2019-2020学年河北省石家庄外国语教育集团七年级下学期期末数学试卷 (解析版)
- 格式:doc
- 大小:1.02 MB
- 文档页数:26
2019-2020学年石家庄七年级(下)期末数学试卷一、选择题(本大题共16小题,共32.0分)1.合格为了让学生更好地树立“安全第一,预防为主”的思想,河图中心学校开展了“2015秋季校园安全知识竞赛”活动,若该知识竞赛的成绩分为A(优秀),B(良好),C(合格),D(不合格)四个等级,王老师从中抽取若干名学生的成绩进行统计,并将统计结果绘制成如图所示的扇形统计图,若成绩为良好的学生比不合格的多5名,则成绩优秀的学生比合格的()A. 多5名B. 少5名C. 多10名D. 少10名2.若不等式ax>b的解集是x>b,则a的范围是()aA. a≥0B. a≤0C. a>0D. a<03.下列等式中,从左到右的变形是分解因式的是()A. (x+1)(x−2)=x2−x−2B. 4a2b3=4a2⋅b3C. x2−2x+1=(x−1)2D. x2−3x+2=x(x−3)+24.下列计算不正确的是()A. a+b=2abB. a⋅a2=a3C. a6÷a3=a3D. (ab)2=a2b25.已知如图直线a,b被直线c所截,下列条件能判断a//b的是()A. ∠1=∠2B. ∠2=∠3C. ∠1=∠4D. ∠2+∠5=180°6.如图,已知等边△ABC的边长为6cm,D是AC的中点,E为BC的延长线上一点,且CE=CD,DM⊥BC于M,则ME的长为()A. 5cmB. 5.5cmC. 4.5cmD. 3.5cm7.下列各组数中,既是方程2x−y=3的解,又是方程3x+4y=10的解是()A. B. C. D.8.如图,△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20cm2,则四边形A1DCC1的面积为A. 10cm2 B. 12cm2C. 15cm2D. 17cm29.不等式2x−1≤0的解集是()A. x≤−12B. x≤1 C. x≤12D. x≥−1210.如图,直线AD//BC,若∠1=40°,∠BAC=80°,则∠2的度数为()A. 70°B. 60°C. 50°D. 40°11.下列运算中,正确的是()A. (x2)3=x5B. x3⋅x3=x6C. 3x2+2x3=5x5D. (x+y)2=x2+y212.下列命题中,是真命题的是()A. 若a⋅b=0,则a=0或b=0B. 若a+b>0,则a>0且b>0C. 若a−b=0,则a=0或b=0D. 若a−b>0,则a>0且b>013.某次足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,某球队参赛15场,积33分,若不考虑比赛顺序,则该队胜、平、负的情况可能有()A. 15种B. 11种C. 5种D. 3种14.电话手表轻巧方便,一经推出倍受青睐.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A. 103块B. 104块C. 105块D. 106块15.下列判断正确的个数是()①两个正方形一定是全等图形;②三角形的一个外角一定大于与它不相邻的一个内角;③三角形的三条高交于同一点;④两边和一角对应相等的两个三角形全等.A. 1个B. 2个C. 3个D. 4个16.下列说法中,正确的是()A. x4−1是四次二项式B. −x+y是单项式3C. −πx的系数是−1D. 3π2x3y的次数是6二、填空题(本大题共1小题,共10.0分)17.在△ABC中,∠A=50°,∠B=∠C,则∠B=______ .三、计算题(本大题共1小题,共8.0分)18.某城市平均每天处理垃圾700吨,有甲和乙两个处理厂处理,已知甲每小时可处理垃圾55吨,需要费用550元,乙厂每小时可处理垃圾45吨,需要费用495元.如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少要多少吨?四、解答题(本大题共9小题,共70.0分)19.如图,在平面直角坐标系中,△ABC的顶点坐标为A(−2,3)、B(−3,2)、C(−1,1).(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1,写出点C1的坐标;(2)画出△A1B1C1绕原点旋转180°后得到的△A2B2C2;写出点C2的坐标;(3)△A′B′C′与△ABC是中心对称图形,请写出对称中心的坐标______;(4)顺次联结C、C1、C′、C2,所得到的图形有什么特点?试写出你的发现(写出其中的一个特点即可)20. 用两种方法解方程组{x +2y =−27x −4y =−41.21. 对于有理数a ,b ,规定一种新运算:a ★b =2ab −b .(1)计算:(−3)★4=______;(2)若方程(x −4)★3=6,求x 的值;(3)计算:5★[(−2)★3]的值.22. (1)用乘法公式计算①2003×2001②(3a +2b −1)(3a −2b +1)(2)根据x 2+(a +b)x +ab =(x +a)(x +b),分解因式.①x 2−13x +36;②x 2−6ax −16a 2.(3)已知2x −3=0,求代数式x(x 2−x)(5−x)−9的值.23. 化简求值:(x −1)2−2(1+x)−(x +3)(x −3),其中x =1.24. 教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.4%.某校数学社团成员采用简单随机抽样的方法,抽取了本校八年级50名学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后绘制成下表:平均每天的睡5≤t<66≤t<77≤t<88≤t<99小时及以上眠时间分组频数15m24n该样本中学生平均每天的睡眠时间达9小时及以上的比例高于全国的这项数据,达到了22%.(1)求表格中n的值;(2)该校八年级共400名学生,估计其中平均每天的睡眠时间在7≤t<8这个范围内的人数是多少.25. 已知:AD//BC,∠B=∠D(1)如图①,求证:AB//CD(2)如图②,点E、F在BC上,且满足AE平分∠BAF,∠DAC=2∠FAC,若∠AEB=∠ACD,∠B=m°,求∠ACB的度数(用m表示).26. 如图1,等腰Rt△ABC和等腰Rt△DEF的斜边BC、EF在同一直线上,BC=12,EF=6,t=0时,点C与点E重合,△DEF沿CB方向以每秒1个单位的速度运动,当F与B点重合时运动结束.(1)求△ABC与△DEF的面积之和;(2)写出运动过程中,△ABC与△DEF重叠部分面积S与时间t之间的关系式;(3)如图2,当△DEF运动到EF的中点与BC的中点O重合时,停止运动,将△DEF绕点O旋转,判断在旋转过程中,线段BE、AD之间有何关系?并说明理由.27. 阅读下面的材料,解决有关问题:在下列数据中,我们可以发现其中某些数之间满足一定的规律,如图1所选择的两组七个数,分别将每组数中相对的两数相乘,再相减.(1)计算:12×26−10×28=______,24×38−22×40=______,不难发现,结果都是______;(2)图2是从图1中截出的一部分,在选中的七个数中,若设中心数为x,则A、B、C、D所对应的数分别为______,______,______,______(用含x的代数式表示),请你利用整式的运算,对(1)中的规律进行证明;(3)若把图2中“H”升高,如图3,这组数中相对的数分别设为a、c与b、d,则bd−ac=______.【答案与解析】1.答案:A解析:解:设抽查的学生总数为x人,根据题意,得:20%x−15%x=5,解得:x=100,则B等级人数为100×20%=20人,D等级人数为:100×15%=15人,∴A等级人数为100−20−30−15=35人,∴成绩优秀的学生比合格的学生多35−30=5人,故选:A.设抽查的学生总数为x人,根据:良好的学生比不合格的多5名,列出关于x的方程,解方程可得学生总数,继而根据B、D所占百分比求得B、D等级的人数,由各等级人数之和等于总人数得A 等级人数,即可知成绩优秀的学生比合格多的人数.本题主要考查扇形统计图和一元一次方程的应用,熟练掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系是解题的关键.2.答案:C解析:解:∵不等式ax>b的解集是x>b,a∴a>0,故选C.根据不等式的性质2,不等式的两边同时除以一个正数,不等号的方向不改变,即a>0.本题考查了利用不等式的基本性质解不等式的能力,要熟练掌握.3.答案:C解析:解:A、(x+1)(x−2)=x2−x−2是整式相乘,故A错误;B、4a2b3=4a2⋅b3,不是因式分解,故B错误;C、x2−2x+1=(x−1)2,故C正确;D、x2−3x+2=x(x−3)+2,等式右边有加号,故D错误;故选:C.依据因式分解的定义:将一个多项式分解成几个整式乘积的形式称为分解因式.对A、B、C、D四个选项进行求解.此题主要考查因式分解的意义,要注意因式分解的一般步骤:①如果一个多项式各项有公因式,一般应先提取公因式;②如果一个多项式各项没有公因式,一般应思考运用公式、十字相乘法;如果多项式有两项应思考用平方差公式,如果多项式有三项应思考用公式法或用十字相乘法;如果多项式超过三项应思考用完全平方公式法;③分解因式时必须要分解到不能再分解为止.4.答案:A解析:解:A、a和b不是同类项,不能合并,故A错误;B、a⋅a2=a1+2=a3,正确;C、a6÷a3=a6−3=a3,正确;D、(ab)2=a2b2,正确.故选A.根据合并同类项法则、积的乘方、幂的乘除法的运算方法,利用排除法求解.本题主要考查同底数幂的乘法,同底数幂的除法,积的乘方的性质,不是同类项的一定不能合并.5.答案:A解析:此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.由同位角相等两直线平行,根据∠1=∠2,判定出a与b平行.解:∵∠1=∠2(已知),∴a//b(同位角相等,两直线平行);而B.∠2=∠3(对顶角相等);C.∠1=∠4同旁内角互补两直线平行;D.∠2+∠5=180°不合题意;B,C,D都不能判断a//b,故选:A.6.答案:C解析:运用等腰三角形的性质与判定定理,△CDE是等腰三角形,△DME是特殊的直角三角形.7.答案:C解析:对于一组数来讲同时适合与两个方程,那么它一定是这两个方程所构成的方程组的解,因此解方程组即可.把2x −y =3和3x +4y =10组成方程组得,{2x −y =3−−(1)3x +4y =10−−(2), (1)×4+(2)得,11x =22,即x =2,把x =2代入(1)得,2×2−y =3,解得y =1.方程组的解为{x =2y =1. 故选C8.答案:C解析:本题考查了平移的性质,熟练掌握平移变换的性质,求出△B 1CD 的面积是解题的关键.根据平移的性质可得△A 1B 1C 1的面积等于△ABC 的面积,再根据平移的性质求出B 1C =12BC ,CD =12AC ,然后求出△B 1CD 的面积,再进行计算即可得解.解:∵△ABC 沿BC 方向平移得到△A 1B 1C 1,∴△A 1B 1C 1的面积=20cm 2,B 1C =12BC ,CD =12AC ,∴△B 1CD 的面积=12×B 1C ⋅CD =12×12BC ⋅12AC =14×(12BC ⋅AC)=14×20=5(cm 2),∴四边形A 1DCC 1的面积=20−5=15(cm 2).故选C . 9.答案:C解析:解:移项得,2x ≤1,系数化为1得,x ≤12,故选:C .根据不等式的基本性质先移项、再把未知数的系数为1即可.此题考查的是解一元一次不等式,其依据是不等式的基本性质,注意本题中系数化为1时用到性质3,即不等式两边除以同一个负数,不等号的方向改变. 10.答案:B解析:解:∵∠1=40°,∠BAC =80°,∴∠ABC=60°,又∵AD//BC,∴∠2=∠ABC=60°,故选:B.依据三角形内角和定理,即可得到∠ABC=60°,再根据AD//BC,即可得出∠2=∠ABC=60°.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.11.答案:B解析:直接利用幂的乘方运算法则以及完全平方公式、合并同类项法则分别判断得出答案.此题主要考查了幂的乘方运算以及完全平方公式、合并同类项,正确掌握相关运算法则是解题关键.解:A、(x2)3=x6,故此选项错误;B、x3⋅x3=x6,正确;C、3x2+2x3,无法计算,故此选项错误;D、(x+y)2=x2+2xy+y2,故此选项错误;故选:B.12.答案:A解析:解:A、若a⋅b=0,则a=0或b=0,是真命题;B、若a+b>0,当a>0,b<0,|a|>|b|,也成立,原命题是假命题;C、若a−b=0,则a=b,原命题是假命题;D、若a−b>0,当a>0,b<0时,也成立,原命题是假命题;故选:A.根据整式的乘法和不等式的性质判断即可.本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.13.答案:D解析:解:设胜的场数为x,平的场数为y,那么负的场数为(15−x−y)3x+y+0(15−x−y)=33y=33−3xx,y为正整数或0,x+y≤15。
河北省石家庄市2019-2020学年七年级第二学期期末经典数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题只有一个答案正确)1.正方形的面积为6,则正方形的边长为()A.2B.6C.2 D.4【答案】B【解析】【分析】根据正方形面积的求法即可求解.【详解】解:∵正方形的面积为6,∴正方形的边长为6.故选:B.【点睛】本题考查了算术平方根,正方形的面积,解此题的关键是求出6的算术平方根.2.如图,AB∥CD,CB平分∠ECD交AB于点B,若∠ECD=60°,则∠B的度数为( )A.25°B.30°C.35°D.40°【答案】B【解析】【分析】根据角平分线定义求出∠BCD=12∠ECB=30°,根据平行线的性质得出∠B=∠BCD ,代入求出即可. 【详解】 ∵CB 平分∠ECD 交AB 于点B,∠ECD=60°,∴∠BCD=12∠ECB=30°, ∵AB ∥CD ,∴∠B=∠BCD=30°故选B.【点睛】此题考查平行线的性质,解题关键在于根据角平分线定义求出∠BCD.3.下列命题中:①.有理数和数轴上的点一一对应;②.内错角相等;③.平行于同一条直线的两条直线互相平行;④.邻补角一定互补.其中真命题的个数是( )A .1个B .2个C .3个D .4个 【答案】B【解析】试题分析:实数与数轴上的点才是一一对应的关系,无理数也可以在数轴上找到对应点,所以①是错误的;若是两条不平行的直线被第三直线所截得的内错角,则不相等,所以②是错误的;根据平行公理的推论,不管在平面几何还是空间几何中③都是正确的;邻补角是组成平角的两个角,所以其和为180°,所以④是正确的.故选B4.等腰三角形的周长为15cm ,其中一边长为3cm ,则该等腰三角形的腰长为( )A .3cmB .6cmC .3cm 或6cmD .8cm 【答案】B【解析】试题分析:三角形三边长要满足三边关系,若3为腰长,则3,3,9,不符合三角形三边关系,所以3为底边,算出腰长为6,故选B .考点:三角形三边关系.5.已知单项式 23x m y -- 与 2323n m n x y - 是同类项,那么m ,n 的值分别是 A .31m n =⎧⎨=-⎩B .31m n =⎧⎨=⎩C .31m n =-⎧⎨=⎩D .31m n =-⎧⎨=-⎩【答案】B【解析】【分析】根据同类项的定义进行选择即可.【详解】∵单项式-x m-2y 3与x n y 2m-3n 是同类项,∴m-2=n ,2m-3n=3,∴m=3,n=1,故选:B .【点睛】考查了同类项,掌握同类项的定义(相同字母,相同字母的指数也相同)是解题的关键.6.在坐标平面内,若点P (x-3,x+2)在第二象限,则x 的取值范围是( )A .x >3B .x <3C .x >-2D .-2<x <3【答案】D【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】∵点P (x-1,x+2)在第二象限, ∴3020x x -⎧⎨+⎩<①>②, 解不等式①得,x <1,解不等式②得,x >-2,所以,不等式组的解集是-2<x <1,即x 的取值范围是-2<x <1.故选D .【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 7.如图,若AB ,CD 相交于点O ,过点O 作OE AB ⊥,则下列结论不正确...的是()A .1∠与2∠互为余角B .3∠与2∠互为余角C .2∠与AOE ∠互为补角D .AOC ∠与BOD ∠是对顶角【答案】C【解析】【分析】 根据OE ⊥AB 可得∠EOB=90°,再根据对顶角相等可得∠1=∠3,然后根据余角定义和补角定义进行分析即可.【详解】∵OE AB ⊥,∴∠EOB=90°,又∵12∠+∠=∠EOB ,∴12∠+∠=90°,即1∠与2∠互为余角,故A 选项正确;又∵13∠∠=(对顶角相等),∴23∠+∠=90°,即3∠与2∠互为余角,故B 选项正确;∵AOC ∠与BOD ∠是直线AB 、CD 相交于点O 而形成的对顶角,∴D 选项正确.故选C.【点睛】主要考查了余角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.8.如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG =2∠ABF ;②BA 平分∠CBG ;③∠ABG =∠ACB ;④∠CFB =135°,其中正确的结论有( )个A .1B .2C .3D .4【答案】C【解析】【分析】 由已知条件可知∠ABC+∠ACB=90°,又因为CD 、BE 分别是△ABC 的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB ,∠BAG=2∠ABF .所以可知选项①③④正确.【详解】∵AB ⊥AC .∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF 故①正确.∵AB⊥AC,∴∠ABC+∠ACB=90°,∵AG⊥BG,∴∠ABG+∠GAB=90°∵∠BAG=∠ABC,∴∠ABG=∠ACB 故③正确.故选C.【点睛】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.9.下列运算结果正确的是()A.5x﹣x=5 B.2x2+2x3=4x5C.﹣4b+b=﹣3b D.a2b﹣ab2=0【答案】C【解析】A.5x﹣x=4x,错误;B.2x2与2x3不是同类项,不能合并,错误;C.﹣4b+b=﹣3b,正确;D.a2b﹣ab2,不是同类项,不能合并,错误;故选C.10.下列多项式中能用平方差公式分解因式的是()A.x2+4 B.x2-xy C.x2-9 D.-x2-y2【答案】C【解析】【分析】能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反,根据平方差公式分解因式的特点进行分析即可.【详解】A、x2+4,不能利用平方差进行分解,故此选项错误;B、x2-xy=x(x-y),不能利用平方差进行分解,故此选项错误;C、x2-9=(x+3)(x-3),能利用平方差进行分解,故此选项正确;D、-x2-y2,不能利用平方差进行分解,故此选项错误;故选:C.【点睛】此题主要考查了公式法分解因式,关键是掌握平方差公式分解因式的特点.二、填空题11.如图,△ABC中,AD是高,AE是∠BAC的平分线,∠B=70°,∠DAE=18°,则∠C的度数是______.【答案】34°【解析】【分析】根据三角形内角和定理求出∠BAD,根据角平分线的定义求出∠BAC,根据三角形内角和定理计算即可.【详解】解:∵△ABC中,AD是高,∠B=70°,∴∠BAD=20°,∴∠BAE=38°,∵AE是∠BAC的平分线,∴∠BAC=76°,∴∠C=180°-76°-70°=34°,故答案为:34°.【点睛】本题考查三角形的内角和定理和角平分线的定义,解题的关键是熟练掌握三角形的内角和定理和角平分线的定义.∠=________,12.如图把一块等腰直角三角板的直角顶点放在直尺的-边上,若140︒∠=,则2【答案】50°【解析】【分析】由平行线可得∠2的同位角和∠1是余角,即可求得∠2=50°【详解】解:如图∵∠1+∠3=90°∴∠3=90°-∠1=50°∵AB ∥CD∴∠2=∠3=40°故答案为50°【点睛】此题考查平行线的性质以及角的运算,熟练应用平行线的性质是解题关键13.25的算术平方根是 _______ .【答案】1【解析】试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根.∵12=21, ∴21的算术平方根是1.考点:算术平方根.14.有若干张如图所示的正方形A 类、B 类卡片和长方形C 类卡片,如果要拼成一个长为()3a b +,宽为()2a b +的大长方形,则需要C 类卡片______张.【答案】1.【解析】【分析】计算出长为(3a+b ),宽为(a+2b )的大长方形的面积,再分别得出A 、B 、C 卡片的面积,即可看出应当需要各类卡片多少张.【详解】长为(3a+b ),宽为(a+2b )的大长方形的面积为:(3a+b )(a+2b )=3a 2+2b 2+1ab ;A 卡片的面积为:a×a=a 2;B 卡片的面积为:b×b=b 2;C 卡片的面积为:a×b=ab ;因此可知,拼成一个长为(3a+b ),宽为(a+2b )的大长方形,需要3块A 卡片,2块B 卡片和1块C 卡片.故答案为:1.【点睛】此题考查多项式乘法,解题关键在于注意对此类问题的深入理解.15.在边长为a 的正方形纸片中剪去一个边长为b 的小正方形()a b >(如图()1),把余下的部分沿虚线剪开,拼成一个矩形(如图()2),分别计算这两个图形阴影部分的面积,可以验证的乘法公式是________.(用字母表示)【答案】()()22a b a b a b -=+-或()()22a b a b a b +-=-. 【解析】【分析】分别表示出两种情况下的阴影部分的面积,而面积是相等的,故可得到结果.【详解】解:在图(1)中,大正方形面积为a 2,小正方形面积为b 2,所以阴影部分的面积为a 2-b 2,在图(2)中,阴影部分为一长方形,长为a+b ,宽为a-b ,则面积为(a+b)(a-b),由于两个阴影部分面积相等,所以有a 2-b 2=(a+b)(a-b)成立.故答案为a 2-b 2=(a+b)(a-b)或(a+b)(a-b)=a 2-b 2.【点睛】本题考查了平方差公式几何意义的理解,将整式运算与几何图形结合,注意各个量的变化.16.如图,直线a∥b,∠1=53°,则∠3=_______.【答案】127°【解析】【分析】直接利用平行线的性质得出∠4的度数,进而得出答案.【详解】解:∵直线a∥b,∠1=53°,∴∠1=∠4=53°,∴∠3=127°.故答案为:127°.【点睛】此题主要考查了平行线的性质,正确得出∠4度数是解题关键.17.命题“相等的角是对顶角”是_________命题.(填“真”或“假”).【答案】假.【解析】【分析】【详解】试题分析:对顶角相等,但相等的角不一定是对顶角,例如两个直角相等,但有时两个直角不是对顶角,从而可得命题“相等的角是对顶角”是假命题.考点:命题与定理.三、解答题18.若(x2+mx-8) (x2-3x+n)的展开式中不含x2和x3项,求m和n的值【答案】317 mn=⎧⎨=⎩【解析】【分析】首先根据多项式的乘法法则将多项式进行展开,然后进行合并同类项.根据不含哪一项,则哪一项的系数为零列出方程组,从而得出答案.【详解】解:原式=x4+(m-3)x3+(n-3m-8)x2+(mn+24)x-8n,根据展开式中不含x 2和x 3项得:30380m n m -=⎧⎨--=⎩, 解得:317m n =⎧⎨=⎩. 点睛:本题主要考查多项式的乘法计算法则,属于中等难度的题型.能够进行合并同类项是解决这个问题的关键.19.在如图所示的正方形网格中,每个小正方形的边长都是1个单位长度,ABC ∆的顶点均在格点上.(画图要求:先用2B 铅笔画图,然后用黑色水笔描画)(1)①画出ABC ∆绕点A 按逆时针方向旋转90︒后的11AB C ∆;②连结1CC ,请判断1ACC ∆是怎样的三角形,并简要说明理由.(2)画出222A B C ∆,使222A B C ∆和11AB C ∆关于点O 成中心对称;(3)请指出如何平移11AB C ∆,使得222A B C ∆和11AB C ∆能拼成一个长方形.【答案】(1)①11AB C ∆如图所示;见解析;②1ACC ∆是等腰直角三角形理由见解析;(2)222A B C ∆如图所示,见解析;(3)先向右平移5个单位,再向下平移6个单位。
2019学年河北省石家庄市七年级下学期期末数学试卷【含答案及解析】姓名_____________ 班级 _______________ 分数____________ 题号-二二三总分得分、选择题1. (2分)若a> b,则下列不等式变形正确的是()A. a+5v b+5 B .-3 3C.- 4a>- 4bD. 3a - 2< 3b- 22. (2分)不等式组.的解集是()::Y + 1V0A. x<2 B . x<- 1 C . x>2 D.- 1 <x<23. (2分)如图,平面上直线a、b分别过线段AB两端点(数据如图),则a、b相交所成的锐角是()A.20 °B.30 °C.80 °D.1004. (2 分)若(x - 5)(x+20)=x2+mx+n 贝V m n 的值分别为()A. m=- 15, n=- 100 B . m=25 n= - 100C. m=25 n=100 D . m=15 n= - 100f.Y = 15. (2分)已知是方程2x- ay=3的一个解,那么a的值是()[y= -iA.1B.3C. - 3D. - 16. (2 分)如果在△ ABC, / A=60 ° + Z B+Z C,则/等于()A.30 °B.60 °C.120 °D.140 °7. (2分)下列运算中正确的是()A. a5+a5=2a5 B . a3a2=a6 C. a6* a3=a2 D.(a3)4=a78. (2分)如图,将△ABC射线BC方向移动,使点B移动到点C,得到△ DCE连接^若厶ABC的面积为2,则厶ACE的面积为()A.2B.4C.8D.169. (2分)如图,AF是/ BAC勺平分线,EF// AC交AB于点E,若/ 1=35。
,则/ B的度数为()A.60 °B.70 °C.35 °D.17.5 °10. (2 分)若am=15 an=5,则am- n 等于()A.15B.10C.75D.311. (2分)有若干张面积分别为a2、b2、ab的正方形和长方形纸片,小明从中抽取了1张面积为b2的正方形纸片,6张面积为ab的长方形纸片•若他想拼成一个大正方形,则还需要抽取面积为a2的正方形纸片()A.4 张B.8 张C.9 张D.10 张12. (2分)已知正整数中a、b、c, c=7且a v b v c,则以a、b、c为三边长的三角形共有()A.4个B.5个C.6个D.7个二、填空题13. (3 分)计算:20152 - 20142= .14. (3分)如图,有一个与地面成30。
石家庄市2019-2020学年七年级下学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题(共10题,共30分) (共10题;共30分)1. (3分)计算(-3a2)2的结果是()A . 3a4B . -3a4C . 9a4D . -9a42. (3分)(2017·中原模拟) 如图,直线a将三角板的直角分为相等的两个角,a∥b,则∠1的度数为()A . 70°B . 105°C . 60°D . 75°3. (3分)下列多项式中,能够因式分解的是()A .B .C .D .4. (3分) (2016八上·泸县期末) 下列算式计算结果为x2﹣4x﹣12的是()A . (x+2)(x﹣6)B . (x﹣2)(x+6)C . (x+3)(x﹣4)D . (x﹣3)(x+4)5. (3分)下列四种图案分别平移后能得到后面的图案的是()A .B .C .D .6. (3分) (2019八上·周口月考) 若长方形的面积是4a2+8ab+2a,它的一边长为2a,则它的周长为()A . 2a+4b+1B . 2a+4bC . 4a+4b+1D . 8a+8b+27. (3分) (2018七上·宁波期中) 某同学在计算时,误将“÷”看成“+”结果是,则的正确结果是()A . 6B . —6C . 4D . -48. (3分)如图为雷锋中学八年级(2)班就上学方式作出调查后绘制的条形图,那么该班步行上学的同学比骑车上学的同学()A . 少8人B . 多8人C . 少16人D . 多16人9. (3分) (2018八上·彝良期末) 小朱要到距离家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸的速度比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A .B .C .D .10. (3分)已知方程组的解中x与y之和为1,则k的值是()A . ﹣1B . 2C . ﹣2D . 1二、填空题(共10题,共30分) (共10题;共30分)11. (3分) (2017七下·河北期末) 如图,已知a∥b,∠1=130°,∠2=90°,则∠3=________.12. (3分) (2017七下·洪泽期中) 计算:(2x)2•3x=________.13. (3分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯使现在世界上最薄的纳米材料,其理论厚度应是0.00000000034m,用科学记数法表示是________.14. (3分)(2016·淮安) 分解因式:m2﹣4=________.15. (3分) (2019八下·洪泽期中) 某校对八年级1600名男生的身高进行了测量,结果身高(单位:m)在1.58~1.65这一小组的频率为0.4,则该组的人数为________人.16. (3分) (2020八上·漯河期末) 若长方形的面积是,它的一边长为2a,则它的周长为________17. (3分)(2016·杭州) 已知关于x的方程 =m的解满足(0<n<3),若y>1,则m的取值范围是________.18. (3分)关于x的方程产生增根,则m的值为________,增根x的值为________.19. (3分) (2019七下·嘉兴期末) 在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4-y4 ,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式值是:(x+y)=18,(x-y)=0,(x2+y2)=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3-xy2 ,取x=10,y=10时,用上述方法产生的密码是________(写出一个即可).20. (3分)有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,要使牧草永远吃不完,至多放牧________ 头牛.三、解答题(共6题,共40分) (共6题;共40分)21. (6分)求二元一次方程3x+2y=19的正整数解.22. (6分)如图,▱ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.23. (6.0分) (2016九上·无锡期末) 为了解学生参加户外活动的情况,某校对初三学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)将条形统计图补画完整.(2)求每天参加户外活动时间达到2小时的学生所占调查学生的百分比.(3)这批参加调查的初三学生参加户外活动的平均时间是多少.24. (6分) (2017八下·徐州期末) “五一”期间,某商铺经营某种旅游纪念品.该商铺第一次批发购进该纪念品共花费3 000元,很快全部售完.接着,该商铺第二次批发购进该纪念品共花费9000元.已知第二次所购进该纪念品的数量是第一次的2倍还多300个,第二次的进价比第一次的进价提高了20%.(1)求第一次购进该纪念品的进价是多少元?(2)若该纪念品的两次售价均为9元/个,两次所购纪念品全部售完后,求该商铺两次共盈利多少元?25. (8分)小张去书店购买图书,看好书店有A,B,C三种不同价格的图书,分别是A种图书每本1元,B 种图书每本2元,C种图书每本5元.(1)若小张同时购买A,C两种不同图书的6本,用去18元,求购买两种图书的本数;(2)若小张同时购买两种不同的图书10本,用去18元,请你设计他的购书方案;(3)若小张同时购进A,B,C三种不同图书10本,用去18元,请你设计他的购买方案.26. (8.0分) (2019八下·九江期中) 已知方程组的解x为非正数,y为负数.(1)求a的取值范围;(2)化简∣a-3∣+∣a+2∣;(3).教科书中这样写道:“我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方式.”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值、最小值等.例如:分解因式x2+2x-3=(x2+2x+1)-4=(x+1)2-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);根据阅读材料用配方法解决下列问题:①分解因式:m2-4m-5=________②当a,b为何值时,多项式a2+b2-4a+6b+13=0.③当a,b为何值时,多项式a2-2ab+2b2-2a-4b+10=0.参考答案一、单选题(共10题,共30分) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(共10题,共30分) (共10题;共30分) 11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题(共6题,共40分) (共6题;共40分) 21-1、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
