轨道的压力大小; (3)小球从C 到D 过程中摩擦力做的功W f . 审题模板答题模板(1)小球到达A 点时,速度与水平方向的夹角为θ,如图所示. 则有v 21=2gh① 由几何关系得v 0=v 1cot θ② 联立①②式得v 0=432gh③ (2)A 、B 间竖直高度H =R (1+cos θ)④设小球到达B 点时的速度为v ,则从抛出点到B 过程中由机械能守恒定律得 12m v 20+mg (H +h )=12m v 2⑤ 在B 点,根据牛顿第二定律有F N -mg =m v 2R ⑥联立③④⑤⑥式 解得F N =5.6mg ⑦由牛顿第三定律知,小球在B 点对轨道的压力大小是5.6mg ⑧(3)全过程应用动能定理:W f =0-12m v 20即W f =-12m v 20=-169mgh ⑨(评分标准:本题共12分,其中,⑤式2分,⑨式3分,其余每式1分)答案 (1)432gh (2)5.6mg (3)-169mgh点睛之笔 多个运动的组合实际上是多种物理规律和方法的综合应用,分析这种问题时注意要各个运动过程独立分析,而不同过程往往通过连接点的速度建立联系;有时对整个过程应用能量的观点解决问题会更简单.如图10,竖直平面坐标系xOy 的第一象限,有垂直xOy 面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B 和E ;第四象限有垂直xOy 面向里的水平匀强电场,大小也为E ;第三象限内有一绝缘光滑竖直放置的半径为R 的半圆轨道,轨道最高点与坐标原点O 相切,最低点与绝缘光滑水平面相切于N .一质量为m 的带电小球从y 轴上(y >0)的P 点沿x 轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O ,且水平切入半圆轨道并沿轨道内侧运动,过N 点水平进入第四象限,并在电场中运动(已知重力加速度为g ).图10(1)判断小球的带电性质并求出其所带电荷量; (2)P 点距坐标原点O 至少多高;(3)若该小球以满足(2)中OP 最小值的位置和对应速度进入第一象限,通过N 点开始计时,经时间t =2R /g 小球距坐标原点O 的距离s 为多远?答案 (1)正电 mg E (2)2E B Rg(3)27R解析 (1)小球进入第一象限正交的电场和磁场后,在垂直磁场的平面内做圆周运动,说明重力与电场力平衡,设小球所带电荷量为q ,则有 qE =mg① 解得:q =mgE②又电场方向竖直向上,故小球带正电.(2)设小球做匀速圆周运动的速度为v 、轨道半径为r ,由洛伦兹力提供向心力得: qB v =m v 2/r③ 小球恰能通过半圆轨道的最高点并沿轨道运动,则应满足: mg =m v 2/R④ 由②③④得:r =EBR g⑤ 即PO 的最小距离为:y =2r =2EBR g⑥(3)小球由O 运动到N 的过程中设到达N 点的速度为v N ,由机械能守恒定律得:mg ·2R =12m v 2N -12m v 2⑦ 由④⑦解得:v N =5gR ⑧ 小球从N 点进入电场区域后,在绝缘光滑水平面上做类平抛运动,设加速度为a ,则有:沿x 轴方向有:x =v N t⑨ 沿电场方向有:z =12at 2⑩由牛顿第二定律得:a =qE /m ⑪t 时刻小球距O 点为:s =x 2+z 2+(2R )2=27R(限时:45分钟)一、单项选择题1.(2013·安徽·17)质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMmr ,其中G 为引力常量,M 为地球质量,该卫星原来在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为( )A .GMm ⎝⎛⎭⎫1R 2-1R 1 B .GMm ⎝⎛⎭⎫1R 1-1R 2C.GMm 2⎝⎛⎭⎫1R 2-1R 1D.GMm 2⎝⎛⎭⎫1R 1-1R 2 答案 C解析 由万有引力提供向心力知G Mm r 2=m v 2r ,所以卫星的动能为12m v 2=GMm2r,则卫星在半经为r 的轨道上运行时机械能为E =12m v 2+E p =GMm 2r -GMm r =-GMm2r.故卫星在轨道R 1上运行时:E 1=-GMm 2R 1,在轨道R 2上运行时:E 2=-GMm2R 2,由能的转化和守恒定律得产生的热量为Q =E 1-E 2=GMm 2⎝⎛⎭⎫1R 2-1R 1,故正确选项为C. 2.(2013·新课标Ⅰ·16)一水平放置的平行板电容器的两极板间距为d ,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计).小孔正上方d2处的P 点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容器,并在下极板处(未与极板接触)返回.若将下极板向上平移d3,则从P 点开始下落的相同粒子将 ( )A .打到下极板上B .在下极板处返回C .在距上极板d2处返回D .在距上极板25d 处返回答案 D解析 粒子两次落到小孔的速度相同,设为v ,下极板向上平移后由E =Ud 知场强变大,故粒子第二次在电场中减速运动的加速度变大,由v 2=2ax 得第二次减速到零的位移变小,即粒子在下极板之上某位置返回,设粒子在距上极板h 处返回,对粒子两次运动过程应用动能定理得mg (d 2+d )-qU =0,mg (d 2+h )-q U 23d ·h =0.两方程联立得h =25d ,选项D 正确.3.质量为m 的汽车在平直的路面上启动,启动过程的速度—时间图象如图1所示,其中OA 段为直线,AB 段为曲线,B 点后为平行于横轴的直线.已知从t 1时刻开始汽车的功率保持不变,整个运动过程中汽车所受阻力的大小恒为f ,以下说法正确的是( )图1 A .0~t 1时间内,汽车牵引力的数值为m v 1t 1B .t 1~t 2时间内,汽车的功率等于(m v 1t 1+f )v 2C .t 1~t 2时间内,汽车的平均速率小于v 1+v 22D .汽车运动的最大速率v 2=(m v 1ft 1+1)v 1答案 D解析 0~t 1时间内汽车的加速度大小为v 1t 1,m v 1t 1为汽车所受的合外力大小,而不是牵引力大小,选项A 错误;t 1时刻汽车牵引力的功率为F v 1=(m v 1t 1+f )v 1,之后汽车功率保持不变,选项B 错误;t 1~t 2时间内,汽车的平均速率大于v 1+v 22,选项C 错误;牵引力等于阻力时速度最大,即t 2时刻汽车速率达到最大值,则有(m v 1t 1+f )v 1=f v 2,解得v 2=(m v 1ft 1+1)v 1,选项D 正确.4.如图2所示,质量为m 的物块(可视为质点),带正电Q ,开始时让它静止在倾角α=60°的固定光滑绝缘斜面顶端,整个装置放在水平方向向左、大小为E =3mg /Q 的匀强电场中(设斜面顶端处电势为零),斜面高为H .释放后,物块落地时的电势能为ε,物块落地时的速度大小为v ,则( )图2A .ε=33mgH B .ε=-33mgH C .v =2gHD .v =2gH答案 C解析 由电场力做功等于电势能的变化可得物块落地时的电势能为ε=-QEH /tan 60°=-3mgH /3=-mgH ,选项A 、B 错误;由动能定理,mgH +QEH /tan 60°=12m v 2,解得v =2gH ,选项C 正确,D 错误. 二、双项选择题5.如图3所示,质量为m 的物体(可视为质点)以某一初速度从A 点冲上倾角为30°的固定斜面,其运动的加速度大小为34g ,沿斜面上升的最大高度为h ,则物体沿斜面上升的过程中( )图3A .物体的重力势能增加了34mghB .物体的重力势能增加了mghC .物体的机械能损失了12mghD .物体的动能减少了mgh 答案 BC解析 该过程物体克服重力做功为mgh ,则物体的重力势能增加了mgh ,选项A 错误,选项B 正确;由牛顿第二定律有f +mg sin 30°=ma ,解得f =14mg ,克服摩擦力做的功等于机械能的减少量,W f =-f ·h sin 30°=-12mgh ,选项C 正确;根据动能定理知,合外力做的功等于动能的变化量,故动能减少量为32mgh ,选项D 错误.6.如图4所示,间距为L 、电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R 的电阻连接,导轨上横跨一根质量为m 、电阻也为R 的金属棒,金属棒与导轨接触良好.整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q .下列说法正确的是( )图4A .金属棒在导轨上做匀减速运动B .整个过程中金属棒克服安培力做功为12m v 2C .整个过程中金属棒在导轨上发生的位移为2qRBLD .整个过程中电阻R 上产生的焦耳热为12m v 2解析由题意可知金属棒在安培力作用下做减速运动直至静止,由于速度一直减小,故安培力的大小一直减小,金属棒的加速度减小,故金属棒做加速度减小的减速运动,选项A错误.在整个过程中,只有安培力做负功,由动能定理可知金属棒克服安培力做功为12m v2,选项B正确.由q=ΔΦR总可知q=BLs2R,解得s=2qRBL,选项C正确.由B项可知整个回路中产生的焦耳热为12m v2,电阻R上产生的焦耳热为14m v2,选项D错误.7.将带正电的甲球放在乙球的左侧,两球在空间形成了如图5所示的稳定的静电场,实线为电场线,虚线为等势线.A、B两点与两球球心的连线位于同一直线上,C、D两点关于直线AB对称,则()图5A.乙球一定带负电B.C点和D点的电场强度相同C.正电荷在A点具有的电势能比其在B点具有的电势能大D.把负电荷从C点移至D点,电场力做的总功为零答案CD解析电场线从正电荷出发指向负电荷,根据电场线知乙球左侧带负电,右侧带正电,整体带电情况不确定,A错误;电场强度是矢量,C、D两点电场强度的方向不同,B 错误;电场线的方向是电势降落最快的方向,A点的电势比B点的电势高,由电势能的定义式E p=qφ知,正电荷在A点的电势能比在B点的电势能大,C正确;C、D两点在同一等势面上,故将电荷从C点移至D点电势能不变,电场力做功是电势能变化的量度,故电场力不做功,D正确.8.如图6所示,绝缘轻弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q(可视为质点)固定在光滑绝缘斜面上的M点,且在通过弹簧中心的直线ab上.现把与Q大小相同、电性相同的小球P,从N点由静止释放,在小球P与弹簧接触到压缩至最短的过程中(弹簧始终在弹性限度内),以下说法正确的是()图6A.小球P和弹簧组成的系统机械能守恒B.小球P和弹簧刚接触时其速度最大C.小球P的动能与弹簧弹性势能的总和增大D.小球P的加速度先减小后增大。
