数学分析第七章
- 格式:ppt
- 大小:4.05 MB
- 文档页数:80
第七章实数的完备性§1.Cauchy 收敛准则及迭代数列极限一引言问题极限{}n x 收敛、发散是什么意思?答如果存在数a ,使得lim n n x a →∞=,则称数列{}n x 收敛;反之称为发散。
问题上述关于数列“收敛性”的定义有何缺陷?答涉及数a ,这在理论上不够完美。
问题能否不涉及数a ,仅根据{}n x 本身的特性判断{}n x 的收敛性?答可以,如前面已学过的“单调有界定理”,“两边夹法则”,“Stolz 定理”等。
问题上述方法只是数列{}n x 收敛的“充分条件”,有无“充要条件”?答有,Cauchy 收敛准则――它是具有重要原则意义的敛散性充要判别法则,它揭示了实数的完备性。
二、基本数列(引进此概念仅为叙述方便)不严格的讲,如果lim n n x a →∞=⇒n 充分大时,n x a ≈⇒当n ,m 充分大时,0n m x x a a -≈-=,即从第m 个起,数列{}n x 的任意两项差别可以任意小。
严格的讲,有以下定义:定义1对每个ε>0,都能找到一个自然数N ,对一切n ,m ≥N ,成立不等式n m x x ε-<,则称{}n x 为(cauchy )基本数列,记作,lim ()0n m n m x x →∞-=。
简写:{}n x 是收敛数列⇔,lim ()0n m n m x x →∞-=⇔0,,,N n m N ε∀>∃∀≥,n m x x ε-<。
例1若{}n x 收敛,则{}n x 必是基本数列例2{}(1)n -不是基本数列例31n n +⎧⎫⎨⎬⎩⎭是基本数列。
三、Cauchy 收敛准则{}n x 收敛⇔{}n x 是基本数列四、实数系的完备性实数所组成的基本数列{}n x 比存在实数极限――实数系完备性;有理数域不具有完备性,如1(1)n n ⎧⎫+⎨⎬⎩⎭:1lim(1)n n e n →∞+=(无理数)。
五、函数极限的Cauchy 收敛准则设f 在点a 某个去心邻域有定义,则极限lim ()x a f x →存在且为有限⇔lim[()()]0x a x af x f x '→''→'''-=0ε⇔∀>,0δ∃>,当0x a δ'<-<,0x a δ''<-<时,()()f x f x ε'''-<。
第七章 实数的完备性§1关于实数集完备性的基本定理前面我们学习了:戴德金切割原理、确界原理、单调有界定理、致密性定理、柯西收敛准则,这些命题都是从不同方式反映实数集的一种特性,通常称为实数的完备性或实数的连续性公理。
本节再学习见个实数的完备性公理,即区间套定理、聚点定理、有限覆盖定理。
最后我们要证明这些命题都是等价的。
一、区间套定理]}定义1 设闭区间列具有如下性质: [{n n b a ,(i) []n n b a ,[]11,++⊃n n b a , ,2,1=n ; (ii) 0)(lim =-∞→n n n a b ,则称为闭区间套,或简称区间套。
[{n n b a ,]} 这里性质(¡)表明,构成区间套的闭区间列是前一个套着后一个,即各闭区间的端点满足如下不等式:.1221b b b a a a n n ≤≤≤≤≤≤≤≤ (1) 左端点{}n a 是单调递增的点列,右端点{}n b 是单调递减的点列。
定理1 (区间套定理) 若是一个区间套,则在实数系中存在唯一的一点[{n n b a ,]}ξ,使得ξ∈[]n n b a ,,,即,2,1=n ξ≤n a n b ≤, .,2,1 =n (2) 证 (由柯西收敛准则证明)设是一区间套.下面证明[{n n b a ,]}{}n a 是基本点列。
设,由区间套的条件(i)得m n >()()()()m n m n m m n n m m a a b a b a b a b a -=---≤---再由区间套的条件(ii ),易知{}n a 是基本点列。
按Cauchy 收敛准则,{}n a 有极限,记为ξ。
于是()lim lim ()lim n n n n n n n n b b a a a ξ→∞→∞→∞=-+==由{}n a 单调递增,{}n b 单调递减,易知ξ≤n a n b ≤,.,2,1 =n下面再证明满足(2)的ξ是唯一的。
