第5章⑶协整分析与误差修正模型
- 格式:pdf
- 大小:215.55 KB
- 文档页数:44
协整和误差修正模型一、协整理论 1. d 阶单整序列对不平稳时间序列{}t Y 进行d 阶差分如下(d =1,2,…n):1t t t Y Y Y -∆=- 一阶差分21()t t t t Y Y Y Y -∆=∆∆=∆-∆ 二阶差分……1111()d d d d t t t t Y Y Y Y ----∆=∆∆=∆-∆ d 阶差分若{}t Y 进行d 阶差分后成为平稳序列, 则称{}t Y 为d 阶单整序列。
记为{}~()t Y I d2. 协整定义如果时间序列{}{}{}(1)(2)(),,...,r tttY Y Y 都是d 阶单整序列,即,{}~(),1,2,...,jtY I d j r =,且存在12,,...,rβββ使得(1)(2)()12...~()r t t r t Y Y Y I d b βββ+++-其中b>0, 称序列{}{}{}(1)(2)(),,...,r t tt Y Y Y 存在(d,b) 阶协整关系。
3. 协整的意义若序列{}{}{}(1)(2)(),,...,r t tt Y Y Y 存在协整关系,则它们之间存在长期稳定关系,对它们进行回归,可排除伪回归现象。
4. 协整检验EG 两步法( see p.275)二、误差修正模型 ECM 方法:若{}{},t t X Y 都是1阶单整序列,它们存在协整关系,建立自回归模型 012131t t t t t Y X Y X ββββμ--=++++ (1) 整理得:011t ttt Y X e ββγμ-∆=+∆++ (2) 其中t e 为残差序列, 1t e -为误差修正项。
(1) 或(2) 称为ECM模型,用于短期分析。
它们的Eviews命令分别为:LS Y C X Y(-1) X(-1),或:GENR T=Y-Y(-1)GENR H=X-X(-1)GENR e= residLS T C H e(-1)三、实例根据下表,讨论时间序列的平稳性、协整关系以及它们的误差修正模型。
协整与误差修正模型的研究第一部分协整理论概述 (2)第二部分误差修正模型介绍 (4)第三部分协整与误差修正关系 (7)第四部分模型构建与检验方法 (9)第五部分实证分析应用案例 (13)第六部分结果解释与经济含义 (16)第七部分模型局限性与改进方向 (18)第八部分研究展望与未来趋势 (22)第一部分协整理论概述协整理论概述在经济学和金融学中,我们常常遇到时间序列数据之间的长期均衡关系。
然而,在实际经济活动中,这种均衡关系并不总是能够得到严格的保持,而是存在着一定程度的波动和偏差。
为了解决这一问题,经济学家们提出了协整理论。
协整理论是指两个或多个非平稳的时间序列之间存在一种长期稳定的关系。
换言之,即使各时间序列本身是随机游走的过程,它们之间也可能存在一个稳定的线性组合,使得这个组合呈现出平稳性质。
协整理论的发展为研究经济变量之间的长期动态关系提供了一个强有力的工具。
协整理论的核心思想是由 Engle 和Granger 于1987 年提出的。
他们认为,如果两个非平稳的时间序列之间存在协整关系,则这两个时间序列可以通过一个线性组合达到长期均衡状态,且这个线性组合具有零均值、有限方差和恒定自相关等特性。
在这个意义上,我们可以将协整关系看作是一种长期均衡关系的表现形式。
为了检验两个时间序列之间是否存在协整关系,Engle 和 Granger 提出了一种两步法:首先检验每个时间序列是否为非平稳过程;然后,如果这两个时间序列都是非平稳过程,再通过回归分析来检验它们之间是否存在协整关系。
这种方法被称为 Engle-Granger 两步协整检验。
除了 Engle-Granger 两步协整检验之外,还有许多其他的方法可以用来检验协整关系,例如 Johansen 检验和 Pedroni 检验等。