动量及能量经典题剖析一.动量问题1.斜面问题【例1】质量为M的楔形物块上有圆弧轨道,静止在水平面上。
质量为m的小球以速度v1向物块运动。
不计一切摩擦,圆弧小于90°且足够长。
求小球能上升到的最大高度H和物块的最终速度v。
2.子弹打木块类问题【例2】设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
3.反冲问题在某些情况下,原来系统物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。
这类问题相互作用过程中系统的动能增大,有其它能向动能转化。
可以把这类问题统称为反冲。
【例3】质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。
当他向左走到船的左端时,船左端离岸多远?【例4】总质量为M的火箭模型从飞机上释放时的速度为v0,速度方向水平。
火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?4.爆炸类问题【例5】抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其块质量300g 仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。
5.某一方向上的动量守恒【例6】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离是多少?6.物块与平板间的相对滑动【例7】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。
动量和能量综合问题班级__________ 座号_____ 姓名__________ 分数__________1. 弹性碰撞发生弹性碰撞的两个物体碰撞前后动量守恒,动能守恒,若两物体质量分别为m 1和m 2,碰前速度为v 1,v 2,碰后速度分别为v 1ˊ,v 2ˊ,则有: m 1v 1+m 2v 2=m 1v 1ˊ+m 2v 2ˊ (1)21m 1v 12+21m 2v 22=21m 1v 1ˊ2+21m 2v 2ˊ 2 (2) 联立(1)、(2)解得:v 1ˊ=1212211-2v m m v m v m ++,v 2ˊ=2212211-2v m m v m v m ++.特殊情况:①若m 1=m 2 ,v 1ˊ= v 2 ,v 2ˊ= v 1 . ②若v 2=0则 v 1ˊ=12121-v m m m m +,v 2ˊ=21112m m v m +.(i)m 1>>m 2 v 1ˊ=v 1,v 2ˊ=2v 1 . (ii)m 1<<m 2 v 1ˊ=-v 1,v 2ˊ=0 . 2. 完全非弹性碰撞碰后物体的速度相同, 根据动量守恒定律可得:m 1v 1+m 2v 2=(m 1+m 2)v 共 (1)完全非弹性碰撞系统损失的动能最多,损失动能:ΔE k = ½m 1v 12+ ½ m 2v 22- ½(m 1+m 2)v 共2. (2) 联立(1)、(2)解得:v 共 =212211m m v m v m ++;ΔE k =2212121-21)v v (m m m m + 3. 非弹性碰撞介于弹性碰撞和完全非弹性碰撞之间的碰撞。
动量守恒,碰撞系统动能损失。
根据动量守恒定律可得:m 1v 1+m 2v 2=m 1v 1ˊ+m 2v 2ˊ (1) 损失动能ΔE k ,根据机械能守恒定律可得: ½m 1v 12+ ½ m 2v 22=21m 1v 1ˊ2+21m 2v 2ˊ 2 + ΔE k . (2) 恢复系数e =2112-′-v v v v ′ ①非弹性碰撞:0<e <1;②弹性碰撞:e =1;③完全非弹性碰撞:e =0。
动量与能量结合综合题1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则()A.cd始终做减速运动,ab始终做加速运动,并将追上cdB.cd始终做减速运动,ab始终做加速运动,但追不上cdC.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动D.磁场力对两金属杆做功的大小相等h,如图所示。
2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为后又向上运动。
若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求:1,质量为m时物块与木板碰撞后的速度;2,质量为2m时物块向上运动到O的速度。
3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。
在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。
设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热Q最多是多少?(2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?4.(20分) 如图所示,两物块A、B并排静置于高h=0.80m的光滑水平桌面上,两物块的质量均为M=0.60kg。
一颗质量m=0.10kg的子弹C以v0=100m/s的水平速度从左面射入A物块,子弹射穿A后接着射入B并留在B中,此时A、B都没有离开桌面。
专题 动量和能量的综合应用考点1、碰撞作用 碰撞类问题应注意: ⑴由于碰撞时间极短,作用力很大,因此动量守恒;⑵动能不增加,即1212k k k k E '+E 'E +E ≤; ⑶速度要符合物理情景:碰前两物体同向运动,即v v 后前>,碰撞后, ≥v v 后前;例1、A 、B 两球在光滑水平面上沿同一直线运动,A 球动量为p A =5kg·m/s ,B 球动量为p B =7kg·m/s ,当A 球追上B 球时发生碰撞,则碰后A 、B 两球的动量可能是:( ) A .p A =6kg·m/s 、p B =6kg·m/s B .p A =3kg·m/s 、p B =9kg·m/s C .p A =-2kg·m/s 、p B =14kg·m/s D .p A =5kg·m/s 、p B =17kg·m/s考点2、爆炸和反冲⑴爆炸时内力远大于外力,系统动量守恒; ⑵由于有其它形式的能转化为动能(机械能),系统动能增大。
例2.2007年10月24日18时05分,中国首枚绕月探测卫星“嫦娥一号”顺利升空,24日18时29分,搭载 “嫦娥一号”的“长征三号甲”火箭成功实施“星箭分离”。
此次采用了爆炸方式分离星箭,爆炸产生的推力将置于箭首的卫星送入预定轨道运行。
为了保证在爆炸时卫星不致于由于受到过大冲击力而损坏,分离前关闭火箭发动机,用“星箭分离冲击传感器”测量和控制爆炸作用力,使星箭分离后瞬间火箭仍沿原方向飞行,关于星箭分离,下列说法正确的是( )A .由于爆炸,系统总动能增大,总动量增大B .卫星的动量增大,火箭的动量减小,系统动量守恒C .星箭分离后火箭速度越大,系统的总动能越大D .若爆炸作用力持续的时间一定,则星箭分离后火箭速度越小,卫星受到的冲击力越大考点3、两个定理的结合例3:如图所示,质量m1为4kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ=0.24,木板右端放着质量m2为1.0kg 的小物块B(视为质点),它们均处于静止状态.木板突然受到水平向右的12N S ∙的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能1k E 为8.0J ,小物块的动能2k E 为0.50J ,重力加速度取10m/s2,求:(1)瞬时冲量作用结束时木板的速度V0. (2)木板的长度L考点4、动量与圆周运动的结合例4..如图8所示,A、B两球质量均为m,期间有压缩的轻短弹簧处于锁定状态。