第七章 实数基本定理 ( 1 8 时)§1 关于实数集完备性的基本定理( 4 时 )一. 确界存在定理:回顾确界概念.Th 1 非空有上界数集必有上确界;非空有下界数集必有下确界.二. 单调有界原理: 回顾单调和有界概念 .Th 2 单调有界数列必收敛.三. Cantor 闭区间套定理:1. 区间套: 设} ] , [ {n n b a 是一闭区间序列. 若满足条件ⅰ> 对n ∀, 有 ] , [11++n n b a ⊂] , [n n b a , 即 n n n n b b a a ≤<≤++11, 亦即 后一个闭区间包含在前一个闭区间中;ⅱ> ,0→-n n a b )(∞→n . 即当∞→n 时区间长度趋于零.则称该闭区间序列为一个递缩闭区间套, 简称为区间套 .简而言之, 所谓区间套是指一个 “闭、缩、套” 区间列.区间套还可表达为:, 1221b b b a a a n n ≤≤≤≤<≤≤≤≤ ,0→-n n a b )(∞→n . 注:这里涉及两个数列} {n a 和 } {n b , 其中} {n a 递增,} {n b 递减.例如 } ] 1 , 1 [ {n n -和} ] 1 , 0 [ {n 都是区间套.但} ] 21 , ) 1 (1 [ {nn n +-+、} ] 1 , 0 ( {n 和 } ] 11 , 1 [ {nn +-都不是. 2. Cantor 区间套定理:Th 3设} ] , [ {n n b a 是一闭区间套. 则存在唯一的点ξ,使对n ∀有∈ξ] , [n n b a .简言之, 区间套必有唯一公共点.四. Cauchy 收敛准则 —— 数列收敛的充要条件:1. 基本列:回顾基本列概念.基本列的直观意义.基本列亦称为Cauchy 列. Cauchy 列的否定:2. Cauchy 收敛原理:Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.五. 致密性定理:数集的聚点(亦称为接触点):定义 设E 是无穷点集. 若在点ξ(未必属于E )的任何邻域内有E 的无穷多个点, 则称点ξ为E 的一个聚点.数集E =} 1{n有唯一聚点0, 但E ∉0; 开区间 ) 1 , 0 (的全体聚点之集是闭区间 ] 1 , 0 [; 设Q 是] 1 , 0 [中全体有理数所成之集, 易见Q 的聚点集是闭区间] 1 , 0 [.1. 列紧性: 亦称为Weierstrass 收敛子列定理.Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.2. 聚点原理 : Weierstrass 聚点原理.Th 6 每一个有界无穷点集必有聚点.六. Heine –Borel 有限复盖定理:复盖: 先介绍区间族} , {Λ∈=λλI G .定义 (复盖 )设E 是一个数集,G 是区间族.若对∍Λ∈∃∈∀ , , λE x λI x ∈,则称区间族G 复盖了E , 或称区间族G 是数集E 的一个复盖. 记为. ,Λ∈⊂λλλI E 若每个λI 都是开区间,则称区间族G 是开区间族.开区间族常记为}, , ) , ( { Λ∈<=λβαβαλλλλM . 定义 (开复盖 )数集E 的一个开区间族复盖称为E 的一个开复盖,简称为E 的一个复盖.子复盖、有限复盖、有限子复盖.例1 } ) 1 , 0 ( ), 23 , 2 ( {∈=x x x M 复盖了区间) 1 , 0 (, 但不能复盖] 1 , 0 [; } ) , ( , ) 2 , 2 ( {b a x x b x x b x H ∈-+--=复盖) , [b a , 但不能复盖] , [b a . 1. Heine –Borel 有限复盖定理:Th 7 闭区间的任一开复盖必有有限子复盖.七 实数基本定理等价性的证明证明若干个命题等价的一般方法.本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行:Ⅰ: 确界原理 ⇒ 单调有界原理 ⇒ 区间套定理 ⇒ Cauchy 收敛准则 ⇒ 确界原理 ;Ⅱ: 区间套定理 ⇒ 致密性定理 ⇒ Cauchy 收敛准则 ;Ⅲ: 区间套定理 ⇒ Heine –Borel 有限复盖定理 ⇒ 区间套定理 .一. “Ⅰ” 的证明: (“确界原理 ⇒ 单调有界原理”已证明过 ).1. 用“确界原理”证明“单调有界原理”:Th 2 单调有界数列必收敛 .证2. 用“单调有界原理”证明“区间套定理”:Th 3 设} ] , [ {n n b a 是一闭区间套. 则存在唯一的点ξ,使对n ∀有∈ξ] , [n n b a . 证推论1 若∈ξ] , [n n b a 是区间套} ] , [ {n n b a 确定的公共点, 则对0>∀ε,,N ∃当N n >时, 总有] , [n n b a ) , (εξ ⊂.推论 2 若∈ξ] , [n n b a 是区间套} ] , [ {n n b a 确定的公共点,则有n a ↗ξ, n b ↘ξ, ) (∞→n .3. 用“区间套定理”证明“Cauchy 收敛准则”:Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.引理 Cauchy 列是有界列. ( 证 )Th 4 的证明: ( 只证充分性 ) 教科书P 217—218上的证明留作阅读.现采用[3]P 70—71例2的证明, 即三等分的方法, 该证法比较直观.4. 