进气系统的结构和原理3
- 格式:ppt
- 大小:155.00 KB
- 文档页数:41
进气系统实习报告一、实习背景作为一名汽车工程专业的学生,我深知进气系统在汽车运行过程中的重要性。
为了更好地了解进气系统的结构和原理,提高自己的实践操作能力,我利用暑假期间在一家汽车维修厂进行了进气系统实习。
二、实习内容1. 进气系统的结构了解在实习过程中,我首先对进气系统的结构进行了了解。
进气系统主要包括空气滤清器、进气歧管、节气门、进气道、涡轮增压器等部件。
空气滤清器用于过滤空气中的灰尘和杂质,保证清洁的空气进入发动机;进气歧管将空气滤清器过滤后的空气分配到各个气缸;节气门用于调节进气量,控制发动机的转速;进气道起到引导空气进入气缸的作用;涡轮增压器则用于提高进气压力,增加发动机的输出功率。
2. 进气系统的维护与检修在实习过程中,我参与了进气系统的维护与检修工作。
主要包括以下几个方面:(1)检查空气滤清器的清洁程度,如有需要则进行更换;(2)检查进气歧管、节气门、进气道等部件的连接情况,确保密封良好;(3)检查涡轮增压器的工作状态,如有异常则进行维修或更换;(4)使用诊断仪器检测进气系统的故障代码,并根据故障代码进行相应的检修。
3. 进气系统的故障分析与排除在实习过程中,我学会了如何分析进气系统的故障原因,并采取相应的排除措施。
常见的进气系统故障现象有发动机油耗增加、动力下降、怠速不稳等。
故障原因可能包括空气滤清器堵塞、进气部件漏气、节气门故障等。
针对这些故障现象,我会根据实际情况进行排查,找出故障原因,并采取相应的修复措施。
三、实习收获通过进气系统实习,我对进气系统的结构和原理有了更深入的了解,掌握了进气系统的维护、检修和故障排除方法。
此外,实习过程中,我还学会了如何与同事沟通协作,提高工作效率。
以下是我在实习过程中的一些收获:1. 理论联系实际:通过实习,我将所学的进气系统理论知识与实际操作相结合,使自己对进气系统有了更全面的认识。
2. 提高动手能力:在实习过程中,我积极参与进气系统的维护与检修工作,提高了自己的动手能力。
发动机进气系统工作原理
发动机进气系统的工作原理是通过将外部空气引入发动机内部,与燃料混合后进行燃烧来产生动力。
具体步骤如下:
1. 空气滤清器:进气系统的第一道防线,阻止灰尘、污染物和颗粒物进入发动机。
空气通过滤清器的纤维材料,污染物得到过滤。
2. 进气管道:空气从滤清器进入发动机的进气管道,管道内通常有吸气节流板或调节阀门,用于控制进气量。
3. 进气门:进气门是发动机的一个关键部件,它们负责打开和关闭进气道。
通常,发动机的进气门与凸轮轴相连,凸轮轴转动时,进气门以特定的时间和顺序打开和关闭。
4. 气缸:空气通过进气门进入到气缸内。
汽油发动机通过化油器或直接喷油器向气缸内喷入燃料,而柴油发动机通过高压喷油泵将燃料喷射到气缸内。
5. 缸内混合:在气缸内,空气与燃料混合,形成可燃混合物。
这个过程是通过气缸内的活塞上升或下降来实现的。
6. 点火:混合物被点火,产生爆炸燃烧。
汽油发动机通过火花塞点火,而柴油发动机通过高压喷油器的喷油压力点火。
7. 回气:燃烧后的废气通过排气门排出气缸,进入排气系统。
8. 循环:发动机循环开始新的工作循环,进气门再次打开,新的空气被吸入气缸,进入下一个燃烧过程。
总结起来,发动机进气系统工作原理是通过空气滤清器过滤空气,进入进气管道,通过进气门进入气缸与燃料混合后燃烧,产生动力。
柴油发动机原理及结构介绍一、柴油发动机的工作原理1.进气:柴油发动机通过进气门,将空气引入气缸内。
进气门一般位于气缸盖上,通过曲轴的运动来控制开启和关闭。
