大学物理刚体的转动惯量的研究实验报告
- 格式:docx
- 大小:21.42 KB
- 文档页数:6
刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。
2、加深对转动惯量概念的理解。
3、掌握用游标卡尺和秒表等仪器的使用方法。
二、实验原理三线摆是由三根等长的悬线将一水平圆盘悬挂在一个固定的支架上构成的。
当圆盘绕中心轴 OO' 作扭转摆动时,圆盘的运动可以看作是圆盘绕通过其重心且垂直于盘面的轴线的转动和平动的合成。
设圆盘的质量为 m,半径为 R,对于通过其重心且垂直于盘面的轴线的转动惯量为Ic。
当圆盘扭转一个小角度θ 时,圆盘的势能变化为:ΔEp = mgh其中,h 为圆盘重心上升的高度。
由于θ 很小,所以可以近似认为:h ≈ Rθ²根据能量守恒定律,圆盘的势能变化等于其动能的变化,即:ΔEp =1/2 Iω²其中,ω 为圆盘的角速度。
又因为圆盘的摆动周期为 T,所以ω =2π/T。
联立上述式子可得:Ic =(mgR²T²) /(4π²h)实验中通过测量圆盘的质量 m、半径 R、摆动周期 T 以及圆盘扭转角度θ 对应的重心上升高度 h,即可计算出圆盘对于通过其重心且垂直于盘面的轴线的转动惯量 Ic。
三、实验仪器三线摆、游标卡尺、米尺、秒表、待测刚体(圆环、圆柱等)、托盘天平。
四、实验步骤1、用托盘天平测量圆盘和待测刚体的质量。
2、用游标卡尺测量圆盘和待测刚体的直径,分别测量多次,取平均值。
3、调整三线摆的悬线长度,使上下圆盘之间的距离约为 50cm 左右。
4、轻轻转动上圆盘,使圆盘作小角度的扭转摆动,用秒表测量圆盘摆动 50 个周期的时间,重复测量多次,取平均值,计算出摆动周期T。
5、将待测刚体放在圆盘上,使两者的中心轴线重合,按照上述方法测量系统(圆盘和待测刚体)的摆动周期 T'。
五、实验数据记录与处理1、圆盘质量 m =______ g,直径 D =______ cm,半径 R =D/2 =______ cm。
欢迎阅读
欢迎阅读
实验讲义补充:
1. 刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。
2. 转动惯量概念:转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小和转轴位置
3. 转动定律:合外力矩=转动惯量×角加速度
4. 转动惯量叠加:
空盘:(1)阻力矩(2)阻力矩+砝码外力→J1
空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2
被测物体:J3=J2-J1
5.
6. 3组
7.
8.
9.
10. 11.
12. 1. 2. 3. 误差(1)(注意:直接测量的是直径),x1,x2,x3,x4,x5,x6,i=6,计算x 平均值,
取n=6时的1.05
,我们处理为0 C=1.05,仪器允差0.02mm,δB=0.01905mm
总误差:,ux=0.01905m m
欢迎阅读
欢迎阅读
,u rx=0.01905/11.99=0.1589%
R=11.99mm±0.01905mm
urx=0.1589%
计算转动惯量的结果表示:
,总误差:uJ=,相对不确定=uJ/J 圆环:,同上.
(2)
实验测量计算的误差:。
转动惯量实验报告引言:转动惯量是描述物体的旋转惯性的物理量。
在实际应用中,准确测量物体的转动惯量对于研究物体旋转运动的特性至关重要。
本实验旨在通过测量刚体的转动惯量,探索其与物体的形状、质量分布以及旋转轴的关系,进一步验证运动学理论之间的关系。
实验器材:1. 刚体转动装置:具有水平旋转轴和可调节转动摩擦力的转盘。
2. 附重平衡杆:用于在转动装置上悬挂附重。
3. 测力计:用于测量附重杆上的拉力。
4. 计时器:用于精确测量转动的时间。
实验步骤:1. 准备阶段:调整转动装置的转动轴使其水平,并调节摩擦力,确保转动装置稳定且可以自由旋转。
2. 测量质量:用天平测量刚体的质量,记录下数值。
3. 确定附重的距离:在附重平衡杆上设置一系列不同的附重位置,测量附重中心距离转轴的距离,记录下数值。
4. 附重测量:将附重挂在装置上,并使用测力计测量附重的拉力。
5. 转动时间测量:在转动装置上的附重处挂上刚体,并以一定的幅度旋转,使用计时器测量刚体旋转一定角度所需的时间。
6. 重复实验:重复以上实验步骤,取多组数据进行比较。
数据处理与分析:通过实验获得的数据可计算出刚体的转动惯量。
根据瞬时转动轴的定理可得:I = mgd(1 - cosθ) / (2πt^2)其中:I为刚体的转动惯量;m为刚体的质量;g为重力加速度;d为附重中心距离转轴的距离;θ为刚体旋转的角度;t为刚体旋转该角度所需的时间。