2019-2020学年初一下学期期末模拟数学试卷 一、选择题(每题只有一个答案正确)1.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52︒,现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是( )A .北偏西52︒B .南偏东52︒C .西偏北52︒D .北偏西38︒ 2.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首.A .28B .30C .32D .343.将图中的叶子平移后,可以得到的图案是()A .B .C .D .4.为了解一批产品的质量,从中抽取300个产品进行检验,在这个问题中,被抽取的300个产品叫做( ) A .总体 B .个体 C .总体的一个样本 D .调查方式5.如图,长方形BCDE 的各边分别平行于x 轴与y 轴,物体甲和物体乙由点A (2,0)同时出发,沿长方形BCDE 的边作环绕运动物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2019次相遇地点的坐标是( )A .(1,﹣1)B .(2,0)C .(﹣1,1)D .(﹣1,﹣1)6.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块( )A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格7.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°8.已知关于x的方程3x+m+4=0的解是x=﹣2,则m的值为()A.2 B.3 C.4 D.59.如果2x=4,那么x等于()A.2 B.2±C.4 D.4±10.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠2 B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=45°,则有BC∥AD二、填空题题11.某校七年级(1)班7 名女同学的体重(单位:kg)分别是:53、40、42、42、35、36、45 这组数据的中位数是_________12.计算:316|8|--=___________.13.如果方程组23759x yx y+=⎧⎨-=⎩,的解是方程716x my+=的一个解,则m的值为____________.14.将边长为1的正方形纸片按下图所示方法进行对折,第1次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2,…,第n次对折后得到的图形面积为S n,则4S=_________,S1+S2+S3+…+S2017=_____________.15.若关于x的不等式组1321x mx->⎧⎨-≥⎩的所有整数解得和是18,则m的取值范围是__________.16.据统计,2018年上海市常住人口数量约为24183300人,用科学计数法表示上海市常住人口数是__________.(保留4个有效数字)17.已知x+y=10,xy=16,则x2y+xy2的值为______.三、解答题18.如图,已知△ABC中,∠1=∠2,∠3=∠4,∠BAC=84°.求∠DAC的度数.19.(6分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1.将三角板中30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,且使DE始终与AB垂直.(1)△BDF是什么三角形?请说明理由;(2)设AD=x,CF=y,试求y与x之间的函数关系式;(不用写出自变量x的取值范围)(3)当移动点D使EF∥AB时,求AD的长。
2019-2020学年河北省石家庄外国语教育集团七年级(下)期末数学试卷一、选择题:(2×16=32)1.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①2.(2分)若a>b,则下列不等式变形正确的是()A.a+5<b+5B.C.﹣4a>﹣4b D.3a﹣2≤3b﹣2 3.(2分)下列各式从左到右的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣y2=(x+y)(x﹣y)C.x2﹣2x+1=x(x﹣2)+1D.x2+y2=(x+y)24.(2分)下列运算中正确的是()A.(2ab)3=2a3b3B.a3•a2=a6C.a6÷a3=a2D.(a3)4=a125.(2分)如图,下列能判定AB∥CD的条件有()个(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1B.2C.3D.46.(2分)如果等腰三角形的两边长分别为2和5,则它的周长为()A.9B.7C.12D.9或127.(2分)已知是方程组的解,则a+2b的值为()A.4B.5C.6D.78.(2分)如图,将△ABC沿射线BC方向移动,使点B移动到点C,得到△DCE,连接AE,若△ABC的面积为2,则△ACE的面积为()A.2B.4C.8D.169.(2分)若关于x的不等式x﹣m≥﹣1的解集如图所示,则m等于()A.0B.1C.2D.310.(2分)如图,AF是∠BAC的平分线,EF∥AC交AB于点E,若∠1=35°,则∠BEF 的度数为()A.35°B.60°C.70°D.80°11.(2分)小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把中间一项的系数染黑了,得到正确的结果为4a2■ab+9b2,则中间一项的系数是()A.12B.﹣12C.12或﹣12D.3612.(2分)下列命题:①平行于同一条直线的两条直线平行;②不等式组无解:相等的角是对顶角;④将一副直角三角板如图放置,使两直角边重合,则∠α的度数为165°,其中真命题有()A.1个B.2个C.3个D.4个13.(2分)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2B.2或3C.3或4D.4或514.(2分)某商店为了促销一种定价为5元的商品,采取下列方式优惠销售:若一次性购买不超过4件,则按原价付款;若一次性购买4件以上,则超过部分按原价的八折付款.如果小莹有42元钱,那么她最多可以购买该商品()A.9件B.11件C.10件D.12件15.(2分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB16.(2分)我国南宋数学家杨辉所著的《详解九章算术》一书中,利用如图所示的“三角形”解释二项式(a+b)n的展开式的各项系数,此“三角形”称为“杨辉三角”.如(a+b)3=a3+3a2b+3ab2+b2其展开式的系数从左起依次是1,3,3,1,请根据“杨辉三角”计算(a+b)8的展开式中从左起第四项的系数为()A.84B.56C.35D.28二、填空题:(10分)17.(10分)(1)新冠肺炎疫情发生以来,我国人民上下齐心,共同努力抗击疫情,逐渐取得了胜利.截止3月13日,我国各级财政安排的疫情防控投入已经达到了1169亿元,1169亿元用科学记数法表示元.(2)已知10m=2,10n=3,则10m+2n=.(3)在△ABC中,∠A=4∠B,且∠C﹣∠B=60°,则∠B的度数是.(4)如图(1),在三角形ABC中,∠A=38,∠C=72°,BC边绕点C按逆时针方向旋转一周回到原来的位置(即旋转角0°≤α≤360°),在旋转过程中(图2),当CB'∥AB时,旋转角为度;当CB所在直线垂直于AB时,旋转角为度.三、解答题18.(8分)如图,在10×10的方格纸中,有一格点三角形ABC.(说明:顶点都在网格线交点处的三角形叫做格点三角形)(1)将△ABC先向右平移5格再向下平移2格,画出平移后的△A'B'C'.(2)做出BC边的中线AM和AC边上的高BN;(3)△A'B'C'的面积为.19.(8分)(1)解方程组;(2)解不等式组.20.(8分)计算:(1);(2)(﹣2a2c)2•(﹣3ab2).21.(6分)分解因式:(1)﹣5x2y﹣10x3y2;(2)(3m﹣1)2﹣9;(3)3a2b﹣12ab+12b.22.(6分)某同学化简(a+2b)2﹣(a+b)(a﹣b)的解题过程如下解:原式=a2+4b2﹣(a2﹣b2)(第一步)=a2+4b2﹣a2﹣b2(第二步)=3b2(第三步)(1)该同学的解答过程从第步开始出现错误.(2)请写出此题正确的解答过程.并求出当a=时原代数式的值.23.(8分)为了增强学生的疫情防控意识,响应“停课不停学”号召,某学校组织了一次“疫情防控知识专题网上学习.并进行了一次全校2500名学生都参加的网上测试,阅卷后,教务处随机抽取收了100份答卷进行分析统计,发现考试成绩(x分)的最低分为51分,最高分为满分100分,井绘制了尚不完整的统计图表,请根据图表提供的信息,解答下列问题:分数段(分)频数(人)频率51≤x<61a0.161≤x<71180.1871≤x<81b n81≤x<91350.3591≤x<101120.12合计1001(1)填空:a=,b=,n=;(2)将频数分布直方图补充完整;(3)在绘制扇形统计图中,81≤x<91这一分数段所占的圆心角度数为°;(4)该校对成绩为91≤x≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.24.(8分)如图,在△ABC中,CD⊥AB,垂足为D.点E在BC上,EF⊥AB,垂足为F,∠1=∠2.(1)试说明DG∥BC的理由;(2)如果∠B=34°,∠A=40°,求∠3的度数.25.(8分)请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:.方法2:.(2)从中你能发现什么结论?请用等式表示出来:.(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=9,求阴影部分的面积.26.(8分)为迎接“七•一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?27.(10分)(1)已知△ABC中,∠B>∠C,AD⊥BC于D,AE平分∠BAC,∠B=70°,∠C=40°,求∠DAE的度数.(2)在图2中,∠B=x,∠C=y,其他条件不变,若把“AD⊥BC于D改为“F是AE 上一点,FD⊥BC于D“,试用x、y表示∠DFE=:(3)在图3中,若把(2)中的“点F在AE上“改为点F是AE延长线上一点”,其余条件不变,试用x、y表示∠DFE=;(4)在图3中,分别作出∠BAE和∠EDF的角平分线,交于点P,如图4.试用x、y 表示∠P=.2019-2020学年河北省石家庄外国语教育集团七年级(下)期末数学试卷参考答案与试题解析一、选择题:(2×16=32)1.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①【分析】根据题意和频数分布表、扇形统计图制作的步骤,可以解答本题.【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.【点评】本题考查扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤.2.(2分)若a>b,则下列不等式变形正确的是()A.a+5<b+5B.C.﹣4a>﹣4b D.3a﹣2≤3b﹣2【分析】根据不等式的基本性质进行判断即可.【解答】解:A、在不等式a>b的两边同时加上5,不等式仍成立,即a+5>b+5.原变形错误,故此选项不符合题意;B、在不等式a>b的两边同时除以3,不等式仍成立,即>.原变形正确,故此选项符合题意;C、在不等式a>b的两边同时乘以﹣4,不等号方向改变,即﹣4a<﹣4b.原变形错误,故此选项不符合题意;D、在不等式a>b的两边同时乘以3,再减去2,不等式仍成立,即3a﹣2>3b﹣2.原变形错误,故此选项不符合题意;故选:B.【点评】本题考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.(2分)下列各式从左到右的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣y2=(x+y)(x﹣y)C.x2﹣2x+1=x(x﹣2)+1D.x2+y2=(x+y)2【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.【解答】解:A、(x+1)(x﹣1)=x2﹣1,属于整式的乘法运算,故本选项错误;B、x2﹣y2=(x+y)(x﹣y),符合因式分解的定义,故本选项正确;C、x2﹣2x+1=x(x﹣2)+1,不符合因式分解的定义,故本选项错误;D、x2+2xy+y2=(x+y)2,因式分解的过程错误,故本选项错误;故选:B.【点评】此题考查了因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.4.(2分)下列运算中正确的是()A.(2ab)3=2a3b3B.a3•a2=a6C.a6÷a3=a2D.(a3)4=a12【分析】分别根据幂的乘方与积的乘方运算法则,同底数幂的乘法法则,同底数幂的除法法则以及幂的乘方运算法则逐一判断即可.【解答】解:A.(2ab)3=8a3b3,故本选项不合题意;B.a3•a2=a5,故本选项不合题意;C.a6÷a3=a3,故本选项不合题意;D.(a3)4=a12,故本选项符合题意.故选:D.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.5.(2分)如图,下列能判定AB∥CD的条件有()个(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1B.2C.3D.4【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.∴正确的为(1)、(3)、(4),共3个;故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两直线平行.6.(2分)如果等腰三角形的两边长分别为2和5,则它的周长为()A.9B.7C.12D.9或12【分析】根据三角形三边关系推出腰长为5,底边长为2,即可推出周长为12.【解答】解:∵2+5>5,∴等腰三角形的腰长为5,底边长为2,∴周长=5+5+2=12.故选:C.【点评】本题主要考查三角形的三边关系、等腰三角形的性质,关键在于根据三角形的三边关系推出腰长和底边长.7.(2分)已知是方程组的解,则a+2b的值为()A.4B.5C.6D.7【分析】首先把方程组的解代入方程组,得到一个关于a,b的方程组,即可求得代数式的值.【解答】解:把代入方程组,可得:,解得:,则a+2b=7,故选:D.【点评】本题主要考查了方程组的解的定义:能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.8.(2分)如图,将△ABC沿射线BC方向移动,使点B移动到点C,得到△DCE,连接AE,若△ABC的面积为2,则△ACE的面积为()A.2B.4C.8D.16【分析】首先根据平移的性质,可得BC=CE;然后根据两个三角形的高相等时,面积和底成正比,可得△ACE的面积等于△ABC的面积,据此解答即可.【解答】解:∵将△ABC沿射线BC方向移动,使点B移动到点C,得到△DCE,∴BC=CE,∵△ACE和△ABC底边和高都相等,∴△ACE的面积等于△ABC的面积,又∵△ABC的面积为2,∴△ACE的面积为2.故选:A.【点评】(1)此题主要考查了平移的性质和应用,要熟练掌握,解答此题的关键是要明确:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.(2)此题还考查了三角形的面积的求法,要熟练掌握,解答此题的关键是要明确:两个三角形的高相等时,面积和底成正比.9.(2分)若关于x的不等式x﹣m≥﹣1的解集如图所示,则m等于()A.0B.1C.2D.3【分析】首先解得关于x的不等式x﹣m≥﹣1的解集即x≥m﹣1,然后观察数轴上表示的解集,求得m的值.【解答】解:关于x的不等式x﹣m≥﹣1,得x≥m﹣1,由题目中的数轴表示可知:不等式的解集是:x≥2,因而可得到,m﹣1=2,解得,m=3.故选:D.【点评】本题解决的关键是正确解出关于x的不等式,把不等式问题转化为方程问题.10.(2分)如图,AF是∠BAC的平分线,EF∥AC交AB于点E,若∠1=35°,则∠BEF 的度数为()A.35°B.60°C.70°D.80°【分析】根据平行线的性质求出∠F AC=∠1=35°,根据角平分线的定义得出∠BAC=2∠F AC=70°,根据平行线的性质得出∠BEF=∠BAC,代入求出即可.【解答】解:∵EF∥AC,∠1=35°,∴∠F AC=∠1=35°,∵AF是∠BAC的平分线,∴∠BAC=2∠F AC=70°,∵EF∥AC,∴∠BEF=∠BAC=70°,故选:C.【点评】本题考查了平行线的性质和角平分线的定义,能根据平行线的性质得出∠F AC =∠1和∠BEF=∠BAC是解此题的关键.11.(2分)小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把中间一项的系数染黑了,得到正确的结果为4a2■ab+9b2,则中间一项的系数是()A.12B.﹣12C.12或﹣12D.36【分析】运用完全平方公式求出(2a±3b)2对照求解即可.【解答】解:由(2a±3b)2=4a2±12ab+9b2,∴染黑的部分为±12.故选:C.【点评】本题主要考查完全平方公式,熟记完全平方公式是解题的关键.12.(2分)下列命题:①平行于同一条直线的两条直线平行;②不等式组无解:相等的角是对顶角;④将一副直角三角板如图放置,使两直角边重合,则∠α的度数为165°,其中真命题有()A.1个B.2个C.3个D.4个【分析】利用平行线的传递性对①进行判断;利用确定不等式组的解集的方法对②进行判断;根据对顶角的定义对③进行判断;根据邻补角的定义和三角形外角性质可对④进行判断.【解答】解:平行于同一条直线的两条直线平行,所以①为真命题;不等式组无解,所以②为真命题;相等的角不一定为对顶角,所以③为假命题;因为∠α=180°﹣45°+30°=165°,所以④为真命题.故选:C.【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.13.(2分)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2B.2或3C.3或4D.4或5【分析】设该队胜x场,平y场,则负(6﹣x﹣y)场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.【解答】解:设该队胜x场,平y场,则负(6﹣x﹣y)场,根据题意,得:3x+y=12,即:x=,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,故选:C.【点评】本题主要考查二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.14.(2分)某商店为了促销一种定价为5元的商品,采取下列方式优惠销售:若一次性购买不超过4件,则按原价付款;若一次性购买4件以上,则超过部分按原价的八折付款.如果小莹有42元钱,那么她最多可以购买该商品()A.9件B.11件C.10件D.12件【分析】设小莹可以购买x件,根据该商店的促销策略结合总价各不超过42元,即可得出关于x的一元一次不等式,解之取其中最大的整数值即可得出结论.【解答】解:设小莹可以购买x件,依题意,得:5×4+5×0.8(x﹣4)≤42,解得:x≤9.又∵x为整数,∴x的最大值为9.故选:A.【点评】本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键.15.(2分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB【分析】根据图形可知※代表CD,即可判断D;根据三角形外角的性质可得◎代表∠EFC,即可判断A;利用等量代换得出▲代表∠EFC,即可判断C;根据图形已经内错角定义可知@代表内错角.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.【点评】本题考查了平行线的判定,三角形外角的性质,比较简单.16.(2分)我国南宋数学家杨辉所著的《详解九章算术》一书中,利用如图所示的“三角形”解释二项式(a+b)n的展开式的各项系数,此“三角形”称为“杨辉三角”.如(a+b)3=a3+3a2b+3ab2+b2其展开式的系数从左起依次是1,3,3,1,请根据“杨辉三角”计算(a+b)8的展开式中从左起第四项的系数为()A.84B.56C.35D.28【分析】根据“杨辉三角”的规律求出所求即可.【解答】解:根据“杨辉三角”得:(a+b)7的展开式中的系数分别为1,7,21,35,35,21,7,1,(a+b)8的展开式中的系数分别为1,8,28,56,70,56,28,8,1,则(a+b)8的展开式中从左起第四项的系数为56,故选:B.【点评】此题考查了数字变化规律,熟练掌握杨辉三角形的变化规律是解本题的关键.二、填空题:(10分)17.(10分)(1)新冠肺炎疫情发生以来,我国人民上下齐心,共同努力抗击疫情,逐渐取得了胜利.截止3月13日,我国各级财政安排的疫情防控投入已经达到了1169亿元,1169亿元用科学记数法表示 1.169×1011元.(2)已知10m=2,10n=3,则10m+2n=36.(3)在△ABC中,∠A=4∠B,且∠C﹣∠B=60°,则∠B的度数是20°.(4)如图(1),在三角形ABC中,∠A=38,∠C=72°,BC边绕点C按逆时针方向旋转一周回到原来的位置(即旋转角0°≤α≤360°),在旋转过程中(图2),当CB'∥AB时,旋转角为70或250度;当CB所在直线垂直于AB时,旋转角为160或340度.【分析】(1)根据科学记数法解决问题即可.(2)根据10m+2n=102m×102n=(10m)2×(10n)2计算即可.(3)利用三角形内角和定理即可解决问题.(4)在三角形ABC中,根据三角形的内角和得到∠B=180°﹣38°﹣72°=70°,如图1,当CB′∥AB时,根据平行线的性质即可得到结论;如图2,当CB′⊥AB时根据垂直的定义和周角的定义即可得到结论.【解答】解:(1)1169亿=1169×108元=1.169×1011(元).故答案为1.169×1011.(2)10m+2n=102m×102n=(10m)2×(10n)2=22×32=36,故答案为36.(3)∵∠A=4∠B,且∠C﹣∠B=60°,∴∠C=60°+∠B,∴4∠B+∠B+60°+∠B=180°,∴∠B=20°,故答案为20°(4)∵在三角形ABC中,∠A=38°,∠C=72°,∴∠B=180°﹣38°﹣72°=70°,如图1,当CB′∥AB时,旋转角=∠B=70°,当CB″∥AB时,∠B″CA=∠A=38°,∴旋转角=360°﹣38°﹣72°=250°,综上所述,当CB′∥AB时,旋转角为70°或250°;如图2,当CB′⊥AB时,∠BCB″=90°﹣70°=20°,∴旋转角=180°﹣20°=160°,当CB″⊥AB时,旋转角=180°+160°=340°,综上所述,当CB′⊥AB时,旋转角为160°或340°;故答案为:70或250;160或340.【点评】本题考查了科学记数法,幂的乘方,积的乘方,三角形内角和定理,多边形的内角和外角,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题18.(8分)如图,在10×10的方格纸中,有一格点三角形ABC.(说明:顶点都在网格线交点处的三角形叫做格点三角形)(1)将△ABC先向右平移5格再向下平移2格,画出平移后的△A'B'C'.(2)做出BC边的中线AM和AC边上的高BN;(3)△A'B'C'的面积为3.【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)利用网格特点和三角形中线、高的定义作图;(3)用一个矩形的面积分别减去三个三角形的面积去计算△A'B'C'的面积.【解答】解:(1)如图,△A'B'C'为所作;(2)如图,AM和BN为所作;(3)△A'B'C'的面积=4×2﹣×1×2﹣×2×2﹣×1×4=3.故答案为3.【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.19.(8分)(1)解方程组;(2)解不等式组.【分析】(1)利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1),①﹣②×2,得:x=﹣1,将x=1代入①,得:﹣5+6y=7,解得y=2,∴方程组的解集为;(2)解不等式x﹣4<3(x﹣2),得:x>1,解不等式+1>x,得:x<4,则不等式组的解集为1<x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)计算:(1);(2)(﹣2a2c)2•(﹣3ab2).【分析】(1)利用负整数指数幂、零次幂以及积的乘方的计算方法进行计算即可;(2)根据单项式乘以单项式、幂的乘方、积的乘方的计算方法进行计算即可.【解答】解:(1)=4+1+=;(2)(﹣2a2c)2•(﹣3ab2)=2a4c2•(﹣3ab2)=﹣6a5b2c2.【点评】本题考查负整数指数幂、零次幂、积的乘方、单项式乘以单项式的计算方法,掌握计算方法是正确计算的前提.21.(6分)分解因式:(1)﹣5x2y﹣10x3y2;(2)(3m﹣1)2﹣9;(3)3a2b﹣12ab+12b.【分析】(1)原式提取公因式即可;(2)原式利用平方差公式分解即可;(3)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=﹣5x2y(1+2x);(2)原式=(3m﹣1+3)(3m﹣1﹣3)=(3m+2)(3m﹣4);(3)原式=3b(a2﹣4a+4)=3b(a﹣2)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.(6分)某同学化简(a+2b)2﹣(a+b)(a﹣b)的解题过程如下解:原式=a2+4b2﹣(a2﹣b2)(第一步)=a2+4b2﹣a2﹣b2(第二步)=3b2(第三步)(1)该同学的解答过程从第一步开始出现错误.(2)请写出此题正确的解答过程.并求出当a=时原代数式的值.【分析】(1)观察该同学解题过程,确定出出错的步骤即可;(2)写出正确的解答过程,把a的值代入计算即可求出值.【解答】解:(1)该同学的解答过程从第一步开始出现错误;故答案为:一;(2)正确解答为:原式=a2+4ab+4b2﹣(a2﹣b2)=a2+4ab+4b2﹣a2+b2=4ab+5b2,当a=﹣,b=2时,原式=4×(﹣)×2+5×22=﹣4+20=16.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.23.(8分)为了增强学生的疫情防控意识,响应“停课不停学”号召,某学校组织了一次“疫情防控知识专题网上学习.并进行了一次全校2500名学生都参加的网上测试,阅卷后,教务处随机抽取收了100份答卷进行分析统计,发现考试成绩(x分)的最低分为51分,最高分为满分100分,井绘制了尚不完整的统计图表,请根据图表提供的信息,解答下列问题:分数段(分)频数(人)频率51≤x<61a0.161≤x<71180.1871≤x<81b n81≤x<91350.3591≤x<101120.12合计1001(1)填空:a=10,b=25,n=0.25;(2)将频数分布直方图补充完整;(3)在绘制扇形统计图中,81≤x<91这一分数段所占的圆心角度数为126°;(4)该校对成绩为91≤x≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.【分析】(1)根据表格数据即可求出a,b,n;(2)结合(1)所得数据即可将频数分布直方图补充完整;(3)根据81≤x<91这一分数段所占频率即可求出圆心角度数;(4)根据一、二、三等奖的人数比例为1:3:6,即可估算全校获得二等奖的学生人数.【解答】解:(1)a=100×0.1=10,b=100﹣10﹣18﹣35﹣12=25,n=25÷100=0.25.故答案为:10,25,0.25;(2)如图,即为补充完整的频数分布直方图;(3)81≤x<91这一分数段所占的圆心角度数为360×0.35=216°;故答案为:126;(4)∵2500××=90(人)∴估算全校获得二等奖的学生人数为90人.【点评】本题考查了频数分布直方图、用样本估计总体、频率分布表、扇形统计图,解决本题的关键是掌握频数分布直方图.24.(8分)如图,在△ABC中,CD⊥AB,垂足为D.点E在BC上,EF⊥AB,垂足为F,∠1=∠2.(1)试说明DG∥BC的理由;(2)如果∠B=34°,∠A=40°,求∠3的度数.【分析】(1)想办法证明∠2=∠DCB即可解决问题.(2)利用三角形内角和定理求出∠ACB,再利用平行线的性质求解即可.【解答】(1)证明:∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠1=∠BCD,∵∠1=∠2,∴∠2=∠BCD,∴DG∥BC.(2)解:∵∠B=34°,∠A=40°,∴∠ACB=180°﹣34°﹣30°=116°,∵DG∥BC,∴∠3=∠ACB=116°【点评】本题考查三角形内角和定理,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(8分)请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:a2+b2.方法2:(a+b)2﹣2ab.(2)从中你能发现什么结论?请用等式表示出来:a2+b2=(a+b)2﹣2ab.(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=9,求阴影部分的面积.【分析】(1)从整体和部分两个方面表示阴影部分的面积;(2)由(1)可得到等式a2+b2=(a+b)2﹣2ab;(3)表示图2的阴影部分的面积,然后整体代入求值即可.【解答】解:(1)图1,两个阴影正方形的面积和:a2+b2,大正方形的面积减去两个长方形的面积:(a+b)2﹣2ab,故答案为:a2+b2,(a+b)2﹣2ab;(2)两个数的平方和等于这两个数和的平方减去这两个数积的2倍,即:a2+b2=(a+b)2﹣2ab;故答案为:a2+b2=(a+b)2﹣2ab;(3)如图2,阴影部分的面积为:a2﹣(a+b)×b=a2+ab+b2=(a+b)2﹣ab=﹣=36.【点评】本题考查完全平方公式的几何意义,用不同的方法表示阴影部分的面积是得出等式的关键.26.(8分)为迎接“七•一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?【分析】(1)根据题意结合每辆大客车的座位数比小客车多15个以及师生共301人参加一次大型公益活动,分别得出等式求出答案;(2)根据(1)中所求,进而利用总人数为310+40,进而得出不等式求出答案.【解答】解:(1)设每辆小客车的座位数是x个,每辆大客车的座位数是y个,根据题意可得:,解得:.答:每辆大客车的座位数是40个,每辆小客车的座位数是25个;(2)设租用a辆小客车才能将所有参加活动的师生装载完成,则25a+40(10﹣a)≥310+40,解得:a≤3,符合条件的a最大整数为3.答:最多租用小客车3辆.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出不等关系是解题关键.27.(10分)(1)已知△ABC中,∠B>∠C,AD⊥BC于D,AE平分∠BAC,∠B=70°,∠C=40°,求∠DAE的度数.(2)在图2中,∠B=x,∠C=y,其他条件不变,若把“AD⊥BC于D改为“F是AE 上一点,FD⊥BC于D“,试用x、y表示∠DFE=(x﹣y):(3)在图3中,若把(2)中的“点F在AE上“改为点F是AE延长线上一点”,其余。
