Simultaneous Qualitation and Quantification of Thirteen Bioactive
- 格式:pdf
- 大小:180.24 KB
- 文档页数:4
算术平均牛顿法的英文Arithmetic-Geometric Mean Newton's Method.The arithmetic-geometric mean (AGM) Newton's method is an iterative algorithm used in numerical analysis to approximate the solution of equations, particularly those involving transcendental functions. This method is avariant of the classical Newton's method, which uses the tangent line to the function at a given point to approximate the root of the function. The AGM Newton's method incorporates the arithmetic-geometric mean (AGM) iteration, which is itself a fast converging method for computing the square root of a number.Background on Newton's Method:Newton's method is based on the Taylor series expansion of a function. Given a function f(x) and its derivativef'(x), the method starts with an initial guess x0 and iteratively updates the approximation using the formula:x_{n+1} = x_n f(x_n) / f'(x_n)。
海克斯康simufact additive固有应变法-概述说明以及解释1.引言1.1 概述概述:海克斯康simufact additive是一款先进的3D打印模拟软件,专门用于预测和优化金属增材制造过程中的性能和质量。
固有应变法是其中的一种重要模拟方法,通过对模型内部固有的应变进行分析,可以更准确地预测零件在制造过程中可能出现的变形和应力分布情况。
本文将对海克斯康simufact additive的固有应变法进行深入探讨,介绍其原理和应用,并通过案例分析展示其在实际工程中的应用效果。
通过本文的阐述,读者将对海克斯康simufact additive和固有应变法有更深入的了解,为相关领域的研究和应用提供参考。
1.2 文章结构文章结构部分内容如下:文章结构部分旨在介绍本文的脉络和框架,以便读者更好地理解全文的内容和组织结构。
本文分为引言、正文和结论三个部分。
引言部分主要包括概述、文章结构和目的三个小节。
在概述部分,将介绍海克斯康simufact additive固有应变法的背景和相关概念;在文章结构部分,将介绍本文的大纲和各部分的内容安排;在目的部分,将阐明本文的撰写目的以及对读者的帮助和指导。
正文部分将详细介绍海克斯康simufact additive的简介、固有应变法原理和应用案例分析三个方面。
在海克斯康simufact additive简介部分,将介绍该软件的背景、特点和应用范围;在固有应变法原理部分,将对固有应变法进行详细解释和阐述;在应用案例分析部分,将结合实际案例,对固有应变法在实际工程中的应用进行分析和讨论。
结论部分将包括总结、展望和结论三个小节。
在总结部分,将对本文的主要内容和观点进行总结和归纳;在展望部分,将对海克斯康simufact additive固有应变法的未来发展趋势进行展望和分析;在结论部分,将对全文进行最终的总结和结论性的表述。
1.3 目的本文旨在介绍海克斯康simufact additive固有应变法的原理和应用案例,旨在帮助读者深入了解该技术在增材制造领域的应用及其优势。
第31卷第4期2017年12月干旱环境监测Arid Environmental MonitoringVol. 31 No. 4Dee . 2017超高效液相色谱一串联质谱快速测定水中的溴氰菊酯李亚军,李逸,张荧(珠江流域水环境监测中心,广东广州510611)摘要:建立了超高效液相色谱-三重四级杆串联质谱(UPLC-M S/M S)快速测定地表水及饮用水中溴氰菊酯的方法,并应用于实际水样的检测分析。
结果表明:水样经0.22p m滤膜过滤后可直接采用超高效液相色谱-三重四级杆串联质谱仪多重反应监测(MRM)模式定量检测水中溴氰菊酯;最优分析条件下,溴氰菊酯的检出限为0.30 (xg/L,其线性检测范围为0.30-20. 0叫/L,相关系数为0.999 7;采用该方法检测水中的溴氰菊酯,不同水平(2. 00、.00X/L和20.0 叫/L)样品加标回收率为95.5% ~98.5%,相对标准偏差为1.37% ~3.59%。
方法快速简便、灵敏度高、定性定量准确,适合日常批量水样的快速分析。
关键词:溴氰菊酯;超高效液相色谱;串联质谱中图分类号:X830.2 文献标识码:B 文章编号:1007 -1504(2017)04 -0145 -04Determination of Deltametlirin in Water by Ultra - performance Licjuid Chromatography witli Tandem Mass SpectrometryLI Ya -jun,L I Yi,ZHANG Yin/( Monitorin/ Center of Pearl River Aquatic Environment,Guangzhou Guangdon/ 510611,China) Abstract:A fast UPLC - MS/MS method to determine the concentration of deltamethrin in water is Water sample is filtered through 0.22 ^m membrane and determined by ultra - performance liquid chromatography with tandem mass spectrometry d irectly. Under the optimum conditions,the detection limit of deltamethrin is 0. 30 pg/L,the linearrange is 0. .0〜20. 0 jxg/L and the correlation coefficient is 0. 999 7. Average recoveries at three spiking levels(2. 00,5. 00and 20. 0 jxgL) are in the range from 95. 5% to 98. 5% and RSD is in the range from 1.37% to 3. 59% ( n = 6). The methodhas advantages of being fast , simple , sensitive , accurate in quantitation and qualitation , which is fit for routinely aquatic analysis.Key words:deltamethrin;ultra-performance liquid chromatography;tandem mass spectrometry溴氰菊酯(deltamethrin)又名敌杀死、凯素 灵,是一种广谱性的拟除虫菊酯类杀虫剂,对昆 虫具有触杀、胃毒作用,杀虫活性比其他拟除虫 菊酯大5~10倍[1’2]。
量化分析英语演讲稿范文## Quantitative Analysis: Unlocking Value through Data-Driven Insights.Introduction:Quantitative analysis has emerged as a pivotal tool in the modern business landscape, empowering decision-makers with data-driven insights to gain a competitive edge. By harnessing the power of mathematical and statistical techniques, quantitative analysts transform raw data into actionable knowledge, enabling organizations to optimize their operations, predict market trends, and make well-informed decisions.Role of Quantitative Analysts:Quantitative analysts are skilled professionals who specialize in extracting meaningful patterns and insights from complex data. They play a crucial role in:Data analysis and modeling: Using mathematical and statistical tools to identify trends, patterns, and relationships in data.Risk assessment and forecasting: Quantifying risks and uncertainties to help organizations make informed decisions.Financial analysis and trading: Analyzing financial data to make investment decisions, manage portfolios, and assess market risk.Benefits of Quantitative Analysis:Organizations that leverage quantitative analysis effectively enjoy numerous benefits, including:Improved decision-making: Data-driven insights empower managers to make more informed and objective decisions.Enhanced risk management: Quantifying risks allows organizations to mitigate potential losses and seizeopportunities.Increased efficiency: Automating complex calculations and leveraging data visualization tools enhancesoperational efficiency.Competitive advantage: Access to valuable insights provides organizations with a competitive edge in the market.Challenges in Quantitative Analysis:Despite its benefits, quantitative analysis facescertain challenges:Data quality and availability: Ensuring the accuracy and availability of data is essential for reliable analysis.Computational complexity: Handling large and complex datasets can require significant computing resources.Bias and ethics: Quantitative models can be biased ifnot carefully designed and implemented.Overcoming Challenges:Organizations can overcome these challenges by:Establishing data governance: Setting standards for data collection, quality, and accessibility.Investing in technology: Utilizing advanced computing platforms and data visualization tools to enhance analysis capabilities.Promoting a data-driven culture: Fostering a culture that values data-informed decision-making.Conclusion:Quantitative analysis has become an indispensable tool in the business world, providing organizations with the power to unlock value through data-driven insights. By embracing quantitative analysis techniques, organizationscan improve their decision-making, manage risks, enhance efficiency, and gain a competitive edge. As the demand for data-driven insights continues to grow, the role of quantitative analysts will become increasingly crucial in shaping the future of business and society.## 定量分析,通过数据驱动的洞察释放价值。
Unit 1outcome结果statistics统计statistical 统计的toss投die骰子dice 掷骰子intuitive直觉的analogously类似的conceptually概念的simultaneous同时的collection集合identical同一的,同样的individual个别的ensemble集,总和ensemble average集平均variable变量random variable随机变量stationary平稳的ergodic个态历经的ergodic process各态历经过程deterministic确定性的normalize使标准化的normalized规格化的,归一化的expectation期望值product乘积truncate截断,截短periodic周期的covariance协方差uncorrelated不相关的uniform均匀的overlap部分重叠separation间隔,距离spacing间隔,间距random process随机过程on the average 平均,一般来说make measurement 量度sample function 样本函数statistical average 统计平均值probability density function概率密度函数statistical characteristic统计特征autocorrelation function 自相关函数in connection with 与,,有关physical significance物理意义Fourier transform傅里叶变换power spectral density 功率谱密度be at liberty to被允许gaussian process高斯过程physical fact外界存在的事实upper-frequency频率上限fall off下降in the limit在极限情况下delta function狄拉克函数random pulse随机脉冲time invariant时不变的parseval's theorem巴塞瓦尔定理statistically independent统计独立successive pulse连续脉冲be representative of表示,代表词组sample function样本函数ensemble average集合平均physical significance物理意义a fourier transform pair傅里叶变换对deterministic waveform 确定波形in the limit 在极限情况下time invariant时不变的an upper-frequency limit频率上限parseval,s theorem帕斯瓦尔定理random pulses随机脉冲随机过程random process统计平均statistical average随机变量random variable自相关函数autocorrelation function傅里叶变换fourier transform功率谱密度power spectral density概率密度函数probability density function 高斯过程gaussian process平稳过程stationary process统计独立statistically时间平均值time average统计特征statistical character各态历经过程ergodic processUnit 2abstraction抽象encompass包括devise设计whereby凭那个,由此arbitarily任意地theorem定理infrequent 罕见的override压倒thereby由此gaussian高斯的unity单一complementary补充的derivation推导formidable困难的undertake进行,从事presumed假定的presumably推测起来likelihood可能likely可能interval间隔rounding舍入,四舍五入abrupt,急剧的,不连续reliably可靠的,安全的heuristic启发式的intuitive直觉的intuitively直觉的contemplate预期的vice