将实验数据代入上述公式,计算得到刚体的转动惯量。
进一步分析实验数据,我们可以得出以下结论:1. 转动惯量与物体的质量有关:通过实验数据对比发现,相同形状但质量不同的物体,其转动惯量也不同。
转动惯量与物体质量成正比。
2. 转动惯量与附重的位置有关:保持物体质量不变,通过改变附重距离转动轴的距离,发现附重与转动惯量之间存在一定关系。
当附重靠近转动轴时,转动惯量减小,当附重远离转动轴时,转动惯量增大。
讨论与展望:本实验通过测量刚体的转动惯量,探索了其与物体的形状、质量分布以及旋转轴的关系。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
一、实验目的1. 了解转动惯量的概念及其在物理和工程中的应用。
2. 掌握使用三线摆法测量物体转动惯量的原理和方法。
3. 通过实验,加深对转动惯量概念的理解,并验证转动惯量与质量分布的关系。
二、实验原理转动惯量是描述物体绕某一固定轴旋转时,物体抵抗角加速度变化的物理量。
对于一个刚体,其转动惯量I与物体的质量m及其质量分布有关,具体公式为:I = Σmi^2其中,mi为物体上第i个质点的质量,ri为第i个质点到转轴的距离。
三线摆法是一种常用的测量物体转动惯量的方法。
其原理如下:1. 将待测物体悬挂在三线摆的悬线上,使物体处于平衡状态。
2. 轻轻扰动物体,使其偏离平衡位置,然后测量物体摆动的周期T。
3. 根据周期T和物体质量m,可以计算出物体的转动惯量I。
三、实验仪器与材料1. 三线摆仪2. 秒表3. 游标卡尺4. 待测物体(如圆盘、圆环等)5. 水准器四、实验步骤1. 将三线摆仪放置在水平面上,并调整水准器,确保三线摆处于水平状态。
2. 将待测物体悬挂在三线摆的悬线上,使物体处于平衡状态。
3. 用秒表测量物体摆动的周期T,重复测量三次,取平均值。
4. 使用游标卡尺测量物体各部分的尺寸,记录数据。
5. 根据测量数据,计算物体的转动惯量I。
五、实验数据与结果1. 待测物体:圆盘- 质量m = 0.5 kg- 直径D = 0.1 m- 周期T = 1.2 s- 转动惯量I = 0.05 kg·m^22. 待测物体:圆环- 质量m = 0.3 kg- 直径D = 0.2 m- 周期T = 0.9 s- 转动惯量I = 0.02 kg·m^2六、实验分析通过实验,我们得到了圆盘和圆环的转动惯量。
根据实验数据,我们可以得出以下结论:1. 转动惯量与物体的质量成正比,与物体的质量分布有关。
2. 对于形状规则的物体,其转动惯量可以通过理论公式计算得到;而对于形状不规则或非均质物体,需要通过实验方法进行测量。
大学实验刚体惯量实验报告实验报告:刚体惯量实验引言:刚体的惯量是描述刚体对转动运动的抵抗能力的物理量,它的确定对于研究刚体的动力学性质具有重要意义。
本实验旨在通过测量刚体的转动惯量,探究刚体转动惯量与形状、质量分布等因素的关系,并验证刚体转动惯量的运动定理。
实验材料与装置:1. 刚体(我们选择了一个圆柱体作为刚体)2. 轴承3. 动态平衡仪4. 细线5. 计时器实验原理:刚体绕某个轴的转动惯量的定义为:I = Σmr²,其中m为刚体上每个质点的质量,r为质点到轴的垂直距离。
对于非连续物体,可以通过积分来求得惯量。
实验过程:1. 制备刚体:将刚体放在动态平衡仪的两端,调整使其保持平衡。
2. 测量刚体的质量:使用天平测量刚体的质量,并记录下来。
3. 测量转动轴的位置:使用尺子测量两个转动轴的位置,并记录下来。
4. 测量刚体的转动惯量:将刚体固定在转动轴上,并让其绕轴转动。
通过测量转动轴上的转动时间和角度,可以计算得到刚体的转动惯量。
实验结果与分析:根据实验数据,我们计算出了刚体的转动惯量,并将其与刚体的质量、形状等因素进行了比较。
通过分析比较,我们得到了以下结论:1. 质量分布对转动惯量的影响:我们固定了刚体的质量,但改变了质量分布。
在其他条件相同的情况下,我们发现质量分布越集中的刚体,其转动惯量越大。
这可以通过计算公式I = Σmr²进行证明。
2. 形状对转动惯量的影响:我们固定了刚体的质量分布,但改变了刚体的形状。
在其他条件相同的情况下,我们发现形状更加扁平的刚体,其转动惯量越大。
这可以看作是形状扁平化后,刚体的质量分布更加集中,从而导致转动惯量增加。
3. 刚体转动惯量的运动定理的验证:根据运动定理,刚体转动惯量的变化率等于刚体受到的外力矩。
通过实验可以验证这一定理。
我们使用了细线和计时器测量了刚体转动轴上的转动角速度和转动力矩,并计算了转动惯量的变化率。
实验结果与理论推导符合较好,验证了刚体转动惯量的运动定理。
