指数函数对数函数幂函数增长速度的比较教学设计
- 格式:doc
- 大小:192.00 KB
- 文档页数:5
学习目标 1.了解三种函数的增长特征。2.初步认识“直线上升”“指数爆炸”和“对数增长”.3.尝试函数模型的简单应用.
知识点一同类函数增长特点
思考同样是增函数,当x从2变到3,y=2x到y=10x的纵坐标增加了多少?
梳理当a〉1时,指数函数y=a x是增函数,并且当a越大时,其函数值的增长就越快.
当a>1时,对数函数y=log a x是增函数,并且当a越小时,其函数值的增长就越快.
当x〉0,n>1时,幂函数y=x n是增函数,并且当x〉1时,n越大其函数值的增长就越快.
知识点二指数函数、幂函数、对数函数的增长差异
思考当x从1变到10,函数y=2x,y=x2和y=lg x的纵坐标增长了多少?
梳理一般地,在区间(0,+∞)上,尽管指数函数y=a x(a>1)、幂函数y=x n(n〉0)与对数函数y=log a x(a〉1)都是增函数,但它们的增长速度不同,而且不在同一个档次上.随着x的增大,y=a x(a>1)的增长速度越来越快,会远远超过幂函数y=x n(n〉0)的增长速度,而对数函数y=log a x(a>1)的增长速度越来越慢,因此总会存在一个x0,当x>x0时,就有________________________(a>1,n>0).
类型一根据图像判断函数的增长速度
例1函数f(x)=2x和g(x)=x3的图像如图所示.设两函数的图像交于点A(x1,y1),B(x2,y2),且x1〈x2。
(1)请指出图中曲线C1,C2分别对应的函数;
专题13指数函数、幂函数、对数函数增长的比较
【学习目标】
1.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异.
2.结合实例体会直线上升、指数爆炸、对数增大等几类不同的增长和函数模型的意义. 3.通过本节内容的学习,培养用函数的观念、思想和方法去理解、解决实际问题的意识,感悟到现实世界中数学无处不在,世界是数学的物化形式,数学是世界的精髓.
【考点梳理】
考点一:几类函数模型的增长差异
一般地,对于指数函数(1)x y a a =>和幂函数(0)y x αα=>,通过探索可以发现,在区间()0,+∞上,无论α比a 大多少,尽管在x 的一定范围内,x
a 会小于x α
,但由
于x a 的增长快于x α的增长,因此总存在一个0x ,当0x x >时,就会有x a >x α
.同样地,对于对数函数log a y x =增长得越来越慢,图象就像是渐渐地与x 轴平行一样,尽管在x 的一定范围内,log a x 可能会大于x α
,但由于log a x 的增长慢于x α
的增长,因此总存在一个
0x ,当0x x >时,就会有log a x x α<.
综上所述,在区间()0,+∞上,尽管函数(1)x y a a =>、(0)y x αα=>和
log (1)a y x a =>都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着
x 的增大,(1)x y a a =>的增长速度越来越快,会超过并远远大于(0)y x αα=>的增长速
§6 三种函数增长比较
一、教学目标:
1. 知识与技能 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性.
2. 过程与方法 能够借助信息技术, 利用函数图象及数据表格, 对几种常见增长类型的函数的增长状况进行比较, 初步体会它们的增长差异性; 收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等), 了解函数模型的广泛应用.
3. 情感、态度、价值观 体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.
二、 教学重点、难点:
1. 教学重点 将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.
2.教学难点 选择合适的数学模型分析解决实际问题.
三、 学法与教学用具:
1. 学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索.
2.教学用具:多媒体.
四、教学设想:
(一)引入实例,创设情景.
教师引导学生阅读例1,分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作指导.
(二)互动交流,探求新知.
1. 观察数据,体会模型.
教师引导学生观察例1表格中三种方案的数量变化情况,体会三种函数的增长差异,说出自己的发现,并进行交流.
2. 作出图象,描述特点.
§6指数函数、幂函数、对数函数增长的比较
整体设计
教学分析
函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述.本节的教学目标是认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同,应用函数模型解决简单问题.课本对几种不同增长的函数模型的认识及应用,都是通过实例来实现的,通过教学让学生认识到数学来自现实生活,数学在现实生活中是有用的.
三维目标
1.借助信息技术,利用函数图像及数据表格,比较指数函数、对数函数以及幂函数的增长差异.
2.恰当运用函数的三种表示方法(解析式、表格、图像),并借助信息技术解决一些实际问题.
3.让学生体会数学在实际问题中的应用价值,培养学生学习兴趣.
重点难点
教学重点:认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同.
教学难点:应用函数模型解决简单问题.