第七章 动量守恒定律专题十二 力学三大观点的综合应用核心考点五年考情命题分析预测动量与能量观点的综合应用2022:广东T13,湖北T16;2021:湖北T15;2020:山东T18力学三大观点的综合应用往往以高考压轴题的形式考查,综合性强,难度大,常与曲线运动、带电粒子在电磁场中的运动或导体棒切割磁感线等知识点相结合进行考查.预计2025年高考可能会出现三大观点应用的计算题.三大观点的综合应用2023:山东T18,广东T15,辽宁T15,浙江6月T18,浙江1月T18;2022:浙江6月T20;2021:北京T17,湖南T14题型1 动量与能量观点的综合应用1.两大观点动量的观点:动量定理和动量守恒定律.能量的观点:动能定理和能量守恒定律. 2.三种技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律).(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理.(3)动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的初、末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处,特别对于变力做功问题,就更显出它们的优越性.1.[2024江西九校联考]如图所示,质量M =4kg 的滑块套在光滑的水平轨道上,质量m =2kg 的小球通过长L =0.5m 的轻质细杆与滑块上的光滑轴O 连接,小球和轻杆可在竖直平面内绕轴O自由转动.开始时轻杆处于水平状态,现给小球一个竖直向上的初速度v 0=4m/s ,以初始时刻轴O 的位置为坐标原点,在竖直平面内建立固定的直角坐标系xOy ,取g =10m/s 2.(1)若锁定滑块,求小球通过最高点时轻杆对小球的作用力大小;(2)若解除对滑块的锁定,求小球运动到最高点时的动能E k ;(3)若解除对滑块的锁定,在平面直角坐标系xOy 中,求出小球从出发至运动到最高点的过程的轨迹方程.答案 (1)4N (2)4J (3)(32x -14)2+y 2=14解析 (1)若锁定滑块,则小球从开始运动到上升至最高点的过程,机械能守恒,有12m v 02=12m v 12+mgL小球在最高点时,设轻杆对小球的作用力大小为F ,则有mg +F =mv 12L联立解得F =4N(2)若解除对滑块的锁定,由于小球与滑块组成的系统在水平方向上不受力,因此小球与滑块组成的系统在水平方向上动量守恒.设小球通过最高点时的速度大小为v 2,此时滑块的速度大小为v ,以水平向右为正方向,则有0=mv 2-Mv运动过程中,系统的机械能守恒,则有12m v 02=12m v 22+12Mv 2+mgL又E k =12m v 22联立解得E k =4J(3)若解除对滑块的锁定,在小球上升的过程中,滑块向左运动,小球在水平方向上向右运动,设小球的位置坐标为(x ,y )时,滑块向左运动的位移大小为Δx ,则由人船模型有m (L -x )=M Δx由几何关系可知(x -Δx )2+y 2=L 2联立可得小球运动的轨迹方程为(32x -14)2+y 2=14.题型2 三大观点的综合应用1.三大基本观点动力学观点 运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题能量观点 用动能定理和能量守恒观点解题,可处理非匀变速运动问题动量观点用动量定理和动量守恒观点解题,可处理非匀变速运动问题2.三大观点的选用原则力学中首先考虑使用两个守恒定律.从两个守恒定律的表达式看出多项都是状态量(如速度、位置),所以守恒定律能解决状态问题,不能解决过程(如位移x 、时间t )问题,不能解决力(F )的问题.(1)若是多个物体组成的系统,优先考虑使用两个守恒定律.(2)若物体(或系统)涉及速度和时间,应考虑使用动量定理.(3)若物体(或系统)涉及位移和时间,且受到恒力作用,应考虑使用牛顿运动定律.(4)若物体(或系统)涉及位移和速度,应考虑使用动能定理,系统中摩擦力做功时应用摩擦力乘以相对路程,动能定理解决曲线运动和变加速运动问题特别方便.2.[三大观点的综合应用/2021湖北]如图所示,一圆心为O 、半径为R 的光滑半圆弧轨道固定在竖直平面内,其下端与光滑水平面在Q 点相切.在水平面上,质量为m 的小物块A 以某一速度向质量也为m 的静止小物块B 运动.A 、B 发生正碰后,B 到达半圆弧轨道最高点时对轨道压力恰好为零,A 沿半圆弧轨道运动到与O 点等高的C 点时速度为零.已知重力加速度大小为g ,忽略空气阻力.(1)求B 从半圆弧轨道飞出后落到水平面的位置到Q 点的距离;(2)当A 由C 点沿半圆弧轨道下滑到D 点时,OD 与OQ 夹角为θ,求此时A 所受力对A 做功的功率;(3)求碰撞过程中A 和B 损失的总动能.答案 (1)2R (2)mg sin θ√2gRcosθ (3)√10mgR解析 (1)设B 到半圆弧轨道最高点时速度为v 2',由于B 对轨道最高点的压力为零,则由牛顿第二定律得mg =mv 22'RB 离开最高点后做平抛运动,则在竖直方向上有2R =12gt 2在水平方向上有x =v 2't联立解得x =2R(2)对A 由C 到D 的过程,由机械能守恒定律得mgR cos θ=12m v D2由于对A 做功的力只有重力,则A 所受力对A 做功的功率为P =mgv D sin θ解得P =mg sin θ√2gRcosθ(3)设A 、B 碰后瞬间的速度分别为v 1、v 2,对B 由Q 到最高点的过程,由机械能守恒定律得12m v 22=12m v 22'+mg ·2R解得v 2=√5gR对A 由Q 到C 的过程,由机械能守恒定律得12m v 12=mgR解得v 1=√2gR设碰前瞬间A 的速度为v 0,对A 、B 碰撞的过程,由动量守恒定律得mv 0=mv 1+mv 2解得v 0=√2gR +√5gR碰撞过程中A 和B 损失的总动能为ΔE =12m v 02-12m v 12-12m v 22解得ΔE =√10mgR .3.[三大观点的综合应用/2023浙江6月]为了探究物体间的碰撞特性,设计了如图所示的实验装置.水平直轨道AB 、CD 和水平传送带平滑无缝连接,两半径均为R =0.4m 的四分之一圆周组成的竖直细圆弧管道DEF 与轨道CD 和足够长的水平直轨道FG 平滑相切连接.质量为3m 的滑块b 与质量为2m 的滑块c 用劲度系数k =100N/m 的轻质弹簧连接,静置于轨道FG 上.现有质量m =0.12kg 的滑块a 以初速度v 0=2√21m/s 从D 处进入,经DEF 管道后,与FG 上的滑块b 碰撞(时间极短).已知传送带长L =0.8m ,以v =2m/s 的速率顺时针转动,滑块a 与传送带间的动摩擦因数μ=0.5,其他摩擦和阻力均不计,各滑块均可视为质点,弹簧的弹性势能E p =12kx 2(x 为形变量).(1)求滑块a 到达圆弧管道DEF 最低点F 时速度大小v F 和所受支持力大小F N ;(2)若滑块a 碰后返回到B 点时速度v B =1m/s ,求滑块a 、b 碰撞过程中损失的机械能ΔE ;(3)若滑块a 碰到滑块b 立即被粘住,求碰撞后弹簧最大长度与最小长度之差Δx .答案 (1)v F =10m/s F N =31.2N (2)ΔE =0 (3)Δx =0.2m解析 (1)滑块a 以初速度v 0从D 处进入竖直圆弧管道DEF 运动,由动能定理有mg ·2R=12m v F 2-12m v 02解得v F=10m/s在最低点F ,由牛顿第二定律有F N -mg =m v F2R解得F N =31.2N(2)碰撞后滑块a 返回到B 点的过程,由动能定理有-mg ·2R -μmgL =12m v B 2-12m v a2解得v a =5m/s滑块a 、b 碰撞过程,由动量守恒定律有mv F =-mv a +3mv b解得v b =5m/s碰撞过程中损失的机械能为ΔE =12m v F 2-12m v a 2-12·3m v b 2=0(3)滑块a 碰撞b 后立即被粘住,由动量守恒定律有mv F =(m +3m )v ab解得v ab =2.5m/s滑块ab 一起向右运动,压缩弹簧,ab 减速运动,c 加速运动,当abc 三者速度相等时,弹簧长度最小,由动量守恒定律有(m +3m )v ab =(m +3m +2m )v abc解得v abc =53m/s由机械能守恒定律有E p1=12×4m v ab 2-12×6m v abc2解得E p1=0.5J由E p1=12k x 12解得最大压缩量x 1=0.1m滑块ab 一起继续向右运动,弹簧弹力使c 继续加速,使ab 继续减速,当弹簧弹力减小到零时,c 速度最大,ab 速度最小;滑块ab 一起再继续向右运动,弹簧弹力使c 减速,使ab 加速,当abc 三者速度相等时,弹簧长度最大,其对应的弹性势能与弹簧长度最小时的弹性势能相等,由弹簧的弹性势能公式可知最大伸长量x 2=0.1m所以碰撞后弹簧最大长度与最小长度之差Δx =x 1+x 2=0.2m.方法点拨深化观念、建构模型,解决力学综合难题1.[2023浙江1月]一游戏装置竖直截面如图所示,该装置由固定在水平地面上倾角θ=37°的直轨道AB 、螺旋圆形轨道BCDE 、倾角θ=37°的直轨道EF 、水平直轨道FG 组成,除FG 段外各段轨道均光滑,且各处平滑连接.螺旋圆形轨道与轨道AB 、EF 相切于B (E )处.凹槽GHIJ 底面HI 水平光滑,上面放有一无动力摆渡车,并紧靠在竖直侧壁GH 处,摆渡车上表面与直轨道FG 、平台JK 位于同一水平面.已知螺旋圆形轨道半径R =0.5m ,B 点高度为1.2R ,FG 长度L FG =2.5m ,HI 长度L 0=9m ,摆渡车长度L =3m 、质量m =1kg.将一质量也为m 的滑块从倾斜轨道AB 上高度h =2.3m 处静止释放,滑块在FG 段运动时的阻力为其重力的0.2倍.