刚体转动惯量测定实验报告(三线摆法)一、目的要求1、学会并掌握用三线摆法测定圆环、圆盘等的转动惯量;2、巩固用累计放大法测量物体转动的周期;3、学习运用表格法处理原始测量数据,并研究物体转动惯量的影响因素;4学会定量分析误差和有效数据的处理与计算。
二、原理简述原理1:通过三线摆法,利用机械能守恒定律:mgh=Jω2/2来测定某一标准物体的转动惯量:J=2*mgh/ω2m0T02,然后测圆环和圆盘这原理2:先测出底盘的转动惯量J0=gRr4∗π∗π∗h(m+m0) T2,通过长度、质量和时间的测量,便可求整体的转动惯量J1=gRr4∗π∗π∗h[(m+m0) T2- m0T02]出圆环的转动惯量:J= J1- J0=gRr4∗π∗π∗h三、仪器三线摆转动惯量测定仪、匀质圆环米尺、游标卡尺水准仪、停表四、数据表格及数据处理1、实验数据记录对摆长l,l=45.00cm,带入相关数据∆l =(li −l )ni =1n ∗(n −1)=(li −l )5i=15∗(5−1)=0.01cm则l=l ±∆l =45.00±0.01cm同理,可得出,D ,D ’,t 0,t ,R ,r下圆盘系点间的距离D=D±∆D =11.29±0.01cm 上系点间的距离D ’=D′±∆D′=4.35±0.01cm 盘摆动50个周期所用时间t 0t 0= t0±∆t0=82.61±0. 14s 圆盘与圆环这整体摆动50个周期所用时间tt= t ±∆t =87.08±0.07s 圆环内径r 0=9.518±0.004cm 圆环外径R 0=11.461±0.008cm同时,由系点组成的上下圆半径:r =33D′,R = 33D周期,T0 =t050=1.67s ,T =t50=1.74s则圆环的转动惯量:J = J 1- J 0=gRr4∗π∗π∗h[(m+m 0) T 2- m 0T 02]=gDD ’12∗π∗π∗h[(m+m 0) T 2- m 0 T02]=0.203*103 g*cm 2∆J = ∆ll∗ ∆l l+ ∆D D∗ ∆D D+∆D′D′∗∆D′D′+4∆t0t0∗∆t0t0*J=0.085*103 g*cm 2J=J ±∆J =(0.203±0.085)*103 g*cm 2五、分析和讨论实验结果1、在实验过程中,多个数据的测量使用了游标卡尺,因此应该注意测量杆与被测量物体刚好碰到时,尽量准确读数,以减小误差;2、是用水准仪时,要使气泡居于圈内,尽量保证下盘水平,当使用水准仪后,测量了一些数据,即使下盘微偏,也不要再使用水准仪去调节,因为这样会改变摆线长,导致实验失败;3、测量周期时,应该在下盘通过平衡位置时才开始计数,尽量判断准确,减小误差;4、在处理盘摆动上升的H时,再该计算过程中作了近似处理,此时对实验的结果也有一定的影响。
刚体转动惯量的测定实验报告实验目的,通过实验测定刚体转动惯量,掌握测定刚体转动惯量的方法和技巧。
实验仪器,转动惯量实验仪、测微卡尺、螺旋测微器、电子天平、计时器等。
实验原理,刚体转动惯量是刚体绕固定轴线旋转时所具有的惯性。
对于质量均匀分布的刚体,其转动惯量可以用公式I=Σmiri^2来表示,其中Σmi为刚体上各个质点的质量之和,ri为各质点到转轴的距离。
实验步骤:1. 将实验仪器放置在水平台面上,并调整水平仪使其处于水平状态。
2. 用测微卡尺测量实验仪器上转轴的直径d,并记录下数据。
3. 将刚体放置在转轴上,并用螺旋测微器测量刚体到转轴的距离r,并记录下数据。
4. 用电子天平测量刚体的质量m,并记录下数据。
5. 通过实验仪器上的刻度盘,测量刚体转动的角度θ,并记录下数据。
6. 重复以上步骤,分别在不同的转动角度下进行测量。
实验数据处理:根据实验数据,我们可以计算出刚体的转动惯量。
根据公式I=Σmiri^2,我们可以根据实验数据计算出不同转动角度下的转动惯量,并绘制出转动惯量随角度变化的曲线图。
实验结果分析:通过实验数据处理和曲线图的分析,我们可以得出刚体转动惯量与转动角度之间的关系。
从曲线图可以看出,随着转动角度的增大,刚体的转动惯量也随之增大。
这符合我们对刚体转动惯量的理论预期。
实验结论:通过本次实验,我们成功测定了刚体的转动惯量,并得出了转动惯量随角度变化的规律。
同时,我们也掌握了测定刚体转动惯量的方法和技巧,对刚体转动惯量有了更深入的理解。
实验中还存在一些误差,如实验仪器的精度限制、实验操作技巧等因素都可能对实验结果产生影响。
因此,在今后的实验中,我们需要更加严格地控制实验条件,提高实验操作技巧,以减小误差,提高实验结果的准确性和可靠性。
总之,本次实验对我们深入理解刚体转动惯量的概念和测定方法具有重要意义,为我们今后的学习和科研工作奠定了基础。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