这些方法都可以有效地帮助我们确定不同时间序列之间的协整关系。
协整理论不仅用于检验不同时间序列之间的长期均衡关系,还可以用于构建误差修正模型。
协整分析与误差修正模型1.协整分析协整分析用于找到两个或多个非平稳时间序列之间的长期关系。
当两个变量之间存在协整关系时,它们的线性组合将是平稳的。
协整关系可以解释为变量之间长期的平衡关系,即存在一种平衡机制使得变量保持在一个相对稳定的范围内。
协整分析的步骤如下:1)对非平稳时间序列进行单位根检验,例如ADF检验。
2)如果两个或多个时间序列都是非平稳的,那么可以进行线性组合,得到一个平稳的时间序列,通过单位根检验确定这个线性组合是否是平稳的。
3)如果线性组合是平稳的,那么就可以认为存在协整关系。
协整分析的优点是可以探索多个非平稳时间序列之间的关系,并且提供了具体的数值关系,能够描述长期平衡关系。
但是,协整分析不能提供因果关系,只能提供关联关系。
2.误差修正模型(ECM)误差修正模型是一种用于描述非平稳变量之间长期关系的模型。
它是在协整分析的基础上发展而来的。
误差修正模型的基本思想是,如果两个变量之间存在协整关系,那么它们之间的误差会随着时间的推移逐渐修正,回归到长期平衡关系。
因此,误差修正模型可以用来分析变量之间的动态行为。
基本的误差修正模型可以表示为:△Y_t=α+βX_t-1+γE_t-1+ε_t其中,△表示时间差分,Y_t和X_t分别表示被解释变量和解释变量,E_t表示长期误差修正项,ε_t表示短期误差项。
α、β和γ分别表示模型的截距和参数。
误差修正模型的步骤如下:1)进行协整分析,确定变量之间的协整关系。
2)构建误差修正模型,通过估计模型参数来描述长期关系。
3)进行模型检验,包括参数显著性检验、拟合优度检验等。
4)根据模型结果进行解释和预测。
误差修正模型的优点是能够同时分析长期和短期关系,提供了关于变量之间回归到长期平衡的速度信息。
同时,误差修正模型还可以用于预测和政策分析等方面。
但是,误差修正模型的局限性在于假设模型中的所有变量都是线性关系,不能很好地处理非线性关系。
综上所述,协整分析和误差修正模型是非平稳时间序列分析中常用的方法,它们能够揭示非平稳变量之间的长期关系,并对其动态行为进行建模和分析。
“协整与误差修正模型”基本内容Abstract本部分我们要介绍时间序列计量经济学模型中的“协整与误差修正模型”内容。
对于时间序列数据而言,若其为非平稳的,那么我们无法使用经典的回归模型,而若变量之间是协整关系(即它们之间有着长期稳定的关系),那么经典的回归模型方法仍然是valid。
简单差分未必能解决非平稳时间序列的所有问题,因此误差修正模型也就应运而生了。
Problem:对于时间序列数据,如果通过平稳性检验为非平稳序列,能否建立经典计量经济学模型?Answer:需要对模型采用的非平稳时间序列进行协整检验。
一、长期均衡关系与协整经济理论指出,某些经济变量间确实存在着长期均衡关系这种均衡关系意味着经济系统不存在破坏均衡的内在机制。
假设和之间的长期“均衡关系”由下式描述:其中,是随机干扰项。
值得注意的是,在期末,存在下述三种情形之一:(1) 等于它的均衡值,即.(2) 小于它的均衡值,即.(3) 大于它的均衡值,即.注意到,如果正确地提示了与之间的长期稳定的"均衡关系",则意味着对其均衡点的偏离从本质上来说是"临时性"的,这个时候自然假设随机干扰项必须是平稳序列。
另外,非平稳的时间序列,它们的线性组合也可能成为平稳的。
Definition3.1一般地,如果序列都是阶单整的,存在向量,使得,其中,则认为序列是阶协整,记为,为协整向量。
注:(1)如果两个变量都是单整变量,只有它们的单整阶相同时,才有可能协整;(2)三个以上的变量,如果具有不同的单整阶,有可能经过线性组合构成低阶单整变量。