versa反之亦然quantize量化reception接受extreme极端的,偏激的attenuate衰减distort失真distortion失真equalizer均衡器recoverable可恢复的enter into参加,涉及due to 由于be something of 有一点in principle 原则上provided that假如on principle按照原则probability of error 误码率be close to接近bandlimited gaussian channel限带高斯信道physical system物理系统turn out结果lower bound下界upper limit 上限root-mean-square均方根root-mean-square error 均方误差amount of information 信息量ideal lowpass filter理想低通滤波器rise time上升时间as a matter of convenience为方便起见white gaussian noise 高斯白噪声on the other hand 另一面trade off交替换位tradeoff折中signal-to-noise ratio信号噪声比be free to 随意make up for 补偿词组physical system物理系统rise time 上升时间amount of information信息量in principle原则上gaussian channel高斯信道probability density概率密度root-mean-square均方根trade off折中lower bound下界equalizer均衡器vice versa反之亦然upper limit上限通信理论communication theory香农定理Shannon,s theorem信道带宽channel bandwidth信号波形signal waveform理想低通滤波器ideal lowpass filter自相关函数autocorrelation function无噪音高斯信道noiseless gaussian channel 通信信道communication channel信息速率information rate信噪比signal-to-noise ratio信道容量channel capacity双边功率谱密度two-side power误码率probability of error那奎斯特采样速率nyquist sampling rate限带高斯信道bandlimited gaussian channel 高斯白噪声White gaussian noiseUnit 3analog模拟quantization量化volt伏特discrete离散的quantum量unipolar单级的polar极性的on-off开关的encoding编码encoder编码器decoder解码器likewise同样的amplitude振幅margin余量trinary三倍的immune免疫的hereafter今后unavailable不能避免的reconstructed重建的evaluation计算span横跨interval间隔compandor压扩器companding压扩uniformly均匀的compress压缩compressor压缩器compressor ratio压缩比quantizer均匀量化器uniform quantizer均匀量化器equivalent相等的serially连续的reshape改造distortion失真interconnect使相互连接filter滤波transition转换,转变PCM: pulse code modulation脉冲编吗调制PAM: pulse amplitude modulation脉冲振幅调制PPM: pulse phase modulation 脉宽调制pulse train脉冲序列amount to等于round off舍入step size步长quantum step size 量化步长positive pulse 正脉冲refer to as称为quantization error 量化步长peak magnitude峰值overall performance总性能crest factor振幅因数root-mean-square均方根Differential Pulse Code Modulation 差分脉冲编码调制adaptive DPCM 自适应DPCMpredictive coding预测编码correspond to相应,符合in practice 实际中in an attempt to 力图词组overall performance总性能crest factor振幅因数nonlinear operation 非线性炒作inverse operation 逆运算RMS均方根PAM脉福调制maximum magnitude最大幅值error intervals误差间隔entropy墒round off四舍五入quantum level量化水平DPCM差分脉码调制正脉冲positive pulse脉冲编码调制PCM量化步长quantum step size 峰值peak magnitude线性函数linear function脉冲序列pulse train均匀量化器uniform quantizer 预测编码predictive coding 压扩器compandor压缩比compression ratio Unit 4selectively仔细挑选formula公式formulas公式化sacrifice牺牲redundant冗余的demonstrate证明orthogonal正交的arbitrarily任意地raw未加工的raw data 原始数据denote 指示Retransmission转发sophisticated复杂的impractical不切实际的parity奇偶校验encoder编码器codeword码字modulo以。
Table 3. The Minimum Information for Publication of QuantitativeReal-Time PCR Experiments (MIQE) checklist for reviewers, and editors (Bustin et al. 2009)MIQE checklist (Bustin et al. 2009)aI t e m t o c h e c k I m p o r t a n c e I t e m t o c h e c k I m p o r t a n c e Experimental design qPCR oligonucleotidesDefinition of experimental and control groups EPrimer sequencesENumber within each groupE RTPrimerDB identificationnumberD NAAssay carried out by the core or investigator’s laboratory? D NAProbe sequencesD d NAAcknowledgment of author’s contributions DLocation and identity of anymodificationsE NASample Manufacturer of oligonucleotidesDDescription E Purification method D ∅Volume/mass of sampleprocessedD qPCR protocolMicrodissection or macrodissection E NAComplete reactionconditionsE SMProcessing procedureE Reaction volume andamount of cDNA/DNAE SMIf frozen, how and how quickly? EPrimer, (probe), Mg2+, anddNTP concentrationsE SMIf fixed, with what and how quickly? E NAPolymerase identity andconcentrationE SMSample storage conditions andduration (especially for FFPE b samples) E SMBuffer/kit identity andmanufacturer E SMNucleic acid extraction Exact chemical composition D ∅of the bufferProcedure and/or instrumentation EAdditives (SYBR Green I,DMSO, and so forth)E SMName of kit and details of any modifications E Manufacturer ofplates/tubes and catalognumberD SMSource of additional reagents used D NAComplete thermocyclingparametersE SMDetails of DNase or RNase treatment EReaction setup(manual/robotic)D SMContamination assessment (DNA or RNA) EManufacturer of qPCRinstrumentE SMNucleic acid quantification E qPCR validationInstrument and methodE Evidence of optimisation(from gradients)D OKPurity (A260/A280)D SM Specificity (gel, sequence,melt, or digest)E SMYieldD SM For SYBR Green I, Cq ofthe NTCERNA integrity: method/instrument ECalibration curves withslope and y interceptE SM*RIN/RQI or Cq of 3’ and 5’ transcripts E SMPCR efficiency calculatedfrom slopeE SMElectrophoresis tracesD ∅CIs for PCR efficiency orSED ∅Inhibition testing (Cq dilutions, spike, or other) E ∅r2 of calibration curveE SM*Reverse transcription Linear dynamic range E ∅Complete reaction conditions E SM Cq variation at LOD E NAAmount of RNA and reaction volume E SMCIs throughout rangeD NAPriming oligonucleotide (if using GSP) and concentration E SMEvidence for LODE NAReverse transcriptase and concentration E SMIf multiplex, efficiency andLOD of each assayE NATemperature and time E SM Data analysisManufacturer of reagents and catalog numbers D SMqPCR analysis program(source, version)E SMCqs with and without reverse transcription D c OKMethod of Cq determinationE SMStorage conditions of cDNAD SM Outlier identification and dispositionE SM*qPCR target information Results for NTCs EGene symbolE Justification of number andchoice of reference genesESequence accession numberE Description of normalization methodELocation of ampliconD ∅Number and concordance of biological replicatesDAmplicon lengthE Number and stage (reverse transcription or qPCR) of technical replicatesEIn silico specificity screen (BLAST, and so on) ERepeatability (intraassayvariation)E ∅Pseudogenes,retropseudogenes, or other homologs? D NAReproducibility (interassayvariation, CV) D ∅Sequence alignment D ∅Power analysis D ∅Secondary structure analysis of amplicon D ∅Statistical methods forresults significanceELocation of each primer by exon or intron (if applicable) E NASoftware (source, version)EWhat splice variants are targeted? E NACq or raw data submissionwith RDMLD SM*a All essential information (E) must be submitted with the manuscript. Desirable information (D) should be submitted if available. If primers are from RTPrimerDB, information on qPCR target, oligonucleotides, protocols, and validation is available from that source.b FFPE, formalin-fixed, paraffin-embedded; RIN, RNA integrity number; RQI, RNA quality indicator; GSP, gene-specific priming; dNTP, deoxynucleoside triphosphate.c Assessing the absence of DNA with a no-reverse transcription assay is essential when first extracting RNA. Once the sample has been validated as DNA free, inclusion of a no-reverse transcription control is desirable but no longer essential.d Disclosure of the probe sequence is highly desirable and strongly encouraged; however, because not all vendors of commercial predesigned assays provide this information, it cannot be an essential requirement. Use of such assays is discouraged.Information is included in the text.OK Test was performed but evidence is missing.