用“Cauchy 收敛准则” 证明“确界原理” :Th 1 非空有上界数集必有上确界 ;非空有下界数集必有下确界 .证 (只证“非空有上界数集必有上确界”)设E 为非空有上界数集 . 当E 为有 限集时 , 显然有上确界 .下设E 为无限集, 取1a 不是E 的上界, 1b 为E 的上界. 对 分区间] , [11b a , 取] , [22b a , 使2a 不是E 的上界, 2b 为E 的上界. 依此得闭区间列} ] , [ {n n b a . 验证} {n b 为Cauchy 列, 由Cauchy 收敛准则,} {n b 收敛; 同理} {n a 收敛. 易见n b ↘. 设n b ↘β.有 n a ↗β.下证β=E sup .用反证法验证β的上界性和最小性.二. “Ⅱ” 的证明:1. 用“区间套定理”证明“致密性定理”:Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.证 ( 突出子列抽取技巧 )Th 6 每一个有界无穷点集必有聚点.证 ( 用对分法 )2.用“致密性定理” 证明“Cauch y 收敛准则” :Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.证 (只证充分性)证明思路 :Cauchy 列有界→ 有收敛子列→验证收敛子列的极限即为} {n a 的极限.Ex [1]P 223—224 1—7,11.三. “Ⅲ” 的证明:1. 用“区间套定理”证明“Heine –Borel 有限复盖定理”:证2. 用“Heine –Borel 有限复盖定理” 证明“区间套定理”:证 采用[3]P 72例4的证明.Ex [1]P 224 8—12 选做,其中 1 0 必做.§3 闭区间上连续函数性质的证明 ( 4 时 )一. 有界性:命题1 ] , [)(b a C x f ∈, ⇒ 在] , [b a 上)(x f =) 1 (O .证法 一 ( 用区间套定理 ). 反证法.证法 二 ( 用列紧性 ). 反证法.证法 三 ( 用有限复盖定理 ).二. 最值性:命题2 ] , [)(b a C x f ∈⇒)(x f 在] , [b a 上取得最大值和最小值. (只证取得最大值) 证( 用确界原理) 参阅[1]P 170.三. 介值性: 证明与其等价的“零点定理 ”.命题3 (零点定理)证法一(用区间套定理).证法二(用确界原理).不妨设,0)(>a f 0)(<b f .令} ] , [ , 0)( | {b a x x f x E ∈>=, 则E 非空有界, ⇒ E 有上确界. 设E sup =ξ,有∈ξ] , [b a . 现证 0)(=ξf , ( 为此证明)(ξf 0≥且)(ξf 0≤ ).取n x >ξ且n x ) ( ,∞→→n ξ.由)(x f 在点ξ连续和0)(≤n x f ,⇒,0)(lim )(≤=∞→n n x f f ξ,⇒ξE ∉.于是) ( , ∞→→∍∈∃n t E t n n ξ. 由)(x f 在点ξ连续和0)(>n t f ,⇒0)(lim )(≥=∞→n n t f f ξ.因此只能有0)(=ξf . 证法三 (用有限复盖定理).Ex [1]P 232 1,2,5.四. 一致连续性:命题4 ( Cantor 定理 )证法一 (用区间套定理).参阅[1]P 171[ 证法一 ]证法二 (用列紧性).参阅[1]P 171[ 证法二 ]Ex [1]P 232 3,4, 6*;P 236 1,2,4.。
第七章 实数的完备性(9学时)§1 关于实数完备性的基本定理教学目的要求: 掌握实数完备性的基本定理的内容,知道其证明方法.教学重点、难点:重点实数完备性的基本定理.难点是定理的证明,特别是柯西收敛准则和充分性的证明.. 学时安排: 4学时 教学方法: 讲授法. 教学过程如下:一、区间套定理与柯西收敛准则定义1 设闭区间列{[,]}n n a b 具有如下性质: (1)11[,][,],1,2,;n n n n a b a b n ++⊃= (2)lim ()0n n n b a →∞-=则称{[,]}n n a b 为闭区间套,或简称区间套.定理7.1(区间套定理) 若{[,]}n n a b 是一个区间套,则在实数系中存在唯一的一点ξ使得[,],1,2,n n a b n ξ∈= ,即 ,1,2,.n n a b n ξ≤≤=证: 先证存在性{[,]}nn ab 是一个区间套, 所以 1221,n n a a a b b b ≤≤≤≤≤≤≤≤∴可设lim n n a ξ→∞=且由条件2有lim lim ()lim n n n n n n n n b b a b a ξ→∞→∞→∞=-+==由单调有界定理的证明过程有,1,2,.n n a b n ξ≤≤= 再证唯一性设ξ'也满足,1,2,.n n a b n ξ'≤≤= 那么,,1,2,.n n b a n ξξ'-≤-= 由区间套的条件2得lim ()0n n n b a ξξ→∞'-≤-=故有ξξ'=推论 若[,](1,2,)n n a b n ξ∈= 是区间套{[,]}n n a b 所确定的点,则对任给的0ε>,存在0N >,使得当n N >时有[,](,)n n a b U ξε⊂柯西收敛准则 数列{}n a 收敛的充要条件是: 对任给的0ε>,存在0N >,使得对,m n N >有 ||m n a a ε-<.