(摆渡车碰到竖直侧壁IJ 立即静止,滑块视为质点,不计空气阻力,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2)(1)求滑块过C 点的速度大小v C和轨道对滑块的作用力大小F C;(2)摆渡车碰到IJ 前,滑块恰好不脱离摆渡车,求滑块与摆渡车之间的动摩擦因数μ;(3)在(2)的条件下,求滑块从G 到J 所用的时间t .答案 (1)4m/s 22N (2)0.3 (3)2.5s解析 (1)C 点离地高度为1.2R +R cos θ+R =3R滑块从静止释放到C 点过程,根据动能定理可得 mg (h -3R )=12m v C2-0 解得v C=4m/s在最高点C 时,根据牛顿第二定律可得 F C+mg =m v C2R解得F C=22N(2)从静止释放到G 点,由动能定理可得 mgh -0.2mgL FG=12m v G2由题可知,滑块到达摆渡车右端时刚好与摆渡车共速,速度大小设为v根据动量守恒定律可得2mv =mv G由功能关系可得μmgL =12m v G 2-12×2mv 2综合解得μ=0.3(3)滑块从滑上摆渡车到与摆渡车共速过程,滑块的加速度大小为a =μg设滑块从滑上摆渡车到共速的时间为t 1,有t 1=v G -v μg=1s共速后继续向右匀速运动的时间t 2=L 0-L -12vt 1v=1.5st =t 1+t 2=2.5s .2.[2022广东]某同学受自动雨伞开伞过程的启发,设计了如图所示的物理模型.竖直放置在水平桌面上的滑杆上套有一个滑块,初始时它们处于静止状态.当滑块从A 处以初速度v 0为10m/s 向上滑动时,受到滑杆的摩擦力f 为1N.滑块滑到B 处与滑杆发生完全非弹性碰撞,带动滑杆离开桌面一起竖直向上运动.已知滑块的质量m =0.2kg ,滑杆的质量M =0.6kg ,A 、B 间的距离l =1.2m ,重力加速度g 取10m/s 2,不计空气阻力.求:(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大小N 1和N 2;(2)滑块碰撞前瞬间的速度大小v ;(3)滑杆向上运动的最大高度h .答案 (1)8N 5N (2)8m/s (3)0.2m解析 (1)滑块静止时,滑块和滑杆均处于静止状态,以滑块和滑杆整体为研究对象,由平衡条件可知N 1=(m +M )g =8N滑块向上滑动时,滑杆受重力、滑块对其向上的摩擦力以及桌面的支持力,则有N 2=Mg -f',f'=f代入数据得N 2=5N(2)解法1 碰前,滑块向上做匀减速直线运动,由牛顿第二定律得mg +f =ma 1解得a 1=15m/s 2,方向向下由运动学公式得v 2-v 02=-2a 1l代入数据得v =8m/s解法2 由动能定理得-(mg +f )l =12mv 2-12m v 02代入数据解得v =8m/s(3)滑块和滑杆发生的碰撞为完全非弹性碰撞,根据动量守恒定律有mv =(M +m )v 共代入数据得v 共=2m/s此后滑块与滑杆一起竖直向上运动,根据动能定理有-(M +m )gh =0-12(M +m )v 共2代入数据得h =0.2m.3.[2021湖南]如图,竖直平面内一足够长的光滑倾斜轨道与一长为L 的水平轨道通过一小段光滑圆弧平滑连接,水平轨道右下方有一段弧形轨道PQ .质量为m 的小物块A 与水平轨道间的动摩擦因数为μ.以水平轨道末端O 点为坐标原点建立平面直角坐标系xOy ,x 轴的正方向水平向右,y 轴的正方向竖直向下,弧形轨道P 端坐标为(2μL ,μL ),Q 端在y 轴上.重力加速度为g .(1)若A 从倾斜轨道上距x 轴高度为2μL 的位置由静止开始下滑,求A 经过O 点时的速度大小;(2)若A 从倾斜轨道上不同位置由静止开始下滑,经过O 点落在弧形轨道PQ 上的动能均相同,求PQ 的曲线方程;(3)将质量为λm (λ为常数且λ≥5)的小物块B 置于O 点,A 沿倾斜轨道由静止开始下滑,与B 发生弹性碰撞(碰撞时间极短),要使A 和B 均能落在弧形轨道上,且A 落在B 落点的右侧,求A 下滑的初始位置距x 轴高度的取值范围.答案 (1)√2μgL (2)x 22y +2y =4μL (0≤x ≤2μL ) (3)3λ-1λ-3μL <h ≤μL +3μL (λ+1)2(λ-1)2解析 (1)设A 滑到O 点时速度为v 0,A 从倾斜轨道上滑到O 点过程中,由动能定理有mg ·2μL -μmgL =12m v 02解得v 0=√2μgL(2)若A 以(1)中的位置从倾斜轨道上下滑,A 从O 点抛出,假设能运动到弧形轨道上的P 点,水平方向有2μL =v 0t 1竖直方向有y P =12g t 12解得y P =μL ,假设成立所以A 落在弧形轨道时的动能E k 满足mg ·2μL -μmgL +mg ·μL =E k -0A 从O 点抛出,做平抛运动,水平方向有x =v 1t竖直方向有y =12gt 2又y =v y22g ,E k =12m (v 12+v y 2)联立解得PQ 的曲线方程为x 22y+2y =4μL (0≤x ≤2μL )(3)设A 初始位置到x 轴的高度为h ,A 滑到O 点的速度为v A 0,碰撞后的速度为v A 1,反弹后再次返回O 点时速度为v A ,A 、B 碰撞后B 的速度为v B ,A 、B 碰撞过程有mv A 0=mv A 1+λmv B12m v A02=12m v A12+12λm v B2解得v A 1=1-λ1+λv A 0,v B =21+λv A 0A 从倾斜轨道上滑到O 点的过程有mgh -μmgL =12m v A02碰后又运动到O 点过程有-μmg ·2L =12m v A 2-12m v A12又A 、B 均能落在弧形轨道上且A 落在B 点右侧应满足v B <v A ≤v 0联立求解得3λ-1λ-3μL <h ≤μL +3μL (λ+1)2(λ-1)24.[高考新题型/2023湖南]如图,质量为M 的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为a 和b ,长轴水平,短轴竖直.质量为m 的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑.以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系xOy ,椭圆长轴位于x 轴上.整个过程凹槽不翻转,重力加速度为g .(1)小球第一次运动到轨道最低点时,求凹槽的速度大小以及凹槽相对于初始时刻运动的距离;(2)在平面直角坐标系xOy 中,求出小球运动的轨迹方程;(3)若Mm =ba -b,求小球下降h =b2高度时,小球相对于地面的速度大小(结果用a 、b 及g表示).答案 (1)√2m 2gbM (m +M )ma M +m(2)[(M +m )x -ma ]2M 2a 2+y 2b2=1(y ≤0)(3)2b √ga+3b解析 (1)小球从静止到第一次运动到轨道最低点的过程,水平方向上小球和凹槽组成的系统动量守恒,有0=mv 1-Mv 2对小球与凹槽组成的系统,由机械能守恒定律有mgb =12m v 12+12M v 22 联立解得v 2=√2m 2gbM (m +M )根据人船模型规律,在水平方向上有mx 1=Mx 2又由位移关系知x 1+x 2=a解得凹槽相对于初始时刻运动的距离x 2=maM +m(2)小球向左运动过程中,凹槽向右运动,当小球的坐标为(x ,y )时,小球向左运动的位移x'1=a -x ,则凹槽水平向右运动的位移为x'2=mM (a -x )小球在凹槽所在的椭圆上运动,根据数学知识可知小球的运动轨迹满足(x -x '2)2a 2+y 2b2=1整理得小球运动的轨迹方程为[(M +m )x -ma ]2M 2a 2+y 2b 2=1(y ≤0)(3)若Mm =b a -b,代入(2)问结果化简可得[x -(a -b )]2+y 2=b 2即小球的运动轨迹是半径为b 的圆小球下降h =b 2高度的过程,小球与凹槽组成的系统在水平方向动量守恒,有mv'1x =Mv'2对小球与凹槽组成的系统,由机械能守恒定律有mgh =12mv'12+12Mv'22由几何关系及速度的分解得v'1sin30°=v'1x联立解得v'1=2b √g a+3b.1.[2024四川成都蓉城名校联考/多选]一次台球练习中,某运动员用白球击中彩球,白球与静止的彩球发生正碰,碰撞时间极短,碰后两球在同一直线上运动,且台球运动时所受桌面阻力保持不变,两球质量均为m =0.2kg ,碰撞后两球的位移x 与速度的平方v 2的关系如图所示,重力加速度g 取10m/s2.则下列说法正确的是( BC )A.碰撞前白球的速度为1.64m/sB.碰撞过程中,白球对彩球的冲量大小为0.2kg·m/sC.碰撞过程中,系统有机械能转化为内能D.台球所受桌面阻力为0.5N解析 由题图可知,碰后白球速度v 1=0.8 m/s ,彩球速度v 2=1.0 m/s.设碰撞前白球 速度为v 0,由动量守恒得mv 0=mv 1+mv 2,解得v 0=1.8 m/s ,故A 错误;碰撞过程中,白球对彩球的冲量I =mv 2=0.2×1.0 kg·m/s =0.2 kg·m/s ,B 正确;由于12m v 02>12m v 12+12m v 22,故碰撞过程中,系统有机械能转化为内能,C 正确;由运动学知识可知a =v 122x 1=0.642×1.28 m/s 2=0.25 m/s 2,故阻力为f =ma =0.05 N ,故D 错误.2.[2024北京海淀区期中/多选]如图所示,质量m A =1kg 、长L =9m 的薄板A 放在水平地面上,在大小为4N 、水平向右的外力F 作用下由静止开始运动,薄板与地面间的动摩擦因数μ1=0.2,其速率达到v A =2m/s 时,质量m B =1kg 的物块B 以v B =4m/s 的速率由薄板A 右端向左滑上薄板,A 与B 间的动摩擦因数μ2=0.1,B 可视为质点,重力加速度g 取10m/s 2.