平抛运动
- 格式:ppt
- 大小:4.10 MB
- 文档页数:16
第二讲:平抛运动一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下的运动.2.性质:平抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解 (1)水平方向:匀速直线运动; (2)竖直方向:自由落体运动. 4.基本规律如图,以抛出点O 为坐标原点,以初速度v 0方向(水平方向)为x 轴正方向,竖直向下为y 轴正方向.(1)位移关系(2)速度关系(3)轨迹方程:h =g2v 02x 25.基本应用例题、如图所示,x 轴在水平地面上,y 轴在竖直方向.图中画出了从y 轴上沿x 轴正方向水平抛出的三个小球a 、b 和c 的运动轨迹.不计空气阻力,下列说法正确的是( )A .a 和b 的初速度大小之比为2∶1B .a 和b 在空中运动的时间之比为(1)飞行时间由t =2hg知,时间取决于下落高度h ,与初速度v 0无关.(2)水平射程x =v 0t =v 02hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. (3)落地速度v =v x 2+v y 2=v 02+2gh ,以θ表示落地速度与水平正方向的夹角,有tan θ=v y v x=2ghv 0,落地速度与初速度v 0和下落高度h 有关. (4)速度改变量因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 是相同的,方向恒为竖直向下,如图所示.(5)两个重要推论①做平抛运动的物体在任意时刻的瞬时速度的反向延长线一例题、如图甲所示是网球发球机,某次室内训练时将发球机放在距地面一定的高度,然后向竖直墙面发射网球.假定网球均水平射出,某两次射出的网球碰到墙面时速度与水平方向夹角分别为30°和60°,若不考虑空气阻力,则( )A.两次发射的初速度大小之比为3∶1定通过此时水平位移的中点,如图所示,即x B =x A2.推导:⎭⎪⎬⎪⎫tan θ=y Ax A -x Btan θ=v yv 0=2y Ax A→x B=x A2①做平抛运动的物体在任意时刻任意位置处,有tan θ=2tan α. 推导:⎭⎪⎬⎪⎫tan θ=v y v 0=gtv 0tan α=y x =gt 2v 0→tan θ=2tan α二、与斜面结合的平抛运动1.顺着斜面平抛(如图)方法:分解位移.x =v 0t ,y =12gt 2,tan θ=y x,可求得t =2v 0tan θg.2.对着斜面平抛(垂直打到斜面,如图) 方法:分解速度.v x =v 0, v y =gt ,tan θ=v x v y =v 0gt,可求得t =v 0g tan θ.三、斜抛运动1.定义:将物体以初速度v 0斜向上方或斜向下方抛出,物体只在重力作用下的运动.2.性质:斜抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解(1)水平方向:匀速直线运动;(2)竖直方向:匀变速直线运动.例题、某同学在练习投篮时将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直放置的篮板上,运动轨迹如图所示,不计空气阻力,关于这两次篮球从抛出到撞击篮板的过程( )4.基本规律(以斜上抛运动为例,如图所示)(1)水平方向:v 0x =v 0cos θ,F 合x =0;做匀速直线运动,v 0x =v 0cos θ,x =v 0tcos θ. (2)竖直方向:v 0y =v 0sin θ,F 合y =mg .