证 [必要性] 略.[充分性] 已知条件可改为:对任给的0ε>,存在0N >,使得对,m n N ≥有||m n a a ε-≤.取m N =,有对任给的0ε>,存在0N >,使得对n N ≥有||m n a a ε-≤,即 在区间[,]N N a a εε-+内含有{}n a 中几乎所有的项(指的是{}n a 中除有限项的所有项)∴令12ε=则存在1N ,在区间1111[,]22N N a a -+内含有{}n a 中几乎所有的项,记该区间为11[,]αβ. 再令212ε=则存在21()N N >,在区间112211[,]22N N a a -+内含有{}n a 中几乎所有的项,记该区间为1122112211[,][,][,]22N N a a αβαβ=-+也含有{}n a 中几乎所有的项,且满足1122[,][,]αβαβ⊃及221.2βα-≤依次继续令311,,,,22nε=得一区间列{[,]}n n αβ,其中每个区间中都含有{}n a 中几乎所有的项,且满足11[,][,],1,2,;n n n n n αβαβ++⊃=110(),2n n n n βα--≤→→∞即时{[,]}n n αβ是区间套.由区间套定理,存在唯一的一个数[,],1,2,n n n ξαβ∈= . 再证lim n n a ξ→∞=.由定理7.1的推论对任给的0ε>,存在0N >,使得当n N >时有[,](,)n n U αβξε⊂即在(,)U ξε内含{}n a 中除有限项的所有项,由定义1'lim n n a ξ→∞=. 二、聚点定理与有限覆盖定理定义 2 设S 为数轴上产的点集,ξ为定点,若ξ的任何邻域内都有含有S 中无穷多个点,则称ξ为点集S 的一个聚点.例如:1{(1)}nn -+有两聚点1,1ξξ==-.1{}n 有一个聚点0ξ=.(,)a b 内的点都是它的聚点,所以开区间集(,)a b 有无穷多个聚点. 聚点的等价定义;定义2'对于点集S ,若点ξ的任何ε邻域内都含有S 中异于ξ的点,即(;)U S ξε≠∅ ,则称ξ为S 的一个聚点.定义2''若存在各项互异的数列{}n x S ⊂,则其极限lim n n x ξ→∞=称为S 的一个聚点.三个定义等价性的证明: 证明思路为:2222'''⇒⇒⇒.定义22'''⇒的证明:由定义2'设ξ为S 的一个聚点,则对任给的0ε>,存在0(,)x U S ξε∈ .令11ε=,则存在01(,)x U S ξε∈ ;令211m in(,||)2x εξ=-,则存在022(;)x U S ξε∈ ,且显然21x x ≠;令11m in(,||)2n n x εξ-=-,则存在0(;)n n x U S ξε∈ ,且显然n x 与11,,n x x - 互异;得S 中各项互异的数列{}n x ,且由1||n n n x n ξε-<≤,知lim n n x ξ→∞=.由闭区间套定理可证聚点定理.定理7.2 (Weierstrass 聚点定理) 实数轴上的任一有界无限点集S 致少有一个聚点. 证 S 有界, ∴存在0M >,使得[,]S M M ⊂-,记11[,][,]a b M M =-,将11[,]a b 等分为两个子区间.因S 为无限点集,故意两个子区间中至少有一个含有S 中无穷多个点,记此子区间为22[,]a b ,则1122[,][,]a b a b ⊃且122112()b a b a M -=-=.再将22[,]a b 等分为两个子区间,则其中至少有一个含有S 中无穷多个点,取出这样一个子区间记为33[,]a b ,则2233[,][,]a b a b ⊃,且133222()2M b a b a -=-=依次继续得一区间列{[,]}n n a b ,它满足:11[,][,],1,2,;n n n n a b a b n ++⊃= 20(),2n n n M b a n --=→→∞即{[,]}n n a b 为闭区间套,且其中每一个闭区间都含有S 中无穷多个点.由区间套定理, 存在唯一的一点ξ使得[,],1,2,n n a b n ξ∈= .由定理1的推论, 对任给的0ε>,存在0N >,使得当n N >时有[,](,)n n a b U ξε⊂.从而(;)U ξε含有S 中无穷多个点按定义2ξ为S 的一个聚点.推论(致密性定理) 有界数列必含有收敛子列.证: 设{}n x 为有界数列.若{}n x 中有无限多个相等的项,显然成立.