∅ Information is not available.NA Not applicable.SM Information is provided in Supplementary Materials (* if requested).SampleSample storage conditions and duration: 5 yrs at -80 °CNucleic acid extractionPurity (A260/A280)Colony # 1 17 24 4 11 15 23 16 251.96 1.97 1.772.03 2.07 1.6 1.99 1.91na24/01/0124/01/02 2.01 1.98 1.95 2.02 2.01 1.79 1.73 1.97naYield (ng/µL) in 20 µLColony # 1 17 24 4 11 15 23 16 2523.8 83.970.6 102.6150.573.5261.9150.7na24/01/0124/01/02 123.992 130.8144.1118.819.7152.9140.1naRIN/RQI or Cq of 3’ and 5’ transcriptsColony # 1 17 24 4 11 15 23 16 258.9 8.7 8.3 7.8 8.9 6.1 7.2 na na 24/01/0124/01/02 9.1 9.5 8.3 8.2 6.9 6.2 9.3 9.3 na Reverse transcriptionComplete reaction conditions: Reactions were prepared on iceAmount of RNA and reaction volume: Amount of RNA ranged from 150-560 ng in 20 µL reactionPriming oligonucleotide (if using GSP) and concentration: Oligo(dT)20 (2.5 µM), random hexamers (2.5 ng/µL)Reverse transcriptase and concentration: SuperScript TM III RT (400 U/µL) Temperature and time: 10 min @ 25 °C + 30 min @ 50 °C + 5 min @ 85 °C + ice Manufacturer of reagents and catalog numbers: Invitrogen (Cat. No. 11765) Storage conditions of cDNA: -20 °CqPCR protocolComplete reaction conditions: Reactions were prepared at room temperature Reaction volume and amount of cDNA/DNA: 10 µL SYBR GreenER TM mix, 2 µL primers, 2 µL 5x diluted cDNA, 6 µL DEPC waterPrimer, (probe), Mg2+, and dNTP concentrations: Primers at 4 µM, ∅Polymerase identity and concentration: Platinum®Taq DNA Polymerase, ∅Buffer/kit identity and manufacturer: SYBR®GreenER™ Two-Step qRT-PCR Kit Universal (Invitrogen)Additives (SYBR Green I, DMSO, and so forth): SYBR® GreenER™Manufacturer of plates/tubes and catalog number: Corbett Research 0.2 mL PCR Tubes, Cat. no. 3001-001Complete thermocycling parameters: 2 min @ 50 °C + 10 min @ 95 °C + (15 sec @ 95 °C + 60 sec @ 60 °C) x40 + melt 60-95 °CReaction setup (manual/robotic): Using the Corbett CAS-1200 robotManufacturer of qPCR instrument: Corbett Research, Corbett Rotor-Gene 6000qPCR validationSpecificity (gel, sequence, melt, or digest): Melt curves from 60-95 °C on CorbettRotor-Gene 6000PCR efficiency calculated from slopeGenes Ctg1913 Am Cat Am Ferri Am CD151 Am Trib Am SW Am CTL Am Ch Ctg3235 GAPDH rpL13 rpL9 rpS7 Efficiency 1.98 1.91 1.98 1.95 1.98 1.95 1.95 1.93 1.74 1.87 1.64 1.88 1.93 Data analysisqPCR analysis program (source, version): Corbett Rotor-Gene 6000 softwareMethod of Cq determination: Manual positioning above background signal。
常用分析化学专业英语词汇absorbance 吸光度absorbent 吸附剂absorption curve 吸收曲线absorption peak 吸收峰absorptivity 吸收系数accident error 偶然误差accuracy 准确度acid-base titration 酸碱滴定acidic effective coefficient 酸效应系数acidic effective curve 酸效应曲线acidity constant 酸度常数activity 活度activity coefficient 活度系数adsorption 吸附adsorption indicator 吸附指示剂affinity 亲和力aging 陈化amorphous precipitate 无定形沉淀amphiprotic solvent 两性溶剂amphoteric substance 两性物质amplification reaction 放大反应analytical balance 分析天平analytical chemistry 分析化学analytical concentration 分析浓度analytical reagent (AR) 分析试剂apparent formation constant 表观形成常数aqueous phase 水相argentimetry 银量法ashing 灰化atomic spectrum 原子光谱autoprotolysis constant 质子自递常数auxochrome group 助色团back extraction 反萃取band spectrum 带状光谱bandwidth 带宽bathochromic shift 红移blank 空白blocking of indicator 指示剂的封闭bromometry 溴量法buffer capacity 缓冲容量buffer solution 缓冲溶液burette 滴定管calconcarboxylic acid 钙指示剂calibrated curve 校准曲线calibration 校准catalyzed reaction 催化反应cerimetry 铈量法charge balance 电荷平衡chelate 螯合物chelate extraction 螯合物萃取chemical analysis 化学分析chemical factor 化学因素chemically pure 化学纯chromatography 色谱法chromophoric group 发色团coefficient of variation 变异系数color reagent 显色剂color transition point 颜色转变点colorimeter 比色计colorimetry 比色法column chromatography 柱色谱complementary color 互补色complex 络合物complexation 络合反应complexometry complexometric titration 络合滴定法complexone 氨羧络合剂concentration constant 浓度常数conditional extraction constant 条件萃取常数conditional formation coefficient 条件形成常数conditional potential 条件电位conditional solubility product 条件溶度积confidence interval 置信区间confidence level 置信水平conjugate acid-base pair 共轭酸碱对constant weight 恒量contamination 沾污continuous extraction 连续萃取continuous spectrum 连续光谱coprecipitation 共沉淀correction 校正correlation coefficient 相关系数crucible 坩埚crystalline precipitate 晶形沉淀cumulative constant 累积常数curdy precipitate 凝乳状沉淀degree of freedom 自由度demasking 解蔽derivative spectrum 导数光谱desiccant; drying agent 干燥剂desiccator 保干器determinate error 可测误差deuterium lamp 氘灯deviation 偏差deviation average 平均偏差dibasic acid 二元酸dichloro fluorescein 二氯荧光黄dichromate titration 重铬酸钾法dielectric constant 介电常数differential spectrophotometry 示差光度法differentiating effect 区分效应dispersion 色散dissociation constant 离解常数distillation 蒸馏distribution coefficient 分配系数distribution diagram 分布图distribution ratio 分配比double beam spectrophotometer 双光束分光光度计dual-pan balance 双盘天平dual-wavelength spectrophotometry 双波长分光光度法electronic balance 电子天平electrophoresis 电泳eluent 淋洗剂end point 终点end point error 终点误差enrichment 富集eosin 曙红equilibrium concentration 平衡浓度equimolar series method 等摩尔系列法Erelenmeyer flask 锥形瓶eriochrome black T (EBT) 铬黑T error 误差ethylenediamine tetraacetic acid (EDTA) 乙二胺四乙酸evaporation dish 蒸发皿exchange capacity 交换容量extent of crosslinking 交联度extraction constant 萃取常数extraction rate 萃取率extraction spectrphotometric method 萃取光度法Fajans method 法杨斯法ferroin 邻二氮菲亚铁离子filter 漏斗filter 滤光片filter paper 滤纸filtration 过滤fluex 溶剂fluorescein 荧光黄flusion 熔融formation constant 形成常数frequency 频率frequency density 频率密度frequency distribution 频率分布gas chromatography (GC) 气相色谱grating 光栅gravimetric factor 重量因素gravimetry 重量分析guarantee reagent (GR) 保证试剂high performance liquid chromatography (HPLC) 高效液相色谱histogram 直方图homogeneous precipitation 均相沉淀hydrogen lamp 氢灯hypochromic shift 紫移ignition 灼烧indicator 指示剂induced reaction 诱导反应inert solvent 惰性溶剂instability constant 不稳定常数instrumental analysis 仪器分析intrinsic acidity 固有酸度intrinsic basicity 固有碱度intrinsic solubility 固有溶解度iodimetry 碘滴定法iodine-tungsten lamp 碘钨灯iodometry 滴定碘法ion association extraction 离子缔合物萃取ion chromatography (IC) 离子色谱ion exchange 离子交换ion exchange resin 离子交换树脂ionic strength 离子强度isoabsorptive point 等吸收点Karl Fisher titration 卡尔•费歇尔法Kjeldahl determination 凯氏定氮法Lambert-Beer law 朗泊-比尔定律leveling effect 拉平效应ligand 配位体light source 光源line spectrum 线状光谱linear regression 线性回归liquid chromatography (LC) 液相色谱macro analysis 常量分析masking 掩蔽masking index 掩蔽指数mass balance 物料平衡matallochromic indicator 金属指示剂maximum absorption 最大吸收mean, average 平均值measured value 测量值measuring cylinder 量筒measuring pipette 吸量管median 中位数mercurimetry 汞量法mercury lamp 汞灯mesh [筛]目methyl orange (MO) 甲基橙methyl red (MR) 甲基红micro analysis 微量分析mixed constant 混合常数mixed crystal 混晶mixed indicator 混合指示剂mobile phase 流动相Mohr method 莫尔法molar absorptivity 摩尔吸收系数mole ratio method 摩尔比法molecular spectrum 分子光谱monoacid 一元酸monochromatic color 单色光monochromator 单色器neutral solvent 中性溶剂neutralization 中和non-aqueous titration 非水滴定normal distribution 正态分布occlusion 包藏organic phase 有机相ossification of indicator 指示剂的僵化outlier 离群值oven 烘箱paper chromatography(PC) 纸色谱parallel determination 平行测定path lenth 光程permanganate titration 高锰酸钾法phase ratio 相比phenolphthalein (PP) 酚酞photocell 光电池photoelectric colorimeter 光电比色计photometric titration 光度滴定法photomultiplier 光电倍增管phototube 光电管pipette 移液管polar solvent 极性溶剂polyprotic acid 多元酸population 总体postprecipitation 后沉淀precipitant 沉淀剂precipitation form 沉淀形precipitation titration 沉淀滴定法precision 精密度preconcentration 预富集predominance-area diagram 优势区域图primary standard 基准物质prism 棱镜probability 概率proton 质子proton condition 质子条件protonation 质子化protonation constant 质子化常数purity 纯度qualitative analysis 定性分析quantitative analysis 定量分析quartering 四分法random error 随机误差range 全距(极差)reagent blank 试剂空白Reagent bottle 试剂瓶recording spectrophotometer 自动记录式分光光度计recovery 回收率redox indicator 氧化还原指示剂redox titration 氧化还原滴定referee analysis 仲裁分析reference level 参考水平reference material (RM) 标准物质reference solution 参比溶液relative error 相对误差resolution 分辨力rider 游码routine analysis 常规分析sample 样本,样品sampling 取样self indicator 自身指示剂semimicro analysis 半微量分析separation 分离separation factor 分离因数side reaction coefficient 副反应系数significance test 显著性检验significant figure 有效数字simultaneous determination of multiponents 多组分同时测定single beam spectrophotometer 单光束分光光度计single-pan balance 单盘天平slit 狭缝sodium diphenylamine sulfonate 二苯胺磺酸钠solubility product 溶度积solvent extraction 溶剂萃取species 型体(物种)specific extinction coefficient 比消光系数spectral analysis 光谱分析spectrophotometer 分光光度计spectrophotometry 分光光度法stability constant 稳定常数standard curve 标准曲线standard deviation 标准偏差standard potential 标准电位standard series method 标准系列法standard solution 标准溶液standardization 标定starch 淀粉stationary phase 固定相steam bath 蒸气浴stepwise stability constant 逐级稳定常数stoichiometric point 化学计量点structure analysis 结构分析supersaturation 过饱和systematic error 系统误差test solution 试液thermodynamic constant 热力学常数thin layer chromatography (TLC) 薄层色谱titrand 被滴物titrant 滴定剂titration 滴定titration constant 滴定常数titration curve 滴定曲线titration error 滴定误差titration index 滴定指数titration jump 滴定突跃titrimetry 滴定分析trace analysis 痕量分析transition interval 变色间隔transmittance 透射比tri acid 三元酸true value 真值tungsten lamp 钨灯ultratrace analysis 超痕量分析UV-VIS spectrophotometry 紫外-可见分光光度法volatilization 挥发Volhard method 福尔哈德法volumetric flask 容量瓶volumetry 容量分析Wash bottle 洗瓶washings 洗液water bath 水浴weighing bottle 称量瓶weighting form 称量形weights 砝码working curve 工作曲线xylenol orange (XO) 二甲酚橙zero level 零水平异步处理dispatch_async(dispatch_get_glo bal_queue(0, 0), ^{// 处理耗时操作的代码块... [self test1];//通知主线程刷新dispatch_async(dispatch_get_mai n_queue(), ^{//或者说是通知主线程刷新,NSLog(............);});。