做竖直上抛运动,v 0y =v 0sin θ,y =v 0tsin θ-12gt2四、类平抛运动1.类平抛运动物体受到与初速度垂直的恒定的合外力作用时,其轨迹与平抛运动相似,称为类平抛运动.类平抛运动的受力特点是物体所受合力为恒力,且与初速度的方向垂直.2.类平抛运动问题的求解技巧(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性.(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a 分解为a x 、a y ,初速度v 0分解为v x 、v y ,然后分别在x 、y 方向上列方程求解.针对训练题型1:平抛运动性质例题、如图所示的光滑斜面ABCD 是边长为l 的正方形,倾角为30°,一物块(视为质点)沿斜面左上方顶点A 以平行于AB 边的初速度v 0水平射入,到达底边CD 中点E ,则( )A .初速度2glB .初速度4glC .物块由A 点运动到E 点所用的时间2lt g= D .物块由A 点运动到E 点所用的时间lt g=1.关于平抛运动的性质,以下说法中正确的是()A.变加速运动B.匀变速运动C.匀速率曲线运动D.不可能是两个直线运动的合运动2.人站在平台上平抛一小球,球离手时的速度为v1,落地时速度为v2,不计空气阻力,下列图中能表示出速度矢量的演变过程的是()A.B.C.D.题型2:平抛运动规律3.如图所示,从A、B、C三个不同的位置向右分别以v A、v B、v C的水平初速度抛出三个小球A、B、C,其中A、B在同一竖直线上,B、C在同一水平线上,三个小球均同时落在地面上的D点,不计空气阻力。
高中物理平抛运动一.平抛运动的定义:水平抛出的物体只在重力作用下的运动。
二.平抛运动的条件:1.水平初速度。
2. 只受重力。
三.平抛运动的性质:匀变速(即加速度恒定,为重力加速度 g)曲线(看轨迹)运动。
21四.平抛运动的处理方法变曲线为直线,将合运动分解为两个方向的分运动,然后两个方向单独分析。
(两个分运动具有等时性又将两个方向联系在一起)1.水平方向:由于不受外力,所以做匀速直线运动。
2.竖直方向:只受重力,所以是匀加速直线运动。
(自由落体)五.公式速度:V 水 =V0水平方向位移:S 水=V0t 具有等时性, t 相等1.速度:V 竖 =gt竖直方向位移:S 竖=gt2/2注意:虽然两个方向都可用来计算时间 t,但平抛运动在空中运动的时间只由竖直方向的高度 h决定。
2.合速度,合位移V 合=√ V水 2+V 竖 2= √ V02+ (gt) 2 S 合=√ S水 2+S 竖2 =√(V0t)2 +(gt2/2)2 3.偏角tg θ = V竖/V 水 = gt/V 0 θ弯曲方式:由初速度偏向加速度。
合速度只能无限接近竖直方向但不可能 V 水完全变为竖直方向。
V 竖 V 合六.平抛运动的几种题型。
例 10.以 10 米/秒的水平初速度抛出的物体,飞行一段时间后,垂直地撞在倾角为 30 度的斜面上,则物体飞行时间是多少?( g=10 米/秒 2) V0 例 11.倾角为θ的斜面上以初速度 V0 水平抛出一物体,飞行时间是多少后物体离斜面的距离最远?V 0 例 12.倾角为θ的斜面上以初速度 V0 水平抛出一物体,飞行一段时间后物体又落回斜面上,则小球的位移大小是多少?V0第四节匀速圆周运动一.匀速圆周运动的定义:在任意相等的时间内通过的圆弧长度都相等的圆周运动。
22二.匀速圆周运动的特点:1.轨迹是圆。
2.匀速圆周运动是一种周期性运动,具有重复性,但不是平衡状态。
3.速度大小(速率)不变,但速度方向时刻变化,是变速运动。