若数列{}n x 中不含有无限多个相等的项,则{}n x 在数轴上对应的点集必为有界无限点集,故由聚点定理,点集{}n x 至少有一个聚点,记为ξ.由定义2'',存在{}n x 的一个收敛子列(以ξ为极限).由致密性定理证柯西收敛准则的充分性.柯西收敛准则 数列{}n a 收敛的充要条件是: 对任给的0ε>,存在0N >,使得对,m n N >有 ||m n a a ε-<.证: [充分性] 先证{}n a 有界,由忆知条件取1ε=,则存在正整数N, 则1m N =+及n N >时有1||1n N a a +-<由此得111||||1||n n N N N a a a a a +++=-+<+.取121m ax{||,||,,||,1||}N N M a a a a +=+ 则对一切的正整数n 均有||n a M ≤. 再证{}n a 收敛,由致密性定理,数列{}n a 有收敛子列{}k n a ,设lim k n k a A→∞=由条件及数列极限的定义, 对任给的0ε>,存在0K >,使得对,,m n k N >有||m n a a ε-<,||k n a A ε-<取()k m n k K =≥>时得到 ||||||2kkn n n n a A a a a A ε-≤-+-<所以lim k n k a A→∞=定义3 设S 为数思轴上的点集,H 为开区间集合(即H 的每一个元素都是形如(,)αβ的开区间).若S 中的任何一个点都有含在H 中至少一个开区间内,则称H 为S 的一个开覆盖,( H 覆盖S ).若H 中开区间的个数是无限的(有限)的,则称H 为S 的一个无限开覆盖(人限开覆盖).如(,),S a b ={(,)|(,)},x x H x x x a b δδ=-+∈H 为S 的一个无限开覆盖.定理7.3(海涅---博雷尔(Heine-Borel)有限覆盖定理) 设H 为闭区间[,]a b 的一个(无限)开覆盖,则从H 中可选出有限个开区间来覆盖[,]a b .证 用反证法 设定理的结论不成立,即不能用H 中有限个开区间来覆盖[,]a b . 将[,]a b 等分为两个子区间,其中至少有一个不区间不能用H 中有限个开区间来覆盖.记这个子区间为11[,]a b ,则11[,][,]a b a b ⊂,且111()2b a b a -=-.再将11[,]a b 等分为两个子区间,同样,其中至少有一个不区间不能用H 中有限个开区间来覆盖.记这个子区间为22[,]a b ,则2211[,][,]a b a b ⊂,且2221()2b a b a -=-.依次继续得一区间列{[,]}n n a b ,它满足:11[,][,],1,2,;n n n n a b a b n ++⊃= 1()0(),2n n nb a b a n -=-→→∞即{[,]}n n a b 为闭区间套,且其中每一个闭区间都不能用H 中有限个开区间来覆盖 由闭区间套定理, 存在唯一的一点ξ使得[,],1,2,n n a b n ξ∈= ,由于H 为闭区间[,]a b 的一个(无限)开覆盖,故存在(,),H αβ∈使得(,)ξαβ∈.于是,由定理7.1的推论,当n 充分大时有[,](,)n n a b αβ⊂.即用H 中一个开区间就能覆盖[,]n n a b 矛盾.课后记:这一节理论性强,学生学习困难较大,我认为应从以下几个方面和学生共同学习这一节.1 如何理解记忆定理内容.2 如何掌握定理的证明方法.3 怎样应用定理及定理的证明方法去解决问题.在应用闭区间套定理时,应先构造一个闭区间套,构造的方法一般是二等分法,在应用有限覆盖定理时,应先构造一个开覆盖构造的方法一般与函数的连续性定义结合.应用聚点定理时,应先构造一数列等.教材中P 16322[,]αβ中包含{}n a 的几乎所有项,是因为它中包含{}n a 的第2N 项以后的所有项,这里应强掉,容易被忽略.在下节的教学中就让学一注意到在什么时候用实数的完备性定理,这是一个难点,重点.三、 实数基本定理等价性的证明(未讲)证明若干个命题等价的一般方法.本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行: Ⅰ: 确界原理单调有界原理区间套定理Cauchy 收敛准则确界原理 ; Ⅱ: 区间套定理 致密性定理Cauchy 收敛准则 ;Ⅲ: 区间套定理Heine –Borel 有限复盖定理区间套定理 .一. “Ⅰ” 的证明: (“确界原理 单调有界原理”已证明过 ).1. 用“确界原理”证明“单调有界原理”: 定理7.4 单调有界数列必收敛 .2. 用“单调有界原理”证明“区间套定理”: 定理 7.5 设是一闭区间套. 则存在唯一的点,使对有.推论1 若是区间套确定的公共点, 则对,当时, 总有.推论2 若是区间套确定的公共点, 则有↗,↘,. 3. 用“区间套定理”证明“Cauchy 收敛准则”:定理 7.6数列收敛是Cauchy列.