课时安排
1课时
教学过程
导入新课
思路1.(情境导入)
国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他要什么.发明者说:“请在棋盘的第一个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40 g,据查,目前世界年度小麦产量为6亿吨,但不能满足发明者要求,这就是指数增长.本节我们讨论指数函数、对数函数、幂函数的增长差异.思路2.(直接导入)
《指数函数、幂函数、对数函数增长的比较》
本节是第三章第六节内容,专门研究指数函数、对数函数、幂函数的增长的比较,目的是探讨不同类型的函数模型,在描述实际增长问题时的不同变化趋势,通过本节学习,可以引导学生积极的展开观察、思考和探究活动。
【知识与能力目标】
1、由前面学习指数函数的图像、幂函数的图像和对数函数的图像的基础上,列表画出函数的图像;
2、会利用指数函数、幂函数的图像和对数函数的图像对比研究函数的增长快慢。
【过程与方法目标】
1、让学生借助表格和图形了解指数函数的图像、幂函数的图像和对数函数的图像之间的关系,以及变化;
2、学会类比研究问题,利用数性结合的思想研究函数的性质。
【情感态度价值观目标】
使学生通过学习指数函数、幂函数的图像和对数函数的图像对比研究函数的增长快慢,在学习的过程中体会“指数爆炸”的含义,增强学习函数的积极性和自信心。
【教学重点】
列表观察指数函数的图像、幂函数的图像和对数函数的图像的增长快慢。
【教学难点】
指数函数的图像、幂函数的图像和对数函数的图像。
电子课件调整、相应的教具带好、熟悉学生名单、电子白板要调试好。
一、导入部分
[互动过程1]
◆教学重难点
◆
◆课前准备
◆
◆教材分析
◆教学过程
◆教学目标
复习:指数函数、幂函数、对数函数的图像与性质. 请你画出函数222,,log x x
y y x y ===的草图,并观察比较函数图像的变化。
你能判断出哪个函数的函数值随的增长速度增长的比较快吗? 二、研探新知,建构概念 [互动过程2]提出问题:
当1a >时,指数函数x
y a =是增函数,并且当a 越大时,其函数值的增长就越快。当1a >时,指数函数log x
§6 三种函数增长比较
一、教学目标:
1.知识与技能结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性.
2.过程与方法能够借助信息技术, 利用函数图象及数据表格, 对几种常见增长类型的函数的增长状况进行比较, 初步体会它们的增长差异性; 收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等), 了解函数模型的广泛应用.
3.情感、态度、价值观体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.
二、教学重点、难点:
1.教学重点将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义
2.教学难点选择合适的数学模型分析解决实际问题.
三、学法与教学用具:
1.学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索.
2.教学用具:多媒体.
四、教学设想:
(一)引入实例,创设情景.
教师引导学生阅读例1,分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作指导.
(二)互动交流,探求新知.
1.观察数据,体会模型.
教师引导学生观察例1表格中三种方案的数量变化情况,体会三种函数的增长差异,说出自己的发现,并进行交流.
2.作出图象,描述特点.
教师引导学生借助计算器作出三个方案的函数图象,分析三种方案的不同变化趋势,并进行描述,为方案选择提供依据.
4.5 增长速度的比较
学习目标
1.能利用函数的平均变化率,说明函数的增长速度.
2.比较对数函数、一次函数、指数函数增长速度的差异,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义.
自主预习
情境引入
杰米是百万富翁,一天,他碰到一件奇怪的事,一个叫韦伯的人对他说:“我想和你订个合同,我将在整整一个月中(这个月有31天),每天给你10万元,而你第一天只需给我1分钱,以后你每天给我的钱是前一天的两倍.”杰米说:“真的?你说话算数?”
合同开始生效了,杰米欣喜若狂.第一天杰米支出1分钱,收入10万元.第二天杰米支出2分钱,收入10万元,到了第10天,杰米共得100万元,而总共才付出10元2角3分.到了第20天,杰米共得200万元,而韦伯才得1万多元.杰米想:要是合同订二、三个月该多好!可从21天起,情况发生了转变.
第22天杰米支出2万多,收入10万,到第28天,杰米支出134万多,收入10万.结果,杰米在一个月(31)天内得到310万元的同时,共付给韦伯2千1百多万元!杰米破产了.
问题1写出杰米每天收入y(单位:分)与天数x的函数关系式.
问题2写出杰米每天支出y(单位:分)与天数x的函数关系式.