平抛运动的规律与典型例题分析一. 平抛运动的条件1.平抛运动的初始条件:物体拥有水平初速度 V 02.平抛运动的受力特色:只受重力:F=mg(实质问题中阻力远远小于重力,能够简化为只受重力)3.平抛运动的加快度: mg=mα,α=g,方向竖直向下,与质量没关,与初速度大小没关4.平抛运动的理论推理:水平方向—— x :物体不受外力,依据牛顿第必定律,水平方向的运动状态保持不变,水平方向应做匀速直线运动, V x=V0.竖直方向——y:初速度为 0,只受重力,加快度为g,做自由落体运动, V y=gt .二 . 平抛运动的规律如左图所示,以抛出点为坐标原点,沿初速度方向成立x 轴,竖直向下为y 轴.在时间t 时,加快度:α=g,方向竖直向下,与质量没关,与初速度大小没关;平抛运动速度规律:速度方向与水平方向成θ 角平抛运动位移规律:位移方向与水平方向成α 角平抛运动的轨迹方程:为抛物线平抛运动在空中飞翔时间:,与质量和初速度大小没关,只由高度决定平抛运动的水平最大射程:由初速度和高度决定,与质量没关三. 平抛运动的观察知识点与典型例题1.平抛运动定义的观察例题:飞机在高度为 0.8km 的上空,以 2.5 ×10 2 km/h 的速度水平匀速飞翔,为了使飞机上投下的炮弹落在指定的轰炸目标,应当在离轰炸目标的水平距离多远处投弹?分析:设炮弹走开飞机后做平抛运动,在空中飞翔时间为:,炮弹走开飞机后水平位移答案:炮弹走开飞机后要在空中水平飞翔0.9km ,因此要在离轰炸目标0.9km 处投弹问题睁开:轰炸定点目标;轰炸运动目标;飞车跨壕沟等问题研究方法同样2.平抛运动中模型规律观察例题:一架飞机水平匀速飞翔从飞机上每隔一秒开释一个炮弹,不计空气阻力在它们落地之前,炮弹()A、在空中任何时辰老是排成抛物线,它们的落地址是等间距的B、在空中任何时辰老是排成抛物线,它们的落地址是不等间距的C、在空中任何时辰老是在飞机的正下方排成竖直直线,它们的落地址是等间距的D、在空中任何时辰老是在飞机的正下方排成竖直直线,它们的落地址是不等间距的分析:炮弹走开飞机时,拥有和飞机共同的水平初速度,在空中做平抛运动.相关于地面,每一个炮弹在空中的轨迹为抛物线,但在空中的几个炮弹自己其实不排成抛物线.因为它们与飞机的水平速度同样,因此相关于飞机,它们都做自由落体运动,总在飞机的正下方,排成竖直直线.答案:C3.平抛运动试验的观察例题:如何用平抛运动知识丈量子弹的初速度?分析:子弹初速度相当大,水平射程相当远,假如丈量实质水平射程很不方便,且因为空气阻力影响,将出现较大的丈量偏差.能够记录子弹的初始地点,如右图所示,在离枪口必定的距离上,竖直放一块厚纸板,用枪将子弹水平射出,丈量枪口到地面的高度H、子弹在纸板上留下的弹孔到地面的距离h、枪口到纸板的水平距离x.将子弹在不太长时间内的运动当作是平抛运动.则子弹竖直方向的位移为H-h,由自由落体运动关系水平位移联立求解得:4.平抛运动中合速度与两个分速度的关系例题:一个物体以初速度V 0水平抛出,落地时速度的大小为V ,则运动时间为()分析:末速度与初速度不在同一个方向上,不可以用代数方法运算.物体在竖直方向做自由落体运动,在竖直方向的速度比重力加快度才是运动时间,不可以用末速度与重力加快度的比值求时间.由矢量的合成分解关系:如左图所示,竖直分速度答案:C。
(完整版)平抛运动的知识点总结平抛运动是一种常见的物理现象,它涉及到物体在重力作用下沿水平方向以恒定速度运动的情况。
以下是平抛运动的关键知识点总结:1. 基本概念:- 平抛运动是指物体在水平方向上以初速度抛出,同时受到竖直方向重力加速度(g)作用的运动。
- 这种运动可以看作是水平方向的匀速直线运动和竖直方向的自由落体运动的叠加。
2. 运动方程:- 水平方向:$x = v_{0x}t$,其中$v_{0x}$是水平方向的初速度,$t$是时间。