引理Cauchy列是有界列. ( 证 )定理 7.6 的证明: ( 只证充分性 ) 教科书P217—218上的证明留作阅读 . 现采用三等分的方法证明,该证法比较直观.4.用“Cauchy收敛准则”证明“确界原理”:定理7.7非空有上界数集必有上确界;非空有下界数集必有下确界 .证(只证“非空有上界数集必有上确界”)设为非空有上界数集 . 当为有限集时 , 显然有上确界 .下设为无限集, 取不是的上界, 为的上界. 对分区间, 取, 使不是的上界, 为的上界. 依此得闭区间列. 验证为Cauchy列, 由Cauchy收敛准则,收敛; 同理收敛. 易见↘. 设↘.有↗.下证.用反证法验证的上界性和最小性.二. “Ⅱ”的证明:1. 用“区间套定理”证明“致密性定理”:定理7.8 (Weierstrass )任一有界数列必有收敛子列.证(突出子列抽取技巧)定理7.9每一个有界无穷点集必有聚点.2.用“致密性定理”证明“Cauchy收敛准则”:定理7.10数列收敛是Cauchy列.证(只证充分性)证明思路:Cauchy列有界有收敛子列验证收敛子列的极限即为的极限.三.“Ⅲ”的证明:1. 用“区间套定理”证明“Heine–Borel 有限复盖定理”:2. 用“Heine–Borel 有限复盖定理”证明“区间套定理”:§2 闭区间上连续函数性质的证明教学目的要求:掌握定理的证明方法.教学重点、难点:重点是定理的证明方法,难点是什么情况下用哪一个定理.学时安排: 2学时教学方法: 讲授法.教学过程:一. 有界性:命题1 , 在上.证法一 ( 用区间套定理 ). 反证法.证法二 ( 用列紧性 ). 反证法.证法三 ( 用有限复盖定理 ).二.最值性:命题2 , 在上取得最大值和最小值.( 只证取得最大值 )证 ( 用确界原理 ) 参阅[1]P226[ 证法二 ] 后半段.三.介值性:证明与其等价的“零点定理”.命题3 ( 零点定理 )证法一 ( 用区间套定理 ) .证法二 ( 用确界原理 ). 不妨设.令, 则非空有界, 有上确界. 设有. 现证, ( 为此证明且). 取>且.由在点连续和, ,. 于是. 由在点连续和,. 因此只能有.证法三 ( 用有限复盖定理 ).四.一致连续性:命题4 ( Cantor定理 )证法一 ( 用区间套定理 ) .证法二 ( 用列紧性 ).五.实数基本定理应用举例:例1 设是闭区间上的递增函数, 但不必连续 . 如果,, 则, 使. ( 山东大学研究生入学试题 )证法一 ( 用确界技术 . 参阅[3] P76例10 证法1 )设集合. 则, 不空 ; ,有界 . 由确界原理 ,有上确界. 设, 则.下证.ⅰ)若, 有; 又, 得.由递增和, 有, 可见. 由,. 于是 , 只能有.ⅱ)若, 则存在内的数列, 使↗, ; 也存在数列, ↘,. 由递增, 以及, 就有式对任何成立 . 令, 得于是有.证法二 ( 用区间套技术, 参阅[3] P77例10 证法2 ) 当或时,或就是方程在上的实根 . 以下总设. 对分区间, 设分点为. 倘有, 就是方程在上的实根.(为行文简练计, 以下总设不会出现这种情况 ) . 若, 取; 若, 取, 如此得一级区间. 依此构造区间套, 对,有. 由区间套定理, , 使对任何,有.现证.事实上, 注意到时↗和↘以及递增,就有.令, 得于是有.例2 设在闭区间上函数连续, 递增 , 且有,. 试证明: 方程在区间内有实根 .证构造区间套,使.由区间套定理,, 使对,有. 现证. 事实上, 由在上的递增性和的构造以及↗和↘,, 有.注意到在点连续,由Heine归并原则, 有,, . 为方程在区间内的实根.例3 试证明: 区间上的全体实数是不可列的 .证 ( 用区间套技术, 具体用反证法 ) 反设区间上的全体实数是可列的,即可排成一列:把区间三等分,所得三个区间中至少有一个区间不含,记该区间为一级区间. 把区间三等分,所得三个区间中至少有一个区间不含,记该区间为二级区间. …… .依此得区间套, 其中区间不含. 由区间套定理,, 使对, 有. 当然有. 但对有而, . 矛盾.习题课( 3学时)一.实数基本定理互证举例:例4 用“区间套定理”证明“单调有界原理”.证设数列递增有上界. 取闭区间, 使不是的上界, 是的上界. 易见在闭区间内含有数列的无穷多项, 而在外仅含有的有限项. 对分, 取使有的性质.…….于是得区间套,有公共点. 易见在点的任何邻域内有数列的无穷多项而在其外仅含有的有限项, .例5 用“确界原理”证明“区间套定理”.证为区间套. 先证每个为数列的下界, 而每个为数列的上界. 由确界原理 , 数列有上确界, 数列有下确界 .设, .易见有和.由,.例6 用“有限复盖定理”证明“聚点原理”.证 ( 用反证法 ) 设为有界无限点集, . 反设的每一点都不是的聚点, 则对, 存在开区间, 使在内仅有的有限个点. …… .例7 用“确界原理”证明“聚点原理”.证设为有界无限点集. 构造数集中大于的点有无穷多个.易见数集非空有上界, 由确界原理, 有上确界. 设. 则对,由不是的上界中大于的点有无穷多个; 由是的上界,中大于的点仅有有限个. 于是, 在内有的无穷多个点,即是的一个聚点 .课后记强掉应先构造闭区间套、构造开覆盖、构造数列等的方法.通过大量的例子让同学们体会在什么时候用哪一个定理.。