2.压缩:进气行程结束后,活塞开始向上运动,将进气的空气压缩到高压状态。
柴油发动机的压缩比相较于汽油发动机更高,通常为15:1到25:1之间。
3.燃烧:当活塞接近顶点时,喷油器向气缸内喷入高压燃油雾化,并与高温高压空气混合。
燃料的自燃温度较低,所以柴油发动机不需要火花塞点火,而是依靠高温高压空气自燃。
4.排气:燃烧完成后,废气通过排气门排出。
排气门位于气缸盖上,通过曲轴的运动来控制开启和关闭。
二、柴油发动机的结构1.进气系统:进气系统由进气管、进气门、进气滤清器等组成,主要用于将空气引入发动机。
同时,进气系统还包括增压器或涡轮增压器,用于增加进气气流的压力和密度,提高发动机的效率。
2.燃油系统:燃油系统负责将柴油喷入气缸中进行燃烧。
燃油系统包括燃油泵、喷油器、燃油滤清器等。
燃油泵负责将柴油从燃油箱中抽取并压力增加,然后通过高压油管输送给喷油器。
喷油器将高压燃油喷入气缸中,形成可燃的雾化燃料。
3.气缸和活塞:柴油发动机通常具有多个气缸,每个气缸内有一个活塞。
活塞在气缸内上下运动,通过连杆将动力传递给曲轴。
气缸内的活塞、气缸套、气门等都是由耐磨耗材料制成,以承受高压和高温的工作环境。
4.曲轴机构:柴油发动机的曲轴机构通过活塞和连杆将气缸的直线运动转化为曲轴的旋转运动。
曲轴由多个连杆与曲轴销连接而成,曲轴的旋转运动通过凸轮轴驱动气门开关等其他系统运动,实现发动机的各项功能。
总结:柴油发动机通过高压高温空气和燃料的混合燃烧,实现了能量的转化和传递。
它相较于汽油发动机,具有燃油效率高、扭矩大、持久耐用等优点,被广泛应用于各种车辆和机械设备中。
柴油发动机的结构复杂,由多个系统组成,各个部件的协调工作使其能够稳定可靠地运行。
发动机进气和排气的原理
发动机的进气和排气是引擎操作的两个重要过程,这两个过程共同构成了发动机的工作循环。
下面将介绍发动机进气和排气的基本原理。
1. 进气过程:
在进气过程中,发动机通过进气系统从外界吸入空气。
主要的功能是提供支持燃烧所需的氧气。
以下是进气过程的基本原理:
- 进气门打开:进气门开启时,发动机的活塞处于下行冲程。
活塞向下运动,气缸内的气体排出,以清除上一个工作周期剩余的废气。
- 进气阀门关闭:当活塞到达上止点之前,进气阀关闭。
这样,气缸内的气体被封闭,形成一个密封空间。
- 进气回路形成:进气门关闭后,活塞继续向下运动,气缸内的体积增大,形成负压。
负压将气缸连接的进气道中的空气吸入气缸中。
- 燃油喷射:当进气阀关闭后,燃油喷射器将燃油喷入气缸内,与进入的空气混合形成可燃混合气。
- 进气门关闭:当活塞向上运动时,进气门关闭,封闭气缸中的混合气体。
2. 排气过程:
在排气过程中,发动机通过排气系统将燃烧产生的废气排出。
以下是排气过程的基本原理:
- 排气门打开:活塞到达上止点时,排气门打开。
废气开始从气缸内排出。
- 排气阀门关闭:在排气门打开的同时,进气门关闭,防止新鲜空气进入气缸。
- 排气管排气:废气通过排气管排出发动机,并进入排气系统,最终排到车辆的尾气中去。
通过这种进气和排气的循环,发动机能够不断吸入新鲜空气来支持燃烧,并将废气排出,使发动机能够持续高效地工作。
发动机进气系统工作原理发动机是车辆运行的动力源,而进气系统则是发动机获取燃料所必备的过程之一。
发动机进气系统的工作原理是如何去促进燃油的燃烧,提高发动机出力,来保证汽车的高效运行的呢?下面,笔者将详细介绍发动机进气系统的工作原理。
首先,我们需要明确发动机进气系统的基础结构。
发动机进气系统主要由进气管、空气过滤器、节气门和进气歧管等组成。