- 竖直方向:$y = v_{0y}t - \frac{1}{2}gt^2$,其中$v_{0y}$是竖直方向的初速度(在纯平抛运动中通常为0),$g$是重力加速度。
3. 速度和位移:- 水平方向的速度保持不变,为$v_{0x}$。
- 竖直方向的速度随时间变化,为$v_{y} = gt$。
- 总速度$v$可以通过速度分量合成得到,使用勾股定理:$v =\sqrt{v_{0x}^2 + v_{y}^2}$。
- 位移分量同样可以通过水平和竖直方向的位移合成得到。
4. 运动时间:- 平抛运动的最大高度由公式$h = \frac{1}{2}gt^2$给出,解出时间$t = \sqrt{\frac{2h}{g}}$。
- 物体落地时间是指从抛出到落地的时间,可以通过竖直位移来计算。
5. 能量分析:- 动能:物体在水平和竖直方向上的动能分别为$K_x =\frac{1}{2}m v_{0x}^2$和$K_y = \frac{1}{2}m v_{y}^2$,总动能为两者之和。
- 势能:由于竖直方向的初速度通常为0,物体在初始时刻的势能为$E_p = mgh$,其中$h$是初始高度。
6. 实验验证:- 平抛运动可以通过实验来验证,例如使用高速摄像机捕捉物体的运动轨迹,或者通过测量不同时间点的位置来计算速度和加速度。
7. 应用场景:- 平抛运动的原理广泛应用于各种领域,如体育运动中的投掷项目、军事中的炮弹发射等。
物理平抛运动知识点1. 平抛运动定义平抛运动(Horizontal Projectile Motion)是指物体在水平方向上以一定的初速度抛出,同时受到重力作用,在竖直方向上做自由落体运动的一种运动。
在理想情况下,空气阻力被忽略不计。
2. 初速度和末速度在平抛运动中,物体的初速度(v0)是水平方向的速度,末速度(vf)是物体落地时的速度。
末速度可以通过初速度和竖直方向上的速度(gt)合成得到,其中g是重力加速度,t是物体运动的时间。
3. 速度合成与分解物体在水平方向上的速度保持不变,即v0。
竖直方向上的速度随时间线性增加,即v_y = gt。
物体的末速度可以通过以下公式计算:vf = √(v0² + v_y²) = √(v0² + (gt)²)4. 运动时间物体的运动时间由高度决定,可以通过公式t = √(2h/g)计算,其中h是物体的初始高度。
5. 水平位移物体在水平方向上的位移(x)可以通过公式x = v0 * t计算。
6. 竖直位移物体在竖直方向上的位移(y)可以通过公式y = 1/2 * g * t²计算。
7. 能量守恒在平抛运动中,物体的机械能(动能和势能之和)是守恒的。
初始时,物体只有势能(mgh),运动过程中转化为动能(1/2 * mv²)。
8. 角速度和周期如果物体在平抛运动中绕某点做圆周运动,其角速度(ω)可以通过公式ω = v/r计算,其中r是物体到旋转中心的距离。
周期(T)可以通过公式T = 2π/ω计算。
9. 抛体运动的实验验证通过实验可以验证平抛运动的相关公式和理论。
实验可以使用小型物体从一定高度水平抛出,通过测量水平位移和竖直位移,以及计算运动时间来验证上述公式。
10. 应用场景平抛运动的原理广泛应用于各种领域,如体育运动(篮球投篮、足球射门)、军事(炮弹发射)、航空航天(卫星轨道设计)等。
以上是关于物理平抛运动的知识点概述。
5.2 抛体运动的规律一、平抛运动:将物体以必定的初速度沿_水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动,叫做平抛运动。
1、受力特色:只受重力,因此加快度为重力加快度,加速度方向竖直向下。
2、性质:是加快度为重力加快度的匀变速曲线曲线运动。