2019-2020学年初一下学期期末模拟数学试卷 一、选择题(每题只有一个答案正确) 1.把不等式组113x x >-⎧⎨+⎩的解集表示在数轴上,下列选项正确的是( ) A . B .C .D . 2.若7a b +=,5ab =,则()2a b -=( )A .25B .29C .69D .753.a 是155-的整数部分,则a 为( )A .-2B .-1C .0D .14.下列等式成立的是( )A .255=± B .()3333-= C .()244-=-D .0.360.6±=± 5.已知21x y =⎧⎨=-⎩是方程23ax by bx cy +=⎧⎨-=⎩的解,则a 与c 的关系是( ) A .3a 2c 5-=B .a 4c 3+=C .4a c 7-=D .4a c 7+= 6.9的平方根是( )A .3B .81C .3±D .81±7.边长为a ,b 的长方形周长为12,面积为10,则a 2b+ab 2的值为( )A .120B .60C .80D .40 8.计算111a a a ---的结果是( ) A .1- B .1 C .11a a +- D .29.以下各数中,5、﹣2、0、34、227、﹣1.732、25、2π、3+29、0.1010010001…中无理数的个数有( )A .1个B .2个C .3个D .4个10.如图,有一张直角三角形纸片,两直角边AC =5 cm ,BC =10 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则△ACD 的周长为( )A .10cmB .12cmC .15cmD .20cm二、填空题题11.已知1mn m n =--,则()()11m n ++的值为________.12.如果用四舍五入法并精确到百分位,那么0.7856≈__________.13.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________ 14.化简:12=_____.15.在学习完“探索三角形全等的条件”一节后,小丽总结出很多全等三角形的模型,她设计了以下问题给同桌解决:做一个“U ”字形框架,PABQ 其中20,,AB cm AP BQ =足够长,PA AB ⊥于点,A QB AB ⊥于点,B 点M 从B 出发向A 运动,点N 从B 出发向Q 运动, 速度之比为2:3,运动到某一瞬间两点同时停止,在AP 上取点,C 使ACM 与BMN △全等,则AC 的长度为________________.cm16.不等式组1010.50x x -≥⎧⎨-<⎩的最小整数解是______。
2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()A.12B.13C.15D.3102.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3 B.-1 C.1 D.-3或13.如图,一个质点在第一象限及x轴,y轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第24秒时质点所在位置的坐标是()A.(0,5)B.(5,0)C.(0,4)D.(4,0)4.已知23xy=⎧⎨=⎩是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣25.在锐角三角形ABC中,∠A=50°,则∠B的范围是()A.0°<∠B<90°B.40°<∠B<130° C.40°≤∠B≤90°D.40°<∠B<90°6.将一个各面涂有颜色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有颜色的概率是()A.B.9C.D.7.流感病毒可分为人流感病毒和动物流感病毒,形状呈直径约为0.00000012米的球形.数据0.00000012用科学记数法记作()∠A+∠P=()A.70°B.80°C.90°D.100°9.下列各式能用平方差公式计算的是()A.(-x-y)(x-y) B.(2x+y)(2y-x) C.(x-2)(x+1) D.(y-1)(1-y)10.将一副三角板按如图放置,则下列结论中,正确的有()①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠CA.①②③B.①②④C.③④D.①②③④二、填空题题11.若则______.12.用“>”、“<”或“=”填空:5________2.13.若方程组x y73x5y3+=⎧⎨-=-⎩,则()()3x y3x5y+--的值是_____.14.将点P(﹣2,0)向左平移2个单位得点P′,则点P′的坐标是___.15.已知23xy=⎧⎨=-⎩是二元一次方程4x+ay=5的一组解,则a的值为____.16.将两张长方形纸片按如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2=______°.17.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB三、解答题18.如图,在ABC∆中,AB边的垂直平分线交BC于点D,AC边的垂直平分线交BC于点E,连接AD、AE.若115BAC∠=︒,求DAE∠的度数.19.(6分)某校有500名学生.为了解全校每名学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到扇形统计图如右图:(1)本次调查的个体是,样本容量是;(2)扇形统计图中,乘私家车部分对应的圆心角是度;(3)请估计该校500名学生中,选择骑车和步行上学的一共有多少人?20.(6分)已知关于x,y的二元一次方程组2ax+by=3ax by=1⎧⎨-⎩,的解为x=1y=1.⎧⎨⎩,求a+2b的值.21.(6分)填空:如图,已知DG⊥BC,BC⊥AC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系:解:CD⊥AB∴DG ∥AC ,(____________________)∴∠2=∠_________.(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠________(等量代换)∴EF ∥______(同位角相等,两直线平行)∴∠AEF =∠ADC ,(________________)∵EF ⊥AB ,∴∠AEF =90°∴∠ADC =90°即:CD ⊥AB .22.(8分)计算题.(1)0321(2003)(2)()42---÷-⋅-- (2)2(3)(2)(2)x x x +-+-(3)2002-202×198(4)(23)(23)x y x y -++-(5)[(2x+y )2﹣y (y+4x )﹣8xy]÷(﹣2x ).其中x=-2,y=123.(8分)如图1,在平面直角坐标系中,已知点A (0,a ),B (0,b )在y 轴上,点 C (m ,b )是第四象限内一点,且满足()2860a b -++=,△ABC 的面积是56;AC 交x 轴于点D ,E 是y 轴负半轴上的一个动点.(1)求C 点坐标;(2)如图2,连接DE ,若DE ⊥AC 于D 点,EF 为∠AED 的平分线,交x 轴于H 点,且∠DFE =90°,求证:FD 平分∠ADO ;(3)如图3,E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分 ∠AEC ,且PM ⊥EM 于M 点,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,MPQ ECA∠∠的大小是否发生变化,若不变,求出其值;若变化,请说明理由.25.(10分)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.参考答案一、选择题(每题只有一个答案正确)1.A【解析】分析:根据题意得出两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,然后根据概率的计算法则得出答案.详解:∵两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,∴P (飞镖落在黑色区域)=12. 点睛:本题主要考查的是概率的计算法则,属于基础题型.得出黑色区域的面积与总面积的关系是解决这个问题的关键.2.D【解析】【分析】根据平方根的性质列方程求解即可;【详解】当24=31m m --时,3m =-;当24310m m +=--时,1m =;本题主要考查平方根的性质,易错点是容易忽略相等的情况,做好分类讨论是解决本题的关键.3.C【解析】【分析】应先判断出走到坐标轴上的点所用的时间以及相对应的坐标,可发现走完一个正方形所用的时间分别为3,5,7,9…,此时点在坐标轴上,进而得到规律.【详解】解:3秒时到了(1,0);8秒时到了(0,2);15秒时到了(3,0);24秒到了(0,4);故选:C.【点睛】此题主要考查坐标的规律探索,解题的关键是根据题意找到变化规律.4.A【解析】试题解析:∵23xy=⎧⎨=⎩是关于x、y的方程4kx-3y=-1的一个解,∴代入得:8k-9=-1,解得:k=1,故选A.5.D【解析】【分析】根据三角形的内角和即可得到结论.【详解】∵在锐角三角形ABC中,∠A=50°,则∠B的范围是40°<∠B<90°,故选:D.【点睛】本题主要考查了三角形的内角和,正确理解∠B的范围的确定方法是解决本题的关键.6.D【解析】【分析】首先确定三面涂有颜色的小正方体所的个数在27个小正方体中占的比例,根据这个比例即可求出有3个将一个各面涂有颜色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有颜色的小正方体只能在大正方体的8个角上,共8个,故恰有3个面涂有颜色的概率是.故选D.【点睛】本题将概率的求解设置于分割正方体的游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率所求情况数与总情况数之比.7.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.00000012=1.2×10﹣1.故选:A.【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的使用.8.C【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P的度数,即可求出结果.【详解】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM-∠ABC=60°,∠ACB=180°-∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠BPC=20°,∴∠P=180°-∠PBC-∠BCP=30°,本题考查了角平分线的定义,一个三角形的外角等于与它不相邻的两个内角和以及补角的定义以及三角形的内角和为180°,掌握角平分线的定义是解题的关键.9.A【解析】【分析】平方差公式为(a+b)(a﹣b)=a1﹣b1,根据公式判断即可.【详解】A.(﹣x﹣y)(x﹣y)符合平方差公式,故A正确;B.(1x+y)(1y﹣x)不符合平方差公式,故B错误;C.(x﹣1)(x+1)不符合平方差公式,故C错误;D.(y﹣1)(1﹣y)不符合平方差公式,故D错误.故选A.【点睛】本题考查了平方差公式的应用,能灵活运用公式进行计算是解答此题的关键,注意:平方差公式为(a+b)(a﹣b)=a1﹣b1.10.B【解析】【分析】根据同角的余角相等判断①;根据平行线的判定定理判断②;根据平行线的判定定理判断③;根据②的结论和平行线的性质定理判断④.【详解】解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,①正确;∵∠2=30°,∴∠1=60°,又∵∠E=60°,∴∠1=∠E,∴AC∥DE,②正确;∵∠2=30°,∴∠1+∠2+∠3=150°,∴AC∥DE,∴∠4=∠C,④正确.故选:B.【点睛】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.二、填空题题11.16【解析】【分析】利用幂的乘方和同底数幂乘法运算法则计算可得,即可知m的值.【详解】解:,m=16.【点睛】幂的乘方法则:底数不变,指数相乘;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.12.>【解析】【分析】把2变成根号的形式再比较两个数的大小即可.【详解】>54>52∴故答案为:>【点睛】本题考查实数大小的比较,解题关键在于熟练掌握比较方法.13.1.【解析】【分析】解:∵x y 73x 5y 3+=⎧⎨-=-⎩, ∴()()()3x y 3x 5y 37324+--=⨯--=.故答案为:1.14. (-4,0)【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】将点P (﹣2,0)向左平移2个单位得点P′,则点P′的坐标是(﹣2-2,0)故答案为:(-4,0)【点睛】此题考查坐标与图形变化-平移,解题关键在于掌握平移性质.15.1【解析】【分析】把x 与y 的值代入方程计算即可求出a 的值.【详解】∵23x y =⎧⎨=-⎩是二元一次方程4x+ay=5的一组解, ∴8-3a=5,∴a=1.故答案是:1.【点睛】考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.90°【解析】分析:根据两直线平行,内错角相等和平角的定义即可解决.详解:由题意可知∠4=90°,∴∠2+∠3=90°,∴∠1+∠2=90°.故答案为90.点睛:本题主要考查了平行线的性质,根据平行线的性质得出∠1=∠3是解决本题的关键.17.10°【解析】【分析】根据直角三角形两锐角互余求出∠B ,根据翻折变换的性质可得∠CA′D=∠A ,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵∠ACB =90°,∠A =50°,∴∠B =90°﹣50°=40°,∵折叠后点A 落在边CB 上A′处,∴∠CA′D =∠A =50°,由三角形的外角性质得,∠A′DB =∠CA′D ﹣∠B =50°﹣40°=10°.故答案为:10°.【点睛】本题考查了翻折变换,直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,翻折前后对应边相等,对应角相等.三、解答题18.50°【解析】【分析】根据线段垂直平分线的性质得到AD DB =,AE EC =,根据等腰三角形的性质可得B BAD ∠=∠,C EAC ∠=∠,然后利用三角形内角和定理求出B C ∠+∠即可.【详解】解:AB 、AC 边的垂直平分线交BC 于点D 、E ,AD DB ∴=,AE EC =,B BAD ∴∠=∠,C EAC ∠=∠.115BAC ∠=︒,180********B C BAC ∴∠+∠=︒-∠=︒-︒=︒,65BAD EAC ∴∠+∠=︒,()1156550DAE BAC BAD EAC ∴∠=∠-∠+∠-︒=︒=︒.【点睛】本题考查了三角形内角和定理,等腰三角形的性质,线段垂直平分线的性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.19.(1)本次调查的个体是:每名学生的上学方式;样本容量为:100;(2)72°;(3)220人.【解析】【分析】(1)根据“个体”、“样本容量”的定义结合已知条件进行分析即可;(2)根据扇形统计图中其它上学方式所占的百分比先计算出“乘私家车”部分所占的百分比,再用所得百分比乘以360°即可得到所求答案;(3)根据题意由500×(15%+29%)即可求得本题答案.【详解】(1)本次调查的个体是:每名学生的上学方式;样本容量为:100;(2)由题意可得,扇形统计图中,“乘私家车”部分所对应的圆心角为:360°×(1-30%-29%-15%-6%)=360°×20%=72°;(3)由题意可得,全校通过骑车和步行到校的学生人数为:500×(15%+29%)=220(人).答:估计该校 500名学生中,选择骑车和步行上学的一共有220人.【点睛】本题解题有以下两个要点:(1)熟记“个体、总体、样本和样本容量等基本概念”;(2)知道:扇形统计图中某个项目所对应的圆心角=360°×该项目在总体中所占百分比.20.a + 2b = 2.【解析】分析:根据题意把x=1 y=1⎧⎨⎩代入方程组2ax+by=3ax-by=1⎧⎨⎩得到关于a 、b 的方程组,由新方程组变形即可求得a+2b 的值. 详解:把x=1 y=1⎧⎨⎩代入方程组2ax+by=3ax-by=1⎧⎨⎩ 得:23? a-b=1a b ①②+=⎧⎨⎩ ,由①-②,得:a + 2b = 2.点睛:熟悉“二元一次方程组解的定义”是解答本题的关键.21.∠ACB ;同位角相等,两直线平行;∠ACD ;∠ACD ;CD ;两直线平行,同位角相等.【解析】【分析】根据垂直于同一直线的两条直线平行,证出DG∥AC,再根据DG∥AC,∠1=∠2,证出∠1=∠ACD,所以EF∥CD,因此∠AEF=∠ADC=90°,即CD⊥AB.【详解】解:CD⊥AB∵DG⊥BC,BC⊥AC(已知)∴∠DGB=∠_ACB__=90°(垂直定义)∴DG∥AC,(同位角相等,两直线平行_____)∴∠2=∠ACD__.(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD_(等量代换)∴EF∥__CD__(同位角相等,两直线平行)∴∠AEF=∠ADC,(_两直线平行,同位角相等__)∵EF⊥AB,∴∠AEF=90°∴∠ADC=90°即:CD⊥AB.【点睛】本题考查平行线的判定和平行线的性质的综合运用,要熟练掌握是做题的关键.22.(1)-36;(2)613x +;(3)4;(4)224+69x y y --;(5)0;【解析】【分析】(1)直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案;(2)利用完全平方公式和平方差公式进行化简后,再计算即可;(3)利用平方差公式进行计算即可;(4)利用平方差公式进行计算即可;(5)先化简,按运算顺序,再代入求值.【详解】解:(1)原式=()3211242⎛⎫÷-⨯-- ⎪⎝⎭ =11448⎛⎫÷-⨯- ⎪⎝⎭=()1844⨯-⨯-=324--=-36;(2)原式=()2223(2)x x +--=22694x x x ++-+=613x +;(3)原式=()()220020022002-+- =()2222002002--=2222002002-+=4;(4)原式=()()2323x y x y --+-⎡⎤⎡⎤⎣⎦⎣⎦=()()2223x y --=()22469x y y --+=224+69x y y --;(5)原式=()()22244482x xy y y xy xy x ++---÷- =()()2482x xy x -÷- =−2x+4y ;当x=2,y=1时,原式=−2×2+4×1=−4+4=0;【点睛】本题主要考查了实数的运算,整式的化简求值,完全平方公式和平方差公式,掌握实数的运算,整式的化简求值,完全平方公式和平方差公式是解题的关键.23.(1)a=8,b=-6, AB=1, BC=8, C (8,-6);(2)见解析;(3)MPQ 1ECA 2∠∠= 【解析】【分析】(1)根据非负数的性质求出a 、b ,得到点A 、点B 的坐标,根据△ABC 的面积是56的面积公式求出CB ,得到点C 的坐标;(2)根据三角形内角和定理、“8字形”题、角平分线的定义计算即可;(2)因为EF 为∠AED的平分线,∠DFE =90°,DE ⊥AC ,所以∠AEF =∠DEF =90°-∠FDE =∠ADF ,又因为∠AEF =90°-∠OHE =90°-∠DHF =∠ODF所以∠ADF =∠ODF ,可得FD 平分∠ADO ;(3)设∠AEM =∠CEM =α,设∠APQ =∠NPQ =β,因为PN ∥AE ,由“M 形”易得:(∠MPQ+∠NPQ )+∠AEM =∠M =90°, 即∠MPQ =90°-(α+β),∠CPN+∠CEA =∠ECP =180-∠ECA , 即∠ECA =180-2(α+β)从而求解.【详解】解:(1)∵()2860a b -++=∴a-8=0,b+6=0,解得a=8,b=-6,∴A (3,0)、B (0,-4).∴OA=8,OB=6,AB=1.∵S △ABC=12×BC×AB= 12×BC×1=56, 解得: BC=8,∵C 在第四象限,BC ⊥y 轴,∴C (8,-6);(2)∵EF 为∠AED 的平分线,∠DFE =90°,DE ⊥AC∴∠AEF =∠DEF =90°-∠FDE =∠ADF∠AEF =90°-∠OHE =90°-∠DHF =∠ODF∴∠ADF =∠ODF ,即FD 平分∠ADO ;(3)设∠AEM =∠CEM =α,设∠APQ =∠NPQ =β,∵PN ∥AE 由“M 形”易得:(∠MPQ+∠NPQ )+∠AEM =∠M =90°, 即∠MPQ =90°-(α+β),∠CPN+∠CEA =∠ECP =180-∠ECA , 即∠ECA =180-2(α+β) ∴MPQ 1ECA 2∠∠= 【点睛】本题考查的是平行线的性质、角平分线的性质以及非负数的性质,“M”型角的关系规律,掌握三角形内角和定理、角平分线的定义是解题关键.24.AB=AC=8;BC=5【解析】【分析】首先设AB=AC=x ,根据三角形ABC 的周长为21cm ,得到BC=21-2x ,根据线段垂直平分线的性质,设AD=BD=y ,可得CD=AC-AD=x-y ,再根据△BCD 的周长为13可得BD+CD+BC=13,即y+(x-y)+(21-2x)=13,即可求出各边长.【详解】设AB=AC=x∵三角形ABC 的周长为21cm∴BC=21-2x∵ED 是AB 的垂直平分线∴AD=BD设AD=BD=y则:CD=AC-AD=x-y∵三角形BCD 的周长为13cm∴BD+CD+BC=13即y+(x-y)+(21-2x)=13x=821-2x=21-2⨯8= 58,5AB AC cm BC cm ∴===【点睛】此题主要考查了线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等. 25. (1) 甲商品每件进价为30元,乙商品每件进价为70元;(2) 最大的进货方程是购买甲种商品80件,乙种商品20件,最大利润为1200元.【解析】【分析】(1)设甲商品每件进价为x 元,乙商品每件进价为y 元,根据甲商品2件和乙商品3件共需270元,甲商品3件和乙商品2件共需230元,列出方程求解即可;(2)根据题意可以得到利润与甲种商品的关系,由甲种商品的数量不少于乙种商品数量的4倍,可以得到甲种商品的取值范围,从而可以求得获利最大的进货方案,以及最大利润.【详解】解:(1)设甲商品每件进价为x 元,乙商品每件进价为y 元,2327032230x y x y +=⎧⎨+=⎩解得:3070x y =⎧⎨=⎩∴甲商品每件进价为30元,乙商品每件进价为70元.(2)设购买甲种商品a 件,获利为w 元,()()()40309070100102000w a a w a =-+-⨯-=-+∵()4100a a ≥-,解得:80a ≥, 当a=80时,w 取得最大值,所以w=1200,∴最大的进货方程是购买甲种商品80件,乙种商品20件,最大利润为1200元.【点睛】本题考查的是一次函数的应用、二元一次方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题的条件.2019-2020学年初一下学期期末模拟数学试卷 一、选择题(每题只有一个答案正确)1.下面四个图形中,1∠和2∠是同位角的是( )A .②③④B .①②③C .①②③④D .①②④2.下列计算正确的是( )A .236x x x •=B .22(3)(3)9y x y x y x +-=-C .632x x x ÷=D .222()x y x y -=-3.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是()A .13B .14 C .12 D .344.把下列各式分解因式结果为(x-2y )(x+2y )的多项式是( )A .2x -42yB .2x +42yC .-2x +42yD .-2x -42y5.点P (2m+6,m ﹣1)在第三象限,则m 的取值范围是( )A .m <﹣3B .m <1C .m >﹣3D .﹣3<m <16.下列图形中,∠1和∠2是同位角的是( )A .B .C .D .716( )A .4.B .±4 .C .8.D .±8 .8.下列不等式一定成立的是( )A .2x <5B .﹣x >0C .|x|+1>0D .x 2>09.若实数3是不等式2x –a –2<0的一个解,则a 可取的最小正整数为( )A .2B .3C .4D .510.已知面积为10的正方形的边长为x ,那么x 的取值范围是( )A .13x <<B .23x <<C .34x <<D .45x <<二、填空题题11.某剧院的观众席的座位按下列方式设置:排数()x1 2 3 4 ••• 座位数()y 30 33 36 39 ••• 根据表格中两个变量之间的关系,则8x =当时,y =__________.12.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.13.如图,△ABC 中,AB =AC ,AD 是BC 边上的中线,∠ABC 的平分线交AD 于点E ,EF ⊥AB 于点F.若EF =3,则ED 的长度为______.14.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A ,B 两岛的视角∠ACB =________.15.如图,ABC ∆沿BC 平移至DEF ∆,10AB =,4DO =,平移距离为6,则阴影部分的面积是__________.16.在实数范围内分解因式:324x y x -=__________.17.19的算术平方根是________ 三、解答题183827⨯﹣(π﹣1)0﹣(12)﹣1. 19.(6分)尺规作图是理论上接近完美的作图方式,乐乐很喜欢用尺规画出要求的图形.在下面的ABC 中,请你也按要求用尺规作出下列图形(不写作法,但要保留作图痕迹)并填空.(1)作出BAC ∠的平分线交BC 边于点D ;(2)作出AC 边上的垂直平分线l 交AD 于点G ;(3)连接GC ,若5560B BCA ∠=︒∠=︒,,则AGC ∠的度数为 .20.(6分)解不等式组4(1)710853x x x x ++⎧⎪⎨--<⎪⎩①②,并把解集在数轴上表示. 21.(6分)如图,已知四边形ABCD ,AD ∥BC .点P 在直线CD 上运动(点P 和点C ,D 不重合,点P ,A ,B 不在同一条直线上),若记∠DAP ,∠APB ,∠PBC 分别为∠α,∠β,∠γ.(1)如图1,当点P 在线段CD 上运动时,写出∠α,∠β,∠γ之间的关系并说出理由;(2)如图2,如果点P 在线段CD 的延长线上运动,探究∠α,∠β,∠γ之间的关系,并说明理由.(3)如图3,BI 平分∠PBC ,AI 交BI 于点I ,交BP 于点K ,且∠PAI :∠DAI=5:1,∠APB=20°,∠I=30°,求∠PAI 的度数.22.(8分)某公司分两次采购甲、乙两种商品,具体情况如下:(1)求甲、乙商品每件各多少元?(2)公司计划第三次采购甲、乙两种商品共31件,要求花费资金不超过475元,问最多可购买甲商品多少件?23.(8分)解二元一次方程组:((1)用代入消元(2)用加减消元)(1)3523x y x y +=⎧⎨-=⎩(2)7311237x y x y +=⎧⎨-=⎩ 24.(10分)(1)解方程组29321x y x y +=⎧⎨-=-⎩(2)解不等式,并把它的解集在数轴上表示出来:22123x x +-≥ 25.(10分)()1如图()1,在ABC △中,70A ︒∠=,若D 是ABC ∠和ACB ∠的平分线交点,求BDC ∠的度数。