阶协整的经济意义:两个变量,虽然具有各自的长期波动规律,但是如果它们是阶协整的,则它们之间存在着一个长期稳定的比例关系。
二、协整的检验1.两变量的Engle-Granger检验(1987年恩格尔和格兰杰提出的两步检验法/EG检验法)(1,1)阶协整最令人关注,EG检验法正是为了检验两个均呈现1阶单整的变量是否为协整的。
协整分析与误差修正模型演示文稿尊敬的老师、亲爱的同学们:大家好!我今天的演讲题目是“协整分析与误差修正模型”。
随着经济的发展和变化,我们经常会遇到不平衡的现象,例如两个变量之间的长期均衡关系。
这时,我们就需要使用协整分析来研究变量之间的平衡关系。
首先,让我们来了解一下什么是协整分析。
协整分析是在时间序列数据分析中常用的方法,用于寻找可能存在的长期均衡关系。
简单来说,协整分析可以帮助我们确定两个或多个非平稳序列之间的平衡关系。
接下来,我将向大家介绍协整分析的具体方法。
首先,我们需要收集两个或多个非平稳序列的数据。
然后,我们通过计算这些序列的差分来得到它们的差分序列。
接着,我们需要进行单位根检验来确定这些差分序列是否是平稳的。
如果差分序列是平稳的,那么我们可以进行协整检验来确定它们是否存在长期均衡关系。
最后,如果协整检验的结果是显著的,说明这些序列之间存在协整关系。
在协整检验的基础上,我们可以建立误差修正模型(Error Correction Model,ECM)来进行进一步的研究。
误差修正模型是一种常用的时间序列模型,用于研究不平衡的长期均衡关系。
它可以帮助我们分析短期冲击对长期均衡的调整速度和程度。
通过误差修正模型,我们可以对变量之间的平衡关系进行更深入的研究。
例如,我们可以通过模型的残差项来检验平衡关系是否稳定,或者通过模型的参数来分析短期调整的速度和程度。
协整分析和误差修正模型在经济学、金融学等领域中具有广泛的应用。
它们可以帮助我们理解经济变量之间的关系,预测未来的趋势,以及制定有效的政策和决策。
综上所述,协整分析与误差修正模型是研究经济变量之间平衡关系的重要工具。
通过这些方法,我们可以更好地理解和预测经济变量的变化,促进经济的稳定和可持续发展。
谢谢大家!。
时间序列的协整检验与误差修正模型讲义时间序列的协整检验与误差修正模型是在经济学和金融学中广泛使用的方法,用于分析两个或多个变量之间的长期稳定关系。
本讲义将介绍协整检验的基本概念和步骤,并讨论误差修正模型的理论背景和实际应用。
一、协整检验1. 概念与原理协整是指两个或多个变量之间存在长期稳定的关系,即它们的线性组合是平稳的。
协整关系可以用来解释一个变量对另一个变量的影响,并提供长期均衡关系的信息。
协整检验的基本原理是利用单位根检验方法,测试变量是否存在单位根(非平稳性)。
如果变量存在单位根,则它们是非平稳的;如果变量不存在单位根,则它们是平稳的。
如果变量之间存在协整关系,它们的线性组合将是平稳的。
2. 协整检验的步骤协整检验的一般步骤如下:- 收集数据并绘制时间序列图,观察变量之间的趋势和关系;- 进行单位根检验,常用的方法包括ADF检验、Phillips-Perron检验等;- 如果变量存在单位根,则进行差分,直到变量变为平稳的;- 应用最小二乘法等方法,估计协整关系方程;- 进行残差平稳性检验,确保协整关系的合理性;- 如果协整关系存在,可以进行模型的进一步分析与应用。
二、误差修正模型(Error Correction Model, ECM)1. 概念与原理误差修正模型是一种动态模型,用于解释协整关系的调整速度和误差纠正机制。
在误差修正模型中,除了协整关系的线性组合外,还引入了误差修正项,用于捕捉变量之间的短期非平衡关系。
误差修正项反映了系统离开长期均衡后的调整速度,通过估计误差修正项的系数,可以判断系统是否有趋向于均衡的能力。
当误差修正项的系数为负数且显著时,表示系统具有自我修复的能力;当系数为零时,表示系统处于长期均衡状态;当系数为正数时,表示系统趋向于进一步偏离均衡。