下列说法正确的是( AD )A.当A 的速率减为0时,B 的速率为2m/sB.从B 滑上A 到B 掉下的过程中,A 、B 所组成的系统动量守恒C.从B 滑上A 到B 掉下的过程,A 、B 和地面所组成的系统因摩擦而产生的热量为9JD.从B 滑上A 到B 掉下的过程,A 、B 所组成的系统机械能减少9J解析 B 滑上A 后,B 开始做减速运动,此时对B 由牛顿第二定律有μ2m B g =m B a B ,解得a B =1 m/s 2,对A 由牛顿第二定律有μ1(m A +m B )g +μ2m B g -F =m A a A ,解得a A =1 m/s 2,A 也开始做减速运动,假设A 速率减为0时,B 未从A 上掉下,则A 的速率减为0的时间为t 1=v Aa A=2 s ,此时B 的速度大小为v B 1=v B -a B t 1=2 m /s ,此过程A 、B 的相对位移Δx =v A22a A+v B 2−v B122a B=8 m <L ,故假设成立,A 正确;在B 滑上A 到A 速度减到零的过程中,有μ1(m A +m B )g =F ,即A 、B 所组成的系统受到的合力为零,动量守恒,当A 速度减为零时,由于μ1(m A +m B )g +μ2m B g >F ,则A 此后处于静止状态,且由平衡条件可知A 与地面间的摩擦力f <F ,A 、B 所组成的系统受到的合力不为零,动量不守恒,B 错误;从B 滑上A 到A 速度减为零的过程,A 的位移为x A =v A22a A=2 m ,此过程B 的位移为x B =v B 2−v B122a B=6 m ,结合B 项分析可知,此后A 处于静止状态,B 继续向左做匀减速运动直至掉下,则对从B 滑上A 到B 掉下的整个运动过程,A 、B 和地面所组成的系统因摩擦而产生的热量为Q =μ1(m A +m B )gx A +μ2m B gL =17 J ,C 错误;从B 滑上A 到B 掉下的过程,A 、B 所组成的系统机械能的减少量为ΔE k =Q -Fx A =9 J ,D 正确.3.[设问创新/2024重庆南开中学校考/多选]如图所示,半径为R 、质量为3m 的14圆弧槽AB 静止放在光滑水平地面上,圆弧槽底端B 点切线水平,距离B 点为R 处有一质量为3m 的小球2,其左侧连有轻弹簧.现将质量为m 的小球1(可视为质点)从左侧圆弧槽上端的A 点由静止释放,重力加速度为g ,不计一切摩擦.则下列说法正确的是( BC )A.系统(三个物体)全程动量守恒B.小球1刚与弹簧接触时,与圆弧槽底端B 点相距53RC.弹簧弹性势能的最大值为916mgRD.小球1最终的速度大小为√6gR 4解析 小球1在圆弧槽上运动时,系统在竖直方向上动量不守恒,故A 错误.小球1从圆弧槽的A 点到B 点的过程中,设小球1滑到B 点时小球1的速度为v 0,圆弧槽的速度为v ,取水平向右为正方向,小球1与圆弧槽在水平方向动量守恒有0=mv 0-3mv ,由能量守恒有mgR =12m v 02+12·3mv 2,解得v 0=3v =√3gR 2.设小球1到B 点时,小球1水平向右移动的距离为x 1,圆弧槽向左运动的距离为x 2,两者的相对位移为R ,因此有mx 1-3mx 2=0,x 1+x 2=R ,联立解得x 1=34R ,x 2=14R . 此时圆弧槽的B 点与弹簧之间的距离L =x 2+R =54R .小球1从B 点向右以v 0匀速运动,圆弧槽向左以v03匀速运动,小球1刚与弹簧接触时,与圆弧槽底端B 点的距离L'=L +v03·Lv 0=43L =53R ,故B 正确.小球1与小球2共速时,弹簧弹性势能有最大值,从小球1刚与弹簧接触到两球共速,由动量守恒有mv 0=(m +3m )v 共,由能量守恒有12m v 02=12(m +3m )v 共2+E p ,联立解得E p =916mgR ,故C 正确.从小球1刚与弹簧接触到两球分开,由动量守恒有mv 0=mv 1+3mv 2,由能量守恒有12m v 02=12m v 12+12·3m v 22,解得v 1=-12v 0,v 2=12v 0.小球1之后向左以12v 0匀速运动,因为圆弧槽此时正向左以v03匀速运动,故会再次和圆弧槽碰撞,以向左为正,碰撞前、后动量守恒有m ·v02+3m ·v03=mv 3+3mv 4,由能量守恒有12m (v02)2+12·3m (v03)2=12m v 32+12·3m v 42,解得v 3=14v 0,v 4=512v 0,最终小球1以14v 0的速度向左运动,圆弧槽以512v 0的速度向左运动,小球2以12v 0的速度向右运动,小球1最终的速度为14v 0=√6gR 8,故D 错误.4.长为l 的轻绳上端固定,下端系着质量为m 1的小球A ,处于静止状态.A 受到一个水平瞬时冲量后在竖直平面内做圆周运动,恰好能通过圆周轨迹的最高点.当A 回到最低点时,质量为m 2的小球B 与之迎面正碰,碰后A 、B 粘在一起,仍做圆周运动,并能通过圆周轨迹的最高点.不计空气阻力,重力加速度为g ,求:(1)A 受到的水平瞬时冲量I 的大小;(2)碰撞前瞬间B 的动能E k 至少多大?答案 (1)m 1√5gl (2)5gl (2m 1+m 2)22m 2解析 (1)A 恰好能通过圆周轨迹的最高点,此时轻绳的拉力刚好为零,设A 在最高点时的速度大小为v ,由牛顿第二定律有m 1g =m 1v 2l ①A 从最低点到最高点的过程中机械能守恒,取轨迹最低点处重力势能为零,设A 在最低点的速度大小为v A ,有12m 1v A 2=12m 1v 2+2m 1gl ②由动量定理有I =m 1v A③联立①②③式,得I =m 1√5gl ④(2)设两球粘在一起后瞬间的速度大小为v',A 、B 粘在一起后恰能通过圆周轨迹的最高点,需满足v'=v A ⑤要达到上述条件,碰后两球速度方向必须与碰前B 的速度方向相同,以此方向为正方向,设B 碰前瞬间的速度大小为v B ,由动量守恒定律有m 2v B -m 1v A =(m 1+m 2)v' ⑥又E k =12m 2v B 2 ⑦联立①②⑤⑥⑦式,得碰撞前瞬间B 的动能E k 至少为 E k =5gl (2m 1+m 2)22m 2⑧.5.[三轨推拉门/2023江苏扬州三模]有一款三轨推拉门(如图甲),门框内部宽为2.4m ,三扇相同的门板的俯视图如图乙,每扇门板宽为d =0.8m ,质量为m =20kg ,与轨道间的动摩擦因数为μ=0.01.在门板边缘凸起部位贴有尼龙扣,两门板碰后可连在一起.现三扇门板静止在最左侧,用力F 水平向右拉3号门板,一段时间后撤去.取重力加速度g =10m/s 2.(1)若3号门板左侧凸起部位恰能与2号门板右侧凸起部位接触,求力F 做的功W .(2)若F =12N ,3号门板恰好到达门框最右侧,大门完整关闭.①求3号门板与2号门板碰撞前瞬间的速度大小v 0.②求拉力F 的作用时间t .答案 (1)1.6J (2)①0.8m/s②2√63s解析 (1)根据动能定理有W -μmgd =0,解得W =1.6J(2)①设3号门板与2号门板碰撞后速度大小为v 1,碰后两门板位移大小均为d =0.8m从3号门板与2号门板碰撞后到大门完整关闭,根据功能关系有-2μmgd =-12·2m v 12碰撞过程,根据动量守恒定律有mv 0=2mv 1,解得v 0=0.8m/s②根据牛顿第二定律有F -μmg =ma根据动能定理有 Fx -μmgd =12m v 02【易错辨析】在关门过程中,拉力F 作用时间与门受到的摩擦力作用时间不同,不推荐应用动量定理列方程解答.根据运动学公式有x =12at 2解得t =2√63s.6.[2024湖南湘潭一中校考]如图是一游戏装置的简易模型,它由光滑的水平轨道和竖直平面内的光滑圆轨道组成,竖直圆轨道的半径R =0.9m ,圆轨道内侧最高点E 点装有一力传感器,且竖直圆轨道的最低点D 、D'点相互靠近且错开.水平轨道左侧放置着两个用细绳连接的物体A 和B ,其间有一压缩的轻弹簧(物体与轻弹簧不粘连),烧断细绳,物体被弹出.轨道右侧M 端与水平传送带MN 等高,并能平滑对接,传送带总长度L =5m ,传送带速度大小和方向均可调.已知A 物体质量m A =1kg ,B 物体质量可变,A 、B 间被压缩的弹簧的弹性势能为30J ,取重力加速度g =10m/s 2.(1)求测得的力传感器能显示的力的最小值;(2)要使物体A 冲上传送带后,均能到达N 点,求传送带与物体A 之间的动摩擦因数的最大值;(3)要使物体A 在圆轨道上运动时不脱离轨道,求物体B 的质量范围.答案 (1)0 (2)0.45 (3)m B ≤37kg 或m B ≥3kg解析 (1)当由重力提供向心力时,对E 点压力为0,所以测得的力传感器能显示的力的最小值F min =0(2)当物体A 恰好通过圆轨道最高点后进入传送带时速度最小,此时若传送带静止或逆时针转动,则物体A 一直在传送带上做匀减速直线运动.当物体A 到达N 点的速度为0时,则动摩擦因数最大,即对物体A 分析有m A g =m A v E2Rm A g ·2R -μm A gL =0-12m A v E2得μ=0.45.