河北省2019-2020年七年级下学期期末测试数学试卷(时间:120分钟,满分120分)一、选择题:(本大题共12个小题,每小题2分,共24分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.=-43.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠A CB ,则∠BPC的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)C 1A 17.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△A BC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)11、如右图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )A. 400 cm 2B. 500 cm 2C. 600 cm 2D. 4000 cm 212、如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°, ∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定二、填空题:(本大题共6个小题,每小题3分,共18分) 13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. 15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.CB AD三、解答题:(本大题共8个小题,共78分) 19、(1)(本题4分)解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.(2)(本题4分)已知关于x,y 的方程组 的解x,y 互为相反数,求a 的值.20、(本题8分)如图, 已知A (-4,-1),B (-5,-4),C (-1,-3),△ABC 经过平移得到的△A′B′C′,△ABC 中任意一点P(x 1,y 1)平移后的对应点为P′(x 1+6,y 1+4)。
河北省2019-2020年七年级下学期期末测试数学试卷一、选择题(1-6题,每题2分,7-16题,每题3分共42分)1.(2分)的算术平方根是()A.4B.±4 C.2D.±22.(2分)在3.14,,,,π,2.01001000100001这六个数中,无理数有()A.1个B.2个C.3个D.4个3.(2分)如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行4.(2分)如果点P(3,y)在第四象限,则y的取值范围是()A.y>0 B.y<0 C.y≥0 D.y≤05.(2分)为了解全市1 600多万民众的身体健康状况,从中任意抽取1 000人进行调查,在这个问题中,这1 000人的身体状况是()A.总体B.个体C.样本D.样本容量6.(2分)若a>b,则下列不等式一定成立的是()A.<1 B.>1 C.﹣a>﹣b D.b﹣a<07.(3分)若是关于x、y的方程ax﹣y=3的解,则a=()A.1B.2C.3D.48.(3分)如图,若A是实数a在数轴上对应的点,则关于a,﹣a,1的大小关系表示正确的是()A.a<1<﹣a B.a<﹣a<1 C.1<﹣a<a D.﹣a<a<19.(3分)下列命题中,不正确的是()A.邻补角互补B.内错角相等C.对顶角相等D.垂线段最短10.(3分)下列调查中,适合全面调查方式的是()A.调查人们的环保意识B.调查端午节期间市场上粽子的质量C.调查某班50名同学的体重D.调查某类烟花爆炸燃放安全质量11.(3分)已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)12.(3分)线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(﹣9,﹣4)13.(3分)二元一次方程x﹣2y=1有无数多个解,下列四组值中不是该方程的解的是()A.B.C.D.14.(3分)如图,直线a∥b,则∠A的度数是()A.38°B.48°C.42°D.39°15.(3分)如图,∠1:∠2:∠3=2:3:4,EF∥BC,DF∥AB,则∠A:∠B:∠C=()A.2:3:4 B.3:2:4 C.4:3:2 D.4:2:316.(3分)若不等式组的解集中的任何一个x的值均不在2≤x≤5范围内,则a的取值范围是()A.a<1 B.a<1或a>5 C.a≤1或a≥5 D.a<1且a>5二、填空题(每小题3分,共12分)17.(3分)已知(x﹣1)2=3,则x=.18.(3分)将命题“过一点有且只有一条直线与已知直线垂直”改写“如果…那么…”的形式.19.(3分)已知,则.(不用计算器)20.(3分)已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是.三、解答题(共66分)21.(12分)计算(1)(+2)﹣|﹣|;(2)解不等式组:;(3)已知:是二元一次方程ax﹣2=﹣by的一组解,求﹣2a+b+4的值.22.(10分)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.23.(10分)如图,将△ABC向右平移5个单位长度,再向下平移2个单位长度,得到△A′B′C′,请画出平移后的图形,并写出△A′B′C′各顶点的坐标.24.(11分)某文具店有单价10元、15元和20元的三种文具盒出售,该商店统计了3月份这三种文具盒的销售情况,并绘制了如下不完整统计图:(1)这次调查中一共抽取了多少个文具盒?(2)求出扇形图中表示“15元”的扇形所占圆心角的度数;(3)求出单价为10元的文具盒的个数,并把条形图补充完整.25.(11分)在平面直角坐标系中,点A(1,2a+3)在第一象限.(1)若点A到x轴的距离与到y轴的距离相等,求a的值;(2)若点A到x轴的距离小于到y轴的距离,求a的取值范围.26.(12分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?七年级下学期期末数学试卷参考答案与试题解析一、选择题(1-6题,每题2分,7-16题,每题3分共42分)1.(2分)的算术平方根是()A.4B.±4 C.2D.±2考点:算术平方根.专题:计算题.分析:根据算术平方根的定义:一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.解答:解:∵(±2)2=4=,∴的算术平方根是2.故选C.点评:本题考查了算术平方根,求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.2.(2分)在3.14,,,,π,2.01001000100001这六个数中,无理数有()A.1个B.2个C.3个D.4个考点:计算器—数的开方.分析:无理数是指无限不循环小数,包括三方面的数:①含π的,②一些有规律的数,③开方开不尽的数,根据以上内容判断即可.解答:解:无理数有﹣,π,共2个,故选:B.点评:本题考查了对无理数的定义的理解和运用,注意:无理数是指无限不循环小数,包括三方面的数:①含π的,②一些有规律的数,③开方开不尽的数.3.(2分)如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行考点:坐标确定位置.专题:常规题型.分析:根据坐标(5,2)的意义求解.解答:解:若座位表上“5列2行”记作(5,2),那么(4,3)表示4列3行.故选C.点评:本题考查了坐标确定位置:直角坐标系中,坐标平面内的点与有序实数对一一对应;记住各象限内点的坐标特征和坐标轴上点的坐标特征.4.(2分)如果点P(3,y)在第四象限,则y的取值范围是()A.y>0 B.y<0 C.y≥0 D.y≤0考点:点的坐标.分析:根据第四象限内点的纵坐标是负数解答.解答:解:∵点P(3,y)在第四象限,∴y的取值范围是y<0.故选B.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(2分)为了解全市1 600多万民众的身体健康状况,从中任意抽取1 000人进行调查,在这个问题中,这1 000人的身体状况是()A.总体B.个体C.样本D.样本容量考点:总体、个体、样本、样本容量.专题:应用题.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体.在这个问题中,这1 000人的身体状况是样本.解答:解:A、总体是全市1 600多万民众的身体健康状况的全体,错误;B、个体是所抽取的1 000人中每一个人的身体状况,错误;C、样本是所抽取的这1 000人的身体状况,正确;D、样本容量是1 000,错误.故选C.点评:正确理解总体,个体,样本的含义是解决本题的关键.6.(2分)若a>b,则下列不等式一定成立的是()A.<1 B.>1 C.﹣a>﹣b D.b﹣a<0考点:不等式的性质.分析:A:因为无法确定a的正负,所以无法判断与1的大小关系,据此判断即可.B:因为无法确定a的正负,所以无法判断与1的大小关系,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.解答:解:∵无法确定a的正负,∴无法判断与1的大小关系,∴选项A不正确;∵无法确定a的正负,∴无法判断与1的大小关系,∴选项B不正确;∵a>b,∴﹣a<﹣b,∴选项C不正确;∵a>b,∴b﹣a<0,∴选项D正确.故选:D.点评:此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.7.(3分)若是关于x、y的方程ax﹣y=3的解,则a=()A.1B.2C.3D.4考点:二元一次方程的解.分析:把x=2,y=1代入后得出方程,求出方程的解即可.解答:解:∵是关于x、y的方程ax﹣y=3的解,∴代入得:2a﹣1=3,解得:a=2,故选B.点评:本题考查了二元一次方程的解,解一元一次方程的应用,关键是得出关于a的方程.8.(3分)如图,若A是实数a在数轴上对应的点,则关于a,﹣a,1的大小关系表示正确的是()A.a<1<﹣a B.a<﹣a<1 C.1<﹣a<a D.﹣a<a<1考点:实数与数轴.分析:根据数轴可以得到a<1<﹣a,据此即可确定哪个选项正确.解答:解:∵实数a在数轴上原点的左边,∴a<0,但|a|>1,﹣a>1,则有a<1<﹣a.故选A.点评:本题考查了实数与数轴的对应关系,数轴上的数右边的数总是大于左边的数9.(3分)下列命题中,不正确的是()A.邻补角互补B.内错角相等C.对顶角相等D.垂线段最短考点:命题与定理.分析:根据邻补角的定义对A解析判断;根据平行线的性质对B解析判断;根据对顶角的性质对C解析判断;根据垂线段的性质对D解析判断.解答:解:A、邻补角互补,所以A选项为真命题;B、两直线平行,内错角相等,所以B选项为假命题;C、对顶角相等,所以C选项为真命题;D、垂线段最短,所以D选项为真命题.故选B.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.10.(3分)下列调查中,适合全面调查方式的是()A.调查人们的环保意识B.调查端午节期间市场上粽子的质量C.调查某班50名同学的体重D.调查某类烟花爆炸燃放安全质量考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、人数多,不容易调查,因而适合抽样调查;B、数量较多,不易全面调查;C、数量较少,易全面调查;D、数量较多,具有破坏性,不易全面调查.故选C.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.(3分)已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)考点:点的坐标.分析:根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.解答:解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.点评:本题考查了点的位置判断方法及点的坐标几何意义.12.(3分)线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(﹣9,﹣4)考点:坐标与图形变化-平移.专题:动点型.分析:直接利用平移中点的变化规律求解即可.解答:解:平移中,对应点的对应坐标的差相等,设D的坐标为(x,y);根据题意:有4﹣(﹣1)=x﹣(﹣4);7﹣4=y﹣(﹣1),解可得:x=1,y=2;故D的坐标为(1,2).故选:C.点评:本题考查点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.13.(3分)二元一次方程x﹣2y=1有无数多个解,下列四组值中不是该方程的解的是()A.B.C.D.考点:二元一次方程的解.专题:计算题.分析:将x、y的值分别代入x﹣2y中,看结果是否等于1,判断x、y的值是否为方程x ﹣2y=1的解.解答:解:A、当x=0,y=﹣时,x﹣2y=0﹣2×(﹣)=1,是方程的解;B、当x=1,y=1时,x﹣2y=1﹣2×1=﹣1,不是方程的解;C、当x=1,y=0时,x﹣2y=1﹣2×0=1,是方程的解;D、当x=﹣1,y=﹣1时,x﹣2y=﹣1﹣2×(﹣1)=1,是方程的解;故选:B.点评:本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.14.(3分)如图,直线a∥b,则∠A的度数是()A.38°B.48°C.42°D.39°考点:平行线的性质;三角形的外角性质.专题:计算题.分析:根据平行线的性质和三角形外角的性质求解.解答:解:∵a∥b,∴∠DBC=80°(两直线平行,内错角相等)∵∠DBC=∠ADB+∠A(三角形的一个外角等于它不相邻的两个内角之和),∴∠A=∠DBC﹣∠ADB=80°﹣32°=48°.故选B.点评:此题综合利用了平行线的性质和三角形外角的性质,需灵活掌握.15.(3分)如图,∠1:∠2:∠3=2:3:4,EF∥BC,DF∥AB,则∠A:∠B:∠C=()A.2:3:4 B.3:2:4 C.4:3:2 D.4:2:3考点:平行线的性质.专题:探究型.分析:先根据∠1:∠2:∠3=2:3:4设∠1=2x,则∠2=3x,∠3=4x,再根据平行线的性质得出∠1=∠B=2x,∠FDC=∠B=2x,在△FDC中根据三角形内角和定理求出x的值,进而得出∠A,∠B,∠C的度数,由此即可得出结论.解答:解:∵∠1:∠2:∠3=2:3:4,∴设∠1=2x,则∠2=3x,∠3=4x,∵EF∥BC,∴∠B=∠1=2x,∵DF∥AB,∴∠FDC=∠B=2x,在△FDC中,∵∠FDC+∠2+∠3=180°,即2x+3x+4x=180°,解得x=20°,∴∠B=2x=40°,∠C=4x=80°,∴∠A=180°﹣∠B﹣∠C=180°﹣40°﹣80°=60°,∴∠A:∠B:∠C=60:40:80=3:2:4.故选B.点评:本题考查的是平行线的性质,解答此类题目时往往用到三角的内角和是180°这一隐藏条件.16.(3分)若不等式组的解集中的任何一个x的值均不在2≤x≤5范围内,则a的取值范围是()A.a<1 B.a<1或a>5 C.a≤1或a≥5 D.a<1且a>5考点:不等式的解集.分析:解不等式组,求出x的范围,根据任何一个x的值均不在2≤x≤5范围内列出不等式,解不等式得到答案.解答:解:不等式组的解集为:a<x<a+1,∵任何一个x的值均不在2≤x≤5范围内,∴x<2或x>5,a+1≤2,解得,a≤1,a≥5,∴a的取值范围是:a≤1或a≥5,故选:C.点评:本题考查的是不等式的解集的确定,根据不等式的解法正确解出不等式是解题的关键,根据题意列出新的不等式是本题的重点.二、填空题(每小题3分,共12分)17.(3分)已知(x﹣1)2=3,则x=+1.考点:平方根.分析:根据平方根的定义,即可解答.解答:解:(x﹣1)2=3,x﹣1=x=+1,故答案为:+1.点评:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18.(3分)将命题“过一点有且只有一条直线与已知直线垂直”改写“如果…那么…”的形式如果直线外有一点,那么过这一点有且只有一条直线与已知直线垂直.考点:命题与定理.分析:根据命题是由题设和结论两部分组成,如果后面是题设,那么后面是结论改写即可.解答:解:命题“过一点有且只有一条直线与已知直线垂直”改写“如果…那么…”的形式是:如果直线外有一点,那么过这一点有且只有一条直线与已知直线垂直.故答案为:如果直线外有一点,那么过这一点有且只有一条直线与已知直线垂直.点评:本题考查了命题的构成,找出命题的题设和结论是正确改写的关键.19.(3分)已知,则 4.487.(不用计算器)考点:算术平方根.分析:根据被开方数的小数点每移动两位,其算术平方根的小数点移动一位求出即可.解答:解:∵≈44.87,∴≈4.487,故答案为:4.487.点评:本题考查了算术平方根的应用,注意:被开方数的小数点每移动两位,其算术平方根的小数点移动一位.20.(3分)已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是±4.考点:三角形的面积;坐标与图形性质.分析:根据三角形的面积公式和已知条件求解,注意a取正负数都符合题意.解答:解:由题意可得5×|OA|÷2=10,∴|OA|=,∴|OA|=4,∴点a的值是4或﹣4.故答案为:±4.点评:需注意坐标轴上到一个点的距离为定值的点有2个.三、解答题(共66分)21.(12分)计算(1)(+2)﹣|﹣|;(2)解不等式组:;(3)已知:是二元一次方程ax﹣2=﹣by的一组解,求﹣2a+b+4的值.考点:实数的运算;二元一次方程的解;解一元一次不等式组.分析:(1)根据实数混合运算的运算顺序,首先计算乘法和求出绝对值的大小,然后再计算减法,求出算式(+2)﹣|﹣|的值是多少即可.(2)首先根据一元一次不等式组的解法,求出不等式组中每个不等式的解集,然后找出两个不等式的解集的公共部分,即可求出不等式组的解集是多少.(3)首先根据是二元一次方程ax﹣2=﹣by的一组解,求出﹣2a+b的值是多少;然后应用代入法,求出算式﹣2a+b+4的值是多少即可.解答:解:(1))(+2)﹣|﹣|=2+2﹣2=2(2)∵∴∴,即不等式组:的解集是:x≥.(3)∵是二元一次方程ax﹣2=﹣by的一组解,∴2a﹣2=﹣b×(﹣1)=b,∴﹣2a+b=﹣2,∴﹣2a+b+4=﹣2+4=2,即﹣2a+b+4的值是2.点评:(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.(3)此题还考查了二元一次方程的解,要熟练掌握.22.(10分)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.考点:平行线的判定与性质.分析:(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠3,根据垂直推出BD∥EF,根据平行线的性质即可求出∠2.解答:(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.点评:本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.23.(10分)如图,将△ABC向右平移5个单位长度,再向下平移2个单位长度,得到△A′B′C′,请画出平移后的图形,并写出△A′B′C′各顶点的坐标.考点:作图-平移变换.分析:根据图形平移的性质画出△A′B′C′,再写出各点坐标即可.解答:解:如图所示:由图可知,A′(4,0),B′(1,3),C′(2,﹣2).点评:本题考查的是作图﹣平移变换,熟知图形平移的性质是解答此题的关键.24.(11分)某文具店有单价10元、15元和20元的三种文具盒出售,该商店统计了3月份这三种文具盒的销售情况,并绘制了如下不完整统计图:(1)这次调查中一共抽取了多少个文具盒?(2)求出扇形图中表示“15元”的扇形所占圆心角的度数;(3)求出单价为10元的文具盒的个数,并把条形图补充完整.考点:条形统计图;扇形统计图.专题:数形结合.分析:(1)用单价为20元的个数除以它所占的百分比即可得到所抽取的文具盒的总数;(2)用360°乘以单价为15元的文具盒所占的百分比即可;(3)用总数乘以单价为10元的文具盒所占的百分比即可,然后补全条形统计图.解答:解:(1)90÷15%=600(个),所以这次调查中一共抽取了600个文具盒;(2)360°×(1﹣15%﹣25%)=216°,所以扇形图中表示“15元”的扇形所占圆心角的度数为216°;(3)600×25%=150(个),所以单价为10元的文具盒的个数为150个,如图.点评:本题考查了条形统计图::条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图.25.(11分)在平面直角坐标系中,点A(1,2a+3)在第一象限.(1)若点A到x轴的距离与到y轴的距离相等,求a的值;(2)若点A到x轴的距离小于到y轴的距离,求a的取值范围.考点:点的坐标.分析:(1)根据第一象限内点的横坐标与纵坐标都是正数,到x、y轴的距离相等列出方程求解即可;(2)根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度列出不等式,然后求解即可.解答:解:(1)∵点A到x轴的距离与到y轴的距离相等,∴2a+3=1,解得a=﹣1;(2)∵点A到x轴的距离小于到y轴的距离,点A在第一象限,∴2a+3<1且2a+3>0,解得a<﹣1且a>﹣,∴﹣<a<﹣1.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).26.(12分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?考点:二元一次方程组的应用.分析:(1)设购买一个足球需要x元,购买一个篮球需要y元,根据购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元,列方程组求解;(2)设购买a个篮球,则购买(96﹣a)个足球,根据总费用不超过5720元,列不等式求出最大整数解.解答:解:(1)设购买一个足球需要x元,购买一个篮球需要y元,根据题意得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元;(2)设购买a个篮球,则购买(96﹣a)个足球,根据题意得:80a+50(96﹣a)≤5720,解得:a≤,∵a是整数,∴a≤30,答:最多可以购买30个篮球.点评:本题考查了二元一次方程组的应用和一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解.。
2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.要使分式有意义,则的取值应满足()A.B.C.D.2.下面调查中,最适合使用全面调查的是()A.调查某公司生产的一批酸奶的保质期B.调查全国中学生对《奔跑吧,兄弟》节目的喜爱程度C.调查某校七(5)班男生暑假旅游计划D.调查某省居民知晓“中国梦”的内涵情况3.连接A、B两地的高速公路全长为420km,一辆小汽车和一辆客车分别从A、B两地同时出发,相向而行,经过2.5h相遇,相遇时,小汽车比客车多行驶了70km,若设小汽车和客车的平均速度分别为xkm/h 和ykm/h,则下列方程组正确的是()A.2.5 2.54202.5 2.570x yx y+=⎧⎨-=⎩B.702.5 2.5420x yx y-=⎧⎨+=⎩C.+702.5 2.5420x yx y=⎧⎨+=⎩D.+702.5 2.5420x yx y=⎧⎨-=⎩4.x=5是方程x-2a=l的解,则a的值是( )A.-l B.1 C.2 D.35.下面四个图形中,∠1与∠2是邻补角的是( )A.B.C.D.6.在平面内,将一个直角三角板按如图所示摆放在一组平行线上,若,则的度数是()A.35°B.40°C.45°D.50°7.在中,,则等于()A.B.C.D.8.若x>y,则下列式子中错误的是()A.x ﹣5>y ﹣5 B .x+4>y+4 C .33x y > D .﹣6x >﹣6y9.在平面直角坐标系中,已知A (﹣2,3),B (2,1),将线段AB 平移后,A 点的坐标变为(﹣3,2),则点B 的坐标变为( )A .(﹣1,2)B .(1,0)C .(﹣1,0)D .(1,2)10.如图,点A ,B 为定点,直线l ∥AB ,P 是直线l上一动点.对于下列各值:①线段AB 的长②△PAB 的周长③△PAB 的面积④∠APB 的度数其中不会随点P 的移动而变化的是( )A .①③B .①④C .②③D .②④二、填空题题 11.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解, 则a 的取值范围是 ________. 12.已知点()1,2--A ,()3,4B ,将线段AB 平移得到线段CD .若点A 的对应点C 在x 轴上,点B 的对应点D 在y 轴上,则点C 的坐标是________.13.在平面直角坐标系中,若x 轴上的点P 到y 轴的距离为3,则点P 的坐标是________.14.如图,图中有_____个三角形,以AD 为边的三角形有_____.15.若54413273193218x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=⎩则5x ﹣y ﹣z ﹣1的立方根是_____.16.如图,在ABC ∆中,98BAC ∠=︒,EF 、MN 分别为AB ,AC 的垂直平分线,则FAN ∠的度数是__________.17.点P (2,﹣3)关于x 轴的对称点坐标为_____.三、解答题18.(1)计算:()2327472----;(2)解方程组:()()38721132x yy x⎧+--=⎪⎨+-=⎪⎩19.(6分)如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上,将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)求△A′B′C′的面积.20.(6分)观察下列各式:①()2412112⨯⨯+=+;②()2423123⨯⨯+=+;③()2434134⨯⨯+=+⋅⋅⋅.(1)根据你观察、归纳、发现的规律,写出4201220131⨯⨯+可以是______的平方.(2)试猜想写出第n个等式,并说明成立的理由.(3)利用前面的规律,将221141122x x x x⎛⎫⎛⎫++++⎪⎪⎝⎭⎝⎭改成完全平方的形式为:______.21.(6分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.22.(8分)解方程组或不等式组(1)解方程组143xyx y⎧-=-⎪⎨⎪=⎩(2)解不等式组321351x xx+≥-⎧⎨-≥⎩.23.(8分)如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)在给定方格纸中画出平移后的△A ′B ′C ′;(2)画出AB 边上的中线CD 和BC 边上的高线AE ;(3) 求四边形ACBB ′的面积24.(10分)解二元一次不等式组:()26,21 4.x y x y +=⎧⎨+-=⎩25.(10分)有一块不规则的四边形木板ABCD ,在BC 边上有一点E ,现在要在木板上找一点P ,使点P 到点A 、点B 的距离相等,并且PE ∥AB .(要求:尺规作图,不写作法,保留作图痕迹)参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】根据分式的分母不为0即可求解.【详解】依题意得x-1≠0,∴故选C.【点睛】此题主要考查分式的有意义的条件,解题的关键是熟知分母不为零.2.C【解析】【分析】根据统计调查的方式即可判断.【详解】A. 调查某公司生产的一批酸奶的保质期,具有破坏性,采用抽样调查,故错误;B. 调查全国中学生对《奔跑吧,兄弟》节目的喜爱程度,人数太多,采用抽样调查,故错误;C. 调查某校七(5)班男生暑假旅游计划,用全面调查,正确;D. 调查某省居民知晓“中国梦”的内涵情况,人数太多,采用抽样调查,故错误;故选C.【点睛】此题主要考查统计调查的方式,解题的关键是熟知全面调查的特点.3.A【解析】【分析】设小汽车和客车的平均速度分别为xkm/h和ykm/h,根据题意可得,相向而行,经过2.5h相遇,相遇时,小汽车比客车多行驶了70km,据此列方程组.【详解】解:设小汽车和客车的平均速度分别为xkm/h和ykm/h,可得:2.5 2.5420 2.5 2.570x yx y+=⎧⎨-=⎩故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.4.C【解析】【分析】将x=5代入方程即可求出a的值.【详解】将x=5代入方程得:5-1a=1,解得:a=1.故选C.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.D【解析】【详解】根据邻补角的意义,可知两个角有一条公共边,有一个角的边是另一角的边的延长线,因此可知D符合条件,且∠1+∠2=180°.故选D.6.A【解析】【分析】直接利用平行线的性质结合已知直角得出∠2的度数.【详解】解:如图由题意可得:∠1=∠3=55°∠2=∠4=90°-55°=35°故选:A【点睛】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.7.D【解析】【分析】可设∠A的度数为x,则∠B=2x,∠C=3x,再利用三角形的内角和求得x的值即可.【详解】解:设∠A=x,则∠B=2x,∠C=3x,∵∠A+∠B+∠C=180°,∴x+2x+3x=180°,解得x=30°.∴∠A=30°.故选D.