2. ECM模型的应用误差修正模型可以用于解释和预测时间序列数据的长期和短期动态变化。
它在经济学和金融学中有广泛的应用,如货币供给与通货膨胀、利率与消费支出、汇率与经济增长等领域。
一、长期均衡关系与协整二、协整检验三、误差修正模型第三节协整与误差修正模型12一、长期均衡关系与协整0、问题的提出•经典回归模型(classical regression model)是建立在稳定数据变量基础上的,对于非稳定变量,不能使用经典回归模型,否则会出现虚假回归等诸多问题。
•由于许多经济变量是非稳定的,这就给经典的回归分析方法带来了很大限制。
•但是,如果变量之间有着长期的稳定关系,即它们之间是协整的(cointegration ,则是可以使用经典回归模型方法建立回归模型的。
•例如,中国居民人均消费水平与人均GDP变量的例子中:因果关系回归模型要比ARMA模型有更好的预测功能,其原因在于,从经济理论上说,人均GDP 决定着居民人均消费水平,而且它们之间有着长期的稳定关系,即它们之间是协整的(cointegration )。
31、长期均衡经济理论指出,某些经济变量间确实存在着长期均衡关系,这种均衡关系意味着经济系统不存在破坏均衡的内在机制,如果变量在某时期受到干扰后偏离其长期均衡点,则均衡机制将会在下一期进行调整以使其重新回到均衡状态。
假设X 与Y 间的长期“均衡关系”由式描述Y t =α0+α1X t +μt式中:μt是随机扰动项。
该均衡关系意味着:给定X 的一个值,Y 相应的均衡值也随之确定为α0+α1X 。
4在t-1期末,存在下述三种情形之一:(1)Y 等于它的均衡值:Y t-1= α0+α1X t ;(2)Y 小于它的均衡值:Y t-1< α0+α1X t ;(3)Y 大于它的均衡值:Y t-1>α0+α1X t ;在时期t ,假设X 有一个变化量ΔX t ,如果变量X 与Y 在时期t 与t-1末期仍满足它们间的长期均衡关系,则Y 的相应变化量由式给出:ΔY t =α1ΔX t +v t式中,v t =μt -μt-1。
5实际情况往往并非如此如果t-1期末,发生了上述第二种情况,即Y 的值小于其均衡值,则Y 的变化往往会比第一种情形下Y 的变化ΔY t 大一些;反之,如果Y 的值大于其均衡值,则Y 的变化往往会小于第一种情形下的ΔY t 。
时间序列的协整检验与误差修正模型时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。
协整检验是在时间序列数据中,判断变量之间是否存在长期平衡关系的一种方法。
误差修正模型是在协整关系已经验证的基础上,建立起变量之间的因果关系,对短期的偏离进行修正的模型。
协整检验的原理是基于单位根检验的思想,判断时间序列是否为平稳序列。
平稳序列是指序列的均值和方差不随时间发生变化。
如果两个变量都是非平稳序列,但它们的线性组合是平稳序列,那么可以认为这两个变量是协整的。
常用的协整检验方法有Engle-Granger方法和Johansen方法。
Engle-Granger方法是一种直观简单的协整检验方法。
它的步骤如下:首先,分别对两个变量进行单位根检验,确认它们是否为非平稳序列。
然后,对两个变量进行线性回归,得到残差序列。
接下来,对残差序列进行单位根检验,确认它是否为平稳序列。
最后,如果残差序列是平稳序列,则可以判断两个变量之间存在协整关系。
协整检验完成后,接下来可以建立误差修正模型。
误差修正模型是基于协整关系的基础上建立起来的,以短期的偏离修正为核心。
它的核心假设是,在长期平衡关系的约束下,两个变量之间的短期偏离可以通过一个修正项来消除。
误差修正模型的基本形式是多元线性回归模型,其中包含自变量、因变量以及一个误差修正项。
误差修正模型的估计和推断可以使用最小二乘法或最大似然法等统计方法进行。