(3)物体A 不脱离圆轨道有两种情况:①过最高点的速度v E ≥√gR对物体A 从被弹簧弹出开始到到达最高点,根据动能定理有-m A g ·2R =12m A v E 2-12m A v A2得v A ≥√5gR =3√5m/s②到达圆轨道的圆心等高处时速度恰好为0,对物体A 从被弹簧弹出开始到到达圆心等高处,根据动能定理有-m A gR =0-12m A v A2得v A ≤√2gR =3√2m/s因为物体A 是通过释放弹簧的弹性势能获得速度,且A 与B 反向弹开,由动量守恒有m A v A =m B v B由机械能守恒有E p =12m A v A 2+12m B v B2得m B =v A260-v A2kg代入数据得m B ≤37kg 或m B ≥3kg.7.[2024河北唐山摸底演练]如图所示,一圆弧轨道AB 与倾角为θ的斜面BC 在B 点相接.可视为质点的两个形状相同的小球a 、b ,将小球b 置于圆弧轨道的最低点,使小球a 从圆弧轨道A 点由静止释放,两小球在最低点发生弹性正碰,整个系统固定于竖直平面内.已知圆弧轨道半径R =1m ,圆弧过A 、B 两端点的半径与竖直方向间的夹角均为θ=37°,小球a 的质量m 1=4kg ,小球b 的质量m 2=1kg ,重力加速度g =10m/s 2,不计一切阻力,sin37°=0.6,cos37°=0.8.求:(1)与小球b 碰前瞬间,小球a 的速度大小v 0;(2)碰后瞬间小球b 对轨道的压力大小F ;(3)小球b 从B 点飞出圆弧轨道后,距离斜面BC 的最远距离h ,√6.24取2.5.答案 (1)2m/s (2)20.24N (3)0.36m解析 (1)对小球a 从静止释放到与小球b 碰撞前瞬间的过程,由动能定理有m 1gR (1-cos θ)=12m 1v 02代入数据解得v 0=2m/s(2)小球a 与小球b 发生弹性正碰,则有m 1v 0=m 1v 1+m 2v 212m 1v 02=12m 1v 12+12m 2v 22对碰撞后瞬间小球b ,由牛顿第二定律有F N -m 2g =m 2v 22R联立并代入数据解得F N =20.24N由牛顿第三定律可得小球b 对轨道的压力大小F =F N =20.24N(3)对小球b 从碰撞后到飞出圆弧轨道瞬间的过程,由动能定理有-m 2gR (1-cos θ)=12m 2v 32-12m 2v 22代入数据解得v 3=2.5m/s由几何关系可知,此时小球b 的速度与斜面的夹角为α=74°小球b 在垂直斜面方向做类竖直上抛运动,则有v'0=v 3sin α,a =g cos θ对小球b 从B 点运动到距离斜面最远的过程,由运动学规律有2ah =v '02代入数据解得h =0.36m.8.[板块模型+弹簧模型+新信息/2023辽宁]如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N/m 的轻弹簧,弹簧处于自然状态.质量m 2=4kg 的小物块以水平向右的速度v 0=54m/s 滑上木板左端,两者共速时木板恰好与弹簧接触.木板足够长,物块与木板间的动摩擦因数μ=0.1,最大静摩擦力等于滑动摩擦力.弹簧始终处在弹性限度内,弹簧的弹性势能E p 与形变量x 的关系为E p =12kx 2.取重力加速度g =10m/s 2,结果可用根式表示.(1)求木板刚接触弹簧时速度v 1的大小及木板运动前右端距弹簧左端的距离x 1.(2)求木板与弹簧接触以后,物块与木板之间即将相对滑动时弹簧的压缩量x 2及此时木板速度v 2的大小.(3)已知木板向右运动的速度从v 2减小到0所用时间为t 0.求木板从速度为v 2时到之后与物块加速度首次相同时的过程中,系统因摩擦转化的内能ΔU (用t 0表示).答案 (1)1m/s 0.125m (2)0.25m√32m/s (3)(4√3t 0-8t 02)J解析 (1)小物块从滑上木板到两者共速的过程,由动量守恒定律有m 2v 0=(m 1+m 2)v 1解得v 1=1m/s两者共速前,对木板,由牛顿第二定律有μm 2g =m 1a解得a =4m/s 2由运动学公式有2ax 1=v 12。
专题强化十三 动量和能量的综合问题 目标要求 1.掌握解决力学综合问题常用的三个观点.2.会灵活选用三个观点解决力学综合问题.1.解动力学问题的三个基本观点(1)动力学观点:运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题.(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题.(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题.用动量定理可简化问题的求解过程.2.力学规律的选用原则(1)如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律.(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件.(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转化为系统内能的量.(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转化,作用时间都极短,因此用动量守恒定律去解决.题型一 动量与能量观点的综合应用例1 (2020·天津卷·11)长为l 的轻绳上端固定,下端系着质量为m 1的小球A ,处于静止状态.A 受到一个水平瞬时冲量后在竖直平面内做圆周运动,恰好能通过圆周轨迹的最高点.当A 回到最低点时,质量为m 2的小球B 与之迎面正碰,碰后A 、B 粘在一起,仍做圆周运动,并能通过圆周轨迹的最高点.不计空气阻力,重力加速度为g ,求:(1)A 受到的水平瞬时冲量I 的大小;(2)碰撞前瞬间B 的动能E k 至少多大?答案 (1)m 15gl (2)5gl (2m 1+m 2)22m 2解析 (1)A 恰好能通过圆周轨迹的最高点,此时轻绳的拉力刚好为零,设A 在最高点时的速度大小为v ,由牛顿第二定律,有m 1g =m 1v 2l A 从最低点到最高点的过程中机械能守恒,取轨迹最低点处重力势能为零,设A 在最低点的速度大小为v A ,有12m 1v A 2=12m 1v 2+2m 1gl 联立解得v A =5gl由动量定理,有I =m 1v A =m 15gl(2)设两球粘在一起时速度大小为v ′,若A 、B 粘在一起后恰能通过圆周轨迹的最高点,需满足v ′=v A要达到上述条件,碰后两球速度方向必须与碰前B 的速度方向相同,以此方向为正方向,设B 碰前瞬间的速度大小为v B ,由动量守恒定律,有m 2v B -m 1v A =(m 1+m 2)v ′联立解得v B =5gl (2m 1+m 2)m 2 又E k =12m 2v B 2 可得碰撞前瞬间B 的动能E k 至少为E k =5gl ()2m 1+m 222m 2. 例2 (2022·四川省泸县第四中学高三月考)如图所示,质量为M =2 kg 的木板A 静止在光滑水平面上,其左端与固定台阶相距x ,右端与一固定在地面上的半径R =0.4 m 的光滑四分之一圆弧紧靠在一起,圆弧的底端与木板上表面水平相切.质量为m =1 kg 的滑块B (可视为质点)以初速度v 0=8 m/s 从圆弧的顶端沿圆弧下滑,B 从A 右端的上表面水平滑入时撤走圆弧.A 与台阶碰撞无机械能损失,不计空气阻力,A 、B 之间动摩擦因数μ=0.1,A 足够长,B 始终未从A 表面滑出,取g =10 m/s 2.(1)求滑块B 到圆弧底端时的速度大小v 1;(2)若A 与台阶碰前,已和B 达到共速,求A 向左运动的过程中与B 摩擦产生的热量Q (结果保留两位有效数字);(3)若A 与台阶只发生一次碰撞,求x 满足的条件.答案 (1)4 m/s (2)5.3 J (3)x ≥1 m解析 (1)滑块B 从释放到圆弧最低点的运动过程,由动能定理得mgR =12m v 12-12m v 02 解得v 1=4 m/s(2)B 与A 向左运动过程中,取向左为正方向,由动量守恒定律得m v 1=(m +M )v 2解得v 2=43m/s 由能量守恒定律得Q =12m v 12-12(m +M )v 22 解得Q ≈5.3 J(3)从B 刚滑到A 上到A 左端与台阶碰撞前瞬间, A 、B 的速度分别为v 3和v 4,由动量守恒定律得m v 1=m v 4+M v 3若A 与台阶只碰撞一次,碰撞后必须满足|M v 3|≥|m v 4|对A 板,应用动能定理μmgx =12M v 32-0 联立解得x ≥1 m题型二 力学三大观点的综合应用例3 如图所示,一质量为M =3.0 kg 的平板车静止在光滑的水平地面上,其右侧足够远处有一障碍物A ,质量为m =2.0 kg 的b 球用长l =2 m 的细线悬挂于障碍物正上方,一质量也为m 的滑块(视为质点)以v 0=7 m/s 的初速度从左端滑上平板车,同时对平板车施加一水平向右的,大小为6 N 的恒力F .当滑块运动到平板车的最右端时,二者恰好相对静止,此时撤去恒力F .当平板车碰到障碍物A 时立即停止运动,滑块水平飞离平板车后与b 球正碰并与b 粘在一起成为c .不计碰撞过程中的能量损失,不计空气阻力.已知滑块与平板车间的动摩擦因数μ=0.3,g 取10 m/s 2,求:(1)撤去恒力F 前,滑块、平板车的加速度各为多大,方向如何;(2)撤去恒力F 时,滑块与平板车的速度大小;(3)c 能上升的最大高度.答案 (1)滑块的加速度为3 m/s 2、方向水平向左,平板车的加速度为4 m/s 2,方向水平向右(2)4 m/s (3)0.2 m解析 (1)对滑块,由牛顿第二定律得:a 1=μg =3 m/s 2,方向水平向左对平板车,由牛顿第二定律得:a 2=F +μmg M =6+0.3×203m/s 2=4 m/s 2,方向水平向右 (2)设经过时间t 1滑块与平板车相对静止,此时撤去恒力F ,共同速度为v 1则:v 1=v 0-a 1t 1v 1=a 2t 1解得:t 1=1 s ,v 1=4 m/s.