其中,进气管是介绍外界空气进入发动机的通道,空气过滤器用来过滤进入发动机的空气,确保发动机运行时的空气清新,节气门用来调节进入发动机的空气量,进气歧管用来将进入发动机的空气进行分流。
二、工作原理发动机进气系统的工作原理大体可以分为三个步骤:氧气的吸入、混合氧气和燃油、燃油的燃烧。
下面我们将分别进行阐述。
(一)氧气的吸入发动机进气系统的第一步是吸入外界空气,以获取空气中的氧气。
当发动机启动后,气缸内部会形成低压区域,进气管通过这个低压区域将外界空气引入气缸,接着空气过滤器过滤空气,将过滤后的新鲜空气通过进气管引入车内引擎。
同时,进气管内的节气门会根据驾驶员的踏板控制而调节空气的进入量。
(二)混合氧气和燃油发动机进气系统的第二步是混合氧气和燃油。
当氧气被引入气缸内后,它就需要与汽油混合,形成可燃气体。
碳氢化合物是燃料的主要成分,它会在吸气阀中被喷入汽缸,与空气混合,形成高压燃气,从而产生更大的推力。
(三)燃油的燃烧发动机进气系统的第三步是将混合气体点燃,进行燃烧。
当氧气和燃油混合后,燃料必须被点燃才能产生燃烧。
为了点燃混合气体,发动机会设置点火器。
一系列的反应过程随之展开。
混合气体在氧气的作用下开始燃烧,燃烧产生的能量使汽缸内部的温度和压力升高,推动活塞往下运动,从而转化为车轮的动力。
三、总结发动机进气系统的工作原理是车辆运行的重要部分之一。
它以吸入氧气、混合氧气和燃油、燃油燃烧三个步骤为主要过程,保证发动机的空气流通,提高品质、增加效率和过滤吸入进入发动机的微粒。
只有当发动机进气系统正常地工作时,才能达到高效的发动机输出,从而保证汽车的高效运行。
柴油机进气系统的原理柴油机进气系统是指整个系统中负责将空气引入到燃烧室中的部件和设备。
这个系统的主要目的是通过引入足够的空气来支持燃烧,并在燃烧室中形成足够的压力,以确保发动机能够正常运转。
在本文中,我们将深入探讨柴油机进气系统的工作原理,包括各个部件的完成的功能。
总体来说,柴油机进气系统由以下三个部分组成:空气滤清器、进气歧管和进气门。
下面我们将逐一介绍每个部分的功能和重要性。
空气滤清器空气滤清器是柴油机进气系统的首要部件。
它的主要功能是过滤空气,以清除空气中的灰尘、沙、虫子、叶子和其它杂物,还可以减少发动机进气处的噪音和震动。
一个优质的空气滤清器必须要能够过滤掉不良的杂质,并保证较高的吸气效率。
空气滤清器分为干式和湿式两种,它们的材质、设计和工作原理都不相同。
在干式空气滤清器中,空气经过其中包括纸片、棉线和其他材料的过滤媒介,从而过滤掉杂质;在湿式空气滤清器中,空气则通过水,由水捕捉和过滤飞出去的尘埃。
进气歧管进气歧管是柴油机进气系统中的一个关键部件,它主要用于将已通过滤清器清理过杂质的空气引导到进气门处。
进气歧管是一个安装了多个分支的管道,其中每条分支代表着一个气缸的进气口。
通过良好的设计,进气歧管能够确保每个气缸都可以获得适量的空气。
这些分支必须采用合适的角度和长度,以达到更优的进气效果。
每个进气歧管分支的长度应该与颤振频率相关,因为在低频率下,波通过反向波从分支处移动回到其他分支,形成了一种能量反向流失。
如果分支的长度过长,则能量反向的影响会更为严重。
如果分支的长度过短,则进气歧管的内部会有更多的空气阻力和压力损失。
值得注意的是,如果分支的长度和直径分别为所需系统频率和波长的1/4,则能够进一步减少压力损失并提高进气效率。
进气门在柴油机进气系统中,进气门的重要性不言而喻。
它是进气系统中用于控制空气流量的设备,通过打开或关闭进气门,能够在不同的发动机运行状态下进行精确的调节,以获得理想的空气流量。
发动机的进气与排气系统解析在汽车发动机中,进气与排气系统扮演着至关重要的角色。