通过对误差修正模型的估计和推断,可以对变量之间的因果关系进行分析。
同时,误差修正模型还可以用于预测和决策分析。
综上所述,时间序列的协整检验与误差修正模型是分析变量之间长期关系的重要工具。
协整检验可以判断变量是否具有长期平衡关系,而误差修正模型则可以分析变量之间的短期调整过程。
这些方法在经济学、金融学、管理学等领域都有广泛的应用。
时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。
协整与误差修正模型在处理时间序列数据时,我们还得考虑序列的平稳性。
如果一个时间序列的均值或自协方差函数随时间而改变,那么该序列就是非平稳的。
对于非平稳的数据,采用传统的估计方法,可能会导致错误的推断,即伪回归。
若非平稳序列经过一阶差分变为平稳序列,那么该序列就为一阶单整序列。
对一组非平稳但具有同阶的序列而言,若它们的线性组合为平稳序列,则称该组合序列具有协整关系。
对具有协整关系的序列,我们算出误差修正项,并将误差修正项的滞后一期看做一个解释变量,连同其他反映短期波动关系的变量一起。
建立误差修正模型。
建立误差修正模型的步骤如下:首先,对单个序列进行单根检验,进行单根检验有两种:ADF(Augument Dickey-Fuller)和DF(Dickey-Fuller)检验法。
若序列都是同阶单整,我们就可以对其进行协整分析。
在此我们只介绍单个方程的检验方法。
对于多向量的检验参见Johensen协整检验。
我们可以先求出误差项,再建立误差修正模型,也可以先求出向量误差修正模型,然后算出误差修正项。
补充一点的是,误差修正模型反映的是变量短期的相互关系,而误差修正项反映出变量长期的关系。
下面我们给出案例分析。
案例分析在此,我们考虑从1978年到2002年城镇居民的人均可支配收入income与人均消费水平consume的关系,数据来自于《中国统计年鉴》,如表8.1所示。
根据相对收入假设理论,在一定时期,人们的当期的消费水平不仅与当期的可支配收入、而且受前期的消费水平的影响,具有一定的消费惯性,这就是消费的棘轮效应。
从这个理论出发,我们可以建立如下(8.1)式的模型。
同时根据生命周期假设理论,消费者的消费不仅与当期收入有关,同时也受过去各项的收入以及对将来预期收入的限制和影响。
从我们下面的数据分析中,我们可以把相对收入假设理论与生命周期假设理论联系起来,推出如下的结果:当期的消费水平不仅与当期的可支配收入有关,而且还与前期的可支配收入、前两期的消费水平有关。
时间序列的协整和误差修正模型时间序列分析中,协整和误差修正模型是两个重要的概念。
协整是指两个或多个时间序列之间的长期关系,而误差修正模型是一种用来修正时间序列中的误差的模型。
协整是经济学家提出的一个概念,用来解决时间序列数据存在的非平稳性的问题。
在实际应用中,有很多时间序列数据是非平稳的,即其均值和方差不随时间变化而保持不变。
然而,这些非平稳的时间序列之间可能存在长期的关系,也就是说它们会随着时间变化而趋于稳定。
这种关系可以通过协整分析来检验和建模。
协整模型的一种常见形式是误差修正模型(Error Correction Model,ECM)。
误差修正模型是建立在协整模型的基础上的,它可以用来描述时间序列数据之间的长期关系,并且考虑了这些时间序列数据之间的短期变动。
在误差修正模型中,如果两个时间序列之间存在协整关系,那么它们之间的生成误差(随机扰动)会导致它们之间的偏离程度逐渐回归到长期均衡的水平。
因此,误差修正模型是通过引入误差修正项来解决协整关系中存在的短期波动的问题。
误差修正模型的基本思想是,当两个时间序列之间存在协整关系时,如果它们之间的误差超过一定的阈值,那么它们之间的误差就会被修正回长期均衡的水平。
这种修正过程可以通过引入一个误差修正项来实现,从而使得模型具备误差修正的能力。