质性研究方法与量化研究方法之初步比较摘要:量化研究与质性研究是社会科学研究领域中的两大基本研究模式。
长期以来,量化研究一直受到学者们的重视,应用也非常广泛,但是由于量化研究本身存在着不足并且在应用中存在许多问题,使得人们开始反思这一牢固的研究传统。
20世纪50年代以来,质性研究开始崛起,并取得了一系列重大进展,其应用层面也日益广泛起来。
我们应该全面认识到这两种研究方法的各自优缺点,以便在实践中更好的利用它。
关键词:质性研究量化研究特点后现代主义自九月十八日教育科学研究方法(质的)开课以来,4个月的学习让我对质性研究有了初步的了解,这对于工科出身的我(本科学的是土木工程专业)来说有着非常重大的意义。
刘老师讲课有些东西让自己内心某些模糊的想法变得清晰起来,有些给了我发人深思的启示,还有些知识远远超出我理解的范围但却能指引我树立目标并向着它前进。
本文的出发点是顺着刘老师的讲课和沙龙所讲的内容结合自己的理解,并查阅一些期刊文章将自己一些及其浅薄的认识笼统地梳理一下,总结一下对本门课程内容的简单理解。
一、什么是质性研究质性研究英文写法是qualitative research。
在台湾、香港、新加坡等地,有人将其译为“质性研究”、“质化研究”、“定质研究”等。
[1]对什么是质的研究方法,有学者作出以下的定义:“质的研究是以研究者本人作为研究工具,在自然情境下采用多种资料收集方法对社会现象进行整体性探究,使用归纳法分析资料和形成理论,通过与研究对象互动对其行为和意义建构获得解释性理解的一种活动”。
[2]质性研究不是一种研究方法,而是许多种不同研究方法的统称,他们都不同于量化研究,因而可以大致归为一类。
在社会学和教育学领域中常常使用此种方法。
二、质性研究与量化研究的特点与量的研究的理论基础不同,质的研究是建立在另类范式的基础之上的后实证主义、批判理论和建构主义。
质的研究方法采取的对世界探究的态度和方式源于自然主义、解释学和后现代主义,它继承了自然主义对自然研究情境的追求,注重对研究结果的“真实性”和可靠性进行探究,它吸纳了解释学对主体间性的重视,它也发扬了后现代理论对边缘性知识尊重的态度。
自演化分子动力学蒙特卡罗方法自演化分子动力学蒙特卡罗方法(Self-Evolving Molecular Dynamics Monte Carlo,简称SEMDMC)是一种用于模拟复杂多体系统的计算方法。
该方法结合了分子动力学(MD)和蒙特卡罗(MC)方法的优势,能够在较低的计算成本下获得更准确的模拟结果。
一、SEMDMC方法的基本原理SEMDMC方法的基本原理是将模拟系统分为两部分:演化部分和非演化部分。
演化部分由一组有限数量的粒子组成,这些粒子相互作用并遵循牛顿运动定律。
非演化部分由系统的其余部分组成,被视为静态背景。
在模拟过程中,演化部分的粒子会根据牛顿运动定律进行运动。
同时,会使用MC方法对非演化部分进行采样。
通过不断迭代演化部分和非演化部分,可以获得系统的完整配置空间信息。
二、SEMDMC方法的优势SEMDMC方法具有以下优势:1.能够模拟复杂多体系统:SEMDMC方法可以模拟包含大量粒子的复杂系统,例如生物大分子、材料等。
2.计算效率高:SEMDMC方法结合了MD和MC方法的优势,在较低的计算成本下获得更准确的模拟结果。
3.具有良好的可扩展性:SEMDMC方法可以并行化,从而提高计算效率。
三、SEMDMC方法的应用SEMDMC方法已被广泛应用于材料科学、生物物理、化学等领域。
例如,SEMDMC方法已被用于模拟蛋白质折叠、纳米材料的结构和性能等。
四、以下是一些SEMDMC方法的应用实例:1.模拟蛋白质折叠:SEMDMC方法已被用于模拟蛋白质折叠过程。
通过模拟,可以获得蛋白质折叠的自由能景观,从而了解蛋白质折叠的机制。
2.模拟纳米材料的结构和性能:SEMDMC方法已被用于模拟纳米材料的结构和性能。
通过模拟,可以获得纳米材料的原子结构、电子结构、力学性能等信息。
五、总结SEMDMC方法是一种用于模拟复杂多体系统的计算方法。
该方法具有计算效率高、可扩展性好等优势,已被广泛应用于材料科学、生物物理、化学等领域。
What Is Qualitative Research?Ronald L.Jackson II,Darlene K.Drummond,&Sakile CamaraThe defining nature and characteristics of qualitative research are surveyed in this arti-cle,which identifies key distinctions between method and methodology.The authors note that qualitative research is primarily concerned understanding human beings’experi-ences in a humanistic,interpretive approach.Issues of research design differences between quantitative and qualitative research are traced with an emphasis on identifying diverse methodologies,including those focusing on analysis of text,and diverse forms of data collection along with criteria for evaluating qualitative research.Keywords:Data Collection;Ethnography;Methodologies;Methods;Phenomenology The function of all science is to investigate answers to questions about the evolution of an experience or phenomenon via observation.Social science specifically attempts to discover new or different ways of understanding the changing nature of lived social realities.In trying to grapple with what life means to human beings,social scientists presume there is a systematic way of apprehending critical dimensions to problems that confront our social world.In this pursuit,even the most optimistic scholar knows that he or she can only uncover what is available or accessible at the time of the investigation or the period(s)leading up to the point of inquiry.It is impos-sible to grasp every aspect of a social phenomenon,investigation,or question.Nonetheless,it is the responsibility of every researcher to approach each study with as much objectivity,ethical diligence ,and rigor as possible.Ronald L.Jackson II (Ph.D.,Howard University,1996)is an associate professor of communication and culture in the Department of Communication Arts and Sciences at Pennsylvania State University,234Sparks Bldg,State College,PA 16801,USA.E-mail:rlj6@.Darlene K.Drummond (Ph.D.,Ohio State University,2000)is an assistant professor of communication in the School of Communication at University of Miami.Sakile Camara (Ph.D.,Ohio State University,2001)is an assistant professor of Communication Studies at Cali-fornia State University at Northridge.The authors wish to thank the Africana Research Collaborative for their support of this project.Qualitative Research Reports in CommunicationVol.8,No.1,2007,pp.21–2822R.L.Jackson et al.The approach to ensuring objectivity,ethical diligence,and rigor depends on whether the study is qualitative or quantitative.For years,scholars have argued that the principal distinction between qualitative and quantitative research is that they do not share the same epistemology.Rather than elaborate on this line of thinking,it is far better to understand that key distinctions between the two can be found within both method and methodology.Method refers to how data is collected,and methodology refers to the identification and utilization of the best approach for addressing a theoretical or practical problem(Kaplan,1964).In short,as has been said elsewhere,method is about ‘‘how to’’and methodology is about‘‘why to’’collect data a certain way.Both are pertinent to research design.In designing a study,all social science researchers begin with a set of questions about a social problem.Subsequently,they simultaneously consider constructs and theories that can adequately facilitate how the problem is conceptually understood while also thinking about the practical dimensions of collecting data.Some basic questions a researcher will ask,for example,are as follows:.How will I gain access to and recruit participants?.How will participants respond to my questions?.What will their responses help me to understand about the selected phenomenon under investigation?.Do my research questions reflect what I am seeking to conceptually understand? Each of these questions is very important to beginning an investigation.If you are a quantitative researcher,you will want to statistically assess some aspect of a research problem through the use of experimental or survey design procedures. The purpose of an experiment is to test the impact of an intervention on an outcome while controlling for various factors that might influence that outcome.When a researcher wants to know about certain attitudes,trends,or opinions of a population by studying a sample of that population,a survey design is employed.Both experi-mental and survey designs result in the report of generalizations made by a sample in representation of a particular population(Cresswell,2003).Stake(1995)maintains that there are three major differences between quantitative and qualitative research:(1)the distinction between explanation and understanding as the purpose ofinquiry;(2)the distinction between a personal and impersonal role for theresearcher;and(3)a distinction between knowledge discovered and knowledgeconstructed.