进气系统负责将空气和燃料混合物引入燃烧室,而排气系统则将燃烧产生的废气排出。
这两个系统相互配合,共同实现汽车引擎的高效工作。
本文将对发动机的进气与排气系统进行详细解析。
一、进气系统进气系统的主要部件包括进气道、空气滤清器、进气歧管和气缸。
其工作原理如下:1. 空气滤清器:汽车进气系统中的第一道防线是空气滤清器。
其作用是过滤进入发动机的空气,防止灰尘、沙粒等杂质进入引擎,保护发动机运行顺畅。
2. 进气道:空气滤清器过滤后的空气通过进气道进入发动机。
进气道的设计可影响进气的流量和速度,进而影响发动机的性能。
3. 进气歧管:进入进气道的空气经过进气歧管分配到不同的气缸中。
进气歧管的结构和设计也会对发动机的性能产生一定的影响。
4. 气缸:空气进入气缸后与燃油混合,通过喷油器喷射形成可燃混合气。
然后,在火花塞的作用下,混合气被点燃,完成燃烧过程。
进气系统的设计和优化对发动机的性能和燃油经济性具有重要影响。
例如,增加进气道的直径和长度可以增加进气量,提高发动机的输出功率。
同时,采用进气可变门的技术可以实现进气道的变化尺寸,从而在不同转速下优化进气效果。
二、排气系统排气系统由排气歧管、催化转化器、消声器等组成,其功能是将燃烧后产生的废气排出发动机。
排气系统的工作原理如下:1. 排气歧管:燃烧后的废气从气缸中排出,在排气歧管中进行集中处理,将多个气缸的废气合并到一起。
2. 催化转化器:废气经过排气歧管后进入催化转化器,其中的催化剂能够将有害物质转化成无害物质,减少对环境的污染。
3. 消声器:排气经过催化转化器后进入消声器。
消声器通过设计和设置吸音材料,减少发动机排气产生的噪音。
排气系统的设计和优化可以降低发动机运行时的噪音,并减少废气对环境的污染。
例如,采用不同形状和尺寸的排气管可以改变排气流动的速度和压力,从而影响发动机的输出功率和扭矩。
气路系统结构及工作原理气压系统由空压机、干燥器、滤清器、自动排水器、防冻器及各类控制阀件组成,压缩空气经多级净化处理后,供底盘行驶及车上作业使用。
一.结构特点气压系统主要由以下组成:☐压缩空气气源☐动力系统控制气路☐底盘气路☐绞车气路☐司钻控制压缩空气气源整车共用,底盘气路和绞车气路均为相对独立管路,并相互锁定;分动箱的动力操作手柄在切换发动机动力时,同时切换压缩空气气源,钻机车在行驶状态接通底盘气路,钻修作业接通绞车气路。
当二者其一管路接通压缩空气气源时,另外一路则被切断压缩空气气源,确保设备操作安全,减少气路管线泄漏。
方框图如下:二.压缩空气气源1.空气压缩机,往复活塞结构,4缸V形排列;2台,分别安装在2台发动机右侧前部,由曲轴端皮带轮驱动;强制水冷,润滑,冷却管线与发动机冷却水道相连,润滑管线与发动机润滑系统相连。
2.调压阀,安装在空气压缩机缸体侧部,调定控制气压系统空气压力,调定值0.8±0.05 MPa,当系统气体压力升高,达到调定值时,调压阀动作发出气动信号,分两路,一路信号接通两台空气压缩机卸荷阀,顶开各气缸进气阀门,空压机置空负荷运转状态,停止向气压系统供气;另一路信号接通两台干燥器排泄口,干燥器储气室内的干燥空气迅速反向流动流,吸附干燥剂层的水份,迅速排出干燥器体外,使其干燥剂再生。
系统压力低于调定值,调压阀气信号消失,空压机卸荷阀复位,空压机重新进入正常工作状态,继续向系统供应压缩空气,同时,干燥器排泄口关闭,干燥器重新开始工作,吸附干燥系统压缩空气。
3.干燥器,吸附再生式结构,2台,各自连接在空气压缩机的输出气路处。
内装干燥剂,当湿空气流过时吸附水份,输出干燥空气。