刚体转动惯量实验报告刚体转动惯量实验报告一、实验目的本实验旨在通过测量刚体的转动惯量,探究刚体转动惯量与其质量、形状以及旋转轴位置的关系。
二、实验仪器与材料1. 旋转台:用于支撑和固定刚体实验样品。
2. 金属直尺:用于测量刚体实验样品的几何尺寸。
3. 各种形状的刚体实验样品:如圆柱体、矩形板等。
三、实验原理1. 刚体转动惯量的定义:刚体围绕某个轴的转动惯量,定义为刚体各质点离该旋转轴的距离平方与质量乘积的积分。
2. 转动惯量与质量和质点到旋转轴距离的关系:转动惯量正比于刚体质量和质点到旋转轴距离的平方。
3. 转动惯量与形状的关系:相同质量的刚体,各种形状的转动惯量不同。
四、实验步骤1. 准备各种形状的刚体实验样品,并记录它们的质量和几何尺寸。
2. 将金属直尺水平放置在旋转台上,作为旋转轴。
3. 将刚体实验样品放置在旋转台上,保持其平衡。
4. 轻轻转动旋转台,使刚体实验样品绕旋转轴转动。
5. 观察并记录刚体实验样品转动时的现象,如转动角速度、转动时间等。
6. 根据实验数据计算刚体的转动惯量,并进行数据处理和分析。
五、实验注意事项1. 实验时要小心操作,避免刚体实验样品掉落或发生意外。
2. 在测量刚体实验样品的质量和尺寸时,应尽量准确,避免粗糙测量导致的数据误差。
3. 在转动刚体实验样品时,要平稳均匀地转动,避免产生不必要的摩擦或空气阻力。
六、实验结果与讨论根据实验数据计算得到的刚体转动惯量与实验样品的质量、几何形状以及旋转轴的位置有关。
通过对多组实验数据的处理和分析,可以得出转动惯量与质量和质点到旋转轴距离的平方成正比的结论,并验证转动惯量与形状的关系。
七、结论通过本实验测量和计算得到的刚体转动惯量数据,验证了转动惯量与质量、质点到旋转轴距离和形状之间的关系。
实验结果与理论预期基本一致,说明实验设计和操作的可靠性。
本实验对于理解刚体转动惯量的概念和计算方法具有重要的教学意义。
八、思考题1. 为什么刚体的转动惯量与旋转轴的位置有关?2. 除了质量和形状,还有哪些因素可能会影响刚体的转动惯量?3. 如何提高实验测量刚体转动惯量的精确度?以上为第一篇《刚体转动惯量实验报告》内容,接下来将进行第二篇内容的连续写作。
刚体的转动惯量实验报告刚体的转动惯量实验报告引言:刚体的转动惯量是描述刚体在转动过程中抵抗改变其转动状态的特性。
在物理学中,转动惯量是一个重要的概念,它对于研究刚体的运动以及理解力学原理具有重要意义。
本实验旨在通过测量刚体的转动惯量,验证转动惯量与刚体质量、形状和轴线位置的关系。
实验装置与方法:实验所用的装置包括一个刚体转动惯量测量仪、一个质量盘和一个测力计。
首先,将质量盘安装在转动惯量测量仪的转轴上,并通过测力计将刚体固定在质量盘上。
然后,通过测力计施加一个恒定的力矩,使刚体绕转轴转动。
在转动过程中,记录测力计的示数,并根据转动惯量的定义,计算刚体的转动惯量。
实验结果与分析:在实验中,我们选择了不同形状和质量的刚体进行测量,包括圆盘、长方体和球体。
通过测量转动惯量与刚体质量、形状和轴线位置之间的关系,我们可以得出以下结论。
1. 转动惯量与刚体质量的关系:在实验中,我们保持刚体的形状不变,只改变刚体的质量。
通过测量转动惯量与刚体质量的关系,我们发现转动惯量与刚体质量成正比。
这可以用以下公式表示:I = k * m其中,I表示转动惯量,m表示刚体的质量,k为比例常数。
结果表明,转动惯量随着刚体质量的增加而增加,这是因为刚体质量增加会使刚体的惯性增加,从而增加了转动惯量。
2. 转动惯量与刚体形状的关系:在实验中,我们保持刚体的质量不变,只改变刚体的形状。
通过测量转动惯量与刚体形状的关系,我们发现不同形状的刚体具有不同的转动惯量。
具体而言,对于相同质量的刚体,圆盘的转动惯量最小,球体的转动惯量次之,长方体的转动惯量最大。
这是因为不同形状的刚体分布质量的方式不同,从而影响了刚体的转动惯量。
3. 转动惯量与轴线位置的关系:在实验中,我们保持刚体的质量和形状不变,只改变刚体绕轴线的位置。
通过测量转动惯量与轴线位置的关系,我们发现转动惯量与轴线位置的平方成正比。
这可以用以下公式表示:I = k * r^2其中,I表示转动惯量,r表示轴线到刚体质心的距离,k为比例常数。
刚体转动实验报告实验名称:刚体转动实验实验目的:1.研究刚体绕固定轴线的转动运动规律;2.探究刚体转动惯量的求取方法;3.确定刚体转动惯量与刚体质量、形状以及转动轴位置的关系。
实验原理:1.转动惯量的定义:刚体绕其中一轴线转动时所具有的惯性量。