【点睛】本题主要考查三角形的内角和,解此题的关键在于根据题意设出未知数,再利用三角形的内角和为180°求解即可.8.D【解析】【分析】根据不等式的基本性质,进行判断即可.【详解】解:A 、根据不等式的性质1,可得x-5>y-5,x+4>y+4,故A ,B 选项正确;C ,根据不等式的性质2可得33x y ,故选项C 正确. D, 根据不等式的性质3可得﹣6x<﹣6y,所以选项D 错误.所以答案选D.【点睛】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.B【解析】【分析】由A (﹣2,3)平移后坐标变为(﹣3,2)可得平移变化规律,可求B 点变化后的坐标.【详解】解:∵A (﹣2,3)平移后坐标变为(﹣3,2),∴可知点A 向左平移1个单位,向下平移1个单位, ∴B 点坐标可变为(1,0).故选:B .【点睛】本题运用了坐标的平移变化规律,由分析A 点的坐标变化规律可求B 点变化后坐标.10.A【解析】【分析】求出AB 长为定值,P 到AB 的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB 不断发生变化、∠APB 的大小不断发生变化.【详解】解:∵A 、B 为定点,∴AB 长为定值,∴①正确;当P 点移动时,PA+PB 的长发生变化,∴△PAB 的周长发生变化,∴②错误;∵点A ,B 为定点,直线l ∥AB ,∴P 到AB 的距离为定值,故△APB 的面积不变,∴③正确;当P 点移动时,∠APB 发生变化,∴④错误;故选:A .【点睛】本题考查了平行线的性质,等底等高的三角形的面积相等,平行线间的距离的运用,熟记定理是解题的关键.二、填空题题11.2a ≥-【解析】【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】3122x a x x ->⎧⎨->-⎩①②, 解①得:x >a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故答案是:a≥-2.【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤..12.()4,0-【解析】【分析】已知点()1,2--A ,()3,4B ,将线段AB 平移得到线段CD ,点A 的对应点C 在x 轴上,点B 的对应点D 在y 轴上,由平移的性质可得点A 的纵坐标加2,点B 的横坐标减3,由此即可求得点C 的坐标.【详解】∵点()1,2--A ,()3,4B ,将线段AB 平移得到线段CD ,点A 的对应点C 在x 轴上,点B 的对应点D 在y 轴上,∴点A 的纵坐标加2,点B 的横坐标减3,∴点A 的对应点C 的坐标是(﹣1﹣3,﹣2+2),即(﹣4,0).故答案为:(﹣4,0).【点睛】本题考查了平移的性质,熟练运用平移的性质是解决问题关键.13.(±1,0)【解析】解:若x 轴上的点P 到y 轴的距离为1,则3x =,∴x=±1.故P 的坐标为(±1,0).故答案为:(±1,0).14.3 △ABD ,△ADC【解析】【分析】根据三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.【详解】图中共有3个三角形;它们是△ABD ;△ADC ;△ABC ;以AD 为边的三角形有△ABD ,△ADC ;故答案为:3;△ABD ,△ADC【点睛】此题主要考查了三角形中的重要元素,关键是正确理解三角形的定义.15.3【解析】【分析】先③×3-②得7x-y=35④,再①×3+②×4得:23x+16y=115⑤,然后④×16+⑤求出x 的值,再把x 的值代入④求出y 的值,最后把x 、y 的值代入③求出z 的值即可.【详解】54413273193218x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=⎩①②③,③×3-②得: 7x-y=35④,①×3+②×4得:23x+16y=115⑤,④×16+⑤得:x =5,把x =5代入④得:y =0,把x=5,y=0代入③得:z=-3;则原方程组的解为:53 xyz=⎧⎪=⎨⎪=-⎩.∴5x﹣y﹣z﹣1=25-0+3-1=24,∴5x﹣y﹣z﹣1=3.故答案为:3.【点睛】本题考查了三元一次方程组的解法,关键把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.16.16︒【解析】【分析】先由∠BAC=98°及三角形内角和定理求出∠B+∠C的度数,再根据线段垂直平分线的性质求出∠B=∠BAF,∠C=∠CAN,即∠B+∠C=∠BAF+∠CAN,由∠FAN=∠BAC-(∠BAF+∠CAN)解答即可.【详解】∵△ABC中,∠BAC=98°,∴∠B+∠C=180°-∠BAC=180°-98°=82°,∵EF、MN分别是AB、AC的中垂线,∴BF=AF,AN=NC∴∠B=∠BAF,∠C=∠CAN,即∠B+∠C=∠BAF+∠CAN=82°,∴∠FAN=∠BAC-(∠BAF+∠CAN)=98°-82°=16°.【点睛】本题考查线段垂直平分线的性质和等腰三角形的性质,解题关键在于求出∠B=∠BAF.17. (2,3)【解析】根据平面直角坐标系的对称性,可知关于x轴对称的点的坐标:横坐标不变,纵坐标变为相反数,可得P 点关于x轴对称的坐标为:(2,3).故答案为(2,3).点睛:此题主要考查了平面直角坐标系中点的对称,利用平面直角坐标系的对称:关于x轴对称的点,横坐标不变,纵坐标变相反数;关于y轴对称的点,横坐标变为相反数,纵坐标不变;关于原点对称的点,横纵坐标均变为相反数.三、解答题18.(1)1;(2)1332 xy⎧=⎪⎨⎪=-⎩.(1)根据数的开方和实数的绝对值直接计算即可,去绝对值是要考虑绝对值里的数的正负;(2)先对方程组里的两个二元一次方程进行整理:去括号,去分母,再用加减消元法解方程组.【详解】解:(1)原式3472=--+17=-(2)由题意可得:315329x yx y+=-⎧⎨-+=⎩解该方程组得:1332xy⎧=⎪⎨⎪=-⎩【点睛】(1)主要考查了实数的运算,熟练掌握数的开方、能够正确去绝对值是解题的关键.(2)主要考查了二元一次方程组的解法,灵活应用解二元一次方程组的方法是解题的关键.19.(1)见解析,(2)1【解析】【分析】(1)根据平移变换的定义作出变换后的对应点,再顺次连接即可得;(2)利用三角形的面积公式计算可得.【详解】解:(1)如图所示,△A′B′C′即为所求.(2)△A′B′C′的面积为12×4×4=1.【点睛】本题主要考查作图﹣平移变换,解题的关键是熟练掌握平移变换的定义和性质,并据此得出变换后的对应点.20.(1)4025;(2)()()241121n n n∴+++=,见解析;(3)()41+x.(1)根据已知的三个等式,发现规律:等式左边是序号数与比序号数大1的两个正整数积的4倍与1的和,等式右边是序号数与比序号数大1的两个正整数的和的平方,由此得出4×2012×2013+1可以看成2012与2013这两个正整数的和的平方;(2)猜想第n 个等式为4n (n+1)+1=(n+n+1)2=(2n+1)2,运用多项式的乘法法则计算验证即可;(3)利用前面的规律,可知()222222211114111212222x x x x x x x x x x ⎛⎫⎛⎫⎛⎫++++=++++=++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ =()41+x 【详解】(1)根据观察、归纳、发现的规律,得到4×2012×2013+1=(2012+2013)2=40252;(2)猜想第n 个等式为4n (n+1)+1=(2n+1)2,理由如下:∵左边=4n (n+1)+1=4n 2+4n+1,右边=(2n+1)2=4n 2+4n+1,∴左边=右边,∴4n (n+1)+1=(2n+1)2;(3)利用前面的规律,可知()222222211114111212222x x x x x x x x x x ⎛⎫⎛⎫⎛⎫++++=++++=++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭即()42211411122x x x x x ⎛⎫⎛⎫++++=+ ⎪⎪⎝⎭⎝⎭ 【点睛】此题考查规律型:数字的变化类,完全平方式,解题关键在于找到规律.21.绳索长为20尺,竿长为15尺.【解析】【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】设绳索长、竿长分别为x 尺,y 尺, 依题意得:552x y x y =+⎧⎪⎨=-⎪⎩ 解得:20x =,15y =.答:绳索长为20尺,竿长为15尺.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(1)124x y =⎧⎨=⎩;(2)2≤x≤1.(1)直接把②代入①,消去x,求出y的值,再把求得的y的值代入②求出x的值即可.(2)先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.【详解】解:(1),将②代入①,得:y﹣y=﹣1,解得:y=1,把y=1代入②得,x=3×1=12,∴方程组的解为;(2)解不等式x+3≥2x﹣1,得:x≤1,解不等式3x﹣5≥1,得:x≥2,则不等式组的解集为2≤x≤1.【点睛】本题考查了二元一次方程组和一元一次不等式组的解法,熟练掌握二元一次方程组和一元一次不等式组的解法是解答本题的关键.23.(1)见解析;(2)见解析;(3)27【解析】【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)取线段AB的中点D,连接CD,过点A作AE⊥BC的延长线与点E即可;(3)根据S四边形ACBB′=S梯形AFGB+S△ABC-S△BGB′-S△AFB′即可得出结论.【详解】(1)如图所示;(2)如图所示;(3) S ACBB 四边形' =S AFGB 梯形 +S ABC −S BGB ' −S AFB ' =12 (7+3)×6+12×4×4−12×1×7−12×3×5 =30+8−715-22=27,【点睛】此题考查作图-平移变换,解题关键在于掌握作图法则24.22x y =⎧⎨=⎩【解析】【分析】利用加减消元法求解即可.【详解】()26,21 4.x y x y +=⎧⎪⎨+-=⎪⎩①② ②整理得:22x y -=③2①×得:2412x y +=④-④③得:510y =把2y =代入①中,解得:2x =所以这个方程组的解是22x y =⎧⎨=⎩【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握解题步骤.25.详见解析【解析】【分析】过E 点做AB 平行线,作AB 垂直平分线,两线交点即为P【详解】解:如图所示:点P 即为所求.【点睛】本题考查尺规作图画垂直平分线与平行线,基础知识扎实是解题关键2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.下列函数的图象不经过...第一象限,且y 随x 的增大而减小的是( ) A .y x =- B .1y x =+ C .21y x =-+ D .1y x =-2.如图:DE 是△ABC 中AC 边的垂直平分线,若BC =8厘米,AB =10厘米,则△EBC 的周长为( )厘米.A .16B .18C .26D .283.关于x 的不等式组373265x b a x b a<+⎧⎨>-⎩的解集为49x <<,则a 、b 的值是( ) A .23a b =⎧⎨=⎩ B .23a b =-⎧⎨=⎩ C .23a b =⎧⎨=-⎩ D .23a b =-⎧⎨=-⎩ 4.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下统计图: 建设前经济收入构成比例统计图 建设后经济收入构成比例统计图则下面结论中不正确的是( )A .新农村建设后,养殖收入增加了一倍B .新农村建设后,种植收入减少C .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半D .新农村建设后,其他收入增加了一倍以上5.下列条件不能判定AB//CD 的是( )A .∠3=∠4B .∠1=∠5C .∠1+∠2=180°D .∠3=∠56.若a <b ,则下列各式中,错误的是( )A .a ﹣3<b ﹣3B .3﹣a <3﹣bC .﹣3a >﹣3bD .3a <3b7.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() mA .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯8.在等腰△ABC 中,AB=AC ,其周长为20cm ,则AB 边的取值范围是( )A .1cm <AB <4cm B .5cm <AB <10cmC .4cm <AB <8cmD .4cm <AB <10cm9.有一种手持烟花,点然后每隔1.4秒发射一发花弹。
河北省2019-2020七年级下学期期末考试数学试题一、单项选择题(每小题2分,28分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣1的立方根为()A.﹣1 B.±1 C.1D.不存在2.点P(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列四个实数中,是无理数的是()A.B.0C.D.4.如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠1+∠3=180°C.∠3=∠4 D.∠3+∠4=180°5.下列调查适合用抽样调查的是()A.了解中央电视台“成语大赛”节目的收视率B.了解某班每个学生的体育达标情况C.了解某班每个学生家庭电脑的数量D.“辽宁号”航母下海之前对重要零部件的检查6.若是关于x,y的方程2x﹣ay=3的解,则a=()A.﹣5 B.﹣1 C.2D.17.如果点P(5,y)在第四象限,则y的取值范围是()A.y<0 B.y>0 C.y≤0 D.y≥08.为了解全市1 600多万民众的身体健康状况,从中任意抽取1 000人进行调查,在这个问题中,这1 000人的身体状况是()A.总体B.个体C.样本D.样本容量9.能够通过如图平移得到的图形是()A.B.C.D.10.实数a在数轴上的位置如图,则下列关系表示正确的是()A.a<1<﹣a B.a<﹣a<1 C.1<﹣a<a D.﹣a<a<111.不等式y+2≤3的正整数解为()A.1,2 B.2,3 C.2D.112.已知(2x﹣3y+1)2与|4x﹣3y﹣1|互为相反数,则x,y的值为()A.x=﹣1,y=1 B.x=1,y=﹣1 C.x=﹣1,y=﹣1 D.x=1,y=113.已知不等式组的解集是x>2,则m的取值范围在数轴上表示正确的是()A.B.C.D.14.某校春季运动会比赛中,2014-2015学年八年级(1)班、(5)班的竞技实力相当,(1)班与(5)班得分比为6:5,(1)班得分比(5)班得分的2倍少40分,若设(1)班得x 分,(5)班得y分,根据题意所列的方程组应为()A.B.C.D.二、填空题(本大题共5个小题,每小题3分,共15分,把正确答案填在题中的横线上)15.(1997•河北)3的平方根是.16.如图,直线AB与CD相交于点O,E是∠AOD内一点,已知OE⊥CD,∠AOE=40°,则∠BOD=.17.已知a,b的值同时满足方程a+2b=8和2a+b=10,则a+b=.18.已知点A(﹣2,0),AB∥y轴,且AB=3,则B点坐标为.19.我市某西瓜产地组织40辆汽车装运完A,B,C三种西瓜共200吨到外地销售,按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答下列问题:西瓜种类 A B C每辆汽车运载量(吨)4 5 6设装运A种西瓜的车数为x,装运B种西瓜的车数为y,则用x的代数式表示y为:y=.三、解答题(本大题共7个小题,满分57分,解答应写出文字说明、证明过程或演算步骤)20.(1)计算:+;(2)计算:(3)﹣()21.解不等式组,并将其解集在数轴上表示.22.如图,在△ABC中,EF⊥AB,CD⊥AB.(1)求证:EF∥CD;(2)若点G在AC边上,∠1=∠2,求证:∠DGC+∠GCB=180°.23.请在网格中建立平面直角坐标系,使得A点的坐标为(4,2).(1)写出B点的坐标;(2)将线段AB平移后得到线段A′B,若点A′的坐标为(2,3),画出平移后的线段A′B′,并直接写出点B′的坐标;(3)已知点P(0,3),请在平面直角坐标系描出点P,并求△PAB的面积S的值.24.在某项针对18﹣35岁的青年人每天发微信数量的调查中,设一个人的“日均发微信条数”为m,当0≤m<5时为A级,5≤m<10时为B级,10≤m<15时为C级,15≤m<20时为D 级.现随机抽取部分符合年龄条件的青年人开展每人“日均发微信条数”的调查,根据调查数据整理并制作图表如下:青年人日均发微信条数统计表m 频数百分数A级(0≤m<5)90 0.3B级(5≤m<10)120 0.4C级(10≤m<15) b 0.2D级(15≤m<20)30 a请你根据以上信息解答下列问题:(1)在表中:a=,b=;(2)补全频数分布直方图;(3)若北京市常住人口中18~35岁的青年人大约有530万人,试估计其中“日均发微信条数”不少于10条的大约有多少万人.25.已知,甲、乙两人相距36千米.(1)如果甲、乙两人相向而行,若甲比乙先走2小时,则他们在乙出发2.5小时后相遇,若乙比甲先走2小时,则他们在甲出发3小时后相遇,求甲、乙两人每小时各走多少千米?(2)如果甲、乙两人保持(1)中速度,两人同时、同向而行,直接写出1小时后两人相距多少千米.26.某中学为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),商店推出了以下两种促销方案:(1)购买一个足球、一个篮球各需多少元?(2)根据该中学的实际情况,需从该体育用品商店一次性购买足球和篮球共80个.要求购买足球和篮球的总费用不超过5160元,这所中学想购买足够多的足球,求此时最佳的购买方案以及所用的钱数.七年级下学期期末数学试卷一、单项选择题(每小题2分,28分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣1的立方根为()A.﹣1 B.±1 C.1D.不存在考点:立方根.分析:由立方根的概念:如果一个数x的立方等于a,那么这个数x就叫做a的立方根.根据﹣1的立方等于﹣1即可求出﹣1的立方根.解答:解:因为(﹣1)3=﹣1,所以﹣1的立方根为﹣1,即=﹣1,故选A.点评:此题主要考查了立方根的定义,同时学生还需要掌握立方根等于本身的数有三个:0,1,﹣1.2.点P(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据各象限内点的坐标符号直接判断的判断即可.解答:解:∵P(﹣1,2),横坐标为﹣1,纵坐标为:2,∴P点在第二象限.故选:B.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.3.下列四个实数中,是无理数的是()A.B.0C.D.考点:无理数.分析:根据无理数的三种形式求解.解答:解:=3,0,都是有理数,是无理数.故选C.点评:本题考查了无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠1+∠3=180°C.∠3=∠4 D.∠3+∠4=180°考点:平行线的判定.分析:根据邻补角互补和条件,∠3+∠4=180°,可得∠3=∠5,再根据同位角相等两直线平行可得结论.解答:解解:∵∠4+∠5=180°,∠3+∠4=180°,∴∠3=∠5,∴AB∥CD,故选D.点评:此题主要考查了平行线的判定,关键是掌握同位角相等两直线平行.5.下列调查适合用抽样调查的是()A.了解中央电视台“成语大赛”节目的收视率B.了解某班每个学生的体育达标情况C.了解某班每个学生家庭电脑的数量D.“辽宁号”航母下海之前对重要零部件的检查考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、了解中央电视台“成语大赛”节目的收视率,调查范围广,适合抽样调查,故A正确;B、了解某班每个学生的体育达标情况,调查范围小,适合普查,故B错误;C、了解某班每个学生家庭电脑的数量,调查范围小,适合普查,故C错误;D、辽宁号”航母下海之前对重要零部件的检查,是求要精确度高的调查,适合普查,故D 正确;故选:D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.若是关于x,y的方程2x﹣ay=3的解,则a=()A.﹣5 B.﹣1 C.2D.1考点:二元一次方程的解.分析:根据方程的解满足方程,可得关于a的一元一次方程,根据解方程,可得答案.解答:解:将代入方程2x﹣ay=3,得4﹣a=3,解得a=1,故选:D.点评:本题考查了二元一次方程的解,利用方程的解满足方程得出关于a的方程是解题关键.7.如果点P(5,y)在第四象限,则y的取值范围是()A.y<0 B.y>0 C.y≤0 D.y≥0考点:点的坐标.分析:根据点在第四象限的坐标特点解答即可.解答:解:∵点P(5,y)在第四象限,∴y<0.故选A.点评:解答此题的关键是熟记平面直角坐标系中各个象限内点的符号.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.为了解全市1 600多万民众的身体健康状况,从中任意抽取1 000人进行调查,在这个问题中,这1 000人的身体状况是()A.总体B.个体C.样本D.样本容量考点:总体、个体、样本、样本容量.专题:应用题.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体.在这个问题中,这1 000人的身体状况是样本.解答:解:A、总体是全市1 600多万民众的身体健康状况的全体,错误;B、个体是所抽取的1 000人中每一个人的身体状况,错误;C、样本是所抽取的这1 000人的身体状况,正确;D、样本容量是1 000,错误.故选C.点评:正确理解总体,个体,样本的含义是解决本题的关键.9.能够通过如图平移得到的图形是()A.B.C.D.考点:生活中的平移现象.分析:根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,找各点位置关系不变的图形.解答:解:A、图形需要旋转才能得到,不符合平移的定义,故本选项错误;B、图形的形状和大小没有改变,符合平移的性质,故本选项正确;C、图形需要翻转才能得到,不符合平移的定义,故本选项错误;D、图形中的斜线位置不对,图形发生了改变,不符合平移的定义,故本选项错误.故选B.点评:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.10.实数a在数轴上的位置如图,则下列关系表示正确的是()A.a<1<﹣a B.a<﹣a<1 C.1<﹣a<a D.﹣a<a<1考点:实数大小比较;实数与数轴.分析:先根据a在数轴上的位置确定其符号的正负,再确定﹣a的符号,再进行比较大小.解答:解:根据数轴可得:a<﹣1<0,则﹣a>1,则a<1<﹣a,故选:A.点评:此题主要考查了利用数轴表示数的方法,要求学生能够根据点在数轴的位置正确判断数的符号以及绝对值的大小.11.不等式y+2≤3的正整数解为()A.1,2 B.2,3 C.2D.1考点:一元一次不等式的整数解.分析:首先解不等式,然后确定不等式的正整数解即可.解答:解:移项,得y≤3﹣2,合并同类项,得y≤1.则正整数解是1.故选D.点评:本题考查了不等式的解法,解一元一次不等式的基本依据是不等式的基本性质,解不等式是本题的关键.12.已知(2x﹣3y+1)2与|4x﹣3y﹣1|互为相反数,则x,y的值为()A.x=﹣1,y=1 B.x=1,y=﹣1 C.x=﹣1,y=﹣1 D.x=1,y=1考点:解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:利用互为相反数两数之和为0列出等式,再利用非负数的性质列出方程组,求出方程组的解即可得到x与y的值.解答:解:∵(2x﹣3y+1)2+|4x﹣3y﹣1|=0,∴,解得:,故选D点评:此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.13.已知不等式组的解集是x>2,则m的取值范围在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集.分析:根据不等式的解集是x>2,可得m的取值范围为m≤2,即可解答.解答:解:∵不等式组的解集是x>2,∴m的取值范围是m≤2,故选:B.点评:本题主要考查对解一元一次不等式,在数轴上表示不等式组的解集等知识点的理解和掌握,能根据数轴找出不等式组的解集是解此题的关键.14.某校春季运动会比赛中,2014-2015学年八年级(1)班、(5)班的竞技实力相当,(1)班与(5)班得分比为6:5,(1)班得分比(5)班得分的2倍少40分,若设(1)班得x 分,(5)班得y分,根据题意所列的方程组应为()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设(1)班得x分,(5)班得y分,根据,(1)班与(5)班得分比为6:5,(1)班得分比(5)班得分的2倍少40分,列方程组即可.解答:解:设(1)班得x分,(5)班得y分,由题意得,.故选A.点评:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.二、填空题(本大题共5个小题,每小题3分,共15分,把正确答案填在题中的横线上)15.(1997•河北)3的平方根是.考点:平方根.专题:计算题.分析:直接根据平方根的概念即可求解.解答:解:∵()2=3,∴3的平方根是为.故答案为:±.点评:本题主要考查了平方根的概念,比较简单.16.如图,直线AB与CD相交于点O,E是∠AOD内一点,已知OE⊥CD,∠AOE=40°,则∠BOD=50°.考点:垂线;对顶角、邻补角.分析:由垂直的定义可知∠EOC=90°,可求得∠AOC的度数,然后再根据对顶角相等可求得∠DOB的度数即可.解答:解:∵OE⊥CD,∴∠EOC=90°.∠AOC=∠EOC﹣∠AOE=90°﹣40°=50°由对顶角相等可知:∠DOB=50°.故答案为:50°点评:本题主要考查的垂线的定义和对顶角的性质,掌握垂线的定义和对顶角的性质是解题的关键.17.已知a,b的值同时满足方程a+2b=8和2a+b=10,则a+b=6.考点:解二元一次方程组.专题:计算题.分析:已知等式左右两边相加,即可求出a+b的值.解答:解:,①+②得:3a+3b=18,则a+b=6,故答案为:6点评:此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.18.已知点A(﹣2,0),AB∥y轴,且AB=3,则B点坐标为(﹣2,3)或(﹣2,﹣3).考点:坐标与图形性质.分析:先由AB∥y轴,可得A、B两点横坐标相等,再根据AB的长为3,分B点在A 点上边和下边,分别求B点坐标即可.解答:解:∵AB∥y轴,点A的坐标为(﹣2,0),∴A、B两点横坐标都是﹣2,又∵AB=3,∴当B点在A点上边时,B的坐标为(﹣2,3),当B点在A点下边时,B的坐标为(﹣2,﹣3).故答案为:(﹣2,3)或(﹣2,﹣3).点评:本题主要考查了:平行于x轴的直线上所有点纵坐标相等,根据A、B两点的距离及相对位置,分类求解.19.我市某西瓜产地组织40辆汽车装运完A,B,C三种西瓜共200吨到外地销售,按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答下列问题:西瓜种类 A B C每辆汽车运载量(吨)4 5 6设装运A种西瓜的车数为x,装运B种西瓜的车数为y,则用x的代数式表示y为:y=﹣2x+40.考点:由实际问题抽象出二元一次方程.分析:关键描述语是:用40辆汽车装运完A,B,C三种西瓜共200吨到外地销售;依据三种车装载的西瓜的总量是200吨,即可求解.解答:解:根据题意得4x+5y+6(40﹣x﹣y)=200,整理得y=﹣2x+40,故答案为:﹣2x+40.点评:考查了由实际问题抽象出二元一次方程的知识,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.三、解答题(本大题共7个小题,满分57分,解答应写出文字说明、证明过程或演算步骤)20.(1)计算:+;(2)计算:(3)﹣()考点:实数的运算.分析:(1)分别进行开平方、开立方等运算,然后合并;(2)先去括号,然后合并同类二次根式求解.解答:解:(1)原式=3﹣2+0.1=1.1;(2)原式=3+2﹣+=2+3.点评:本题考查了实数的运算,涉及了开平方、开立方、二次根式的合并等知识,属于基础题.21.解不等式组,并将其解集在数轴上表示.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:先分别解两个不等式得到x≤2和x>﹣1,再利用大小小大中间找确定不等式组的解集,然后利用数轴表示解集.解答:解:,解①得x≤2,解②得x>﹣1,所以不等式组的解集为﹣1<x≤2,用数轴表示为:点评:本题考查了解元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.也考查了在数轴上表示不等式的解集.22.如图,在△ABC中,EF⊥AB,CD⊥AB.(1)求证:EF∥CD;(2)若点G在AC边上,∠1=∠2,求证:∠DGC+∠GCB=180°.考点:平行线的判定与性质.专题:证明题.分析:(1)由垂直的定义,可求得∠BFE=∠CDF=90°,可证明EF∥CD;(2)利用(1)的结论,结合条件可证明DG∥BC,利用平行线的性质可证明∠DGC+∠GCB=180°.解答:证明:(1)∵EF⊥AB,CD⊥AB,∴∠BFE=∠CDB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠DGC+∠GCB=180°.点评:本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.23.请在网格中建立平面直角坐标系,使得A点的坐标为(4,2).(1)写出B点的坐标;(2)将线段AB平移后得到线段A′B,若点A′的坐标为(2,3),画出平移后的线段A′B′,并直接写出点B′的坐标;(3)已知点P(0,3),请在平面直角坐标系描出点P,并求△PAB的面积S的值.考点:作图-平移变换.分析:(1)首先根据A点坐标建立坐标系,进而可得B点坐标;(2)根据A和A′的坐标可得点A向上平移1个单位,向左平移2个单位,则B点平移方法相同;(3)利用矩形的面积减去周围多余三角形的面积即可.解答:解:(1)B(1,﹣1);(2)如图所示:B′(﹣1,0);(3)S=4×4﹣×4×1﹣×3×3﹣1×4=16﹣4﹣4.5=7.5.点评:此题主要考查了作图﹣﹣平移变换,关键是正确画出坐标系,掌握点的平移规律和坐标的变化.24.在某项针对18﹣35岁的青年人每天发微信数量的调查中,设一个人的“日均发微信条数”为m,当0≤m<5时为A级,5≤m<10时为B级,10≤m<15时为C级,15≤m<20时为D 级.现随机抽取部分符合年龄条件的青年人开展每人“日均发微信条数”的调查,根据调查数据整理并制作图表如下:青年人日均发微信条数统计表m 频数百分数A级(0≤m<5)90 0.3B级(5≤m<10)120 0.4C级(10≤m<15) b 0.2D级(15≤m<20)30 a请你根据以上信息解答下列问题:(1)在表中:a=0.1,b=60;(2)补全频数分布直方图;(3)若北京市常住人口中18~35岁的青年人大约有530万人,试估计其中“日均发微信条数”不少于10条的大约有多少万人.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)先用A级的人数除以它所占的百分比即可得到调查的总人数,然后用总人数乘以C级所占的百分比即可得到b的值,用30除以总人数可得a的值;(2)利用C级人数为60补全统计图;(3)根据样本估计总体,可得到“日均发微信条数”不少于10条的百分比为0.2+0.1=0.3,然后用530万乘以0.3即可估计不少于10条的人数.解答:解:(1)调查的总人数=90÷0.3=300(人),b=0.2×300=60,a=30÷300=0.1,故答案为0.1,60;(2)如图,(3)530×(0.2+0.1)=105(万),所以估计其中“日均发微信条数”不少于10条的大约有105万人.点评:本题考查了频数(率)分布直方图:频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.各组频率的和等于1,即所有长方形面积的和等于1;频数分布直方图可以清楚地看出落在各组的频数,各组的频数和等于总数.也考查了样本估计总体.25.已知,甲、乙两人相距36千米.(1)如果甲、乙两人相向而行,若甲比乙先走2小时,则他们在乙出发2.5小时后相遇,若乙比甲先走2小时,则他们在甲出发3小时后相遇,求甲、乙两人每小时各走多少千米?(2)如果甲、乙两人保持(1)中速度,两人同时、同向而行,直接写出1小时后两人相距多少千米.考点:二元一次方程组的应用.分析:(1)设甲,乙速度分别为x,y千米/时,根据甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么在甲出发后3小时相遇可列方程求解.(2)分别计算出甲、乙所走的路程,然后计算相距的距离.解答:解:设甲,乙速度分别为x,y千米/时,依题意得:,解得:.答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时.(2)依题意得:36﹣(6+3.6)×1=36.4(千米).答:1小时后,甲、乙相距36.4千米.点评:本题考查理解题意的能力,关键是设出甲乙的速度,以路程做为等量关系列方程求解.26.某中学为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),商店推出了以下两种促销方案:(1)购买一个足球、一个篮球各需多少元?(2)根据该中学的实际情况,需从该体育用品商店一次性购买足球和篮球共80个.要求购买足球和篮球的总费用不超过5160元,这所中学想购买足够多的足球,求此时最佳的购买方案以及所用的钱数.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设每个篮球x元,每个足球y元,根据买2个篮球和3个足球共需368元,购买5个篮球和2个足球共需425元,列出方程组,求解即可;(2)设买m个篮球,则购买(80﹣m)个足球,根据总价钱不超过5160元,列不等式求出x的最大整数解即可.解答:解:(1)设每个篮球x元,每个足球y元,由题意得,,解得:,答:每个篮球49元,每个足球90元;(2)设买m个篮球,则购买(80﹣m)个足球,由题意得,49m+90(80﹣m)≤5160,解得:m≤49,∵m为整数,∴m最大取49,则49×49+90(80﹣49)=5191(元)答:最多可以买31个足球,需要的费用是5191元.点评:本题考查了二元一次方程组的一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.。