总之,协整和误差修正模型是对时间序列数据进行建模和分析的重要工具。
协整可以用来检验和描述时间序列之间的长期关系,而误差修正模型则是在协整的基础上引入修正项,用来处理时间序列之间的短期波动。
这些方法在经济学和金融学等领域中具有广泛的应用价值。
协整和误差修正模型是时间序列分析中非常重要的概念。
协整是指两个或多个非平稳时间序列之间存在的长期关系,而误差修正模型则是通过引入误差修正项来描述时间序列的短期波动。
在实际应用中,许多经济和金融时间序列是非平稳的,即它们的均值和方差会随时间变化而发生变动。
这种非平稳性可能会导致误导性的统计结果,因为传统的统计方法要求时间序列数据是平稳的。
第三节协整与误差修正模型一、长期均衡关系与协整二、协整检验三、误差修正模型1一、长期均衡关系与协整20、问题的提出•经典回归模型(classical regression model)是建立在稳定数据变量基础上的,对于非稳定变量,不能使用经典回归模型,否则会出现虚假回归等诸多问题。
•由于许多经济变量是非稳定的,这就给经典的回归分析方法带来了很大限制。
•但是,如果变量之间有着长期的稳定关系,即它们之间是协整的(cointegration),则是可以使用经典回归模型方法建立回归模型的。
•例如,中国居民人均消费水平与人均GDP变量的例子中:因果关系回归模型要比ARMA模型有更好的预测功能,其原因在于,从经济理论上说,人均GDP决定着居民人均消费水平,而且它们之间有着长期的稳定关系,即它们之间是协整的(cointegration)。
34经济理论指出,某些经济变量间确实存在着长期均衡关系,这种均衡关系意味着经济系统不存在破坏均衡的内在机制,如果变量在某时期受到干扰后偏离其长期均衡点,则均衡机制将会在下一期进行调整以使其重新回到均衡状态。
假设X 与Y 间的长期“均衡关系”由式描述1、长期均衡tt t X Y μαα++=10式中:μt是随机扰动项。
该均衡关系意味着:给定X 的一个值,Y 相应的均衡值也随之确定为 α0+α1X 。
5在t-1期末,存在下述三种情形之一:(1)Y 等于它的均衡值:Y t-1= α0+α1X t ;(2)Y 小于它的均衡值:Y t-1< α0+α1X t ;(3)Y 大于它的均衡值:Y t-1>α0+α1X t ;在时期t ,假设X 有一个变化量ΔX t ,如果变量X 与Y 在时期t 与t-1末期仍满足它们间的长期均衡关系,则Y 的相应变化量由式给出:tt t v X Y +Δ=Δ1α式中,v t =μt -μt-1。
实际情况往往并非如此如果t-1期末,发生了上述第二种情况,即Y的值小于其均衡值,则Y的变化往往会比第一种情形下Y的变化ΔYt 大一些;反之,如果Y的值大于其均衡值,则Y的变化往往会小于第一种情形下的ΔYt。
可见,如果Yt =α+α1X t+μt正确地提示了X与Y间的长期稳定的“均衡关系”,则意味着Y对其均衡点的偏离从本质上说是“临时性”的。
因此,一个重要的假设就是:随机扰动项μt 必须是平稳序列。
显然,如果μt 有随机性趋势(上升或下降),则会导致Y对其均衡点的任何偏离都会被长期累积下来而不能被消除。
67式Y t =α0+α1X t +μt 中的随机扰动项也被称为非均衡误差(disequilibrium error ),它是变量X 与Y 的一个线性组合:t t t X Y 10ααμ−−=(*)因此,如果Y t =α0+α1X t +μt 式所示的X 与Y 间的长期均衡关系正确的话,(*)式表述的非均衡误差应是一平稳时间序列,并且具有零期望值,即是具有0均值的I(0)序列。
从这里已看到,非稳定的时间序列,它们的线性组合也可能成为平稳的。
例如:假设Y t =α0+α1X t +μt 式中的X 与Y 是I(1)序列,如果该式所表述的它们间的长期均衡关系成立的话,则意味着由非均衡误差(*)式给出的线性组合是I(0)序列。