当系统压力达到调定值时,调压阀发生指令,打开干燥器排泄口,干燥器储气室内的干燥空气迅速反向流动流,经干燥剂层,吸附其中的水份,并排出干燥器,使其干燥剂再生。
系统压力低于调定值,调压阀气信号消失,干燥器排泄口关闭,干燥器重新开始工作,吸附干燥系统压缩空气。
可变进气系统的工作原理
可变进气系统是一种根据发动机负荷和转速变化而调节进气管道长度或截面积的机械装置。
它的工作原理可以简洁地描述为以下几个步骤:
1. 监测发动机工作条件:可变进气系统通过传感器监测发动机的负荷和转速等工作条件。
2. 信号传递给控制单元:监测到的工作条件的信号被传递给发动机控制单元。
3. 根据工作条件调节进气系统:根据收到的信号,控制单元会相应地调节可变进气系统的设置。
4. 调节进气道长度或截面积:可变进气系统会根据控制单元的指示,调节进气道的长度或截面积。
5. 优化发动机性能:通过调节进气道长度或截面积,可变进气系统可以改变发动机的进气阻力、流速和涡流组织,以优化发动机性能。
通过实时监测发动机工作条件并相应地调节进气系统,可变进气系统可以提供更大的扭矩输出、更快的加速响应和更高的燃烧效率。
这种系统在不同工况下可以优化发动机的输出性能,并提供更好的燃油经济性和低排放。
进气系统三合一工作原理
进气系统三合一工作原理:
进气系统三合一是指将进气管道、进气流量传感器和节气门装置集成在一起的一种设计。
它的工作原理如下:
1. 进气管道:进气管道负责将外部空气引导到引擎内部。
其内部可能配有空气滤清器,用于滤除空气中的杂质和颗粒物。
清洁的空气通过管道被输送到下一步的组件。
2. 进气流量传感器:进气流量传感器用于测量空气的流量,以便控制引擎的燃油喷射量。
它通常采用热线式传感器或流体动力学传感器。
当空气流过传感器时,传感器会生成相应的电信号,将这些信号发送给发动机控制单元(ECU)。
3. 节气门装置:节气门装置用于调节空气的流量和进入汽缸的量。
它通常由一个蝶阀组成,安装在进气管道中。
节气门的开度由ECU控制,根据驾驶员的加速需求和发动机负荷情况进行调整。
调整节气门的开度可以改变空气流量,从而影响燃油喷射量和引擎的动力输出。
总体而言,在进气系统三合一中,进气管道将空气引导到进气流量传感器,传感器测量空气流量后将信号发送给ECU,ECU根据传感器的信号控制节气门的开度,最终实现对发动机燃油喷射量和动力输出的精确控制。
这种集成设计可以提高进气系统的效率和性能。
发动机进气系统工作原理发动机的进气系统是发动机正常运转所必需的一个重要系统,它的主要功能是将外界空气引入发动机内部,与燃油混合后供给发动机进行燃烧。
下面我将详细介绍发动机进气系统的工作原理。
发动机进气系统的主要组成部分包括进气口、滤清器、节流阀(气门)、进气道、进气歧管、增压器(或涡轮)、进气歧管、进气门和进气道等。
首先,进气口是发动机吸入空气的入口,通常位于车辆前部的散热器格栅或车辆侧面的进气口位置,它的设计要尽量减少空气的阻力,提高进气效率。
其次,滤清器是进气系统中的一个重要组成部分,它的主要作用是过滤空气中的杂质,避免灰尘、沙粒等异物进入发动机,保证发动机的正常运转和寿命。
节流阀,也就是进气门,位于发动机气缸和进气道之间。
进气门的开闭控制是通过曲轴凸轮、气门弹簧和气门操纵机构实现的。
气门的开闭控制可以根据发动机转速和负荷来调节进入气缸的空气量,以保持最佳的燃烧效率和性能。
进气道是连接进气口和进气歧管的管道,它的主要作用是将经过滤清器过滤的空气送入进气歧管。
增压器,或涡轮增压器,是一种通过利用废气能量提高进气压力的装置。
它采用涡轮原理,通过废气的能量驱动涡轮旋转,从而带动另一个涡轮驱动进气压缩机,将进气压力提高,以增加发动机的进气量和功率输出。