(p.37)So,as we discuss our concern in this essay with respect to defining the nature, function,and types of qualitative inquiry,we will also be pointing out the significance of understanding as a purpose of qualitative research as well as the significance of both a personal role and social construction of reality within this paradigm.If you are a qualitative researcher,you will be primarily concerned with what Lincoln and Guba(1985)call‘‘the human as instrument’’approach.In other words,the focus turns to understanding human beings’richly textured experiences and reflections about those experiences.Rather than relying on a set of finite questions to elicitQualitative Research Reports in Communication23 categorized,forced-choice responses with little room for open-ended replies to ques-tions as quantitative research does,the qualitative researcher relies on the participants to offer in-depth responses to questions about how they have constructed or under-stood their experience.This humanistic,interpretive approach is also called‘‘thick-descriptive’’because of the richness and detail to the discussion.By design,the qualitative researcher will get much more information about a phenomenon,realiz-ing that the major drawback will be that the results will not be generalizable to a population because very few participants participate in studies offering so much depth of detail.Moreover,the researcher tends to be more cognizant of his or her personal rather than impersonal role in the research.This recognition of subjectivity also leads to enhanced safeguards for trustworthiness such as member-checking.By doing this,the researcher notes that his or her study of others’experiences borders the investigator’s experience as well,and this has implications for social scientific interpretation of the data collected.Synonymous with non-experimental and ethnographic inquiry,qualitative inquiry or research has its intellectual roots in hermeneutics,the Verstehen tradition,and phenomenology.It encompasses all forms of social inquiry that rely primarily on non-numeric data in the form of words,including all types of textual analyses such as content,conversation,discourse,and narrative analyses.The aim and function of qualitative inquiry is to understand the meaning of human action by describing the inherent or essential characteristics of social objects or human experience(Denzin& Lincoln,2000).There are several types of qualitative inquiry and modes of qualitative data collection that are aligned with the humanistic tradition.Before exploring these types,it is important to note that some scholars think of phenomenology as a methodology,and as methodology it nicely frames what most interpretive researchers see as their concerns.Phenomenology is a multifaceted philosophy that defies simple characterization.Generally,phenomenologists reject the idea that the only legitimate knowledge is that which social scientists discover by ignoring the perceived world of everyday human experience.In fact,phenomen-ologists privilege the subjective description of conscious every-day mundane experi-ences from the perspective of those living them(Crotty,1998).For this reason,this philosophy is at the foundation of much of the qualitative research conducted within the social sciences,including communication.Qualitative MethodologiesMethodologies suggest how inquiries should proceed by indicating what problems are worth investigating,how to frame a problem so it can be explored,how to develop appropriate data generation,and how to make the logical link between the problem,data generated,analysis,and conclusions=inferences drawn.Methodologies have a synergetic relationship with methods and are often defined differently based on the philosophical stance advocated by the researcher(Kaplan,1964).Nevertheless, in exploring types of qualitative inquiry,it is evident that most qualitative researchers first identify a text or social object that is suitable for analysis,even if it is a visual text24R.L.Jackson et al.such as a movie or photograph.Even visual images representing social life and=or social actions can be read as written text(Ricoeur,1981).Methodologies that privi-lege the exploration of texts vary along a continuum from content analysis,discourse analysis,and narrative analysis to conversation analysis.On one end,the focus is on what was said(content;e.g.,content analysis),and at the other end,how something was said(form;e.g.,conversation analysis).In the middle is the concern for both form and content(e.g.,narrative analysis;Coffey&Atkinson,1996).Content analysis is a generic name for a variety of ways for conducting systematic, objective,quantitative,and=or qualitative textual analysis that involves comparing, contrasting,and categorizing a set of data primarily to test hypotheses.This type of analysis usually relies on some statistical procedures for sampling and establishing inter-coder reliability(Krippendorf,1980).Essentially,qualitative content analysis involves interpreting,theorizing,or making sense of data by first breaking it down into segments that can be categorized and coded,and then establishing a pattern for the entire data set by relating the categories to one another(Gubrium&Holstein,1997).Conversation analysis is a form of textual analysis that arose out of the sociological approach of ethnomethodology based in part on the philosophical tradition of phenomenology.Ethnomethodology is interested in how people accomplish every-day,taken-for-granted interactions like making promises and negotiating(Garfinkel, 1967).One method for exploring these interactions is through conversation analysis, as it is concerned with examining the linguistic organization of talk to show how speakers produce orderly social interaction(Silverman,1998).Similarly,discourse analysis is a way for examining language as it is used in specific contexts;however, it is more strictly focused on the content of talk,highlighting the practices that comprise the ideologies,attitudes,ideas,and courses of action that systematically constitute the subjects and objects of which people speak(Foucault,1972).Content analysis,conversation analysis,and discourse analysis are not the only forms of textual analyses popular in communication.A broad term used to refer to a variety of procedures for interpreting stories generated in research,narrative analysis encompasses structural and functional forms of analyses.The researcher examines how a story is developed,organized,begins and ends,as well as,its goals or aims(Riessman,1993).Stories analyzed are of lived experiences often chronicled in life histories,interviews,journals,diaries,autobiographies,memoirs, or biographies(Josselson&Liebech,1995).Unlike the aforementioned methodologies,which seek to deconstruct a text to help us understand the social realities of human beings,one increasingly popular methodology seeks to produce a written text through which we can vicariously experience various social realities.Ethnography is the art and science of describing and interpreting cultural behavior from a close textual-analytic standpoint.The typi-cal ethnography is presented in monograph form and describes the historical events and geographic,economic,political,educational,linguistic,and kinship systems that define a particular group(Wolcott,1987).Embedded within conventional ethnography are critical ethnography and autoeth-nography.They share fundamental characteristics but are distinguishable.Generally,Qualitative Research Reports in Communication25 conventional ethnographers speak for their subjects to an audience of academics, while critical ethnographers speak to a wider audience on behalf of their subjects seek-ing empowerment for them while simultaneously invoking social consciousness and political change(Thomas,1993).Increasingly,communication scholars are engaging in the study of their own communities or cultures by using themselves as the object of study,portending‘‘self as instrument.’’Known as autoethnography,this form of writing attempts to unite ethnographic(looking beyond one’s world)and auto-biographical(looking inward for a personal story)intentions.The purpose of this qualitative inquiry is not to make any claims through interpretations and analyses, but to simply invite readers to share in a lived experience(Ellis&Bochner,2000). Methods of Data Collection‘‘Method’’refers to the tools,techniques,or procedures used to generate data (Kaplan,1964).In conducting qualitative research,interviewing is a set of techniques for generating data from individuals and=or groups utilizing structured,semi-structured,or unstructured questioning formats.Generally,semi-or unstructured, open-ended,informal interviewing is preferred to allow for more flexibility and responsiveness to emerging themes for both the interviewer and respondent.The analysis of transcribed interviews is dependent on the specific methodological approach employed(e.g.,the meticulous word-to-word transcription of conversation analysis to the more broad-based thematic analysis of ethnographic interviews; see Holstein&Gubrium,1995).Often,interviewing is used in conjunction with other modes of data collection like focus groups,case studies,ethnography,and=or or participant observation.As one way of collecting data in qualitative research,focus groups are group inter-views(typically involving5–12people)that