这时我们称变量X 与Y 是协整的(cointegrated )。
8如果序列{X 1t ,X 2t ,…,X kt }都是d 阶单整,存在向量α=(α1,α2,…,αk ),使得Z t = αX T ~ I(d-b)其中,b>0,X =(X 1t ,X 2t ,…,X kt )T ,则认为序列{X 1t ,X 2t ,…,X kt }是(d,b)阶协整,记为X t ~CI(d,b),α为协整向量(cointegrated vector )。
⒉协整在中国居民人均消费与人均GDP 的例中,该两序列都是2阶单整序列,而且可以证明它们有一个线性组合构成的新序列为0阶单整序列,于是认为该两序列是(2,2)阶协整。
由此可见:如果两个变量都是单整变量,只有当它们的单整阶数相同时,才可能协整;如果它们的单整阶数不相同,就不可能协整。
9三个以上的变量,如果具有不同的单整阶数,有可能经过线性组合构成低阶单整变量。
例如,如果存在:)2(~),2(~),1(~I U I V I W t t t 并且)0(~)1(~I eP cW Q I bU aV P t t t t t t +=+=那么认为:)1,1(~,)1,2(~,CI P W CI U V t t t t10(d,d )阶协整是一类非常重要的协整关系,它的经济意义在于:两个变量,虽然它们具有各自的长期波动规律,但是如果它们是(d,d)阶协整的,则它们之间存在着一个长期稳定的比例关系。
例如:前面提到的中国CPC 和GDPPC ,它们各自都是2阶单整,并且将会看到,它们是(2,2)阶协整,说明它们之间存在着一个长期稳定的比例关系,从计量经济学模型的意义上讲,建立如下居民人均消费函数模型从协整的定义可以看出:tt t GDPPC CPC μαα++=10变量选择是合理的,随机误差项一定是“白噪声”(即均值为0,方差不变的稳定随机序列),模型参数有合理的经济解释。
这也解释了尽管这两时间序列是非稳定的,但却可以用经典的回归分析方法建立回归模型的原因。
•从这里,我们已经初步认识到:检验变量之间的协整关系,在建立计量经济学模型中是非常重要的。
而且,从变量之间是否具有协整关系出发选择模型的变量,其数据基础是牢固的,其统计性质是优良的。
11二、协整检验12131、两变量的Engle-Granger检验为了检验两变量Y t ,X t 是否为协整,Engle 和Granger 于1987年提出两步检验法,也称为EG 检验。
第一步,用OLS 方法估计方程Y t =α0+α1X t +μt 并计算非均衡误差,得到:tttt tY Y eX Y ˆˆˆˆˆ10−=+=αα称为协整回归(cointegrating)或静态回归(static regression )。
第二步,检验 et 的单整性。
如果 e t 为稳定序列,则认为变量Y X t t ,为(1,1)阶协整;如果 e t 为1阶单整,则认为变量Y X t t ,为(2,1)阶协整;…。
14的单整性的检验方法仍然是DF 检验或者ADF 检验。
由于协整回归中已含有截距项,则检验模型中无需再用截距项。
如使用模型1et tpi i t i t t e e e εθδ+Δ+=Δ∑=−−11进行检验时,拒绝零假设H 0:δ=0,意味着误差项e t 是平稳序列,从而说明X 与Y 间是协整的。
需要注意是,这里的DF 或ADF 检验是针对协整回归计算出的误差项 et 而非真正的非均衡误差μt 进行的。
而OLS 法采用了残差最小平方和原理,因此估计量δ是向下偏倚的,这样将导致拒绝零假设的机会比实际情形大。
于是对e t 平稳性检验的DF与ADF临界值应该比正常的DF与ADF临界值还要小。
•MacKinnon(1991)通过模拟试验给出了协整检验的临界值,表9.3.1是双变量情形下不同样本容量的临界值。