(3)规定向右为正方向,对滑块和b 球组成的系统运用动量守恒得,m v 1=2m v 2,解得v 2=v 12=42m/s =2 m/s. 根据机械能守恒得,12×2m v 22=2mgh , 解得h =v 222g =420m =0.2 m. 例4 如图所示,水平桌面左端有一顶端高为h 的光滑圆弧形轨道,圆弧的底端与桌面在同一水平面上.桌面右侧有一竖直放置的光滑圆轨道MNP ,其形状为半径R =0.8 m 的圆环剪去了左上角135°后剩余的部分,MN 为其竖直直径,P 点到桌面的竖直距离也为R .一质量m =0.4 kg 的物块A 自圆弧形轨道的顶端释放,到达圆弧形轨道底端恰与一停在圆弧底端水平桌面上质量也为m 的物块B 发生弹性正碰(碰撞过程没有机械能的损失),碰后物块B 的位移随时间变化的关系式为s =6t -2t 2(关系式中所有物理量的单位均为国际单位),物块B 飞离桌面后恰由P 点沿切线落入圆轨道.(重力加速度g 取10 m/s 2)求:(1)BP 间的水平距离s BP ;(2)判断物块B 能否沿圆轨道到达M 点;(3)物块A 由静止释放的高度h .答案 (1)4.1 m (2)不能 (3)1.8 m解析 (1)设碰撞后物块B 由D 点以初速度v D 做平抛运动,落到P 点时v y 2=2gR ①其中v y v D=tan 45°② 由①②解得v D =4 m/s ③设平抛用时为t ,水平位移为s 2,则有R =12gt 2④ s 2=v D t ⑤由④⑤解得s 2=1.6 m ⑥物块B 碰后以初速度v 0=6 m/s ,加速度a =-4 m/s 2减速到v D ,则BD 过程由运动学公式v D 2-v 02=2as 1⑦解得s 1=2.5 m ⑧故BP 之间的水平距离s BP =s 2+s 1=4.1 m ⑨(2)若物块B 能沿轨道到达M 点,在M 点时其速度为v M ,由D 到M 的运动过程,根据动能定理, 则有-22mgR =12m v M 2-12m v D 2⑩ 设在M 点轨道对物块的压力为N ,则N +mg =m v M 2R⑪ 由⑩⑪解得N =(1-2)mg <0,假设不成立,即物块不能到达M 点.(3)对物块A 、B 的碰撞过程,根据动量守恒有:m A v A =m A v A ′+m B v 0⑫根据机械能守恒有:12m A v A 2=12m A v A ′2+12m B v 02⑬ 由⑫⑬解得:v A =6 m/s ⑭设物块A 释放的高度为h ,对下落过程,根据动能定理有:mgh =12m v A 2,⑮ 由⑭⑮解得h =1.8 m .⑯课时精练1.如图,光滑轨道PQO 的水平段QO =h 2,轨道在O 点与水平地面平滑连接.一质量为m 的小物块A 从高h 处由静止开始沿轨道下滑,在O 点与质量为4m 的静止小物块B 发生碰撞.A 、B 与地面间的动摩擦因数均为μ=0.5,重力加速度为g .假设A 、B 间的碰撞为完全弹性碰撞,碰撞时间极短.求:(1)第一次碰撞后瞬间A 和B 速度的大小;(2)请计算说明物块A 与B 能否发生第二次碰撞.答案 见解析解析 (1)设碰撞前A 的速度为v ,对A 下滑过程由动能定理得:mgh =12m v 2,得v =2gh 碰撞中由动量守恒得:m v =m v ′+4m v B由机械能守恒得:12m v 2=12m v ′2+12×4m v B 2 解得v ′=m -4m m +4m v ,v B =2m m +4mv 解得碰撞后A 的速度:v ′=-352gh B 的速度v B =252gh (2)碰撞后A 沿光滑轨道上升后又滑到O ,然后向右减速滑行至停止,对此过程由动能定理得:μmgx A =12m v ′2,解得x A =1825hB 沿地面减速滑行至停止,μ·4mgx B =12×4m v B 2 得x B =825h 因为x A >x B ,所以会发生第二次碰撞.2.如图,一水平放置的圆环形铁槽固定在水平面上,铁槽底面粗糙,侧壁光滑,半径R =2π m ,槽内放有两个大小相同的弹性滑块A 、B ,质量均为m =0.2 kg.两滑块初始位置与圆心连线夹角为90°;现给A 滑块一瞬时冲量,使其获得v 0=210 m/s 的初速度并沿铁槽运动,与B 滑块发生弹性碰撞(设碰撞时间极短);已知A 、B 滑块与铁槽底面间的动摩擦因数μ=0.2,g =10 m/s 2;试求:(1)A 、B 第一次相碰过程中,系统储存的最大弹性势能E pm ;(2)A 滑块运动的总路程.答案 见解析解析 (1)对A 滑块,由动能定理可得:-μmg 2πR 4=12m v 12-12m v 02 A 、B 碰撞时,两者速度相等时,储存的弹性势能最大,由动量守恒定律得:m v 1=(m +m )v 2又由能量守恒定律可得:12m v 12=12(m +m )v 22+E pm 解得:E pm =1.8 J(2)A 、B 发生弹性碰撞,由动量守恒定律得:m v 1=m v 3+m v 4又由机械能守恒定律可得:12m v 12=12m v 32+12m v 42 解得:v 3=0,v 4=6 m/sA 、B 的总路程为s 1,由功能关系有:-μmgs 1=0-12m v 02A 、B 运动的总圈数为n ,有:s 1=2πRn得:n =2.5对A 、B 的运动过程分析,A 运动了1.25圈,故A 滑块的路程s 2=1.25×2πR =5 m.3.光滑四分之一圆弧导轨最低点切线水平,与光滑水平地面上停靠的一小车上表面等高,小车质量M =2.0 kg ,高h =0.2 m ,如图所示.现从圆弧导轨顶端将一质量为m =0.5 kg 的滑块由静止释放,当小车的右端运动到A 点时,滑块正好从小车右端水平飞出,落在地面上的B 点.滑块落地后0.2 s 小车右端也到达B 点.已知AB 相距L =0.4 m ,g 取10 m/s 2,求:(1)滑块离开小车时的速度大小;(2)圆弧导轨的半径;(3)滑块滑过小车的过程中产生的内能.答案 (1) 2 m/s (2) 1.8 m (3) 7 J解析 (1)滑块平抛过程中,沿竖直方向有:h =12gt 12 沿水平方向:L =v 1t 1解得:t 1=2h g =0.2 s ,v 1=L t 1=2 m/s (2)滑块滑出后小车做匀速直线运动:v 2=L t 1+Δt =0.40.2+0.2m/s =1 m/s 滑块在小车上运动的过程中,滑块与小车组成的系统在水平方向上动量守恒,选取向右为正方向,则:m v 0=m v 1+M v 2代入数据得:v 0=6 m/s滑块在圆弧导轨上运动的过程中机械能守恒,有: mgR =12m v 02 代入数据得:R =1.8 m(3)根据能量守恒可得滑块滑过小车表面的过程中产生的内能:ΔE =mgR -(12m v 12+12M v 22) 代入数据得:ΔE =7 J.4.如图所示,水平轨道OP 光滑,PM 粗糙,PM 长L =3.2 m .OM 与半径R =0.15 m 的竖直半圆轨道MN 平滑连接.小物块A 自O 点以v 0=14 m/s 向右运动,与静止在P 点的小物块B 发生正碰(碰撞时间极短),碰后A 、B 分开,A 恰好运动到M 点停止.A 、B 均看作质点.已知A 的质量m A =1.0 kg ,B 的质量m B =2.0 kg ,A 、B 与轨道PM 的动摩擦因数均为μ=0.25,g 取10 m/s 2,求:(1)碰后A 、B 的速度大小;(2)碰后B 沿轨道PM 运动到M 所需时间;(3)若B 恰好能到达半圆轨道最高点N ,求沿半圆轨道运动过程损失的机械能.答案 (1) 4 m/s 5 m/s (2) 0.8 s (3) 1.5 J解析 (1)由牛顿第二定律,A 、B 在PM 上滑行时的加速度大小相同,均为a ,a =μm A g m A =μm B g m B=μg 代入数据得:a =2.5 m/s 2由运动学知识,对A ,v 12=2aL得碰后速度v 1=4 m/sA 、B 相碰的过程中系统水平方向的动量守恒,选取向右为正方向,得:m A v 0=m A v 1+m B v 2 得碰后B 的速度v 2=5 m/s(2)对B 物块,P 到M 的运动过程,有:L =v 2t -12at 2 结合(1)可解得:t 1=3.2 s(不符合,舍去)t 2=0.8 s即所求时间t =0.8 s(3)B 在M 点的速度大小v 3=v 2-at代入数值解得:v 3=3 m/sB 恰好过N 点,满足:m B v 42R=m B g M 到N 过程,由功能关系可得ΔE =12m B v 32-12m B v 42-2m B gR 联立解得损失机械能:ΔE =1.5 J.。
动量和能量综合例析例1、如图,两滑块A、B的质量分别为m1和m2,置于光滑的水平面上,A、B间用一劲度系数为K的弹簧相连。
开始时两滑块静止,弹簧为原长。
一质量为m的子弹以速度V0沿弹簧长度方向射入滑块A并留在其中。
试求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量) ;(2)滑块B相对于地面的最大速度和最小速度。
【解】(1)设子弹射入后A的速度为V1,有:mV0=(m+m1)V1(1)得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有:(m+m1)V1=(m+m1+m 2)V (2)(3)由(1)、(2)、(3)式解得:(2)mV0=(m+m1)V2+m2V3(4)(5)由(1)、(4)、(5)式得:V3[(m+m1+m2)V3-2mV0]=0解得:V3=0 (最小速度)(最大速度)例2、如图,光滑水平面上有A、B两辆小车,C球用0.5m长的细线悬挂在A车的支架上,已知mA=m B=1kg,m C=0.5kg。