2.转动惯量的理论求取公式:对于形状对称的刚体,如果其质量分布也是轴对称的,则其转动惯量可由以下公式求得:I = Σmr²其中,I为转动惯量,m为刚体质量,r为质点距离轴线的距离。
3.转动惯量的实验求取方法:通过测量刚体在不同转动轴位置下的转动周期,从而求取转动惯量。
实验仪器:1.弹性系数可调的旋转体;2.转动惯量测量仪;3.计时器;4.游标卡尺及其他测量工具。
实验步骤:1.将待测刚体固定在旋转体上,并将转动轴与刚体轴线重合。
2.调节旋转体的弹性系数,使刚体在旋转体上能够进行转动。
3.在刚体的转动轴上选择一个参考点,并在该参考点上放置一个游标卡尺,用以测量刚体的转动角度。
4.将旋转体以适当的方式启动,并使用计时器测量刚体绕转动轴转动一周所需的时间。
5.将刚体的质量、形状以及转动轴位置分别记录下来,并重新测量转动周期。
6.根据实验数据,计算出刚体在不同转动轴位置下的转动惯量,并绘制转动轴位置与转动惯量之间的关系曲线。
实验数据记录与处理:1. 测量刚体的质量为m = 0.2 kg。
2.通过测量转动周期T和转动轴位置r,计算得到刚体的转动惯量I。
转动轴位置r (m) ,转动周期T (s) ,转动惯量I (kg·m²----------------,--------------,----------------0.05,2.0,0.000.10,3.0,0.000.15,4.0,0.010.20,5.0,0.020.25,6.0,0.03数据处理:1.计算角速度ω和角加速度α:ω=2π/Tα=ω/T2.根据转动轴位置和转动周期计算转动惯量:I=m*r²/α3.绘制转动轴位置与转动惯量之间的关系曲线。
刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。
2、加深对转动惯量概念的理解。
3、掌握使用秒表、游标卡尺、米尺等测量工具。
二、实验原理三线摆是通过三条等长的摆线将一匀质圆盘悬挂在一个水平固定的圆盘上。
当摆盘绕中心轴作微小扭转摆动时,其运动可近似看作简谐振动。
根据能量守恒定律和刚体转动定律,可推导出刚体绕中心轴的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\其中,\(J_0\)为下盘(刚体)的转动惯量,\(m_0\)为下盘质量,\(g\)为重力加速度,\(R\)和\(r\)分别为上下圆盘悬点到中心的距离,\(T_0\)为下盘的摆动周期,\(H\)为上下圆盘间的垂直距离。
三、实验仪器三线摆实验仪、游标卡尺、米尺、秒表、待测圆环。
四、实验步骤1、调节三线摆底座水平,使上、下圆盘处于水平状态。
2、用米尺测量上下圆盘之间的距离\(H\),测量多次取平均值。
3、用游标卡尺测量上下圆盘悬点到中心的距离\(R\)和\(r\),各测量多次取平均值。
4、测量下盘质量\(m_0\)。
5、轻轻转动下盘,使其作微小扭转摆动,用秒表测量下盘摆动\(50\)次的时间,重复测量多次,计算平均摆动周期\(T_0\)。
6、将待测圆环置于下盘上,使两者中心重合,再次测量摆动周期\(T_1\)。
五、实验数据记录与处理1、实验数据记录|测量物理量|测量值|平均值||||||上圆盘悬点到中心的距离\(R\)(mm)|_____|_____||下圆盘悬点到中心的距离\(r\)(mm)|_____|_____||上下圆盘之间的距离\(H\)(mm)|_____|_____||下盘质量\(m_0\)(g)|_____|_____||下盘摆动\(50\)次的时间\(t_0\)(s)|_____|_____||放上圆环后下盘摆动\(50\)次的时间\(t_1\)(s)|_____|_____|2、数据处理(1)计算下盘的摆动周期:下盘摆动周期\(T_0 =\frac{t_0}{50}\)(2)计算下盘的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\(3)计算圆环与下盘共同的转动惯量:\J_1 =\frac{(m_0 + m)gRr^2T_1^2}{4\pi^2H}\其中,\(m\)为圆环的质量。
欢迎阅读
欢迎阅读
实验讲义补充:
1. 刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。
2. 转动惯量概念:转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小和转轴位置
3. 转动定律:合外力矩=转动惯量×角加速度
4. 转动惯量叠加:
空盘:(1)阻力矩(2)阻力矩+砝码外力→J1
空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2
被测物体:J3=J2-J1
5.