表9.3.1 双变量协整ADF检验临界值显 著 性 水 平样本容量 0.010.050.1025 -4.37-3.59-3.2250 -4.12-3.46-3.13100 -4.01-3.39-3.09∝ -3.90-3.33-3.051516•例9.3.1检验中国居民人均消费水平CPC与人均国内生产总值GDPPC的协整关系。
在前文已知CPC 与GDPPC 都是I(2)序列,而§2.10中已给出了它们的回归式tt GDPPC CPC 45831.0764106.49+=R 2=0.9981通过对该式计算的残差序列作ADF 检验,得适当检验模型311ˆ27.2ˆ49.1ˆ55.1ˆ−−−Δ+Δ+−=Δt t t t e e e e(-4.47)(3.93) (3.05)LM(1)=0.00 LM(2)=0.00t=-4.47<-3.75=ADF 0.05,拒绝存在单位根的假设,残差项是稳定的,因此中国居民人均消费水平与人均GDP是(2,2)阶协整的,说明了该两变量间存在长期稳定的“均衡”关系。
172、多变量协整关系的检验—扩展的E-G检验多变量协整关系的检验要比双变量复杂一些,主要在于协整变量间可能存在多种稳定的线性组合。
假设有4个I(1)变量Z 、X 、Y 、W ,它们有如下的长期均衡关系:tt t t t Y X W Z μαααα++++=3210(*)其中,非均衡误差项μt 应是I(0)序列:tt t t t Y X W Z 3210ααααμ−−−−=(**)18•然而,如果Z 与W ,X 与Y 间分别存在长期均衡关系:tt t v W Z 110++=ββtt t v Y X 210++=γγ则非均衡误差项v 1t 、v 2t 一定是稳定序列I(0)。
于是它们的任意线性组合也是稳定的。
例如tt t t t t t Y X W Z v v v 110021γβγβ−+−−−=+=(***)由于v t 象(**)式中的μt 一样,也是Z 、X 、Y 、W 四个变量的线性组合,由此(***)式也成为该四变量的另一稳定线性组合。
(1, -α0,-α1,-α2,-α3)是对应于(**)式的协整向量,(1,-β0-γ0,-β1,1,-γ1)是对应于(***)式的协整向量。
一定是I(0)序列。
检验程序:对于多变量的协整检验过程,基本与双变量情形相同,即需检验变量是否具有同阶单整性,以及是否存在稳定的线性组合。
在检验是否存在稳定的线性组合时,需通过设置一个变量为被解释变量,其他变量为解释变量,进行OLS估计并检验残差序列是否平稳。
如果不平稳,则需更换被解释变量,进行同样的OLS估计及相应的残差项检验。
当所有的变量都被作为被解释变量检验之后,仍不能得到平稳的残差项序列,则认为这些变量间不存在(d,d)阶协整。
19同样地,检验残差项是否平稳的DF与ADF检验临界值要比通常的DF与ADF检验临界值小,而且该临界值还受到所检验的变量个数的影响。
表9.3.2给出了MacKinnon(1991)通过模拟试验得到的不同变量协整检验的临界值。
表9.3.2 多变量协整检验ADF临界值变量数=3变量数=4变量数=6样本显著性水平显著性水平显著性水平容量0.010.050.10.010.050.10.010.050.1 25-4.92-4.1-3.71-5.43-4.56-4.15-6.36-5.41-4.96 50-4.59-3.92-3.58-5.02-4.32-3.98-5.78-5.05-4.69 100-4.44-3.83-3.51-4.83-4.21-3.89-5.51-4.88-4.56∝-4.30-3.74-3.45-4.65-4.1-3.81-5.24-4.7-4.42202、多变量协整关系的检验—JJ检验•Johansen于1988年,以及与Juselius于1990年提出了一种用极大或然法进行检验的方法,通常称为JJ检验。