进气歧管是进气系统中的一个重要组成部分,它将来自不同缸的进气汇集到一起,并分配给各个气缸。
进气歧管的内壁要尽量光滑,以减小气流的阻力,提高进气效率。
进气门位于气缸上方,控制进气道的开启和关闭。
气门的开闭时间和程度由凸轮轴上的凸轮来控制。
当气门打开时,新鲜的混合气进入燃烧室,关闭时排出燃烧废气。
最后,进气道是连接进气歧管和气缸的通道,它的设计要尽可能减小阻力,保持气流的平滑,提高进气效率。
总结来说,发动机进气系统的工作原理是通过进气口吸入空气,经过滤清器过滤后进入进气道,然后经过节流阀控制进气量,经过增压器提高压力,再经过进气歧管分配给各个气缸,最后通过进气门进入气缸进行燃烧。
汽车进气工作原理
汽车进气工作原理是指汽车引擎通过吸入空气进行燃烧产生动力的过程。
具体来说,汽车的进气系统主要包括空气滤清器、进气管道、节气门和进气歧管等部件。
首先,空气通过车辆前部的进气口进入空气滤清器。
空气滤清器的作用是过滤空气中的尘埃、颗粒物和其他杂质,确保进入引擎的空气质量良好。
过滤器之后,空气经过进气管道进入引擎。
在行驶过程中,车辆前进的速度和引擎转速都会影响到进气系统的工作。
当车辆以较低速度行驶时,进气管道内的气流速度较慢,空气会以较低的速度流入引擎。
而当车辆以较高速度行驶时,进气管道内的气流速度较快,空气会以较高的速度流入引擎。
进入引擎后,空气经过节气门的控制进入汽缸内。
节气门是位于进气管道中一道可以调节气流量的闸门,它的开启和关闭受到驾驶员对油门的控制。
当驾驶员踩下油门时,节气门会打开,使得气流量增加,引擎产生更多的动力。
当油门松开时,节气门会关闭,减少气流量,减小引擎的负荷。
最后,进入汽缸内的空气与燃油混合后,被压缩并点燃。
燃烧产生的能量将转化为活塞的运动,推动曲轴转动,从而驱动汽车前进。
总体而言,汽车的进气系统通过控制空气的流动量和速度,使
得引擎可以获得足够的氧气来进行燃烧。
进气系统的设计和优化可以提高引擎的效率和动力输出,从而提升汽车的性能。
⽓路系统基本结构及⼯作原理⽓路系统基本结构及⼯作原理⽓路系统结构及⼯作原理⽓压系统由空压机、⼲燥器、滤清器、⾃动排⽔器、防冻器及各类控制阀件组成,压缩空⽓经多级净化处理后,供底盘⾏驶及车上作业使⽤。
⼀.结构特点⽓压系统主要由以下组成:压缩空⽓⽓源动⼒系统控制⽓路底盘⽓路绞车⽓路司钻控制压缩空⽓⽓源整车共⽤,底盘⽓路和绞车⽓路均为相对独⽴管路,并相互锁定;分动箱的动⼒操作⼿柄在切换发动机动⼒时,同时切换压缩空⽓⽓源,钻机车在⾏驶状态接通底盘⽓路,钻修作业接通绞车⽓路。
当⼆者其⼀管路接通压缩空⽓⽓源时,另外⼀路则被切断压缩空⽓⽓源,确保设备操作安全,减少⽓路管线泄漏。
⽅框图如下:⼆.压缩空⽓⽓源1.空⽓压缩机,往复活塞结构,4缸V形排列;2台,分别安装在2台发动机右侧前部,由曲轴端⽪带轮驱动;强制⽔冷,润滑,冷却管线与发动机冷却⽔道相连,润滑管线与发动机润滑系统相连。
2.调压阀,安装在空⽓压缩机缸体侧部,调定控制⽓压系统空⽓压⼒,调定值0.8±0.05 MPa,当系统⽓体压⼒升⾼,达到调定值时,调压阀动作发出⽓动信号,分两路,⼀路信号接通两台空⽓压缩机卸荷阀,顶开各⽓缸进⽓阀门,空压机置空负荷运转状态,停⽌向⽓压系统供⽓;另⼀路信号接通两台⼲燥器排泄⼝,⼲燥器储⽓室内的⼲燥空⽓迅速反向流动流,吸附⼲燥剂层的⽔份,迅速排出⼲燥器体外,使其⼲燥剂再⽣。
系统压⼒低于调定值,调压阀⽓信号消失,空压机卸荷阀复位,空压机重新进⼊正常⼯作状态,继续向系统供应压缩空⽓,同时,⼲燥器排泄⼝关闭,⼲燥器重新开始⼯作,吸附⼲燥系统压缩空⽓。