1数值分析第七章第七章非线性方程求根一、重点内容提要(一)问题简介求单变量函数方程f(x)?0(7.1)f(x*)?0x*x*x*为也称为方程的根是指求(7.1).(实数或复数),使得称的根,m f(x)?(x?x*)g(x)f(x)f(x)函数的零点.若可以分解为g(x)g(x)?0x*x*为单称m=1满足时,是方程(7.1)的根.,则当其中m为正整数,g(x)x*x*是方程(7.1)的m称,充分光滑,为m重根.若重根,则有根;当m>1时(m?1)(m)f(x*)?f'(x*)?...?f(x*)?0,f(x*)?0f(x)f(a)f(b)?0,则方程(7.1)在(a,b)[a,b]若上连续且内至少有一个实根,称在[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得.(二)方程求根的几种常用方法1.二分法f(x)f(a)f(b)?0f(x)?0f(x)?0*x在上连续,再设内有根,则设.在(a,b)在[a,b]1x?(a?b)a?a,b?bf(x)f(x)?0000计算和.,若则(a,b)内仅有一个根.令20000a?xb?b[a,b])f(a)f(x?0x*?x;,则令,结束计算;若若得新的有根区间,10,11001a?ab?x0)?(f(a)fx,得新,则令的有根区间0110,0011b?a?(b?a)x?(a?b)[a,b][a,b]?[a,b]f(x)0101111再令计算,.,.同上法得221110101[a,b],如此反复进行出新的有根区间,可得一有根区间套22...?[a,b]?[a,b]?...?[a,b]001?n1?nnn2数值分析第七章11a?x*?b,n?0,1,2,...,b?a?(b?a)?...?(b?a)0n0?1nnn?1nn且. 221lim(b?a)?0,lim x?lim(a?b)?x* nnnnn故2????n??nn1x?(a?b)f(x)?0nnn的近似根,可作为,且有误差估计因此21(b?a)|x?x*|?n1?n(7.2)22.迭代法?(x?)x等价变形为将方程式(7.1) (7.3)??(x*)?)(xf(x*)?0x**xx*的一个不动点为函数.;反之亦然则.若要求称满足?(x)的不动点由式(7.3)产生的不动点迭代关系式(也求方程(7.1)的根等价于求称简单迭代法)为?(x),k?0,1,2...x?(7.4)k1?k?(x),k??x0,1,2...?(x)称为迭代函数.函数如果对任意,由式(7.4)产生的序列??x有极限kk??k则称不动点迭代法(7.4)收敛.kk?1x?x*lim?(x)?C[a,b]满足以下两个条件: 定理7.1(不动点存在性定理)设?(x)??b;x?[a,b]a有1.对任意??(y)|?|x?y|?,y[a,b]|(x)?x 2.存在正常数使对任意, ,都有(7.5)1?L?(x)[a,b]x*.则在上存在惟一的不动点?(x)?C[a,b]满足定理7.2(定理不动点迭代法的全局收敛性定理)设7.1中的两个??x]b,?x[a?(x)并条件,由,(7.4),的不动点式得到的迭代序列则对任意到.收敛k0有误差估计式3数值分析第七章L|x?*|?x||x?x1kkk?(7.6)L1?k L|x?x*|?|x?x|1?kkk L1?(7.7)和??'(xx))(xx**的某,为设在的不动点定理7.3(不动点迭代法的局部收敛性定理)?'(x)|?|1,则迭代法(7.4)局部收敛个邻域连续,且.?(xx?)x*,的根如果迭代误差收敛阶的概念设迭代过程(7.4)收敛于方程e?x?x*k??时成产下列渐近关系式当kk e k?1?C(常数C?0)e(7.8) k则称该迭代过程是p阶收敛的.特别地,p=1时称线性收敛,p>1时称超线性收敛,p=2时称平方收敛.(K)?(x)x*的邻近连续,并定理7.4(收敛阶定理在所求根)对于迭代过程(7.4),如果且(p?1)???(x*)?...?*)?'(x*)?0''(x(p)?(x*)?0(7.9)*x的邻近是收敛的,则该迭代过程在点并有e1)(p?1k?*)x?lim(p!ep??k (7.10)k斯蒂芬森(Steffensen)迭代法当不动点迭代法(7.4)只有线性收敛阶,甚至于不收敛时,可用斯蒂芬森迭代法进行加速.具体公式为??(y?)(x),zy?kkkk2)?x(y kk x?x?kk?1z?2y?x kkk k?0,1,2,...