三种常见函数模型的增长差异
对比三类函数的增长速度,熟记图像变化规律
函数性质y=a x(a>1)
y=log a x(a
>1)
y=kx(k>0)
在(0,+∞)上的增减性
图像的变化随x的增
大逐渐变
“陡”
随x的增
大逐渐趋
于稳定
随k值而不同
形象描述指数爆炸对数增长直线上升
增长速度y=a x(a>1)的增长速度最终都会大大超过y=kx(k>0)的增长速度;总存在一个x0,当x>x0时,恒有log a x<kx
幂函数对数函数指数函数增长速度比较
幂函数、对数函数和指数函数是高中数学中经常涉及的三种基本函数类型。这三种函数具有不同的定义和性质,它们的增长速度也各不相同。下面,我将从三个方面分别阐述幂函数、对数函数和指数函数的增长速度及其比较。
一、幂函数的增长速度
幂函数的一般形式为y=x^a,其中a为正实数,x为自变量,y为因变量。当a>1时,幂函数的增长速度比线性函数快,而当0
例如,y=x^2和y=x^3的增长速度比y=x和y=x^1.5快,因为x^2和x^3比x和x^1.5的增长速度更快。另一方面,y=x^0.5和y=x^0.3的增长速度比y=x慢,因为x^0.5和x^0.3比x的增长速度更慢。
二、对数函数的增长速度
对数函数的一般形式为y=loga(x),其中a为正实数且a ≠ 1,x为正实数。对数函数随着x的增大而增加,但增长速度非常缓慢。
例如,y=log2(x)和y=log3(x)的增长速度比y=log5(x)和y=log10(x)慢,因为以2或3为底的对数的增长速度比以5或10为底的对数慢。
三、指数函数的增长速度
指数函数的一般形式为y=a^x,其中a为正实数且a ≠ 1,x为自变量。指数函数随着x的增大而快速增加。
例如,y=2^x和y=3^x的增长速度比y=1.5^x和y=1.1^x快,因为2和
3比1.5和1.1更大。
比较三种函数的增长速度
根据上述三种函数的增长速度特性,我们可以得出以下结论:
1. 当x越来越大时,指数函数的增长速度最快,其次是幂函数,最慢
的是对数函数。
2. 如果幂函数和指数函数的底相同,那么指数函数的增长速度比幂函
几种函数增长快慢的比较
(一)教学目标
1.知识与技能
(1)掌握几种常用函数增长快慢的比较方法
(2)熟悉几种常用函数增长快慢的一般规律
2.过程与方程
利用函数图象,借助计算机列出自变量和函数值的对照表,比较几种常用函数增长的快慢,从而熟知常见函数增长快慢的一般性结论.
3.情感、态度与价值观
通过几种常见函数增长快慢的比较,感受“绝对与相对”的内涵和处延,培养思维的发散性.
(二)教学重点与难点
重点:函数增长快慢比较的常用途径;
难点:了解影响函数增长快慢的因素.
(三)教学方法
合作交流与知识讲授相结合,通过学习熟悉的几种常见函数增长快慢的比较,体会比较方法,掌握基本结论,从而培养应用基本方法比较函数增长快慢的能力.
教学环节教学内容师生互动设计意图
提出问题引入课题观察函数
4
x
y y x
==
与在
[0,+∞)上的图象,说明
在不同区间内,函数增长
的快慢情况.
在同一坐标中函数图象如
下
师:增函数的共同特点是函数值y
随自变量x的增长而增长,但不同
函数在同一区间内的增长快慢是
否相同?
师生合作观察研究函数
4
x
y y x
==
与的增长快慢.
①x∈(0,16)时,y x
=的图象在
由问题
引入课题,激
发学习兴趣.
y x
=
y
4
x
y=
y
x
O
结论:若0<x <16则
4
x x >
若x >16则4
x
x <
4
x
y =
图象上方可知y x =增长较快
②(16,)x ∈+∞时,y x =的图在
4
x
y =
图象下方,可知4
x
y =
增长较快 幂、指对函数增长快慢比较形成比较方法.
1.实例探究:
比较函数y =2x
,y = x 2
,y = log 2x 的增长快慢.
指数函数、幂函数、对数函数增长的比较
教学目标:
知识与技能利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
过程与方法能够借助信息技术,利用函数图象及数据表格,对几种常见增长类型的函数的增长状况进行比较,初步体会它们的增长差异性;收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),了解函数模型的广泛应用.
情感、态度、价值观体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.
教学重点:
重点将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.
难点怎样选择数学模型分析解决实际问题.
教学支撑点:
指数函数、对数函数以及幂函数的有关知识;文字语言、数学语言和图形语言之间转换的能力;建立数学模型解决实际问题的意识。
蕴含的数学思想方法:
符号化,模型化。
教学导入
材料:澳大利亚兔子数“爆炸”
在教科书第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.
高中数学第三章指数函数、幂函数、对数函数增长的比较
教案北师大版必修1
一、教学目标:
1.知识与技能结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性.
2.过程与方法能够借助信息技术, 利用函数图象及数据表格, 对几种常见增长类型的函数的增长状况进行比较, 初步体会它们的增长差异性; 收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等), 了解函数模型的广泛应用.
3.情感、态度、价值观体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.
二、教学重点、难点:
1.教学重点将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义
2.教学难点选择合适的数学模型分析解决实际问题.
三、学法与教学用具:
1.学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索.
2.教学用具:多媒体.
四、教学设想:
(一)引入实例,创设情景.
教师引导学生阅读例1,分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作指导.
(二)互动交流,探求新知.
1.观察数据,体会模型.
教师引导学生观察例1表格中三种方案的数量变化情况,体会三种函数的增长差异,说出自己的发现,并进行交流.