2019-2020学年初一下学期期末模拟数学试卷 一、选择题(每题只有一个答案正确) 1.下列等式成立的是( )A .255=±B .()3333-=C .()244-=-D .0.360.6±=±2.在坐标平面内,若点P (x-3,x+2)在第二象限,则x 的取值范围是( )A .x >3B .x <3C .x >-2D .-2<x <33.关于x 的分式方程22433xa x x --=---有增根,则a 的值为( )A .3B .17C .3-D .24.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)5.点P(2017,﹣2018)在( )A .第一象限B .第二象限C .第三象限D .第四象限6.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (﹣2,3)的对应点为C (2,﹣2),则点B (﹣4,1)的对应点D 的坐标为( )A .(﹣6,﹣4)B .(﹣4,0)C .(6,﹣4)D .(0,﹣4)7.下列调查中,适合采取抽样调查方式的是( )A .了解某企业对应聘人员进行面试的情况B .了解某班级学生的身高的情况C .调查某批次汽车的抗撞击能力D .选出某校短跑最快的学生参加比赛8.下列说法中错误的是( )A .三角形的中线、角平分线、高都是线段B .任意三角形的内角和都是 180°C .多边形的外角和等于 360°A .4B .2C .﹣2D .±210.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x 千米/时,可列方程为( )A .42042021.5x x+= B .42042021.5x x -= C . 1.52420420x x += D . 1.52420420x x -= 二、填空题题 11.如果一个角的两边与另一个角的两边分别平行,那么这两个角的数量关系是_____.12.已知在一个样本中,50个数据分别在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频数为__________.13.将二元一次方程2x ﹣3y =1改写成用含x 的式子表示y 的形式为_____.14.如图,在ABC ∆中,,6,3AD BC BC AD ⊥==,将ABC ∆沿射线BC 的方向平移2个单位后,得到三角形'''A B C ,连接'A C ,则三角形''A B C 的面积为__________.15.已知 ,,则 的值为____.16.如图,//AD BC ,ABD ∆的面积等于2,1AD =,3BC =,则DBC ∆的面积是_______.17.用不等式表示x 的4倍与2的和大于6,________;此不等式的解集为________.三、解答题18.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由. (2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?(1)图1中,作∠BAC 的角平分线AD,分别交CB 、BE 于D 、F 两点,求证:∠EFD=∠ADC ;(2)图2中,作△ABC 的外角∠BAG 的角平分线AD,分别交CB 、BE 的延长线于D 、F 两点,试探究(1)中结论是否仍成立?为什么?20.(6分)(习题回顾)(1)如下左图,在ABC ∆中,BE 平分,ABC CE ∠平分,64ACB A ∠∠=︒,则BEC ∠=_________︒.(探究延伸)在ABC ∆中,AI 平分BAC ∠、BI 平分ABC ∠、CI 平分BCA ∠相交于点I ,过点I 作DI IC ⊥,交AC 于点D .(2)如上中间图,求证:ADI AIB ∠=∠;(3)如上右图,ABC ∆外角ACE ∠的平分线CF 与BI 的延长线交于点F .①判断DI 与CF 的位置关系,并说明理由;②若90BAC ∠=︒,试说明:CI CF =.21.(6分)解下列方程或方程组(1)237453x y x y -=⎧⎨+=⎩; (2)153x x =+. 22.(8分)(1)如图①,若AB ∥CD ,求∠B+∠D+∠E 1的度数?(2)如图②,若AB ∥CD ,求∠B+∠D+∠E 1+∠E 2的度数?(3)如图③,若AB ∥CD ,求∠B+∠D+∠E 1+∠E 2+∠E 3的度数?(4)如图④,若AB ∥CD ,猜想∠B+∠D+∠E 1+∠E 2+…+∠E n 的度数?23.(8分)在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F,如图所示,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;晓东通过观察,实验,提出猜想:BE+CD=BC,他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.(1)下面是小东证明该猜想的部分思路,请补充完整;①在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与______全等,判定它们全等的依据是______;②由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=______°;(2)请直接利用①,②已得到的结论,完成证明猜想BE+CD=BC的过程.24.(10分)某校七年级1班体育委员统计了全班同学60秒跳绳的次数,并绘制出如下频数分布表和频数分布直方图:次数80≤x<100 100≤x<120 120≤x<140 140≤x<160 160≤x<180 180≤x<200频数 a 4 12 16 8 3结合图表完成下列问题:(1)a=;(2)补全频数分布直方图;(3)写出全班人数是,并求出第三组“120≤x<140”的频率(精确到0.01)(4)若跳绳次数不少于140的学生成绩为优秀,则优秀学生人数占全班总人数的百分之几?c ().25.(10分)已知:a是﹣272-1b=3,1-33-4(3)若关于x 的不等式组{-cx a x b t>< 无解,求t 的取值范围.参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】根据实数的性质即可化简判断.【详解】A.5=,故错误; B.3=-,故错误;C. 44=-=,故错误;D. 0.6=±,正确;故选D.【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.2.D【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】∵点P (x-1,x+2)在第二象限,∴3020x x -⎧⎨+⎩<①>②, 解不等式①得,x <1,解不等式②得,x >-2,本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 3.A【解析】【分析】先去分母,化成整式方程,再根据增根为使得分母为0的值,将其代入变形后的整式方程即可解出a .【详解】 解:22433x a x x--=---, 224(3)x a x ∴-=---,方程有增根,即3x =满足方程,将3x =代入得232a -=-,解得3a =.故选:A .【点睛】本题考查了分式方程增根的求法,属于基础题型,难度不大,熟知增根的概念是解题的关键.4.D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D .【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条根据平面直角坐标系中各象限内点的坐标的特征即可解答【详解】∵点P的横坐标为正数,纵坐标为负数,∴点P(2017,﹣2018)在第四象限,故选D.【点睛】本题考查了平面直角坐标系中各象限内点的坐标的特征,熟知平面直角坐标系中各象限内点的坐标的特征是解决问题的关键.6.D【解析】【分析】根据点A到C确定出平移规律,再根据平移规律列式计算即可得到点D的坐标.【详解】点A(﹣2,3)的对应点为C(2,﹣2),可知横坐标由﹣2变为2,向右移动了4个单位,3变为﹣2,表示向下移动了5个单位,于是B(﹣4,1)的对应点D的横坐标为﹣4+4=0,点D的纵坐标为1﹣5=﹣4,故D(0,﹣4).故选D.【点睛】本题考查了坐标与图形变化一平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,先确定出平移规律是解题的关键7.C【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A.了解某企业对应聘人员进行面试的情况,范围小,应当采用全面调查的方式,故本选错误,B.了解某班级学生的身高的情况,范围小,应当采用全面调查的方式,故本选错误,本题主要考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.8.D【解析】【分析】根据三角形的角平分线、中线和高的定义可对A进行判断;根据三角形内角和定理可对B进行判断;根据多边形和三角形外角的性质可对C、D进行判断.【详解】解:A、三角形的中线、角平分线、高线都是线段,所以A选项的说法正确;B、三角形的内角和为180°,所以B选项的说法正确;C、多边形的外角和等于360°,所以D选项的说法正确;D、三角形的一个外角大于任何一个不相邻的内角,所以C选项的说法错误.故选D.【点睛】本题考查了三角形内角和定理:三角形的内角和为180°.也考查了三角形的角平分线、中线和高以及三角形外角的性质.9.B【解析】根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根,特别地,规定1的算术平方根是1.∵22=4,∴4的算术平方根是2.故选B.10.B【解析】试题分析:设原来的平均速度为x千米/时,由题意得,42042021.5x x-=.故选B.考点:由实际问题抽象出分式方程.二、填空题题11.相等或互补根据题意画出图形进行分析即可.【详解】如图所示:∵AB∥CD,∴∠1=∠3,∵BE∥DF,∴∠2=∠3,∴∠1=∠2;(2)如图所示:∵AB∥CD,∴∠1=∠3,∵BE∥DF,∴∠2+∠3=180°,∴∠1+∠2=180°;综合上述可得:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补;故答案是:相等或互补.【点睛】考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.12.20每组的数据个数就是每组的频数,50减去第1,2,3,5,小组数据的个数就是第4组的频数.【详解】50−(2+8+15+5)=20.则第4小组的频数是20.【点睛】本题考查频数与频率,解题的关键是掌握频数与频率的计算.13.y =213x -. 【解析】【分析】由题意得将原式表示成y=ax+b 的形式.【详解】方程两边同时减去2x 得:﹣3y =1﹣2x ;方程两边同时除以﹣3得:y =213x -. 【点睛】在解题的过程中应当注意在方程变形的时候做到方程两边做同样的运算.14.6【解析】【分析】根据平移前后的几何性质,由三角形面积公式即可容易求得.【详解】根据题意,因为ABC A B C '''≅,容易知624B C B C CC '''-=-'==;又A B C '''的高于ABC 的高相等,均为3, 故1143622A B C S B C AD ''=⨯'⨯=⨯⨯=. 故答案为:6.【点睛】本题考查平移的性质,以及三角形面积的计算,属基础题.15.1【解析】【分析】将代数式变形后,再将m+n ,mn 代入即可求出答案.【详解】故答案为:1.【点睛】本题考查了完全平方公式.解题的关键是熟练掌握完全平方公式.16.6【解析】【分析】过D作DH⊥BC,根据三角形的面积公式即可得到结论.【详解】过D作DH⊥BC,∵AD∥BC,△ABD的面积等于2,AD=1,∴DH=4,∵BC=3,∴△DBC的面积1436 2=⨯⨯=,故答案为:1.【点睛】本题考查了三角形的面积,平行线间的距离.正确的识别图形是解题的关键.17.4x+2>6 x>1【解析】【分析】根据x的4倍与2的和大于6可列出不等式,进而求解即可.【详解】解:由题意得,4x+2>6,移项、合并得:4x>4,系数化为1得:x>1,故答案为:4x+2>6,x>1.【点睛】本题主要考查列一元一次不等式,解题的关键是抓住关键词语,弄清运算的先后顺序和不等关系,列出不等式.三、解答题18.(1)见解析;(2)DB DF=【解析】【分析】(1)①直接利用三角形的外角性质,即可得到;②过D作DG BC交AB于点G,由等腰三角形的性质,平行线的性质和等边对等角,得到BG DC=,DGB FCD∠=∠,然后证明三角形全等,即可得到结论成立;(2)连接BF,根据题意,可证得BCF BDF A∠=∠=∠,则B、C、D、F四点共圆,即可证明结论成立. 【详解】解:(1)①∵BDC A ABD∠=∠+∠,即BDF FDC A ABD∠+∠=∠+∠,∵BDF A∠=∠,∴FDC ADB∠=∠;②过D作DG BC交AB于点G,∴ADG ACB∠=∠,AGD ABC∠=∠,又AB AC=,∴AABC CB=∠∠,∴AGD ADG∠=∠,∴AD AG=,∴AB AG AC AD-=-,∴BG DC=,又ECF ACB AGD∠=∠=∠,∴DGB FCD∠=∠,在GDB△与CFD△中,,,DGB FCDGB CDGBD FDC∠=∠⎧⎪=⎨⎪∠=∠⎩∴()GDB CFD ASA△≌△∴DB DF=;(2)证明:如图:连接BF,由(1)可知,A ABC CB =∠∠,∵ECF ACB ∠=∠,∴ABC ECF ∠=∠,∵BC A C A BCF E F =∠+∠∠+∠,∴A BCF ∠=∠,∴BDF A BCF ∠=∠=∠,∴B 、C 、D 、F 四点共圆,∴180DCB DFB ∠+∠=︒,DBF ECF ∠=∠,∴ACB DFB ∠=∠,∵BC EC AC A F B =∠=∠∠,∴DBF DFB ∠=∠,∴DB DF =.【点睛】本题考查了四点共圆的知识,等腰三角形的性质,全等三角形的判定和性质,平行线的性质,以及三角形外角性质,解题的关键是熟练掌握所学的知识,正确作出辅助线,从而得到角的关系,再进行证明. 19.(1)证明见解析;(2)(1)中结论仍成立,理由见解析.【解析】【分析】(1)首先根据角平分线的性质可得∠BAD =∠DAC ,再根据内角与外角的性质可得∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,进而得到∠EFD =∠ADC ;(2)首先根据角平分线的性质可得∠BAD=∠DAG ,再根据等量代换可得∠FAE=∠BAD ,然后再根据内角与外角的性质可得∠EFD=∠AEB-∠FAE ,∠ADC=∠ABC-∠BAD ,进而得∠EFD=∠ADC .【详解】(1)∵AD 平分∠BAC ,∴∠BAD=∠DAC ,∵∠EFD=∠DAC+∠AEB ,∠ADC=∠ABC+∠BAD ,又∵∠AEB=∠ABC ,∴∠EFD=∠ADC ;(2)探究(1)中结论仍成立;理由:∵AD 平分∠BAG,∴∠BAD=∠GAD ,∵∠FAE=∠GAD ,∴∠FAE=∠BAD ,∵∠EFD=∠AEB-∠FAE ,∠ADC=∠ABC-∠BAD ,又∵∠AEB=∠ABC ,∴∠EFD=∠ADC .【点睛】此题主要考查了角平分线的定义,三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.20.(1)122;(2)证明见详解;(3)①//DI CF ,理由见解析;②理由见解析.【解析】【分析】(1)根据三角形内角和为180︒和角平分线的定义,可得EBC ECB ∠+∠,再利用三角形内角和,即可求得BEC ∠的大小;(2)根据根据三角形内角和为180︒和角平分线的定义,可表达出AIB ∠,再用同样的方法表达出ADI ∠,即可证明;(3)①根据角平分线的定义,用等量代换的方法,分别表达出IDC ∠和ACF ∠,再根据内错角相等,两直线平行,即可得到结论;②根据角平分线的定义,用等量代换的方法,分别表达出F ∠和FIC ∠,根据等腰三角形的要相等,即可得到结论.【详解】(1)在ABC ∆中,BE 平分,ABC CE ∠平分,64ACB A ∠∠=︒()()111806458?22EBC ECB ABC ACB ∴∠+∠=∠+∠=︒-︒=︒ 18058122?BEC ∴∠=︒-︒=︒.(2)AI 平分BAC ∠、BI 平分ABC ∠,12BAI BAC ∴∠=∠,12ABI ABC ∠=∠, ()()1118022BAI ABI BAC ABC ACB ∴∠+∠=∠+∠=︒-∠ 1902ACB =︒-∠ ∴在ABI 中,()180AIB BAI ABI ∠=︒-∠+∠11180909022ACB ACB ⎛⎫=︒-︒-∠=︒+∠ ⎪⎝⎭, CI 平分ACB ∠,12DCI ACB ∴∠=∠, DI IC ⊥,90DIC ∴∠=︒,1902ADI DIC DCI ACB ∴∠=∠+∠=︒+∠, ∴ADI AIB ∠=∠.(3)①DI 与CF 相平行,CF 平分ACE ∠,()11118090222ACF ACE ACB ACB ∴∠=∠=︒-∠=︒-∠, 又190902IDC DCI ACB ∠=︒-∠=︒-∠, IDC ACF ∴∠=∠,∴//DI CF .②ACE ABC BAC ∠=∠+∠90ACE ABC BAC ∴∠-∠=∠=︒FCE FBC F ∠=∠+∠F FCE FBC ∴∠=∠-∠11,22FCE ACE FBC ABC ∠=∠∠=∠, ()11145222F ACE ABC ACE ABC ∴∠=∠-∠=∠-∠=︒ ()11802BIC ABC ACB ∠=︒-∠+∠ ()1180180901352=︒-︒-︒=︒ 18013545FIC ∴∠=︒-︒=︒F FIC ∴∠=∠∴CI CF =.【点睛】本题考查三角形内角和、角平分线性质、三角形的外角性质的问题,主要用等量代换的思想,属中档题. 21.(1)x=2 y=-1;(2)x=34. 【解析】【分析】(1)根据二元一次方程组的解法即可求出答案;(2)根据分式方程的解法即可求出答案.【详解】(1)2x-3y=7① 4x+5y=3②①×2得:4x﹣6y=14③②﹣③得:11y=﹣11y=﹣1将y=﹣1代入①得:x=2 ∴方程组的解为x=2 y=-1 (2)x+3=5xx=3 4经检验:x=34是原方程的解【点睛】本题考查学生的运算能力,解题的关键是熟练运用方程的解法,本题属于基础题.22.(1)∠B+∠D+∠E1=360°;(2)∠B+∠D+∠E1+∠E2=540°;(3)∠B+∠D+∠E1+∠E2+∠E3=720°;(4)∠B+∠D+∠E1+∠E2+…+∠E n=(n+1)•180°.【解析】【分析】(1)如图1,过E1作E1F∥AB,则E1F∥CD,根据平行线的性质得到∠B+∠1=180°①,∠D+∠2=180°②,即可得到结论;(2)分别过E1,E2作E1F∥AB,E2G∥AB,则E1F∥E2G∥CD,根据平行线的性质即可得到结论;(2)分别过E1,E2,E3作E1F1∥E2F2∥E3F3∥AB,则E1F1∥E2F2∥E3F3∥CD,根据平行线的性质即可得到结论;(4)由(1)(2)(3)知,拐点的个数n与角的和之间的关系是(n+1)•180°,于是得到∠B+∠D+∠E1+∠E2+…+∠E n=(n+1)•180°.【详解】解:(1)如图①,过E1作E1F∥AB,则E1F∥CD,∴∠B+∠1=180°①,∠D+∠2=180°②,①+②得∠B+∠1+∠D+∠2=360°,即∠B+∠D+∠E1=360°=2×180°;(2)如图②,分别过E1,E2作E1F∥AB,E2G∥AB,则E1F∥E2G∥CD,∴∠1+∠B=∠2+∠3=∠4+∠D=180°,∴∠B+∠D+∠E1+∠E2=∠1+∠B+∠2+∠3+∠4+∠D=540°=3×180°;(3)如图③,分别过E1,E2,E3作E1F1∥E2F2∥E3F3∥AB,则E1F1∥E2F2∥E3F3∥CD,∴∠B+∠BE1E2=180°,∠E2E1F1+∠E1E2F2=180°,∠E3E2F2+∠E2E3F3=180°,∠DE3F3+∠D=180°,∴∠B+∠D+∠E1+∠E2+∠E3=720°=4×180°;(4)由(1)(2)(3)知,拐点的个数n与角的和之间的关系是(n+1)•180°,∴∠B+∠D+∠E1+∠E2+…+∠E n=(n+1)•180°.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用平行线的性质求解是解答此题的关键.23.(1)①△BMF,SAS;②60;(2)见解析【解析】【分析】(1)①由BD,CE是△ABC的两条角平分线知∠FBE=∠FBC=12∠ABC,结合BE=BM,BF=BF,依据“SAS”即可证得△BEF≌△BMF;②利用三角形内角和求出∠ABC+∠ACB=120°,进而得出∠FBC+∠FCB=60°,得出∠BFC=120°,即可得出结论;(2)利用角平分线得出∠EBF=∠MBF,进而得出△BEF≌△BMF,求出∠BFM,即可判断出∠CFM=∠CFD,即可判断出△FCM≌△FCD,即可得出结论.【详解】(1)解:①在BC上取一点M,使BM=BE,连接FM,如图所示:∵BD、CE是△ABC的两条角平分线,∴∠FBE=∠FBM=12∠ABC,在△BEF和△BMF中,BE BMFBE FBMBF BF=⎧⎪∠=∠⎨⎪=⎩,∴△BEF≌△BMF(SAS),故答案为:△BMF,SAS;②∵BD、CE是△ABC的两条角平分线,∴∠FBC+FCB=12(∠ABC+∠ACB),在△ABC中,∠A+∠ABC+∠ACB=180°,∵∠A=60°,∴∠ABC+∠ACB=180°-∠A=180°-60°=120°,∴∠BFC=180°-(∠FBC+∠FCB)=180°-12(∠ABC+∠ACB)=180°-12×120°=120°,∴∠EFB=60°,故答案为:60;(2)证明:由①知,∠BFE=60°,∴∠CFD=∠BFE=60°∵△BEF≌△BMF,∴∠BFE=∠BFM=60°,∴∠CFM=∠BFC-∠BFM=120°-60°=60°,∴∠CFM=∠CFD=60°,∵CE是∠ACB的平分线,∴∠FCM=∠FCD,在△FCM和△FCD中,CFM CFDCF CFFCM FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FCM≌△FCD(ASA),∴CM=CD,∴BC=CM+BM=CD+BE,∴BE+CD=BC.【点睛】本题是三角形综合题,主要考查了角平分线的定义、三角形内角和定理、全等三角形的判定和性质,熟练掌握三角形内角和定理、全等三角形的判定和性质,证明∠CFM=∠CFD是解题的关键.24. (1)2;(2)见解析;(3)45;(4)60%【解析】【分析】(1)由频数分布直方图可直接得到a的值;(2)根据频数统计表可知跳绳次数在140≤x<160之间的频数为16,从而可补全直方图;(3)求出全班人数,然后用第三组的频数除以全班人数即可求得频率;(4)用优秀人数除以全班总人数即可.【详解】解:(1)∵由频数分别直方图可知:第1小组频数为2,∴a=2,故答案为2;(2)由频数分布表知140≤x<160的频数为16,补全图形如下:(3)全班人数为2+4+12+16+8+3=45人,第三组“120≤x<140”的频率为12÷45≈0.27,故答案为45;(4)优秀学生人数占全班总人数的百分比为168345++×100%=60%,答:优秀的学生人数占全班总人数的60%.【点睛】本题主要考查的是频数分布表和频数分布直方图的应用,读懂统计图、统计表,能够从统计图和统计表中获取有效信息是解题的关键.25.(1)—3, 5 , 1 ;(27;(3)t≤-8.【解析】【分析】(1)根据立方根、算术平方根的意义,以及二次根式的混合运算法则,即可求出a、b、c的值,(2)将a、b、c的值代入代数式计算即可得解.【详解】(1)∵a是﹣27的立方根∴a=-3=3,∴2b-1=9,∴b=5;1-c=21 =故答案为:-3,5,1;(2)当a=-3,b=5,c=1时--5317b a c=+-=;则7的平方根为(3)将a =-3,b =5,c=1代入,得:35 xx t-⎧⎨+⎩><,由不等式组无解,得t+5≤-3,即t≤-8【点睛】本题考查了立方根、算术平方根、二次根式的混合运算以及解一元一次不等式组,熟练掌握相关知识是解题的关键2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.如果a <b ,那么下列不等式成立的是( )A .a ﹣b >0B .a ﹣3>b ﹣3C .13a >13bD .﹣2a >﹣2b2.如图,△ACB ≌△A′CB′,∠A′CB=50°,∠ACB′=100°,则∠ACA′的度数是( )A .30°B .25°C .20°D .40°3.小手盖住的点的坐标可能为( )A .()5,2B .()3,4-C .()6,3-D .()4,6--4.下列计算正确的是( )A .a 5+a 5=a 10B .a 7÷a =a 6C .a 3·a 2=a 6D .(2x)3=2x 35.如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A .∠2B .∠3C .∠4D .∠56.图象中所反应的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x 表示时间,y 表示张强离家的距离,根据图象提供的信息,以下四个说法错误的是( )A .体育场离张强家2.5千米B .张强在体育场锻炼了15分钟C .体育场离早餐店4千米D .张强从早餐店回家的平均速度是千米/小时7.如图,a ∥b ,点A 在直线a 上,点C 在直线b 上,∠BAC =90°,AB =AC ,若∠1=20°,则∠2的度数为( )A .25°B .65°C .70°D .75°8.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是()A .8374y x y x -=⎧⎨-=⎩B .8374y x y x -=⎧⎨-=-⎩ C .8374y x y x -=-⎧⎨-=-⎩ D .8374y x y x -=⎧⎨-=⎩9.下列等式从左到右的变形,属于因式分解的是( )A .2(2)(2)4a a a +-=-B .21(1)1x x x x --=--C .2244(2)x x x -+=-D .2323(2)m m m m m--=-- 10.如图,能使BF//DC 的条件是( )A .∠1=∠3B .∠2=∠4C .∠2=∠3D .∠1=∠4二、填空题题 11. “a 的值不小于3”用不等式表示为_______________.12.用科学记数法表示:0.00000136=________.13.如图所示,已知在ABC 中,BE 平分ABC ∠交AC 于点E ,CD AC ⊥交AB 于点D ,BCD A ∠=∠,则BEA ∠的度数为________.14.