rely on the interaction within the group and the questions asked of the moderator to provide insight into specific topics. Focus group interviews can serve as the principal source of data,as a supplementary source of data,or as one component of a multimethod approach to data collection. The primary advantage for the researcher in conducting focus groups is the ability to observe a large amount of interaction among multiple participants on one or more topics in a limited amount of time.However,this is also the primary disadvantage, because focus groups are viewed as unnatural social settings(Morgan,1997),and there is a possibility that groupthink may threaten the dependability of the data, especially in situations where actual or perceived experts and non-experts are both included.Another approach that can be quite intensive is the case study approach to data collection,which is preferred in the following circumstances:1.the researcher wants to answer‘‘how’’or‘‘why’’questions;2.the researcher has little control over the contemporary real-life context to bestudied;and3.when the boundaries between the context and phenomenon are not clear.26R.L.Jackson et al.It can be used for analytic generalization(Yin,1989).Analytic generalization,also referred to as theoretical elaboration,is a type of generalization in which the researcher uses a particular set of circumstances,like a case,as evidence to refine,dis-pute,support or detail a concept,model,or theory.However,the case is never regarded or portrayed as a definitive test of the theory(Vaughan,1992).Also,in a case study,the researcher is often at a distance from the context under examination and is studying the phenomenon by collecting multiple artifacts or kinds of data. These data can include interviews,focus groups,printed materials,media,and other sources of data.Distinguishable from the aforementioned methods of data collection,fieldwork is accomplished through participant observation and is the means by which the ethnographer comes to know a culture.Participant observation requires one to spend time engaged in a setting,taking part in the daily activities of the people under study and recording,as soon as possible,observed activities in the form of fieldnotes (Stocking,1983).The term fieldwork refers to all of the activities one does when at the physical site of a cultural group,such as listening,observing,conversing, recording,interpreting,and dealing with logistical,ethical,and political issues. Participant observation is the traditional methodology employed in fieldwork, although life-histories,oral histories,action research,and other forms of case studies and co-participative inquires also entail aspects of fieldwork(Wolcott,1995). Criteria for Evaluating Qualitative ResearchRather than conventional measures of trustworthiness,such as internal=external validity,reliability,and objectivity,that are at the core of quantitative research,the qualitative research design tests trustworthiness via credibility,transferability, dependability,and confirmability,respectively.Good qualitative research applies standards of trustworthiness such as member-checking,stepwise replication,and audit trails,each of which seeks to verify the substance of what participants said so that interpretations are not subjective iterations of the researcher’s own belief system. Specifically,member-checking assists in validating qualitative research findings,as themes and descriptions are taken back to participants to determine whether or not participants feel they are accurate.Peer briefing and the use of external auditors serve to enhance the credibility of a study by assessing whether the findings resonate with others not connected with the study(Lincoln&Guba,1985).Collectively,these facilitate objectivity,ethical diligence,and rigor.Obviously,when doing an autoethno-graphy,these verification checks are very personal,yet phenomenology has outlined ways in which the researcher can parse out streams of consciousness that are intri-cately entangled in experiences related to the research study(Ellis&Bochner,2000).Because experience is key to qualitative inquiry,observations of interpretive data must be able to account for varying kinds of experiences in a way that is particular-ized or idiographic rather than generalized and law-bound or nomothetic.In grappling with what qualitative research is,we must be ever-conscious that socialQualitative Research Reports in Communication27 experience is always happening,unending,and fluid.Perspectives on experience can change from person to person,yet it is perspective that influences social cognition and social behavior.Perspective influences relationships and interaction patterns. So,even as scholars understand the significance of perspective,there are constantly evolving ways of understanding perspective in varying contexts from very naturalistic to lab-oriented contexts.Of course,observing a phenomenon in its natural setting is often the optimal way to examine what is happening;yet there are compelling reasons to place people in unnatural settings and manipulate the situation to see how people will respond to a stimulus.This sounds like quantitative,experimental research,but qualitative researchers may also do something similar by showing interviewees an object,image,or some other stimulus in order to prompt further reflection.In social scientists’quest for truth and understanding,text and context have value for all, regardless of methodology.As scholars become even more curious and think of expanding ways to collect data using new technologies and approaches,it is important to bear in mind that it is the responsibility of every researcher to approach each study with as much objectivity, ethical diligence,and rigor as possible.ReferencesCoffey,A.&Atkinson,P.(1996).Making sense of qualitative data.London:Sage.Cresswell,J.W.(2003).Research design:Qualitative,quantitative,and mixed methods approaches (2nd ed.).Thousand Oaks,Calif.:Sage.Crotty,M.(1998).The foundations of social research.London:Sage.Denzin,N.K.&Lincoln,Y.S.(Eds.).(2000).Handbook of qualitative research(2nd ed.).Thousand Oaks,Calif.:Sage.Ellis,C.&Bochner,A.P.(2000).Autoethnography,personal narrative,reflexivity:Researcher as subject.In N.K.Denzin&Y.S.Lincoln(Eds.),Handbook of qualitative research (2nd ed.)(pp.733–768).Thousand Oaks,Calif.:Sage.Foucault,M.(1972).The archaeology of knowledge.New York:Pantheon.Garfinkel,H.(1967).Studies in ethnomethodology.Englewood Cliffs,NJ:Prentice Hall. Gubrium,J. F.&Holstein,J. A.(1997).The new language of qualitative method.Oxford, UK:Oxford University Press.Holstein,J.A.&Gubrium,J.F.(1995).The active interview.Thousand Oaks,Calif.:Sage. Josselson,R.&Liebech,A.(Eds.).(1995).Interpreting experience:The narrative study of lives.Thousand Oaks,Calif.:Sage.Kaplan,A.(1964).The conduct of inquiry.New York:Harper&Row.Krippendorf,K.(1980).Content analysis:An introduction to its methodology.Beverly Hills,Calif.: Sage.Lincoln,Y.&Guba,E.(1985).Naturalistic inquiry.Thousand Oaks,Calif.:Sage.Morgan,D.L.(1997).Focus groups as qualitative research(2nd ed.).Thousand Oaks,Calif.:Sage. Ricoeur,P.(1981).The model of the text:Meaningful action considered as a text.In J.B.Thompson(Ed.),Hermeneutics and the human sciences(pp.197–221).Cambridge, UK:Cambridge University Press.Riessman,C.K.(1993).Narrative analysis.Newbury Park,Calif.:Sage.Silverman,D.(1998).Harvey sacks:Social science and conversation analysis.Cambridge,Mass.: Polity.Stake,R.(1995).The art of case study research.Thousand Oaks,Calif.:Sage.28R.L.Jackson et al.Stocking,G.(Ed.).(1983).Observers observed:Essays on ethnographic fieldwork.Madison,Wisc.: University of Wisconsin Press.Thomas,J.(1993).Doing critical ethnography.Newbury Park,Calif.:Sage.Vaughan, D.(1992).Theory elaboration:The heuristics of case analysis.In C. C.Ragin&H.S.Becker(Eds.),What is a case?Exploring the foundations of social inquiry(pp.173–202).Cambridge,UK:Cambridge University Press.Wolcott,H.F.(1987).On ethnographic intent.In G.Spindler&L.Spindler(Eds.),Interpretive ethnography of education:At home and abroad(pp.37–60).Hillsdale,NJ:Lawrence Erlbaum. Wolcott,H.F.(1995).The art of fieldwork.Walnut Creek,Calif.:Altamira.Yin,R.(1989).Case study research:Design and methods(Rev.ed.).Newbury Park,Calif.:Sage.。