二、运动规律1、水平方向上受力为零, 因此做匀速直线运动运动。
故水均分速度 v xv 0 ,分位移 x v 0 t 。
2、竖直方向上只受重力,且初速度为零。
因此做自由落体运动运动。
故竖直分速度 v y gt ,分位移 y1 gt 223、合运动:速度大小v t2 2v 02(gt )2v y gt v xv y方向 tanv 0v 02 2212 2 y 1gt24、合位移大小 S2gtxy(v 0t )(gt )方向 tanv 0t 2v 02x三、平抛运动的几个结论1、运动时间h 1 gt 2 → t2h 落地时间由着落的高度h 决定 .2 g2、落地的水平距离 x v 0t v 0 2hv 0和 h 共同决定 .g 水平位移由3、落地时的速度 v t v x 2v y2v 02 2gh 落地速度由 v 0和 h 共同决定 .4、相等时间间隔t 内抛体运动的速度改变量同样 . v gt , 方向竖直向下 .5、速度方向偏转角与位移方向偏转角的关系v y gt1gt 2gttantan2 tan2 tanv xv 0v 0t2v 0PAPAAO 2 AOO ′是 AO 中点。
AO 2AO【切记】:速度方向的反向延伸线与X 轴的交点为水平位移的中点5.4 圆周运动1.描绘圆周运动的物理量( 1)线速度①线速度的大小:做圆周运动的物体经过的弧长与所用时间的比值叫线速度。
②物理意义:描绘质点沿圆周运动的快慢 .③线速度的大小计算公式v s ,则运动的弧长为2 R ,因此此假如时间是一个周期(一个圆周)2 R t时线速度的公式为 v。
T④线速度的方向:圆周上该点的切线方向,时辰与半径垂直。
第3节平抛运动一、平抛运动的认识 1.定义把物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动。
2.特点(1)受力特点:只受重力。
(2)运动特点:初速度水平,加速度为g ,方向竖直向下。
3.性质为匀变速曲线运动。
4.实验探究⎩⎪⎨⎪⎧水平方向:不受力,做匀速直线运动竖直方向:只受重力,做自由落体运动 二、平抛运动的规律 1.水平方向以初速度v 0做匀速直线运动,v x =v 0,x =v 0t 。
2.竖直方向做自由落体运动,v y =gt ,y =12gt 2。
下落时间:t =2yg ,t 只与下落高度y 有关,与其他因素无关。
1.物体以某一初速度水平抛出,不考虑空气阻力,物体只在重力作用下的运动叫平抛运动。
2.平抛运动是匀变速曲线运动,水平方向做匀速直线运动,x =v 0t ,竖直方向做自由落体运动,y =12gt 2。
3.平抛运动在空中运动时间由竖直高度决定,水平位移由竖直高度和水平初速度共同决定。
1.自主思考——判一判(1)平抛运动的速度、加速度都随时间增大。
(×)(2)平抛运动物体的速度均匀变化。
(√)(3)平抛运动不是匀变速曲线运动。
(×)(4)平抛物体的初速度越大,下落得越快。
(×)(5)平抛运动的初速度可以不沿水平方向。
(×)2.合作探究——议一议(1)体育运动中投掷的链球、铅球、铁饼、标枪等,都可以看成是抛体运动吗?都可以看成是平抛运动吗?图3-3-1提示:链球、铅球、铁饼、标枪等,若被抛出后所受空气阻力可忽略不计,可以看成是抛体运动。
它们的初速度不一定沿水平方向,所以它们不一定是平抛运动。
(2)两个小金属球同时从同一高度开始运动,不计空气阻力,A球自由落体,B球平抛运动,两球下落过程中的高度位置相同吗?为什么?提示:相同;A、B两球在竖直方向上的运动情况完全相同,从同一高度同时进行自由落体运动,因此,在下落过程中的高度位置始终相同。