已知方程组23325x y m x y m-=+⎧⎨+=-⎩①无论m 和y 取何值,x 的值一定等于2;②当3m =时,x 与y 互为相反数;③当方程组的解满足25x y +=时,1m =;④方程组的解不可能为24x y =-⎧⎨=⎩,以上四个结论正确的是_________(填序号).15.如图,将一副直角三角板如图所示放置,使含30角的三角板的一条直角边和含45度角的三角板的一条直角边重合,则1∠的度数为________°.16.已知(2019﹣x )(2017﹣x )=2018,则(2019﹣x )2+(2017﹣x )2=_____. 17.已知若a-b=8,则代数式a 2-b 2-16b 的值为______.三、解答题18.如图摆放两个正方形,它们的周长之和为32、面积之和为34,求阴影部分的面积.19.(6分)若关于x 、y 的二元一次方程组322218x y x y m +=⎧⎨+=-⎩的解x 、y 互为相反数,求m 的值. 20.(6分)为弘扬“雷锋精神”,我县开展“做雷锋精神种子.当四品八德少年”主题征文比赛,已知每篇参赛征文成绩记m 分(60100m ≤≤) ,组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.县主题征文比赛成绩频数分布表 分数段 频数 频率6070m ≤< 380.38 7080m ≤<a 0.32 8090m ≤<20 b 90100m ≤≤10 0.1 合计 1县主题征文比赛成绩频数分布直方图请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中b 的值是 ;(2)补全征文比赛成绩频数分布直方图:(3)若80分以上(含80分)的征文将被评为一等奖,请估算全县获得一等奖征文的篇数.21.(6分)如图:在正方形网格中有一个格点三角形ABC ,(即ABC ∆的各顶点都在格点上),按要求进行下列作图:(1)画出点C 到线段AB 的垂线段,垂足为D ;(2)画出将ABC ∆先向左平移2格,再向上平移3格后的A B C '''∆;(3)画一条直线l ,将ABC ∆分成两个面积相等的三角形.22.(8分)在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,回答下列问题.(1)图中格点三角形A′B′C′是由格点三角形ABC 通过怎样的平移得到的?(2)如果以直线a ,b 为坐标轴建立平面直角坐标系后,点A 的坐标为(-3,4),请写出格点三角形DEF 各顶点的坐标,并求出三角形DEF 的面积.23.(8分)已知,如图所示,∠BAE +∠AED =180︒,∠M =∠N .求证∠1=∠2.24.(10分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分):78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93,整理上面的数据得到频数分布表和频数分布直方图:成绩(分) 频数≤< 57882x≤<ax8286≤<11x8690≤<bx9094x≤< 29498回答下列问题:(1)以上30个数据中,中位数是_____;频数分布表中a=____;b=_____;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.25.(10分)已知一个角的补角比这个角的4倍大,求这个角的余角.参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】根据不等式的性质,逐项判断即可.【详解】解:∵a<b,∴a﹣b<0,∴选项A不符合题意;∵a<b,∴a﹣3<b﹣3,∴选项B不符合题意;∵a<b,∴13a<13b,∴选项C不符合题意;∵a<b,∴﹣2a>﹣2b,∴选项D符合题意.故选:D.【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.2.B【解析】【分析】直接利用全等三角形的性质得出∠ACB=∠A′CB′,进而得出答案.【详解】∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACA′=∠BCB′,∵∠A′CB=50°,∠ACB′=100°,∴∠ACA′=∠BCB′=12(100°-50°)=25°.故选B.【点睛】此题主要考查了全等三角形的性质,正确得出对应角相等是解题关键.3.B【解析】【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【详解】根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有B符合.故选:B.【点睛】此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).4.B【解析】【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【详解】:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(2x)3=8x3,所以此选项错误;故选B.【点睛】本题主要考查了同底数幂的乘法、除法、幂的乘方及合并同类项等,关键是熟记,同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.5.C【解析】分析:根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可.详解:由同位角的定义可知,∠1的同位角是∠1.故选C.点睛:本题考查了同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.6.C【解析】试题解析:A、由纵坐标看出,体育场离张强家2.5千米,故A正确;B、由横坐标看出,30-15=15分钟,张强在体育场锻炼了15分钟,故B正确;C、由纵坐标看出,2.5-1.5=1千米,体育场离早餐店1千米,故C错误;D、由纵坐标看出早餐店离家1.5千米,由横坐标看出从早餐店回家用了100-65=35分钟=小时,1.5÷千米/小时,故D正确.故选C.【点睛】本题图中折线反映的是张强离家的距离y与时间x之间的关系,根据横轴和纵轴上的数据不难解答有关问题.需注意理解时间增多,路程没有变化的函数图象是与x轴平行的一段线段.平均速度=总路程÷总时间.7.B【解析】试题分析:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵∠1=20°,∴∠ACE=20°+45°=65°,∵a∥b,∴∠2=∠ACE=65°,故选B.考点: 1.等腰直角三角形;2.平行线的性质.8.B【解析】【分析】设该物品的价格是x钱,共同购买该商品的由y人,根据题意每人出8钱,则多3钱;每人出7钱,则差4钱列出二元一次方程组.【详解】设该物品的价格是x钱,共同购买该商品的由y人,依题意可得83 74y xy x-=⎧⎨-=-⎩故选:B【点睛】本题考查由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组. 9.C【解析】【分析】根据因式分解的定义判断即可.【详解】A. 是整式乘法,不是因式分解,故本选项错误;B. 不是因式分解,故本选项错误;C. 是因式分解,故本选项正确;D. 不是因式分解,故本选项错误;故选C.【点睛】此题考查因式分解的意义,掌握运算法则是解题关键10.A【解析】【分析】同位角相等、内错角相等、同旁内角互补,则两直线平行,此题主要考查了平行的判定.【详解】A、当∠1=∠3时,根据同位角相等,两直线平行可证BF∥DC,故正确;B、因为∠4、∠2不是BF、DC被截得的同位角或内错角,不符合题意,故错误;C、因为∠3、∠2不是BF、DC被截得的同位角或内错角,不符合题意,故错误;C、因为∠1、∠4不是BF、DC被截得的同位角或内错角,不符合题意,故错误;故选A.【点睛】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.二、填空题题a11.3【解析】【分析】直接根据题意得出不等关系.【详解】“a的值不小于1”用不等式表示为:a≥1.故答案为:a≥1.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.12.1.36×10-6【解析】。
河北省2019-2020年七年级下学期期末测试数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)方程组的解是()A.B.C.D.2.(3分)∠1与∠2是内错角,∠1=40°,则()A.∠2=40°B.∠2=140°C.∠2=40°或∠2=140°D.∠2的大小不确定3.(3分)下列各式由左边到右边的变形中,属于分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x4.(3分)下面四个图形中,能判断∠1>∠2的是()A.B.C.D.5.(3分)计算(2x3y)2的结果是()A.4x6y2B.8x6y2C.4x5y2D.8x5y26.(3分)不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线7.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.a c>bc B.a b>cb C.a+c>b+c D.a+b>c+b8.(3分)下列说法中,正确的是()A.若两条直线被第三条直线所截,则同旁内角互补B.相等的角是对顶角C.三角形的外角等于两个内角的和D.若三条直线两两相交,则共有6对对顶角9.(3分)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A.B.C.D.10.(3分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.4个B.3个C.2个D.1个二、填空题(本题共8个小题,每小题3分,共计24分)11.(3分)因式分解:ab2﹣a=.12.(3分)夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m,且桥宽忽略不计,则小桥总长为m.13.(3分)有一种原子的直径约为0.00000053米,用科学记数法表示为.14.(3分)已知三角形的两边长分别是3和5,则第三边长a的取值范围是.15.(3分)若,,则a+b的值为.16.(3分)如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2=度.17.(3分)若关于x的不等式(1﹣a)x>2可化为x>,则a的取值范围是.18.(3分)如果a,b,c是整数,且a c=b,那么我们规定一种记号(a,b)=c,例如32=9,那么记作(3,9)=2,根据以上规定,求(﹣2,1)=.三、解答题(共八个小题,共计66分)19.(6分)用加减消元法解方程组:.20.(7分)如图,已知EF∥AD,∠1=∠2,∠BAC=68°,求∠AGD的度数.21.(7分)化简求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.22.(8分)在△ABC中,如果∠A、∠B、∠C的外角的度数之比是4:3:2,求∠A的度数.23.(8分)解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.24.(10分)(1)实验与观察:(用“>”、“=”或“<”填空)当x=﹣5时,代数式x2﹣2x+21;当x=1时,代数式x2﹣2x+21;…(2)归纳与证明:换几个数再试试,你发现了什么?请写出来并证明它是正确的;(3)拓展与应用:求代数式a2+b2﹣6a﹣8b+30的最小值.25.(10分)如图,已知AC=BC=CD,BD平分∠ABC,点E在BC的延长线上.(1)试说明CD∥AB的理由;(2)CD是∠ACE的角平分线吗?为什么?26.(10分)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.七年级下学期期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)方程组的解是()A.B.C.D.考点:解二元一次方程组.分析:根据x、y的系数互为相反数,利用加减消元法求解即可.解答:解:,①+②得,3x=6,解得x=2,把x=2代入②得,2+y=3,解得y=1,所以,方程组的解是.故选A.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.2.(3分)∠1与∠2是内错角,∠1=40°,则()A.∠2=40°B.∠2=140°C.∠2=40°或∠2=140°D.∠2的大小不确定考点:同位角、内错角、同旁内角.分析:两直线平行时内错角相等,不平行时无法确定内错角的大小关系.解答:解:内错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,内错角才相等.故选D.点评:特别注意,内错角相等的条件是两直线平行.3.(3分)下列各式由左边到右边的变形中,属于分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x考点:因式分解的意义.分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.解答:解:A、是多项式乘法,故选项错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故选项错误;C、提公因式法,故选项正确;D、右边不是积的形式,故选项错误.故选:C.点评:此题考查了因式分解的意义;这类问题的关键在于能否正确应用分解因式的定义来判断.4.(3分)下面四个图形中,能判断∠1>∠2的是()A.B.C.D.考点:三角形的外角性质.分析:根据图象,利用排除法求解.解答:解:A、∠1与∠2是对顶角,相等,故本选项错误;B、根据图象,∠1<∠2,故本选项错误;C、∠1是锐角,∠2是直角,∠1<∠2,故本选项错误;D、∠1是三角形的一个外角,所以∠1>∠2,故本选项正确.故选D.点评:本题主要考查学生识图能力和三角形的外角性质.5.(3分)计算(2x3y)2的结果是()A.4x6y2B.8x6y2C.4x5y2 D. 8x5y2考点:幂的乘方与积的乘方.分析:根据积的乘方的知识求解即可求得答案.解答:解:(2x3y)2=4x6y2.点评:本题考查了积的乘方,一定要记准法则才能做题.6.(3分)不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线考点:三角形的角平分线、中线和高;三角形中位线定理.专题:计算题.分析:根据三角形的高、中线、角平分线的性质解答.解答:解:因为在三角形中,它的中线、角平分线一定在三角形的内部,而钝角三角形的高在三角形的外部.故选C.点评:本题考查了三角形的高、中线和角平分线,要熟悉它们的性质方可解答.7.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.a c>bc B.a b>cb C.a+c>b+c D.a+b>c+b考点:实数与数轴分析:根据数轴判断出a、b、c的正负情况,然后根据不等式的性质解答.解答:解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.点评:本题考查了实数与数轴,不等式的基本性质,根据数轴判断出a、b、c的正负情况是解题的关键.8.(3分)下列说法中,正确的是()A.若两条直线被第三条直线所截,则同旁内角互补B.相等的角是对顶角C.三角形的外角等于两个内角的和D.若三条直线两两相交,则共有6对对顶角考点:命题与定理.分析:利用平行线的性质、对顶角的性质、三角形的外角的性质分别判断后即可确定正确的选项.解答:解:A、若两条直线被第三条直线所截,则同旁内角互补,错误;B、相等的角是对顶角,错误;C、三角形的外角等于不相邻的两个内角的和,故错误;D、若三条直线两两相交,则共有6对对顶角,故正确;点评:本题考查了命题与定理的知识,解题的关键是能够了解平行线的性质、对顶角的性质、三角形的外角的性质,属于基础知识,难度较小.9.(3分)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:根据x,y之和是10可得x+y=10,x比y的3倍还大2可得x=3y+2,联立两个方程即可.解答:解:由题意得:,故选:A.点评:此题主要考查了有实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.10.(3分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.4个B.3个C.2个D.1个考点:平行线的判定;三角形内角和定理;三角形的外角性质.分析:根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF=2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.解答:解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠A BC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=∠EAC,∠DCA=∠ACF,∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°﹣(∠DAC+∠ACD)=180°﹣(∠EAC+∠ACF)=180°﹣(∠ABC+∠ACB+∠ABC+∠BAC)=180°﹣(180°﹣∠ABC)=90°﹣∠ABC,∴③正确;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴④正确;即正确的有4个,故选A.点评:本题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察学生的推理能力,有一定的难度.二、填空题(本题共8个小题,每小题3分,共计24分)11.(3分)因式分解:ab2﹣a=a(b+1)(b﹣1).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,再运用平方差公式继续分解因式.解答:解:ab2﹣a,=a(b2﹣1),=a(b+1)(b﹣1).点评:本题考查了提公因式法与公式法分解因式,关键在于提取公因式后要进行二次因式分解,因式分解一定要彻底,直到不能再分解为止.12.(3分)夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m,且桥宽忽略不计,则小桥总长为140m.考点:生活中的平移现象.分析:利用平移的性质直接得出答案即可.解答:解:根据题意得出:小桥可以平移到矩形的边上,得出小桥的长等于矩形的长与宽的和,故小桥总长为:280÷2=140(m).故答案为:140.点评:此题主要考查了生活中的平移,根据已知正确平移小桥是解题关键.13.(3分)有一种原子的直径约为0.00000053米,用科学记数法表示为5.3×10﹣7.考点:科学记数法—表示较小的数.专题:应用题.分析:较小的数的科学记数法的一般形式为:a×10﹣n,在本题中a应为5.3,10的指数为﹣7.解答:解:0.000 000 53=5.3×10﹣7.故答案为:5.3×10﹣7.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(3分)已知三角形的两边长分别是3和5,则第三边长a的取值范围是2<a<8.考点:三角形三边关系.分析:根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边>两边之差2,而同时第三边<两边之和8.解答:解:根据三角形的三边关系,得第三边的取值范围是:5﹣3<a<5+3,即2<a<8.故答案为2<a<8.点评:此题考查了三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.15.(3分)若,,则a+b的值为.考点:平方差公式.专题:计算题.分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.解答:解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案为:.点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.16.(3分)如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2=30度.考点:平行线的性质;角平分线的定义.分析:根据平行线的性质得到∠EFD=∠1,再由FG平分∠EFD即可得到.解答:解:∵AB∥CD∴∠EFD=∠1=60°又∵FG平分∠EFD.∴∠2=∠EFD=30°.点评:本题主要考查了两直线平行,同位角相等.17.(3分)若关于x的不等式(1﹣a)x>2可化为x>,则a的取值范围是a<1.考点:不等式的性质.分析:根据不等式的性质2,可得答案.解答:解:由关于x的不等式(1﹣a)x>2可化为x>,得1﹣a>0.解得a<1,故答案为:a<1.点评:本题考查了不等式的性质,不等式的两边都乘以或除以同一个正数不等号的方向不变.18.(3分)如果a,b,c是整数,且a c=b,那么我们规定一种记号(a,b)=c,例如32=9,那么记作(3,9)=2,根据以上规定,求(﹣2,1)=0.考点:零指数幂.专题:新定义.分析:根据题中所给的定义进行计算即可.解答:解:∵32=9,记作(3,9)=2,(﹣2)0=1,∴(﹣2,1)=0.故答案为:0.点评:本题考查的是0指数幂,属新定义型题目,比较新颖.三、解答题(共八个小题,共计66分)19.(6分)用加减消元法解方程组:.考点:解二元一次方程组.专题:计算题.分析:方程组整理后,利用加减消元法求出解即可.解答:解:方程组整理得:,①﹣②得:4y=18,即y=,把y=代入①得:x=,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(7分)如图,已知EF∥AD,∠1=∠2,∠BAC=68°,求∠AGD的度数.考点:平行线的判定与性质.分析:由EF与AD平行,利用两直线平行同位角相等得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到DG与AB平行,利用两直线平行同旁内角互补即可求出所求角的度数.解答:解:∵EF∥AD,∴∠1=∠3,又∵∠1=∠2,∴∠2=∠3,∴AB∥DG,∴∠BAC+∠AGD=180°,∵∠BAC=68°,∴∠AGD=112°.点评:此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.21.(7分)化简求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.考点:整式的混合运算—化简求值.专题:压轴题.分析:根据完全平方公式,多项式乘多项式的法则,多项式除单项式的法则化简,然后再代入数据计算求解.解答:解:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x=(x2+4xy+4y2﹣3x2﹣2xy+y2﹣5y2)÷2x=(﹣2x2+2xy)÷2x=y﹣x,当x=﹣2,y=时,原式=﹣(﹣2)=.点评:本题考查了完全平方公式,多项式乘多项式,多项式除单项式,去括号要注意符号的正确处理.22.(8分)在△ABC中,如果∠A、∠B、∠C的外角的度数之比是4:3:2,求∠A的度数.考点:多边形内角与外角.专题:计算题.分析:因为三角形的外角和为360°,可首先求出与∠A,∠B,∠C相邻的三个外角的度数,则可求出∠A的度数.解答:解:设∠A、∠B、∠C的外角分别为∠1=4x度、∠2=3x度、∠3=2x度.(1分)因为∠1、∠2、∠3是△ABC的三个外角,所以4x+3x+2x=360,解得x=40.(2分)所以∠1=160°、∠2=120°、∠3=80°.(1分)因为∠A+∠1=180°,(1分)所以∠A=20°.(1分)点评:本题主要考查三角形的外角性质及三角形的内角和定理,解题的关键是熟练掌握三角形的外角性质定理,即三角形的一个外角等于与它不相邻的两个内角之和.23.(8分)解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.考点:解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.分析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.解答:解:,由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.点评:此题主要考查了解一元一次不等式组,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.24.(10分)(1)实验与观察:(用“>”、“=”或“<”填空)当x=﹣5时,代数式x2﹣2x+2>1;当x=1时,代数式x2﹣2x+2=1;…(2)归纳与证明:换几个数再试试,你发现了什么?请写出来并证明它是正确的;(3)拓展与应用:求代数式a2+b2﹣6a﹣8b+30的最小值.考点:因式分解-运用公式法;非负数的性质:偶次方.分析:(1)利用代入法把x的值代入代数式可得答案;(2)首先把代数式变形为(x﹣1)2+1,根据非负数的性质可得,(x﹣1)2≥0,进而得到(x ﹣1)2+1≥1;(3)首先把代数式化为(a﹣3)2+(b﹣4)2+5,根据偶次幂具有非负性可得(a﹣3)2≥0,(b﹣4)2≥0,进而得到(a﹣3)2+(b﹣4)2+5≥5.解答:解:(1)把x=﹣5代入x2﹣2x+2中得:25+10﹣2=33>1;把x=1代入x2﹣2x+2中得:1﹣2+1=1,故答案为:>,=;(2)∵x2﹣2x+2=x2﹣2x+1+1=(x﹣1)2+1,X为任何实数时,(x﹣1)2≥0,∴(x﹣1)2+1≥1;(3)a2+b2﹣6a﹣8b+30=(a﹣3)2+(b﹣4)2+5.∵(a﹣3)2≥0,(b﹣4)2≥0,∴(a﹣3)2+(b﹣4)2+5≥5,∴代数式a2+b2﹣6a﹣8b+30的最小值是5.点评:此题主要考查了非负数的性质,关键是掌握偶次幂具有非负性.25.(10分)如图,已知AC=BC=CD,BD平分∠ABC,点E在BC的延长线上.(1)试说明CD∥AB的理由;(2)CD是∠ACE的角平分线吗?为什么?考点:平行线的判定与性质;等腰三角形的性质.专题:应用题.分析:(1)由于BD平分∠ABC,易得∠ABD=∠DBC,而BC=CD,易得∠DBC=∠D,等量代换可得∠ABD=∠D,从而可证CD∥AB;(2)CD是∠ACE的角平分线,由于CD∥AB,可知∠DCE=∠ABE,∠ACD=∠A,而AC=BC,易得∠A=∠ABE,等量代换可证∠ACD=∠DCE,从而可知CD是∠ACE的角平分线.解答:解:(1)∵BD平分∠ABC(已知),∴∠ABD=∠DBC(角平分线定义),∵BC=CD(已知),∴∠DBC=∠D(等边对等角),∴∠ABD=∠D(等量代换),∴CD∥AB(内错角相等,两直线平行);(2)CD是∠ACE的角平分线.理由如下:∵CD∥AB,∴∠DCE=∠ABE(两直线平行,同位角相等),∠ACD=∠A(两直线平行,内错角相等),∵AC=BC(已知),∴∠A=∠ABE(等边对等角),∴∠ACD=∠DCE(等量代换),即CD是∠ACE的角平分线.点评:本题考查了平行线的判定和性质、等边对等角.解题的关键是灵活掌握平行线的性质与判定.26.(10分)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.考点:一元一次不等式组的应用;二元一次方程组的应用.专题:压轴题.分析:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,然后根据单价之间的关系和340元两个等量关系列出二元一次方程组,求解即可;(2)设购买榕树a棵,则香樟树为(150﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,在根据a是正整数确定出购买方案.解答:解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,根据题意得,,解得,答:榕树和香樟树的单价分别是60元/棵,80元/棵;(2)设购买榕树a棵,则购买香樟树为(150﹣a)棵,根据题意得,,解不等式①得,a≥58,解不等式②得,a≤60,所以,不等式组的解集是58≤a≤60,∵a只能取正整数,∴a=58、59、60,因此有3种购买方案:方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.点评:本题考查了二元一次方程组的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.。
2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.实数273-的结果应在下列哪两个连续整数之间( ) A .2和3B .3和4C .4和5D .5和62.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架. 它的代数成就主要包括开方术、正负术和方程术. 其中方程术是《九章算术》最高的数学成就. 《九章算术》中记载:“今有人共买鸡,人出八,盈三;人出七,不足四. 问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱. 问人数和鸡的价钱各是多少?” 设人数有x 人,鸡的价钱是y 钱,可列方程组为A .8374x y x y -=⎧⎨+=⎩B .8374x yx y +=⎧⎨-=⎩C .8374x y x y -=⎧⎨=+⎩D .8374x yx y +=⎧⎨=-⎩3.若x 2-6x+y 2+4y+13=0,则y x 的值为( ) A .8B .-8C .9D .194.若点A (x ,y )在坐标轴上,则( ) A .x=0 B .y=0 C .xy=0 D .x+y=05.某市2017年有25000名学生参加中考,为了了解这25000名考生的中考成绩,从中抽取了1000名考生的成绩进行分析,以下说法正确的是( )2 A .25000名考生是总体B .每名考生的成绩是个体C .1000名考生是总体的一个样本D .样本容量是250006.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在'D 、'C 的位置,若65EFB ∠=,则'AED ∠等于( )A .50?B .55C .60D .65的个数有()A.2个B.3个C.4个D.5个8.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A.1x y5022y x503⎧+=⎪⎪⎨⎪+=⎪⎩B.1y y5022x x503⎧+=⎪⎪⎨⎪+=⎪⎩C.1x y5022y x503⎧+=⎪⎪⎨⎪+=⎪⎩D.1x y5022y x503⎧+=⎪⎪⎨⎪+=⎪⎩9.方程组125x yx y-=⎧⎨+=⎩的解是()A.21xy=⎧⎨=-⎩B.12xy=-⎧⎨=⎩C.12xy=⎧⎨=⎩D.21xy=⎧⎨=⎩10.在下列方程中3x﹣1=5,xy=1,x﹣1y=6,15(x+y)=7,x﹣y2=0,二元一次方程的个数是()A.1个B.2个C.3个D.4个二、填空题题11.如图所示是一条线段,AB的长为10厘米,MN的长为2厘米,假设可以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为__.12.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF 的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是_____13.等腰三角形是轴对称图形,__________是它的对称轴.143x+在实数范围内有意义,则x的取值范围是_____.15.若不等式组25122x ax x+>⎧⎨->-⎩有解,则a的取值范围是_____.16.如图△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE 的面积是________.17.计算:x(x -2) =________________. 三、解答题18.如图,△ABC 中,BD 平分∠ABC ,若∠C=∠CDB=70°,求∠A 的度数.19.(6分)若∠A 与∠B 的两边分别垂直,请判断这两个角的数量关系. (1)如图①,∠A 与∠B 的数量关系是____,如图②,∠A 与∠B 的数量关系是____. (2)请从图①或图②中选择一种情况说明理由。