《分析化学》中常见词汇的中英对照第一章绪论分析化学:analytical chemistry定性分析:qualitative analysis定量分析:quantitative analysis物理分析:physical analysis 物理化学分析:physico-chemical analysis仪器分析法:instrumental analysis流动注射分析法:flow injection analysis;FIA顺序注射分析法:sequentical injection analysis。
SIA化学计量学:chemometrics第二章误差的分析数据处理绝对误差:absolute error 相对误差:relative error系统误差:systematic error 可定误差:determinate error 随机误差:accidental error 不可定误差:indeterminate error准确度:accuracy精确度:precision偏差:debiation,d平均偏差:average debiation 相对平均偏差:relative average debiation标准偏差<标准差):standerd deviation。
S相对平均偏差:relatibe standard deviation。
RSD变异系数:coefficient of variation误差传递:propagation of error有效数字:significant figure 置信水平:confidence level显著性水平:level of significance合并标准偏差<组合标准差):pooled standard debiation 舍弃商:rejectionquotient 。
Q化学定量分析第三章滴定分析概论滴定分析法:titrametric analysis滴定:titration容量分析法:volumetric analysis化学计量点:stoichiometric point等当点:equivalent point电荷平衡:charge balance电荷平衡式:charge balance equation质量平衡:mass balance物料平衡:material balance 质量平衡式:mass balance equation第四章酸碱滴定法酸碱滴定法:acid-base titrations质子自递反应:autoprotolysis reaction质子自递常数:autoprotolysis constant质子条件式:proton balance equation酸碱指示剂:acid-base indicator指示剂常数:indicator constant变色范围:colour change interval混合指示剂:mixed indicator 双指示剂滴定法:double indicator titration第五章非水滴定法非水滴定法:nonaqueous titrations质子溶剂:protonic solvent 酸性溶剂:acid solvent碱性溶剂:basic solvent两性溶剂:amphototeric solvent无质子溶剂:aprotic solvent 均化效应:differentiating effect区分性溶剂:differentiating solvent离子化:ionization离解:dissociation结晶紫:crystal violet萘酚苯甲醇: α-naphthalphenol benzyl alcohol奎哪啶红:quinadinered百里酚蓝:thymol blue 偶氮紫:azo violet溴酚蓝:bromophenol blue第六章配位滴定法配位滴定法:compleximetry乙二胺四乙酸:ethylenediamine tetraacetic acid,EDTA螯合物:chelate compound金属指示剂:metal lochrome indcator第七章氧化还原滴定法氧化还原滴定法:oxidation-reduction titration碘量法:iodimetry溴量法:bromimetry ]溴量法:bromine method铈量法:cerimetry高锰酸钾法:potassium permanganate method条件电位:conditional potential溴酸钾法:potassium bromate method硫酸铈法:cerium sulphate method偏高碘酸:metaperiodic acid 高碘酸盐:periodate亚硝酸钠法:sodium nitrite method重氮化反应:diazotization reaction重氮化滴定法:diazotization titration亚硝基化反应:nitrozation reaction亚硝基化滴定法:nitrozation titration外指示剂:external indicator 外指示剂:outside indicator 重铬酸钾法:potassium dichromate method第八章沉淀滴定法沉淀滴定法:precipitation titration容量滴定法:volumetric precipitation method银量法:argentometric method 第九章重量分析法重量分析法:gravimetric analysis挥发法:volatilization method引湿水<湿存水):water of hydroscopicity包埋(藏>水:occluded water 吸入水:water of imbibition 结晶水:water of crystallization组成水:water of composition 液-液萃取法:liquid-liquid extration溶剂萃取法:solvent extration反萃取:counter extraction 分配系数:partitioncoefficient分配比:distribution ratio 离子对<离子缔合物):ion pair沉淀形式:precipitation forms称量形式:weighing forms 《分析化学》下册仪器分析概述物理分析:physical analysis 物理化学分析:physicochemical analysis仪器分析:instrumental analysis第十章电位法及永停滴定法电化学分析:electrochemical analysis电解法:electrolytic analysis method电重量法:electtogravimetry 库仑法:coulometry 库仑滴定法:coulometric titration电导法:conductometry电导分析法:conductometric analysis电导滴定法:conductometric titration电位法:potentiometry直接电位法:dirext potentiometry电位滴定法:potentiometric titration伏安法:voltammetry极谱法:polarography溶出法:stripping method电流滴定法:amperometric titration化学双电层:chemical double layer相界电位:phase boundary potential金属电极电位:electrodepotential化学电池:chemical cell液接界面:liquid junction boundary原电池:galvanic cell电解池:electrolytic cell 负极:cathrode正极:anode电池电动势:eletromotive force指示电极:indicator electrode参比电极:reference electroade标准氢电极:standard hydrogen electrode一级参比电极:primary reference electrode饱和甘汞电极:standard calomel electrode银-氯化银电极:silver silver-chloride electrode 液接界面:liquid junction boundary不对称电位:asymmetry potential表观PH值:apparent PH复合PH电极:combination PH electrode离子选择电极:ion selective electrode敏感器:sensor晶体电极:crystalline electrodes均相膜电极:homogeneous membrance electrodes非均相膜电极:heterog eneous membrance electrodes非晶体电极:non- crystalline electrodes刚性基质电极:rigid matrix electrode流流体载动电极:electrode with a mobile carrier气敏电极:gas sensing electrodes酶电极:enzyme electrodes金属氧化物半导体场效应晶体管:MOSFET离子选择场效应管:ISFET总离子强度调节缓冲剂:total ion strength adjustment buffer,TISAB永停滴定法:dead-stop titration双电流滴定法<双安培滴定法):double amperometric titration第十一章光谱分析法概论普朗克常数:Plank constant 电磁波谱:electromagnetic spectrum光谱:spectrum光谱分析法:spectroscopic analysis原子发射光谱法:atomic emission spectroscopy质量谱:mass spectrum质谱法:mass spectroscopy,MS 第十二章紫外-可见分光光度法紫外-可见分光光度法:ultraviolet and visible spectrophotometry。
常用分析化学专业英语词汇沉淀absorbance吸光度amphiproticsolvent两性溶剂absorbent吸附剂amphotericsubstance两性物absorptioncurve吸收曲线质absorptionpeak吸收峰amplificationreaction放大反absorptivity吸收系数应accidenterror偶然误差analyticalbalance分析天平accuracy准确度analyticalchemistry分析化学acid-basetitration酸碱滴定analyticalconcentration分析浓acidiceffectivecoefficient酸效度应系数analyticalreagent(AR)分析试acidiceffectivecurve酸效应曲剂线apparentformationconstant表acidityconstant酸度常数观形成常数activity活度aqueousphase水相activitycoefficient活度系数argentimetry银量法adsorption吸附ashing灰化adsorptionindicator吸附指示atomicspectrum原子光谱剂autoprotolysisconstant质子自affinity亲和力递常数aging陈化auxochromegroup助色团amorphousprecipitate无定形backextraction反萃取bandspectrum带状光谱chromatography色谱法bandwidth带宽chromophoricgroup发色团bathochromicshift红移coefficientofvariation变异系blank空白数blockingofindicator指示剂的colorreagent显色剂封闭colortransitionpoint颜色转变bromometry溴量法点buffercapacity缓冲容量colorimeter比色计buffersolution缓冲溶液colorimetry比色法burette滴定管columnchromatography柱色calconcarboxylicacid钙指示谱剂complementarycolor互补色calibratedcurve校准曲线complex络合物calibration校准complexation络合反应catalyzedreaction催化反应complexometrycomplexometric cerimetry铈量法titration络合滴定法chargebalance电荷平衡complexone氨羧络合剂chelate螯合物concentrationconstant浓度常chelateextraction螯合物萃取数chemicalanalysis化学分析conditionalextractionconstantchemicalfactor化学因素条件萃取常数chemicallypure化学纯conditionalformationcoefficient条件形成常数degreeoffreedom自由度conditionalpotential条件电位demasking解蔽conditionalsolubilityproductderivativespectrum导数光谱条件溶度积desiccant;dryingagent干燥剂confidenceinterval置信区间desiccator保干器confidencelevel置信水平determinateerror可测误差conjugateacid-basepair共轭deuteriumlamp氘灯酸碱对deviation偏差constantweight恒量deviationaverage平均偏差contamination沾污dibasicacid二元酸continuousextraction连续萃dichlorofluorescein二氯荧光取黄continuousspectrum连续光谱dichromatetitration重铬酸钾coprecipitation共沉淀法correction校正dielectricconstant介电常数correlationcoefficient相关系differentialspectrophotometry 数示差光度法crucible坩埚differentiatingeffect区分效应crystallineprecipitate晶形沉dispersion色散淀dissociationconstant离解常数cumulativeconstant累积常数distillation蒸馏curdyprecipitate凝乳状沉淀distributioncoefficient分配系数Tdistributiondiagram分布图error误差distributionratio分配比ethylenediaminetetraaceticacid doublebeamspectrophotometer(EDTA)乙二胺四乙酸双光束分光光度计evaporationdish蒸发皿dual-panbalance双盘天平exchangecapacity交换容量dual-wavelengthextentofcrosslinking交联度spectrophotometry双波长分光extractionconstant萃取常数光度法extractionrate萃取率electronicbalance电子天平extractionspectrphotometric electrophoresis电泳method萃取光度法eluent淋洗剂Fajansmethod法杨斯法endpoint终点ferroin邻二氮菲亚铁离子endpointerror终点误差filter漏斗enrichment富集filter滤光片eosin曙红filterpaper滤纸equilibriumconcentration平衡filtration过滤浓度fluex溶剂equimolarseriesmethod等摩fluorescein荧光黄尔系列法flusion熔融Erelenmeyerflask锥形瓶formationconstant形成常数eriochromeblackT(EBT)铬黑frequency频率frequencydensity频率密度instabilityconstant不稳定常数frequencydistribution频率分instrumentalanalysis仪器分析布intrinsicacidity固有酸度gaschromatography(GC)气相intrinsicbasicity固有碱度色谱intrinsicsolubility固有溶解度grating光栅iodimetry碘滴定法gravimetricfactor重量因素iodine-tungstenlamp碘钨灯gravimetry重量分析iodometry滴定碘法guaranteereagent(GR)保证试ionassociationextraction离子剂缔合物萃取highperformanceliquidionchromatography(IC)离子chromatography(HPLC)高效色谱液相色谱ionexchange离子交换histogram直方图ionexchangeresin离子交换树homogeneousprecipitation均脂相沉淀ionicstrength离子强度hydrogenlamp氢灯isoabsorptivepoint等吸收点hypochromicshift紫移KarlFishertitration卡尔?