第2章 简单回归模型
- 格式:pdf
- 大小:511.86 KB
- 文档页数:5
~除了x 以外影响y 的因素?~y 和x 的函数关系?~何以确定在其他条件不变的情况下刻画了y 和x 的关系由以上得简单线性模型(simple linear regression model ):y = b0+ b1x + u (2.1)y :因变量x :自变量u :误差项(干扰项),即“观测不到的”因素(该模型没有限制x 和u 的关系,因此不能说明x 对y 的影响2.4节是如何解决x 的初始值不同时,同样变化量对y 的影响的?E(u) = 0 (2.5)(代价:方程中要包含截距b0 因为这样可以通过微调截距项来使第一个假定一定成立对u 做的第一个假定:E(u|x) = E(u)(2.6)(前提:u 和x 是随机变量均值独立假定(任何给定x 下u 的平均值都一样):E(u|x)= 0 (2.7)结合均值独立与均值为0,得零条件期望假定:E(y|x) = b0 + b1x (2.8)(E(y|x)称为总体回归函数(population regression function ,PRF ),说明了y 的均值是如何随着x 的变动而变动的结合方程(2.1)和假定(2.7)得条件均值函数:一、y 和x关系的起点随机变量:具有数值特征并由一个实验决定其结果的变量•(是为了解决协方差受度量单位影响的问题,是协方差的改进)(u 和x 不相关,u 也能和x ²相关,对于大部分回归不行)相关系数(仅衡量线性相关程度):•yi = b0 + b1xi + ui (2.9)抽取一个容量为n 的随机样本E(u)=0 (2.10)利用Cov(x,u)=E(xu)=0 (2.11)和假定(2.6)得:E(y –b0 –b1x) = 0 (2.12)E[x(y –b0 –b1x)] = 0 (2.13)因此方程(2.10)和(2.11)可写为在样本中就对应和(2.14)(2.15)结合(2.9)的均值形式(2.16)可以解出参变量(实际上就是矩法估计)( )(前提:分母大于0,即样本中所有x 不完全相等(含义:若样本中x 和y 正相关,则斜率系数为正二、普通最小二乘法(如何估计参变量)协方差:•不相关和协方差=0可互推,但不一定独立,独立一定不相关•矩法估计:利用要估计的参数与某种均值的关系,用样本矩 代替总体矩u 的解法。
第二章 简单线性回归模型第一节 回归分析与回归方程一、回归与相关 1、变量之间的关系(1)函数关系:()Y f X =,其中Y 为应变量,X 为自变量。
(2)相关关系或统计关系:当一个变量X 或若干个变量12,,,k X X X 变化时,Y 发生相应的变化(可能是不确定的),反之亦然。
在相关关系中,变量X 与变量Y 均为不确定的,并且它们之间的影响是双向的(双向因果关系)。
(3)单向因果关系:(,)Y f X u =,其中u 为随机变量。
在计量经济模型中,单一线性函数要求变量必须是单向因果关系。
在(单向)因果关系中,变量Y 是不确定的,变量X 是确定的(或可控制的)。
要注意的是,对因果关系的解释不是靠相关关系或统计关系来确定的,并且,相关关系与统计关系也给不出变量之间的具体数学形式,而是要通过其它相关理论来解释,如经济学理论。
例如,我们说消费支出依赖于实际收入是引用了消费理论的观点。
2、相关关系的类型 (1) 简单相关 (2) 复相关或多重相关 (3) 线性相关 (4) 非线性相关 (5) 正相关 (6) 负相关 (7) 不相关3、用图形法表示相关的类型上述相关类型可直观地用(EViews 软件)画图形来判断。
例如,美国个人可支配收入与个人消费支出之间的相关关系可由下列图形看出,它们为正相关关系。
15002000250030003500150020002500300035004000PDIP C E其中,PDI 为(美)个人可支配收入,PCE 为个人消费支出。
PDI 和PCE 分别对时间的折线图如下PROFIT 对STOCK 的散点图为05010015020025050100150STOCKP R O F I T其中,STOCK 为(美)公司股票利息,PROFIT 为公司税后利润,表现出明显的非线性特征。
以下是利润与股息分别对时间的序列图(或称趋势图)05010015020025020406080100120140GDP 对M2的散点图为02000040000600008000010000050000100000150000M2G D P其中M2为(中国)广义货币供应量,GDP 为国内生产总值。