3.⼲燥器,吸附再⽣式结构,2台,各⾃连接在空⽓压缩机的输出⽓路处。
内装⼲燥剂,当湿空⽓流过时吸附⽔份,输出⼲燥空⽓。
当系统压⼒达到调定值时,调压阀发⽣指令,打开⼲燥器排泄⼝,⼲燥器储⽓室内的⼲燥空⽓迅速反向流动流,经⼲燥剂层,吸附其中的⽔份,并排出⼲燥器,使其⼲燥剂再⽣。
系统压⼒低于调定值,调压阀⽓信号消失,⼲燥器排泄⼝关闭,⼲燥器重新开始⼯作,吸附⼲燥系统压缩空⽓。
可变进气系统的工作原理
可变进气系统是一种能够根据发动机工作状态和负荷需求来调节进气道尺寸和形状的装置。
它旨在提高发动机的功率、扭矩输出和燃油效率。
可变进气系统的工作原理是通过改变进气道的长度或形状来优化进气流动。
当发动机需要高扭矩输出时,进气道会被调节为较长的形状,这样可以提供更大的机械压缩比,增加进气冲量和提高低转速下的动力输出。
而当发动机需要更高的功率输出时,可变进气系统会将进气道调节为较短的形状。
短进气道可以提供更大的空气流速和进气阻力,使得燃烧更加充分,从而提高动力输出,并在高转速范围内实现更高的功率输出。
此外,可变进气系统还可以根据发动机的工作状态和负荷需求进行实时调节。
通过使用传感器来监测发动机转速、负荷和油门位置,系统可以根据这些参数来调节进气道的形状和长度,以实现最佳的进气效果。
总的来说,可变进气系统的工作原理是通过调节进气道的长度和形状来优化进气流动,以提高发动机的功率、扭矩输出和燃油效率。
这种系统能够根据发动机的实际工作状态和负荷需求进行实时调节,从而实现最佳的性能表现。
进气系统的工作原理进气系统包含了空气滤清器、进气歧管、进汽门机构。
空气经空气滤清器过滤掉杂质后,流过空气流量计,经由进气道进入进气歧管,与喷油嘴喷出的汽油混合后形成市适当比例的油气,由进汽门送入汽缸内点火燃烧,产生动力。
一、容积效率引擎运转时,每一循环所能获得的空气量多寡,是决定引擎动力大小的基本因素,而引擎的进气能力乃是藉由引擎的‘容积效率’及‘充填效率’来衡量。
‘容积效率’的定义是每一个进气行程中,汽缸所吸入的空气在大气压力下所占的体积和汽缸活塞行程容积的比值。
之所以要用在所吸入空气在大气压力下所占的体积为标准,是因为空气进入汽缸时,汽缸内的压力比外在的大气压力为低,而且压力值会有所变化,所以采用一大气压的状态下的体积作为共通的标准。
并且由于在进行吸气行程时,会遭受各种的进气阻力,加上汽缸内的高温作用,因此将吸入汽缸内的空气体积换算成一大气压下的状态时,一定小于汽缸的体积,也就是说自然吸气引擎的容积效率一定小于1。
进气阻力的降低、汽缸内压力的提高、温度降低、排气回压降低、进汽门面积加大都可提高引擎的容积效率,而引擎在高转速运转时则会降低容积效率。
二、充填效率由于空气的密度是因进气系统入口的大气状态(温度、压力)而有所不同,因此容积效率并不能表现实际上进入汽缸内空气的质量,于是我们必须靠″充填效率″来说明。
″充填效率″的定义是每一个进气行程中所吸入的空气质量与标准状态下( 1 大气压、20℃、密度:1.187Kg/㎡)占有汽缸活塞行程容积的干燥空气质量的比值。
在大气压力高、温度低、密度高时,引擎的充填效率也将随之提高。
由此也可看出,容积效率所表现的是引擎构造及运转状态所造成引擎性能的差异,充填效率表现的则是运转当时大气状态所引起引擎性能的变化。
进气岐管与容积效率另一项影响容积效率的重要因素是进气歧管的长度,由此也引起了与容积效率有关的‘脉动’及‘惯性’两种效应。
一、脉动效应引擎除了在极低的转速外,进汽门前的压力在进汽期间会不断的产生变动,这是由于进汽阀门的开、闭动作,使得进气歧管内产生一股压缩波( Compression Wave)以音速的大小先后波动。