费歇ignition灼烧尔法indicator指示剂Kjeldahldetermination凯氏定inducedreaction诱导反应氮法inertsolvent惰性溶剂Lambert-Beerlaw朗泊-比尔定律mesh[筛]目levelingeffect拉平效应methylorange(MO)甲基橙ligand配位体methylred(MR)甲基红lightsource光源microanalysis微量分析linespectrum线状光谱mixedconstant混合常数linearregression线性回归mixedcrystal混晶liquidchromatography(LC)液mixedindicator混合指示剂相色谱mobilephase流动相macroanalysis常量分析Mohrmethod莫尔法masking掩蔽molarabsorptivity摩尔吸收系maskingindex掩蔽指数数massbalance物料平衡moleratiomethod摩尔比法matallochromicindicator金属molecularspectrum分子光谱指示剂monoacid一元酸maximumabsorption最大吸收monochromaticcolor单色光mean,average平均值monochromator单色器measuredvalue测量值neutralsolvent中性溶剂measuringcylinder量筒neutralization中和measuringpipette吸量管non-aqueoustitration非水滴定median中位数normaldistribution正态分布mercurimetry汞量法occlusion包藏mercurylamp汞灯organicphase有机相ossificationofindicator指示剂polyproticacid多元酸的僵化population总体outlier离群值postprecipitation后沉淀oven烘箱precipitant沉淀剂paperchromatography(PC)纸precipitationform沉淀形色谱precipitationtitration沉淀滴定paralleldetermination平行测法定precision精密度pathlenth光程preconcentration预富集permanganatetitration高锰酸predominance-areadiagram优钾法势区域图phaseratio相比primarystandard基准物质phenolphthalein(PP)酚酞prism棱镜photocell光电池probability概率photoelectriccolorimeter光电proton质子比色计protoncondition质子条件photometrictitration光度滴定protonation质子化法protonationconstant质子化常photomultiplier光电倍增管数phototube光电管purity纯度pipette移液管qualitativeanalysis定性分析polarsolvent极性溶剂quantitativeanalysis定量分析quartering四分法selfindicator自身指示剂randomerror随机误差semimicroanalysis半微量分range全距(极差)析reagentblank试剂空白separation分离Reagentbottle试剂瓶separationfactor分离因数recordingspectrophotometer自sidereactioncoefficient副反应动记录式分光光度计系数recovery回收率significancetest显著性检验redoxindicator氧化还原指示significantfigure有效数字剂simultaneousdeterminationofredoxtitration氧化还原滴定multiponents多组分同时测定refereeanalysis仲裁分析singlebeamspectrophotometerreferencelevel参考水平单光束分光光度计referencematerial(RM)标准single-panbalance单盘天平物质slit狭缝referencesolution参比溶液sodiumdiphenylaminesulfonaterelativeerror相对误差二苯胺磺酸钠resolution分辨力solubilityproduct溶度积rider游码solventextraction溶剂萃取routineanalysis常规分析species型体(物种)sample样本,样品specificextinctioncoefficientsampling取样比消光系数spectralanalysis光谱分析thermodynamicconstant热力spectrophotometer分光光度计学常数spectrophotometry分光光度法thinlayerchromatography(TLC)stabilityconstant稳定常数薄层色谱standardcurve标准曲线titrand被滴物standarddeviation标准偏差titrant滴定剂standardpotential标准电位titration滴定standardseriesmethod标准系titrationconstant滴定常数列法titrationcurve滴定曲线standardsolution标准溶液titrationerror滴定误差standardization标定titrationindex滴定指数starch淀粉titrationjump滴定突跃stationaryphase固定相titrimetry滴定分析steambath蒸气浴traceanalysis痕量分析stepwisestabilityconstant逐级transitioninterval变色间隔稳定常数transmittance透射比stoichiometricpoint化学计量triacid三元酸点truevalue真值structureanalysis结构分析tungstenlamp钨灯supersaturation过饱和ultratraceanalysis超痕量分析systematicerror系统误差UV-VISspectrophotometry紫外-可见分光光度法testsolution试液volatilization挥发dispatch_async(dispatch_get_Volhardmethod福尔哈德法main_queue(),^{volumetricflask容量瓶//回调或者说是通知主线程刷新,volumetry容量分析NSLog(............); Washbottle洗瓶});washings洗液waterbath水浴weighingbottle称量瓶weightingform称量形weights砝码workingcurve工作曲线xylenolorange(XO)二甲酚橙zerolevel零水平异步处理dispatch_async(dispatch_get_global_queue(0,0),^{//处理耗时操作的代码块...[selftest1];//通知主线程刷新。
「FDA-cGMP问答」实验室控制【前篇】文章来源FDA,由珐成制药系统工程(上海)有限公司范宇翻译原创文章,欢迎转帖;尊重原创,从注明出处开始转帖请注明:GMP验证及自动化“FDA-cGMP 问答系列”,该系列选取美国FDA对设备、设施、QC等方面的问题和解决方案,并按不同类型分篇章的翻译。
它山之石,可以攻玉,我们希望通过我们的翻译,让更多人了解国际通行的cGMP的问题和对策,从而学习、反思我们自己平时工作中的不足,提升质量管理意识。
不积跬步,无以至千里,我们一起努力,为制药行业而奋斗吧!中文翻译仅供参考,如有异议请以原文为准1、许多龙头生产商的分析天平都提供内置的“自动校准”功能。
这样的自动校准程序是否可以信赖,并取代外部的性能检查?如果不可以,那么校准应该如何安排?不能只依赖于分析天平内部的自动校正功能,而排除外部性能检查(211.68)。
对于有内置自动校准功能的分析天平,建议定期进行外部的性能检查,但次数少于没有此功能的分析天平。
性能检查的频率取决于天平使用的频率和工艺或分析步骤的临界点和忍受度。
要注意,如果自动校验仪有问题,那么会影响到前后两次验证之间所制造的所有批次的产品。
此外,自动校准器的校准功能应定期验证-一般情况是一年一次-使用美国国家标准与技术研究所(NIST)- 可追溯的标准或NIST认证标准-其他国家在使用的合格标准。
1. Many leading analytical balance manufacturers provide built-in 'auto calibration' features in their balances. Are such auto-calibration procedures acceptable instead of external performance checks? If not, then what should the schedule for calibration be?The auto-calibration feature of a balance may not be relied upon to the exclusion of an external performance check (211.68). For a scale with a built-in auto-calibrator, we recommend that external performance checks be performed on a periodic basis, but less frequently as compared to a scale without this feature. The frequency of performance checks depends on the frequency of use of the scale and the criticality and tolerance of the process or analytical step. Note that all batches of a product manufactured between two successive verifications would be affected should the check of the auto-calibrator reveal a problem. Additionally, the calibration of an auto-calibrator should be periodically verified--a common frequency is once a year--using National Institute of Standards and Technology (NIST)-traceable standards or NIST-accredited standards in use in other countries.2、当确认药物稳定性测试方法是否可以指示稳定性时,CGMPs 要求对药物进行强制分解研究吗?不要求。
第42 卷第 5 期2023 年5 月Vol.42 No.5641~646分析测试学报FENXI CESHI XUEBAO(Journal of Instrumental Analysis)高效液相色谱法同时测定化妆品中辣椒碱等9种热感剂吴志珊1,2,吴姣娇1,2,尹伟成1,2,殷帅1,2,李卓芳2,姜成君1*(1.湖南省药品检验检测研究院,湖南长沙410001;2.岳阳市食品药品检验所,湖南岳阳414000)摘要:建立了测定化妆品中辣椒碱等9种热感剂的高效液相色谱法。
样品经80%甲醇超声提取后,过滤,以乙腈-0.5%甲酸水溶液为流动相,采用SymmetryShield TM RP18色谱柱(250 mm × 4.6 mm,5 μm)分离,液相色谱分离,二极管阵列检测器进行检测。
在优化实验条件下,9种热感剂的分离度好,专属性高,其质量浓度在0.2 ~ 100 μg/mL范围内与峰面积呈良好线性关系,相关系数(r2)均不小于0.999 5,检出限(LOD)为0.001 0 ~ 0.003 4 mg/kg。
以水基类、乳剂类、膏霜类3种阴性样品作为空白基质,9种热感剂在0.004、0.02、1 mg/kg 3种加标水平下的回收率为75.6% ~ 115%,相对标准偏差(RSD)为0.083% ~ 7.0%。
该方法专属性强、灵敏度高、准确度好,可用于化妆品中9种热感剂含量的测定。
关键词:热感剂;化妆品;高效液相色谱法(HPLC)中图分类号:O657.72;S641.3文献标识码:A 文章编号:1004-4957(2023)05-0641-06Simultaneous Determination of 9 Self-heating Compounds Including Capsaicin in Cosmetics by High PerformanceLiquid ChromatographyWU Zhi-shan1,2,WU Jiao-jiao1,2,YIN Wei-cheng1,2,YIN Shuai1,2,LI Zhuo-fang2,JIANG Cheng-jun1*(1.Hunan Institute for Drug Control,Changsha 410001,China;2.Food andDrug Inspection in Yueyang,Yueyang 414000,China)Abstract:A high performance liquid chromatographic(HPLC) method was established for the determi⁃nation of 9 self-heating compounds,including capsaicin in cosmetics.The samples were ultrasonically extracted with 80% methanol,and then filtered.The target compounds were separated on a Symme⁃tryShield TM RP18(250 mm × 4.6 mm,5 μm) with a mobile phase consisting of acetonitrile and 0.5% formic acid by gradient elution,and analyzed by HPLC with a PDA detector.Under the optimal condi⁃tions,good linear relationships were obtained for nine compounds in the concentration range of 0.2-100 μg/mL,with correlation coefficients(r2) not less than 0.999 5.The limits of detection(LODs)were in the range of 0.001 0-0.003 4 mg/kg.The spiked recoveries for water,lotion and cream ma⁃trixes at three levels of 0.004,0.02,1 mg/kg ranged from 75.6% to 115%,with relative standard de⁃viations(RSDs,n = 3) of 0.083%-7.0%.This method is accurate and sensitive,and is suitable for the qualitative and quantitative analysis of 9 self-heating compounds in cosmetics.Key words:self-heating compounds;cosmetics;high performance liquid chromatography(HPLC)近年来,随着人们审美要求的提高,消费者越来越注重自身形象和外表,具有健美功效的化妆品越来越受青睐。
July 20071073
Chem. Pharm. Bull.55(7) 1073—1076 (2007)
Notes
© 2007 Pharmaceutical Society of Japan ∗To whom correspondence should be addressed.e-mail: cpuli@; liping2004@
Fig.1.Chemical Structures of Thirteen Compounds in Flos Lonicerae
1074V ol. 55, No. 7
around China. Their contents were summarized in Table 4.The result indicated that phenolic acids were present in the highest concentrations, followed by iridoids. The flavonoids were present in the lowest concentrations. For each of the compounds, there was a relatively large range of concentra-tions among the tested samples, suggesting the inconsistent quality of commercial Flos Lonicerae. The analytical results obtained also indicated that a multiple-component-assay in-cluding phenolic acids, iridoids and flavonoids might be a ra-tional strategy to elucidate the synergic effects and compre-hensively control the quality of this herbal drug.
Conclusions
In this study, an HPLC-DAD-MS method for the qualifica-tion and quantification of three groups of compounds (phe-nolic acids, iridoids and flavonoids) in Flos Lonicerae has been developed and successfully applied to ten commercial Flos Lonicerae samples. This method is validated for good
July 2007
1075
2.Typical HPLC Chromatograms of Reference Compounds
(A) 240nm for the 13 compounds; (B) 330nm for the 13 compounds; (C) 360the 13 compounds.
3.Typical HPLC Chromatograms of Flos Lonicerae Sample
(A) 240nm for the Flos Lonicerae; (B) 330nm for the Flos Lonicerae; (C) 360for Flos Lonicerae.
Fig.4.TIC of Reference Compounds and Flos Lonicerae Sample
1076V ol. 55, No. 7。