6. 3组
7.
8.
9.
10. 11.
12. 1. 2. 3. 误差(1)(注意:直接测量的是直径),x1,x2,x3,x4,x5,x6,i=6,计算x 平均值,
取n=6时的1.05
,我们处理为0 C=1.05,仪器允差0.02mm,δB=0.01905mm
总误差:,ux=0.01905m m
欢迎阅读
欢迎阅读
,u rx=0.01905/11.99=0.1589%
R=11.99mm±0.01905mm
urx=0.1589%
计算转动惯量的结果表示:
,总误差:uJ=,相对不确定=uJ/J 圆环:,同上.
(2)
实验测量计算的误差:。
丈量刚体的转动惯量之五兆芳芳创作实验目的:1.用实验办法验证刚体转动定律,并求其转动惯量;2.不雅察刚体的转动惯量与质量散布的关系3.学习作图的曲线改直法,并由作图法处理实验数据.二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将取得角加快度β,其值与外力矩成正比,与刚体的转动惯量成正比,即有刚体的转动定律:M = Iβ (1)利用转动定律,通过实验的办法,可求得难以用计较办法得到的转动惯量.2.应用转动定律求转动惯量如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成.刚体将在砝码的拖动下绕竖直轴转动.设细线不成伸长,砝码受到重力和细线的张力作用,从静止开始以加快度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at2/2.刚体受到张力的力矩为Tr和轴摩擦力力矩Mf.由转动定律可得到刚体的转动运动方程:Tr - Mf = Iβ.绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:m(g - a)r - Mf = 2hI/rt2 (2)Mf与张力矩相比可以疏忽,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:mgr = 2hI/ rt2 (3)式中r、h、t可直接丈量到,m是试验中任意选定的.因此可按照(3)用实验的办法求得转动惯量I.3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种办法:A.作m – 1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变成:M = K1/ t2 (4)式中K1 = 2hI/ gr2为常量.上式标明:所用砝码的质量与下落时间t的平方成正比.实验中选用一系列的砝码质量,可测得一组m与1/t2的数据,将其在直角坐标系上作图,应是直线.即若所作的图是直线,便验证了转动定律.从m – 1/t2图中测得斜率K1,并用已知的h、r、g值,由K1 = 2hI/ gr2求得刚体的I.B.作r – 1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h为固定值.将式(3)写为:r = K2/ t (5)式中K2 = (2hI/ mg)1/2是常量.上式标明r与1/t成正比关系.实验中换用不合的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应是直线.即若所作图是直线,便验证了转动定律.从r-1/t图上测得斜率,并用已知的m、h、g值,由K2 = (2hI/ mg)1/2求出刚体的I.刚体转动仪,滑轮,秒表,砝码.1.调节实验装置:调节转轴垂直于水平面调节滑轮高度,使拉线与塔轮轴垂直,并与滑轮面共面.选定砝码下落起点到地面的高度h,并保持不变.取塔轮半径为,砝码质量为20g,保持高度h不变,将配重物逐次取三种不合的位置,辨别丈量砝码下落的时间,阐发下落时间与转动惯量的关系.本项实验只作定性说明,不当准据计较.3.丈量质量与下落时间关系:丈量的根本内容是:改换不合质量的砝码,丈量其下落时间t.用游标卡尺丈量塔轮半径,用钢尺丈量高度,砝码质量按已给定数为每个;用秒表记实下落时间.将两个配重物放在横杆上固定位置,选用塔轮半径为某一固定值.将拉线平行环抱纠缠在轮上.逐次选用不合质量的砝码,用秒表辨别丈量砝码从静止状态开始下落到达地面的时间.对每种质量的砝码,丈量三次下落时间,取平均值.砝码质量从5g开始,每次增加5g,直到35g止.用所测数据作图,从图中求出直线的斜率,从而计较转动惯量.丈量的根本内容是:对同一质量的砝码,改换不合的塔轮半径,丈量不合的下落时间.将两个配重物选在横杆上固定位置,用固定质量砝码施力,逐次选用不合的塔轮半径,测砝码落地所用时间.对每一塔轮半径,测三次砝码落地之间,取其平均值.注意,在改换半径是要相应的调节滑轮高度,并使绕过滑轮的拉线与塔轮平面共面.由测得的数据作图,从图上求出斜率,并计较转动惯量.五.实验数据及数据处理:r-1/t 的关系:⨯103-kg 2m ⋅m-(1/t)2的关系:由此关系得到的转动惯量I=231087.1m kg ⋅⨯-六.实验结果:⨯103-kg 2m ⋅;由m-1/t 2的关系得到转动惯量I=231087.1m kg ⋅⨯-.七.实验注意事项:1.仔细调节实验装置,保持转轴铅直.使轴尖与轴槽尽量为点接触,使轴转动自如,且不克不及摇摆,以削减摩擦力矩.2.拉线要环抱纠缠平行而不重叠,切忌乱绕,以防各匝线之间挤压而增大阻力.3.掌控好启动砝码的动作.计时与启动一致,力求避免计时的误差.4.砝码质量不宜太大,以使下落的加快度a不致太大,包管a<<g条件的满足.八.实验思考题:1.定性阐发实验中的随机误差和可能的系统误差.答:随机误差主要出现在计时与启动的一致性上面还有,拉线的平行情况.系统误差主要是轴的摩擦及空气阻力.。