99. 什么是平抛运动?它的计算方法是什么?一、关键信息1、平抛运动的定义2、平抛运动的特点3、平抛运动的计算方法4、平抛运动的相关公式二、协议内容11 平抛运动的定义平抛运动是指物体以一定的初速度沿水平方向抛出,仅在重力作用下所做的曲线运动。
111 平抛运动的条件物体具有水平初速度,且仅受到重力作用。
112 平抛运动的性质平抛运动是匀变速曲线运动,加速度恒为重力加速度 g,方向竖直向下。
12 平抛运动的特点121 水平方向物体在水平方向上不受力,做匀速直线运动,速度保持不变。
122 竖直方向物体在竖直方向上只受重力作用,做自由落体运动,加速度为 g。
13 平抛运动的计算方法131 水平方向的计算水平位移:x = v₀t ,其中 v₀为水平初速度,t 为运动时间。
132 竖直方向的计算竖直位移:y = 1/2gt²,竖直速度:v_y = gt 。
133 合速度与合位移的计算合速度:v =√(v₀²+ v_y²) ,合位移:s =√(x²+ y²) 。
134 速度方向与位移方向的计算速度方向与水平方向夹角的正切值:tanθ = v_y / v₀,位移方向与水平方向夹角的正切值:tanα = y / x 。
14 平抛运动的相关公式141 飞行时间t =√(2h / g) ,其中 h 为竖直下落的高度。
142 水平射程x = v₀√(2h / g) ,取决于初速度和下落高度。
143 轨迹方程y =(g / 2v₀²)x²,反映了平抛运动物体在水平和竖直方向上的运动关系。
总之,平抛运动是一种常见的曲线运动,通过对其定义、特点、计算方法和相关公式的理解和掌握,可以更好地分析和解决与平抛运动相关的物理问题。
在实际应用中,平抛运动的原理广泛应用于体育运动、军事射击、工程施工等领域。
物理必修二平抛知识点总结1. 平抛运动简介平抛运动是指物体在水平方向上做匀速直线运动的过程。
在平抛运动中,物体沿着水平方向运动,同时在竖直方向上受到重力的影响,导致物体做抛物线运动。
平抛运动是物理学中的一个基础课题,其运动规律和性质在现实生活和科学研究中有着广泛的应用。
2. 平抛运动的基本参数在进行平抛运动的分析时,需要了解以下几个基本参数:(1)初速度(vi):平抛运动开始时物体沿着水平方向的速度。
(2)水平速度(Vx):物体在整个平抛运动过程中,其水平方向上的速度保持不变。
(3)竖直速度(Vy):受重力的影响,物体在竖直方向上的速度会发生变化,最终竖直速度为零。
(4)加速度(a):由于受到重力的作用,物体在竖直方向上有一个恒定的加速度,即重力加速度 g。
(5)高度(h):物体在平抛运动过程中到达的最大高度。
(6)时间(t):物体从平抛运动开始到达最大高度所经历的时间。
(7)飞行时间(T):物体在平抛运动过程中在空中停留的总时间。
3. 平抛运动的基本公式(1)水平速度:物体在平抛运动中的水平速度始终保持不变。
Vx = vi(2)竖直速度:物体在平抛运动中的竖直速度随时间变化。
Vy = vi - gt当物体达到最高点时,竖直速度为零。
0 = vi - gt_max(3)高度:物体的最大高度取决于初速度和重力加速度。
h = (vi^2 * sin^2θ )/ (2g), h_max = (vi^2 * sin^^2θ)/(2g)(4)时间:物体达到最大高度所需的时间是竖直速度达到零时的时间。
t = (vi * sinθ)/g(5)飞行时间:物体从抛出到落地总共经历的时间。
飞行时间是竖直速度变为零的两倍。
T = (2vi * sinθ)/g4. 平抛运动与斜抛运动的区别平抛运动和斜抛运动都是抛体运动的特殊情况,它们有着一些共性,也有着明显的不同之处。
(1)共性:平抛运动和斜抛运动都是在水平方向上做匀速直线运动,在竖直方向上受到重力的作用从而做抛物线运动。