冀人版2019-2020学年七年级下学期数学期末考试试卷新版姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列运算正确的是A . a+a=a2B . a6÷a3=a2C . (π﹣3.14)0=0D .2. (2分)将2.05×10﹣3用小数表示为()A . 0.000205B . 0.00205C . 0.0205D . ﹣0.002053. (2分)在平面直角座标系xoy中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().A . 10B . 9C . 7D . 54. (2分)某车间56名工人,每人每天能生产螺栓16个或螺母24个,设有x名工人生产螺栓,有y名工人生产螺母,每天生产的螺栓和螺母按1:2配套,所列方程组正确的是()A .B .C .D .5. (2分)在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将△ABC的周长分为1:2的两部分,则△ABC面积的最小值为()A .B .C .D .6. (2分)如果一个多边形的内角和是它的外角和的n倍,则这个多边形的边数是()A . nB . 2n﹣2C . 2nD . 2n+27. (2分)如图所示,在△ABC中,∠ABC=40°,AD,CD分别平分∠BAC,∠ACB,则∠ADC等于()A . 110°B . 100°C . 190°D . 120°8. (2分)下列命题是假命题的是()A . 对角线互相垂直且相等的平行四边形是正方形B . 对角线互相垂直的矩形是正方形C . 对角线相等的菱形是正方形D . 对角线互相垂直的四边形是正方形二、填空题 (共8题;共12分)9. (1分)计算:x2y(x﹣1﹣y﹣1)=________.10. (1分)已知方程组的解是,则a﹣b的值为________.11. (2分)已知方程12(x+1)=7(y﹣1),写出用y表示x的式子得________.当x=2时,y=________.12. (4分)根据条件画出图形,并回答问题(1)三条直线a、b、c,直线a、c相交于点B,直线b、c相交于点A,直线a、b相交于点C,点D在线段AC上,点E在线段DC上.则DE=________﹣________﹣________;(2)画任意∠AOB,使∠AOB<180°,在∠AOB内部再任意作两条射线OC、OD,则图中共有________个角.13. (1分)不等式的最小整数解是________.14. (1分)下列命题:①对角线互相垂直的四边形是菱形;②点G是△ABC的重心,若中线AD=6,则AG=3;③若直线y=kx+b经过第一、二、四象限,则k<0,b>0;④定义新运算:a*b=2a﹣b2 ,若(2x)*(x﹣3)=0,则x=1或9;⑤抛物线y=﹣2x2+4x+3的顶点坐标是(1,1).其中是真命题的有________ (只填序号).15. (1分)若一个四边形的四个内角度数的比为3∶4∶5∶6,则这个四边形的四个内角的度数分别为________.16. (1分)不等式2x≤6的解集为________.三、解答题 (共9题;共111分)17. (20分)计算:(1)(x+3)(x+2)(2)(x﹣3)(x﹣2)(3)(x+2)(x﹣7)(4)(x﹣3)(x+5)归纳:(x+a)(x+b)18. (10分)解答下列各题:(1)计算:(y﹣2)(y+5)﹣(y+3)(y﹣3)(2)分解因式:3x2﹣1219. (10分)综合题。
2019-2020学年河北省石家庄外国语教育集团七年级第二学期期末数学试卷一、选择题1.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①2.若a>b,则下列不等式变形正确的是()A.a+5<b+5B.C.﹣4a>﹣4b D.3a﹣2≤3b﹣2 3.下列各式从左到右的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣y2=(x+y)(x﹣y)C.x2﹣2x+1=x(x﹣2)+1D.x2+y2=(x+y)24.下列运算中正确的是()A.(2ab)3=2a3b3B.a3•a2=a6C.a6÷a3=a2D.(a3)4=a125.如图,下列能判定AB∥CD的条件有()个(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1B.2C.3D.46.如果等腰三角形的两边长分别为2和5,则它的周长为()A.9B.7C.12D.9或127.已知是方程组的解,则a+2b的值为()A.4B.5C.6D.78.如图,将△ABC沿射线BC方向移动,使点B移动到点C,得到△DCE,连接AE,若△ABC的面积为2,则△ACE的面积为()A.2B.4C.8D.169.若关于x的不等式x﹣m≥﹣1的解集如图所示,则m等于()A.0B.1C.2D.310.如图,AF是∠BAC的平分线,EF∥AC交AB于点E,若∠1=35°,则∠BEF的度数为()A.35°B.60°C.70°D.80°11.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把中间一项的系数染黑了,得到正确的结果为4a2■ab+9b2,则中间一项的系数是()A.12B.﹣12C.12或﹣12D.3612.下列命题:①平行于同一条直线的两条直线平行;②不等式组无解:相等的角是对顶角;④将一副直角三角板如图放置,使两直角边重合,则∠α的度数为165°,其中真命题有()A.1个B.2个C.3个D.4个13.足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2B.2或3C.3或4D.4或514.某商店为了促销一种定价为5元的商品,采取下列方式优惠销售:若一次性购买不超过4件,则按原价付款;若一次性购买4件以上,则超过部分按原价的八折付款.如果小莹有42元钱,那么她最多可以购买该商品()A.9件B.11件C.10件D.12件15.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB16.我国南宋数学家杨辉所著的《详解九章算术》一书中,利用如图所示的“三角形”解释二项式(a+b)n的展开式的各项系数,此“三角形”称为“杨辉三角”.如(a+b)3=a3+3a2b+3ab2+b2其展开式的系数从左起依次是1,3,3,1,请根据“杨辉三角”计算(a+b)8的展开式中从左起第四项的系数为()A.84B.56C.35D.28二、填空题:17.(1)新冠肺炎疫情发生以来,我国人民上下齐心,共同努力抗击疫情,逐渐取得了胜利.截止3月13日,我国各级财政安排的疫情防控投入已经达到了1169亿元,1169亿元用科学记数法表示元.(2)已知10m=2,10n=3,则10m+2n=.(3)在△ABC中,∠A=4∠B,且∠C﹣∠B=60°,则∠B的度数是.(4)如图(1),在三角形ABC中,∠A=38,∠C=72°,BC边绕点C按逆时针方向旋转一周回到原来的位置(即旋转角0°≤α≤360°),在旋转过程中(图2),当CB'∥AB时,旋转角为度;当CB所在直线垂直于AB时,旋转角为度.三、解答题18.如图,在10×10的方格纸中,有一格点三角形ABC.(说明:顶点都在网格线交点处的三角形叫做格点三角形)(1)将△ABC先向右平移5格再向下平移2格,画出平移后的△A'B'C'.(2)做出BC边的中线AM和AC边上的高BN;(3)△A'B'C'的面积为.19.(1)解方程组;(2)解不等式组.20.计算:(1);(2)(﹣2a2c)2•(﹣3ab2).21.分解因式:(1)﹣5x2y﹣10x3y2;(2)(3m﹣1)2﹣9;(3)3a2b﹣12ab+12b.22.某同学化简(a+2b)2﹣(a+b)(a﹣b)的解题过程如下解:原式=a2+4b2﹣(a2﹣b2)(第一步)=a2+4b2﹣a2﹣b2(第二步)=3b2(第三步)(1)该同学的解答过程从第步开始出现错误.(2)请写出此题正确的解答过程.并求出当a=时原代数式的值.23.为了增强学生的疫情防控意识,响应“停课不停学”号召,某学校组织了一次“疫情防控知识专题网上学习.并进行了一次全校2500名学生都参加的网上测试,阅卷后,教务处随机抽取收了100份答卷进行分析统计,发现考试成绩(x分)的最低分为51分,最高分为满分100分,井绘制了尚不完整的统计图表,请根据图表提供的信息,解答下列问题:分数段(分)频数(人)频率51≤x<61a0.161≤x<71180.1871≤x<81b n81≤x<91350.3591≤x<101120.12合计1001(1)填空:a=,b=,n=;(2)将频数分布直方图补充完整;(3)在绘制扇形统计图中,81≤x<91这一分数段所占的圆心角度数为°;(4)该校对成绩为91≤x≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.24.如图,在△ABC中,CD⊥AB,垂足为D.点E在BC上,EF⊥AB,垂足为F,∠1=∠2.(1)试说明DG∥BC的理由;(2)如果∠B=34°,∠A=40°,求∠3的度数.25.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:.方法2:.(2)从中你能发现什么结论?请用等式表示出来:.(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=9,求阴影部分的面积.26.为迎接“七•一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?27.(1)已知△ABC中,∠B>∠C,AD⊥BC于D,AE平分∠BAC,∠B=70°,∠C =40°,求∠DAE的度数.(2)在图2中,∠B=x,∠C=y,其他条件不变,若把“AD⊥BC于D改为“F是AE 上一点,FD⊥BC于D“,试用x、y表示∠DFE=:(3)在图3中,若把(2)中的“点F在AE上“改为点F是AE延长线上一点”,其余条件不变,试用x、y表示∠DFE=;(4)在图3中,分别作出∠BAE和∠EDF的角平分线,交于点P,如图4.试用x、y 表示∠P=.参考答案一、选择题:(2×16=32)1.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①【分析】根据题意和频数分布表、扇形统计图制作的步骤,可以解答本题.解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.2.若a>b,则下列不等式变形正确的是()A.a+5<b+5B.C.﹣4a>﹣4b D.3a﹣2≤3b﹣2【分析】根据不等式的基本性质进行判断即可.解:A、在不等式a>b的两边同时加上5,不等式仍成立,即a+5>b+5.原变形错误,故此选项不符合题意;B、在不等式a>b的两边同时除以3,不等式仍成立,即>.原变形正确,故此选项符合题意;C、在不等式a>b的两边同时乘以﹣4,不等号方向改变,即﹣4a<﹣4b.原变形错误,故此选项不符合题意;D、在不等式a>b的两边同时乘以3,再减去2,不等式仍成立,即3a﹣2>3b﹣2.原变形错误,故此选项不符合题意;故选:B.3.下列各式从左到右的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣y2=(x+y)(x﹣y)C.x2﹣2x+1=x(x﹣2)+1D.x2+y2=(x+y)2【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.解:A、(x+1)(x﹣1)=x2﹣1,属于整式的乘法运算,故本选项错误;B、x2﹣y2=(x+y)(x﹣y),符合因式分解的定义,故本选项正确;C、x2﹣2x+1=x(x﹣2)+1,不符合因式分解的定义,故本选项错误;D、x2+2xy+y2=(x+y)2,因式分解的过程错误,故本选项错误;故选:B.4.下列运算中正确的是()A.(2ab)3=2a3b3B.a3•a2=a6C.a6÷a3=a2D.(a3)4=a12【分析】分别根据幂的乘方与积的乘方运算法则,同底数幂的乘法法则,同底数幂的除法法则以及幂的乘方运算法则逐一判断即可.解:A.(2ab)3=8a3b3,故本选项不合题意;B.a3•a2=a5,故本选项不合题意;C.a6÷a3=a3,故本选项不合题意;D.(a3)4=a12,故本选项符合题意.故选:D.5.如图,下列能判定AB∥CD的条件有()个(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1B.2C.3D.4【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.∴正确的为(1)、(3)、(4),共3个;故选:C.6.如果等腰三角形的两边长分别为2和5,则它的周长为()A.9B.7C.12D.9或12【分析】根据三角形三边关系推出腰长为5,底边长为2,即可推出周长为12.解:∵2+5>5,∴等腰三角形的腰长为5,底边长为2,∴周长=5+5+2=12.故选:C.7.已知是方程组的解,则a+2b的值为()A.4B.5C.6D.7【分析】首先把方程组的解代入方程组,得到一个关于a,b的方程组,即可求得代数式的值.解:把代入方程组,可得:,解得:,则a+2b=7,故选:D.8.如图,将△ABC沿射线BC方向移动,使点B移动到点C,得到△DCE,连接AE,若△ABC的面积为2,则△ACE的面积为()A.2B.4C.8D.16【分析】首先根据平移的性质,可得BC=CE;然后根据两个三角形的高相等时,面积和底成正比,可得△ACE的面积等于△ABC的面积,据此解答即可.解:∵将△ABC沿射线BC方向移动,使点B移动到点C,得到△DCE,∴BC=CE,∵△ACE和△ABC底边和高都相等,∴△ACE的面积等于△ABC的面积,又∵△ABC的面积为2,∴△ACE的面积为2.故选:A.9.若关于x的不等式x﹣m≥﹣1的解集如图所示,则m等于()A.0B.1C.2D.3【分析】首先解得关于x的不等式x﹣m≥﹣1的解集即x≥m﹣1,然后观察数轴上表示的解集,求得m的值.解:关于x的不等式x﹣m≥﹣1,得x≥m﹣1,由题目中的数轴表示可知:不等式的解集是:x≥2,因而可得到,m﹣1=2,解得,m=3.故选:D.10.如图,AF是∠BAC的平分线,EF∥AC交AB于点E,若∠1=35°,则∠BEF的度数为()A.35°B.60°C.70°D.80°【分析】根据平行线的性质求出∠FAC=∠1=35°,根据角平分线的定义得出∠BAC =2∠FAC=70°,根据平行线的性质得出∠BEF=∠BAC,代入求出即可.解:∵EF∥AC,∠1=35°,∴∠FAC=∠1=35°,∵AF是∠BAC的平分线,∴∠BAC=2∠FAC=70°,∵EF∥AC,∴∠BEF=∠BAC=70°,故选:C.11.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把中间一项的系数染黑了,得到正确的结果为4a2■ab+9b2,则中间一项的系数是()A.12B.﹣12C.12或﹣12D.36【分析】运用完全平方公式求出(2a±3b)2对照求解即可.解:由(2a±3b)2=4a2±12ab+9b2,∴染黑的部分为±12.故选:C.12.下列命题:①平行于同一条直线的两条直线平行;②不等式组无解:相等的角是对顶角;④将一副直角三角板如图放置,使两直角边重合,则∠α的度数为165°,其中真命题有()A.1个B.2个C.3个D.4个【分析】利用平行线的传递性对①进行判断;利用确定不等式组的解集的方法对②进行判断;根据对顶角的定义对③进行判断;根据邻补角的定义和三角形外角性质可对④进行判断.解:平行于同一条直线的两条直线平行,所以①为真命题;不等式组无解,所以②为真命题;相等的角不一定为对顶角,所以③为假命题;因为∠α=180°﹣45°+30°=165°,所以④为真命题.故选:C.13.足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2B.2或3C.3或4D.4或5【分析】设该队胜x场,平y场,则负(6﹣x﹣y)场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.解:设该队胜x场,平y场,则负(6﹣x﹣y)场,根据题意,得:3x+y=12,即:x=,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,故选:C.14.某商店为了促销一种定价为5元的商品,采取下列方式优惠销售:若一次性购买不超过4件,则按原价付款;若一次性购买4件以上,则超过部分按原价的八折付款.如果小莹有42元钱,那么她最多可以购买该商品()A.9件B.11件C.10件D.12件【分析】设小莹可以购买x件,根据该商店的促销策略结合总价各不超过42元,即可得出关于x的一元一次不等式,解之取其中最大的整数值即可得出结论.解:设小莹可以购买x件,依题意,得:5×4+5×0.8(x﹣4)≤42,解得:x≤9.又∵x为整数,∴x的最大值为9.故选:A.15.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB【分析】根据图形可知※代表CD,即可判断D;根据三角形外角的性质可得◎代表∠EFC,即可判断A;利用等量代换得出▲代表∠EFC,即可判断C;根据图形已经内错角定义可知@代表内错角.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.16.我国南宋数学家杨辉所著的《详解九章算术》一书中,利用如图所示的“三角形”解释二项式(a+b)n的展开式的各项系数,此“三角形”称为“杨辉三角”.如(a+b)3=a3+3a2b+3ab2+b2其展开式的系数从左起依次是1,3,3,1,请根据“杨辉三角”计算(a+b)8的展开式中从左起第四项的系数为()A.84B.56C.35D.28【分析】根据“杨辉三角”的规律求出所求即可.解:根据“杨辉三角”得:(a+b)7的展开式中的系数分别为1,7,21,35,35,21,7,1,(a+b)8的展开式中的系数分别为1,8,28,56,70,56,28,8,1,则(a+b)8的展开式中从左起第四项的系数为56,故选:B.二、填空题:17.(1)新冠肺炎疫情发生以来,我国人民上下齐心,共同努力抗击疫情,逐渐取得了胜利.截止3月13日,我国各级财政安排的疫情防控投入已经达到了1169亿元,1169亿元用科学记数法表示 1.169×1011元.(2)已知10m=2,10n=3,则10m+2n=36.(3)在△ABC中,∠A=4∠B,且∠C﹣∠B=60°,则∠B的度数是20°.(4)如图(1),在三角形ABC中,∠A=38,∠C=72°,BC边绕点C按逆时针方向旋转一周回到原来的位置(即旋转角0°≤α≤360°),在旋转过程中(图2),当CB'∥AB时,旋转角为70或250度;当CB所在直线垂直于AB时,旋转角为160或340度.【分析】(1)根据科学记数法解决问题即可.(2)根据10m+2n=102m×102n=(10m)2×(10n)2计算即可.(3)利用三角形内角和定理即可解决问题.(4)在三角形ABC中,根据三角形的内角和得到∠B=180°﹣38°﹣72°=70°,如图1,当CB′∥AB时,根据平行线的性质即可得到结论;如图2,当CB′⊥AB时根据垂直的定义和周角的定义即可得到结论.解:(1)1169亿=1169×108元=1.169×1011(元).故答案为1.169×1011.(2)10m+2n=102m×102n=(10m)2×(10n)2=22×32=36,故答案为36.(3)∵∠A=4∠B,且∠C﹣∠B=60°,∴∠C=60°+∠B,∴4∠B+∠B+60°+∠B=180°,∴∠B=20°,故答案为20°(4)∵在三角形ABC中,∠A=38°,∠C=72°,∴∠B=180°﹣38°﹣72°=70°,如图1,当CB′∥AB时,旋转角=∠B=70°,当CB″∥AB时,∠B″CA=∠A=38°,∴旋转角=360°﹣38°﹣72°=250°,综上所述,当CB′∥AB时,旋转角为70°或250°;如图2,当CB′⊥AB时,∠BCB″=90°﹣70°=20°,∴旋转角=180°﹣20°=160°,当CB″⊥AB时,旋转角=180°+160°=340°,综上所述,当CB′⊥AB时,旋转角为160°或340°;故答案为:70或250;160或340.三、解答题18.如图,在10×10的方格纸中,有一格点三角形ABC.(说明:顶点都在网格线交点处的三角形叫做格点三角形)(1)将△ABC先向右平移5格再向下平移2格,画出平移后的△A'B'C'.(2)做出BC边的中线AM和AC边上的高BN;(3)△A'B'C'的面积为3.【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)利用网格特点和三角形中线、高的定义作图;(3)用一个矩形的面积分别减去三个三角形的面积去计算△A'B'C'的面积.解:(1)如图,△A'B'C'为所作;(2)如图,AM和BN为所作;(3)△A'B'C'的面积=4×2﹣×1×2﹣×2×2﹣×1×4=3.故答案为3.19.(1)解方程组;(2)解不等式组.【分析】(1)利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:(1),①﹣②×2,得:x=﹣1,将x=1代入①,得:﹣5+6y=7,解得y=2,∴方程组的解集为;(2)解不等式x﹣4<3(x﹣2),得:x>1,解不等式+1>x,得:x<4,则不等式组的解集为1<x<4.20.计算:(1);(2)(﹣2a2c)2•(﹣3ab2).【分析】(1)利用负整数指数幂、零次幂以及积的乘方的计算方法进行计算即可;(2)根据单项式乘以单项式、幂的乘方、积的乘方的计算方法进行计算即可.解:(1)=4+1+=;(2)(﹣2a2c)2•(﹣3ab2)=2a4c2•(﹣3ab2)=﹣6a5b2c2.21.分解因式:(1)﹣5x2y﹣10x3y2;(2)(3m﹣1)2﹣9;(3)3a2b﹣12ab+12b.【分析】(1)原式提取公因式即可;(2)原式利用平方差公式分解即可;(3)原式提取公因式,再利用完全平方公式分解即可.解:(1)原式=﹣5x2y(1+2x);(2)原式=(3m﹣1+3)(3m﹣1﹣3)=(3m+2)(3m﹣4);(3)原式=3b(a2﹣4a+4)=3b(a﹣2)2.22.某同学化简(a+2b)2﹣(a+b)(a﹣b)的解题过程如下解:原式=a2+4b2﹣(a2﹣b2)(第一步)=a2+4b2﹣a2﹣b2(第二步)=3b2(第三步)(1)该同学的解答过程从第一步开始出现错误.(2)请写出此题正确的解答过程.并求出当a=时原代数式的值.【分析】(1)观察该同学解题过程,确定出出错的步骤即可;(2)写出正确的解答过程,把a的值代入计算即可求出值.解:(1)该同学的解答过程从第一步开始出现错误;故答案为:一;(2)正确解答为:原式=a2+4ab+4b2﹣(a2﹣b2)=a2+4ab+4b2﹣a2+b2=4ab+5b2,当a=﹣,b=2时,原式=4×(﹣)×2+5×22=﹣4+20=16.23.为了增强学生的疫情防控意识,响应“停课不停学”号召,某学校组织了一次“疫情防控知识专题网上学习.并进行了一次全校2500名学生都参加的网上测试,阅卷后,教务处随机抽取收了100份答卷进行分析统计,发现考试成绩(x分)的最低分为51分,最高分为满分100分,井绘制了尚不完整的统计图表,请根据图表提供的信息,解答下列问题:分数段(分)频数(人)频率51≤x<61a0.161≤x<71180.1871≤x<81b n81≤x<91350.3591≤x<101120.12合计1001(1)填空:a=10,b=25,n=0.25;(2)将频数分布直方图补充完整;(3)在绘制扇形统计图中,81≤x<91这一分数段所占的圆心角度数为126°;(4)该校对成绩为91≤x≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.【分析】(1)根据表格数据即可求出a,b,n;(2)结合(1)所得数据即可将频数分布直方图补充完整;(3)根据81≤x<91这一分数段所占频率即可求出圆心角度数;(4)根据一、二、三等奖的人数比例为1:3:6,即可估算全校获得二等奖的学生人数.解:(1)a=100×0.1=10,b=100﹣10﹣18﹣35﹣12=25,n=25÷100=0.25.故答案为:10,25,0.25;(2)如图,即为补充完整的频数分布直方图;(3)81≤x<91这一分数段所占的圆心角度数为360×0.35=216°;故答案为:126;(4)∵2500××=90(人)∴估算全校获得二等奖的学生人数为90人.24.如图,在△ABC中,CD⊥AB,垂足为D.点E在BC上,EF⊥AB,垂足为F,∠1=∠2.(1)试说明DG∥BC的理由;(2)如果∠B=34°,∠A=40°,求∠3的度数.【分析】(1)想办法证明∠2=∠DCB即可解决问题.(2)利用三角形内角和定理求出∠ACB,再利用平行线的性质求解即可.【解答】(1)证明:∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠1=∠BCD,∵∠1=∠2,∴∠2=∠BCD,∴DG∥BC.(2)解:∵∠B=34°,∠A=40°,∴∠ACB=180°﹣34°﹣30°=116°,∵DG∥BC,∴∠3=∠ACB=116°25.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:a2+b2.方法2:(a+b)2﹣2ab.(2)从中你能发现什么结论?请用等式表示出来:a2+b2=(a+b)2﹣2ab.(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=9,求阴影部分的面积.【分析】(1)从整体和部分两个方面表示阴影部分的面积;(2)由(1)可得到等式a2+b2=(a+b)2﹣2ab;(3)表示图2的阴影部分的面积,然后整体代入求值即可.解:(1)图1,两个阴影正方形的面积和:a2+b2,大正方形的面积减去两个长方形的面积:(a+b)2﹣2ab,故答案为:a2+b2,(a+b)2﹣2ab;(2)两个数的平方和等于这两个数和的平方减去这两个数积的2倍,即:a2+b2=(a+b)2﹣2ab;故答案为:a2+b2=(a+b)2﹣2ab;(3)如图2,阴影部分的面积为:a2﹣(a+b)×b=a2+ab+b2=(a+b)2﹣ab=﹣=36.26.为迎接“七•一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?【分析】(1)根据题意结合每辆大客车的座位数比小客车多15个以及师生共301人参加一次大型公益活动,分别得出等式求出答案;(2)根据(1)中所求,进而利用总人数为310+40,进而得出不等式求出答案.解:(1)设每辆小客车的座位数是x个,每辆大客车的座位数是y个,根据题意可得:,解得:.答:每辆大客车的座位数是40个,每辆小客车的座位数是25个;(2)设租用a辆小客车才能将所有参加活动的师生装载完成,则25a+40(10﹣a)≥310+40,解得:a≤3,符合条件的a最大整数为3.答:最多租用小客车3辆.27.(1)已知△ABC中,∠B>∠C,AD⊥BC于D,AE平分∠BAC,∠B=70°,∠C =40°,求∠DAE的度数.(2)在图2中,∠B=x,∠C=y,其他条件不变,若把“AD⊥BC于D改为“F是AE 上一点,FD⊥BC于D“,试用x、y表示∠DFE=(x﹣y):(3)在图3中,若把(2)中的“点F在AE上“改为点F是AE延长线上一点”,其余条件不变,试用x、y表示∠DFE=(x﹣y);(4)在图3中,分别作出∠BAE和∠EDF的角平分线,交于点P,如图4.试用x、y 表示∠P=(3x﹣y).【分析】(1)首先利用三角形内角和定理可求出∠BAC的度数,进而可求出∠BAD的度数,由垂直可得∠BAE=90°﹣x,进而可求∠EAD的度数;(2)由题意可知∠AEB=90°﹣x+y,再利用已知条件和直角三角形余角的性质即可求出∠DFE的度数.(3)由题意可知∠AEB=90°﹣x+y,再利用已知条件、对顶角的性质和直角三角形余角的性质即可求出∠DFE的度数.(4)由题意可知∠PAF=(180°﹣x﹣y),再利用已知条件、对顶角的性质和角平分线的性质即可求出∠P的度数.【解答】(1)解:∵∠B=70°,∠C=40°,∴∠BAC=180°﹣70°﹣40°=70°,∵∠BAC的平分线交BC于点D,∴∠BAD=∠BAC=×70°=35°,在Rt△ABE中,∠BAE=90°﹣70°=20°,∴∠EAD=∠BAD﹣∠BAE=35°﹣20°=15°,(2)∵∠BAD=∠BAC=(180°﹣x﹣y),∴∠AEB=180°﹣∠B﹣∠BAD=180°﹣x﹣(180°﹣x﹣y)=90°﹣x+y,∴∠DFE=90°﹣∠AEB=90°﹣90°+x﹣y=(x﹣y).故答案为(x﹣y).(3)∵∠BAD=∠BAC=(180°﹣x﹣y),∴∠AEB=180°﹣∠B﹣∠BAD=180°﹣x﹣(180°﹣x﹣y)=90°﹣x+y,∴∠DEF=∠AEB=90°﹣x+y,∴∠DFE=90°﹣∠DEF=90°﹣90°+x﹣y=(x﹣y).故答案为(x﹣y).(4)∵∠BAD=∠BAC=(180°﹣x﹣y),∴∠PAF=(180°﹣x﹣y),∴∠P=180°﹣45°﹣[180°﹣(180°﹣x﹣y)﹣x]=(3x﹣y).故答案为(3x﹣y).。