刚体转动惯量的测定实验报告2篇实验一:采用悬挂法测定刚体转动惯量一、实验目的1. 学习测量刚体的质心位置和转轴的位置。
2. 学习借助实验数据推导直线密集分布的质点转动惯量公式。
3. 通过实验学习刚体转动惯量的测量方法。
二、实验原理1. 刚体的转动惯量物体围绕旋转轴转动时,物体的惯性越大,物体的转动越难。
当物体惯性越大时,转动惯量也越大。
物体围绕旋转轴转动时,物体转动惯量的定义为:I = Σmiri²其中,m表示物体的质量,r表示物体的质心离旋转轴的距离。
2. 直线密集分布的质点转动惯量公式一个质量为m,长为L的物体中,满足密集分布的质点,它们的质心离旋转轴的距离为r,那么此物体的转动惯量公式为:I = Σmiri² = mΣri² = m(Σr²)Σr²表示每个质点到旋转轴的距离平方和。
3. 采用悬挂法测定刚体的转动惯量实验使用悬挂法测定刚体的转动惯量,测定步骤如下:(1) 利用细线将物体悬挂在平衡杆上。
(2) 利用相应的杠杆称来测量物体的重量,此时物体的质心在杆的下方。
(3) 将物体沿竖直方向旋转,并用底部的指示器(如图)记录物体的振动周期。
(4) 将物体沿竖直方向旋转,记录下物体在两个位置的转动周期,用于计算旋转轴的位置。
(5) 用距离表测量出物体质心到旋转轴的距离。
(6) 计算物体的转动惯量。
三、实验器材1. 刚体(统一物体):统一吊杆、金属球、转轴、细线、竖直级尺等。
2. 实验仪器和设备:相应的计时器、杠杆称、距离表、指示器等。
3. 实验环境:采用教学实验室。
四、实验步骤和实验数据处理1. 准备工作(1) 将距离表和指针从竖直级尺上挂起,调整它们的位置和高度,以便将它们分别与转动轴和统一吊杆的下端对准。
(2) 将一根平衡杆垂直地悬挂在旋转轴的上方,小球挂在平衡杆下方的细线上。
2. 测量物体质心位置(3) 抬起小球,使其与距离表的指针、旋转轴及统一吊杆的下端对齐。
一、实验目的1. 验证刚体转动定律,通过实验方法测量刚体的转动惯量。
2. 观察刚体的转动惯量与质量分布的关系。
3. 学习使用实验仪器和方法,进行物理量的测量和数据处理。
二、实验原理刚体转动惯量(J)是描述刚体绕某一固定轴转动时,其惯性大小的物理量。
根据转动定律,刚体绕固定轴转动时,其角加速度(α)与作用在刚体上的合外力矩(M)成正比,与刚体的转动惯量成反比,即:\[ M = I \cdot \alpha \]其中,I 为刚体的转动惯量。
对于规则形状的均质刚体,其转动惯量可以通过几何公式直接计算得出。
但对于不规则形状或非均质刚体,其转动惯量一般需要通过实验方法测定。
三、实验仪器1. 刚体转动惯量测量装置(包括:旋转轴、测量台、测速仪、计时器、砝码等)2. 刚体(如圆环、均质杆等)3. 质量测量仪4. 游标卡尺四、实验步骤1. 将刚体放置在测量台上,调整旋转轴使其垂直于刚体的旋转平面。
2. 使用质量测量仪测量刚体的质量(m)。
3. 使用游标卡尺测量刚体的几何尺寸(如半径、长度等)。
4. 将砝码挂在旋转轴上,调整砝码的质量和位置,使其对刚体产生合外力矩。
5. 使用测速仪测量刚体的角速度(ω)。
6. 使用计时器测量砝码下降的时间(t)。
7. 根据实验数据,计算刚体的转动惯量。
五、数据处理1. 计算刚体的角加速度(α):\[ \alpha = \frac{2\pi \cdot \omega}{t} \]2. 计算刚体的转动惯量(I):\[ I = \frac{m \cdot r^2}{2} \]其中,r 为刚体的几何尺寸。
六、实验结果与分析1. 通过实验测量,得到刚体的转动惯量(I)为:_______ kg·m²。
2. 分析实验结果,比较不同刚体的转动惯量,观察质量分布对转动惯量的影响。
3. 分析实验误差,探讨可能的原因。
七、实验总结1. 通过本次实验,成功验证了刚体转动定律,并测量了刚体的转动惯量。
大学物理刚体的转动惯量
的研究实验报告
Prepared on 22 November 2020
大学物理仿真实验报告
电子3班
实验名称:刚体的转动惯量的研究
实验简介
在研究摆的重心升降问题时,惠更斯发现了物体系的重心与后来欧勒称之为转动惯量的量。
转动惯量是表征刚体转动惯性大小的物理量,它与刚体的质量、质量相对于转轴的分布有关。
本实验将学习测量刚体转动惯量的基本方法,目的如下:
1.用实验方法验证刚体转动定律,并求其转动惯量;
2.观察刚体的转动惯量与质量分布的关系
3.学习作图的曲线改直法,并由作图法处理实验数据。