开始时B车静止,A车以V0=4m/s的速度驶向B车并与其正碰后粘在一起。
若碰撞时间极短且不计空气阻力,g取10m/s2,求C球摆起的最大高度。
【解】由于A、B碰撞过程极短,C球尚未开始摆动,故对该过程依前文解题策略有:m A V0=(m A+m B)V1(1)E内= (2)对A、B、C组成的系统,图示状态为初始状态,C球摆起有最大高度时,A、B、C有共同速度,该状态为终了状态,这个过程同样依解题策略处理有:(m A+m C)V0=(m A+m B+m C)V2(3)(4)由上述方程分别所求出A、B刚粘合在一起的速度V1=2m /s ,E内=4J ,系统最后的共同速度V2=2.4m /s ,最后求得小球C摆起的最大高度h=0.16m 。
例3、质量为m 的木块在质量为M 的长木板中央,木块与长木板间的动摩擦因数为μ,木块和长木板一起放在光滑水平面上,并以速度v 向右运动。
为了使长木板能停在水平面上,可以在木块上作用一时间极短的冲量。
试求:(1)要使木块和长木板都停下来,作用在木块上水平冲量的大小和方向如何?(2)木块受到冲量后,瞬间获得的速度为多大?方向如何?(3)长木板的长度要满足什么条件才行?【解】(1)水平冲量的大小为:()I M m v =+(1分)水平冲量的方向向左(1分)(2)以木块为研究对象:取向左为正方向,则:()()I M m v mv mv m =+=--'(2分) ∴=v M mv m '(2分) (3)根据能的转化与守恒定律得: μmg L mv Mv m 21212022=+-'(2分) ()∴=+L M M m v m g22μ(2分) 即木板的长度要满足:()L M M m v m g ≥+22μ综上所述,解决动量守恒系统的功能问题,其解题的策略应为:一、分析系统受力条件,建立系统的动量守恒定律方程。
二、根据系统内的能量变化的特点建立系统的能量方程三、建立该策略的指导思想即借助于系统的动能变化来表现内力做功。
1、如图,在光滑绝缘的长直轨道上有A 、B 两个带同种电荷小球,其质量分别为m 1、m 2。
小球A 以水平速度V 0沿轨道向右冲向静止的B 球,求最后两球最近时(A 、B 两球不相碰)系统电势能的变化。
2、如图所示,光滑的水平面上有质量为M 的滑板,其中AB 部分为光滑的1/4圆周,半径为r ,BC 水平但不光滑,长为。
一可视为质点的质量为m 的物块,从A 点由静止释放,最后滑到C 点静止,求物块与BC 的动摩擦因数。
3、如图所示, 在高为h 的光滑平台上放一个质量为m 2的小球, 另一个质量为 m 1的球沿光滑弧形轨道从距平台高为h 处由静止开始下滑, 滑至平台上与球m 2发生正碰, 若m 1= m 2, 求小球m 2最终落点距平台边缘水平距离的取值范围.A B4、如图所示,A、B是位于水平桌面上的两质量相等的木块,离墙壁的距离分别为L1和L2,与桌面之间的滑动摩擦系数分别为μA和μB,今给A以某一初速度,使之从桌面的右端向左运动,假定A、B之间,B与墙间的碰撞时间都很短,且碰撞中总动能无损失,若要使木块A最后不从桌面上掉下来,则A的初速度最大不能超过______。
5、如图在光滑的水平台上静止着一块长50cm,质量为1kg的木板,板的左端静止着一块质量为1千克的小铜块(可视为质点),一颗质量为10g的子弹以200m/s的速度射向铜块,碰后以100m/s速度弹回。
问铜块和木板间的摩擦系数至少是多少时铜块才不会从板的右端滑落。
(g取10m/s2 )7、如图所示,小球A从半径为R=0.8m的1/4光滑圆弧轨道的上端点以v0=3m/s 的初速度开始滑下,到达光滑水平面上以后,与静止于该水平面上的钢块B发生碰撞,碰撞后小球A被反向弹回,沿原路进入轨道运动恰能上升到它下滑时的出发点(此时速度为零)。
设A、B碰撞机械能不损失,求A和B的质量之比是多少?8、如图,有光滑圆弧轨道的小车静止在光滑水平面上,其质量为M。
一质量为m的小球以水平速度V0沿轨道的水平部分冲上小车,求小球沿圆弧形轨道上升到最大高度的过程中圆弧形轨道对小球的弹力所做的功。
9、如图6—5—5所示,一质量为M,长为L的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块m<M。
现以地面为参照系,给A和B以大小相等方向相反的初速度(如图),使A开始向左运动、B开始向右运动,但最后A刚好没有滑离B板。
以地面为参照系,则求解下例两问:(1)若已知A和B的初速度大小为v0,求它们最后的速度的大小和方向。
(2)若初速度的大小未知,求小木块A向左运动到达的最远处(从地面上看)离出发点的距离。
1、m1m2V02/2(m1+m2)2、r/L3、(h<s<2h)4、5、0.45l v 0 v S6、 (1) 1m/s, 方向向下; (2) k>3, V F 方向向上; k =3,V F =0; k<3, V F 方向向下。
7、 1 : 9 8、20)(2Mm mV M W +-= 9、(1) v = v 0,方向向右 ; (2) L 1= L滑块、子弹打木块模型之一子弹打木块模型:包括一物块在木板上滑动等。
μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。
②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。
小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。
例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。
水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )=2022121mv mv - ② 对木块 fs=0212-MV ③ 由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v M m M -∙ ④ ②+④得 f l =})]([2121{21212121202202220v v Mm M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。
即Q=f l ,l 为子弹现木块的相对位移。
结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。
即Q=ΔE 系统=μNS 相其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统(13年高考35题)如图18,两块相同平板P 1、P 2至于光滑水平面上,质量均为m 。
P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。
物体P 置于P 1的最右端,质量为2m 且可以看作质点。
P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。
P 与P 2之间的动摩擦因数为μ,求(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2;(2)此过程中弹簧最大压缩量x 和相应的弹性势能E p【解析】P 1与P 2发生完全非弹性碰撞时,P 1、P 2组成的系统遵守动量守恒定律;P 与(P 1+P 2)通过摩擦力和弹簧弹力相互作用的过程,系统遵守动量守恒定律和能量守恒定律.注意隐含条件P 1、P 2、P 的最终速度即三者最后的共同速度;弹簧压缩量最大时,P 1、P 2、P 三者速度相同.(1)P 1与P 2碰撞时,根据动量守恒定律,得mv 0=2mv 1解得v 1=v 02,方向向右 P 停在A 点时,P 1、P 2、P 三者速度相等均为v 2,根据动量守恒定律,得2mv 1+2mv 0=4mv 2解得v 2=34v 0,方向向右.(2)弹簧压缩到最大时,P 1、P 2、P 三者的速度为v 2,设由于摩擦力做功产生的热量为Q ,根据能量守恒定律,得从P 1与P 2碰撞后到弹簧压缩到最大12×2mv 21+12×2mv 20=12×4mv 22+Q +E p 从P 1与P 2碰撞后到P 停在A 点 12×2mv 21+12×2mv 20=12×4mv 22+2Q 联立以上两式解得E p =116mv 20,Q =116mv 20根据功能关系有Q =μ·2mg (L +x )解得x =v 2032μg -L . 答案:(1)v 1=12v 0,方向向右 v 2=34v 0,方向向右 (2)v 2032μg -L 116mv 20练习6、如图所示,长木板ab 的b 端固定一挡板,木板连同档板的质量为M=4.0kg ,a 、b间距离s=2.0m .木板位于光滑水平面上.在木板a 端有一小物块,其质量m =1.0kg ,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态.现令小物块以初速v 0=4.0m/s 沿木板向前滑动,直到和挡板相碰.碰撞后,小物块恰好回到a 端而不脱离木板.求碰撞过程中损失的机械能.【答案】2.4J1、(2012肇庆一模第35题)如图所示,半径为R 的光滑半圆环轨道竖直固定在一水平光滑的桌面上,在桌面上轻质弹簧被a 、b 两个小球挤压(小球与弹簧不拴接),处于静止状态。
同时释放两个小球,小球a 、b 与弹簧在桌面上分离后,a 球从B 点滑上光滑半圆环轨道最高点A 时速度为gR v A 2。