实验原理
1.刚体的转动定律
具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:
M=Iβ(1)
利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量
如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg–t=ma,在t时间内下落的高度为h=at2/2。
刚体受到张力的力矩为T r 和轴摩擦力力矩M f。
由转动定律可得到刚体的转动运动方程:T r-M f=Iβ。
绳与塔轮间无相对滑动时有a=rβ,上述四个方程得到:
m(g-a)r-M f=2hI/rt2(2)
M f与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,
所以可得到近似表达式:
mgr=2hI/rt2(3)
式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量I。
3.验证转动定律,求转动惯量
从(3)出发,考虑用以下两种方法:
A.作m–1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:
M=K1/t2(4)
式中K1=2hI/gr2为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t2的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
从m–1/t2图中测得斜率K1,并用已知的h、r、g值,由K1=2hI/gr2求得刚体的I。
B.作r–1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h为固定值。
将式(3)写为:
r=K2/t(5)
式中K2=(2hI/mg)1/2是常量。
上式表明r与1/t成正比关系。
实验中换用不同的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应是直线。
即若所作图是直线,便验证了转动定律。
从r-1/t图上测得斜率,并用已知的m、h、g值,由K2=(2hI/mg)1/2求出刚体的I。
实验内容
1.调节实验装置:调节转轴垂直于水平面
调节滑轮高度,使拉线与塔轮轴垂直,并与滑轮面共面。
选定砝码下落起点到地面的高度h,并保持不变。
2.观察刚体质量分布对转动惯量的影响
取塔轮半径为,砝码质量为20g,保持高度h不变,将配重物逐次取三种不同的位置,分别测量砝码下落的时间,分析下落时间与转动惯量的关系。
本项实验只作定性说明,不作数据计算。
3.测量质量与下落时间关系:
测量的基本内容是:更换不同质量的砝码,测量其下落时间t。
用游标卡尺测量塔轮半径,用钢尺测量高度,砝码质量按已给定数为每个;用秒表记录下落时间。
将两个配重物放在横杆上固定位置,选用塔轮半径为某一固定值。
将拉线平行缠绕在轮上。
逐次选用不同质量的砝码,用秒表分别测量砝码从静止状态开始下落到达地面的时间。
对每种质量的砝码,测量三次下落时间,取平均值。
砝码质量从5g开始,每次增加5g,直到35g止。
用所测数据作图,从图中求出直线的斜率,从而计算转动惯量。
4.测量半径与下落时间关系
测量的基本内容是:对同一质量的砝码,更换不同的塔轮半径,测量不同的下落时间。
将两个配重物选在横杆上固定位置,用固定质量砝码施力,逐次选用不同的塔轮半径,测砝码落地所用时间。
对每一塔轮半径,测三次砝码落地之间,取其平均值。
注意,在更换半径是要相应的调节滑轮高度,并使绕过滑轮的拉线与塔轮平面共面。
由测得的数据作图,从图上求出斜率,并计算转动惯量。
实验仪器
刚体转动仪,滑轮,秒表,砝码
刚体转动仪:
包括:
A.、塔轮,由五个不同半径的圆盘组成。
上面绕有挂小砝码的细线,由它对刚体施加外力矩。
B、对称形的细长伸杆,上有圆柱形配重物,调节其在杆上位置即可改变转动惯量。
与A和配重物构成一个刚体。
C.、底座调节螺钉,用于调节底座水平,使转动轴垂直于水平面。
此外还有转向定滑轮,起始点标志,滑轮高度调节螺钉等部分
双击刚体转动仪底座下方的旋钮,会弹出底座放大窗口和底座调节窗口,在底座调节窗口的旋钮上点击鼠标左、右键,可以调整底座水平。
在底座放大窗口上单击右键可以转换视角。
滑轮
双击滑轮支架上的旋钮,会弹出滑轮高度调节窗口,在滑轮高度调节窗口的旋钮上点击鼠标左、右键,可以调整滑轮高度。
秒表
实验数据记录和处理
六、实验结论与讨论:
1.物体落时间平方的倒数1/(t)^2与质量m下成线性关系
测量值为
2.物体下落时间的倒数1/t与转动半径成线性关系
测量值为
七:问答题
课后思考题
(1)由实验数据所作的m-(1/t)2图中,如何解释在m轴上存在截距(2)定性分析实验中的随机误差和可能的系统误差。
1.由于细线质量和相对摩擦不可忽略,所有在m为零时,真实质量不为0
2.随机误差在于时间的测量,和系统的调平可能存在问题
系统误差来源于本身的细线质量不可忽略等等。