(7.11)4数值分析第七章此法也可写成如下不动点迭代式?(x),kx??0,1,2,...kk?12?)?x(x)(?(x)?x????(x)?2?(x(x))(7.12)?(x)x**x是为式(7.12)中则的不动点7.5(定理斯蒂芬森迭代收敛定理)设,?(x)???1*)''(x)?'(x(x)*x的不动点,存在,的不动点;设则,则斯蒂芬森迭代法是(7.11)是2阶收敛的.3.牛顿迭代法牛顿迭代法是一种特殊的不动点迭代法,其计算公式为f(x)k,x?k?0,1,2,...?x k?k1)xf'(其迭代函数为(7.13)k f(x)??(x)?x f'(x)f(x*)?0,f'(x*)?0,f''(x*)?0时牛顿迭代法的收敛速度当,容易证f''(x*)??0*)?''(x 0'(x*)?ff'(x*),由定理,明,7.4知,牛顿迭代法是平方收敛的,且ef''(x*)1?k?lim2*)f'(ex2??k(7.14)k f(x)?0(m?2)*x时,迭代函数的m重顿重根情形的牛迭代法当根是f(x)1??x)?(x?'(x*)?1??0?'(x*)|?1|)xf'(*x.所以牛顿迭代法求处的导数在,且m x*的重数m知道,重根只是线性收敛.若则迭代式f(x)k,k?0,1,2,...??xx?m kk?1)'(xf(7.15)k f(x)??x()f'(x)*x此时迭代式,的单重零点一定是函数,未知时m当.求重根二阶收敛5数值分析第七章?(x)f(x)f'(x)kkk?xx??x?kk?1k?)f''(x)x)]?f(x'(x)[f'(kkkk k?0,1,2,...(7.16)也是二阶收敛的.f(x)k,?k?0,1,2,...x?x k1k?)xf'(如下迭代法简化牛顿法0称为简化牛顿法或平行弦法.牛顿下山法为防止迭代不收敛,可采用牛顿下山法.具体方法见教材.4.弦截法f'(x)xxf(x)在,处的一阶差商来代替,将牛顿迭代法(7.13)中的即可得弦用kkk?1截法f(x)k(xx?x??x)1kk?1k?k f(x)?f(x)(7.17)??x*|:|x??*x内具有二阶连续导数,的邻域在其零点定理7.6假设且对任1kk?)(xfx,x??10f'(x)?0?x?,又初值,,意则当邻域充分小时,有弦截法(7.17)将按阶?1?5?p?1.6182???1?0?*x2的正根收敛到是方程..这里p5.抛物线法(x,f(x)),(x?f(x))两点的直线方程的根近似替弦截法可以理解为用过kk?1kk?1xxx0x)?(fx)?0f(用,过三若的根.已知个近似根,的2kk?1k?(x,f(x)),(x,f(x)),(x,f(x))f(x)?0的根,的抛物线方程的根近似代替2??k?k121k?kkk所得的迭代法称为抛物线法,也称密勒(Muller)法.f(x)f'(x*)?0*x,则抛物线法局部收敛当,在,的邻近有三阶连续导数且收敛阶p?1.839?1.84. 为数值分析第七章二、知识结构图三、常考题型及典型题精解3上有一个实根x*,并用二分法2]在[1,?1?例7-1 证明方程x0?x-6-3,需二分区间[1,2]10.若要求|x-x*|?求这个根,要求|x-x*|?10kk多少次?3在[1,2],则f(1)=-1<0,f(2)=5>0,故方程f(x)=0x?解设f(x)=x1?2在[1,2]时,f'(x)>0,即f(x)=0-1,所以当x?上有根x*.又因f'(x)=3x上有惟一实根x*.用二分法计算结果如表7-1所示.[1,2]7-1表k abxf(x)的符号kkkk+ 2 0 1 1.5- 1.5 1 1 1.25+ 2 1.25 1.51.3751.3125 3 1.251.375 -1.375 1.3438 1.3125 4 +1.312551.3282+1.1341.3125-861.32041.32041.32827-1.32431.32431.32821.3263+87数值分析第七章9 1.3243 1.3282 1.3253 +1.32631-3-3,可以作为x*的近??10此时x=1.3253满足|x-x*|?10?0.97799102似值.1-6?6,只需|x10-x*|?-x*|即可,解得k+1?19.932, 若要求|x?10?kkk+12即只需把[1,2]二分20次就能满足精度要求.x=1,(1)确定有根区间[a,b];(2)构造不动e例7-2 已知函数方程(x-2)点迭代公式使之对任意初始近似x?[a,b],迭代方法均收敛;(3)用所构0?3.|?10造的公式计算根的近似值,要求|x?x1k k?xx因此区间[2,3]0,e解 (1)令f(x)=(x-2)-1>-1,由于f(2)=-1<0,f(3)=e x x)=-1,f(,lim,lim f(x)=+?是方程f(x)=0的一个有根区间.又因f'(x)=(x-1)e???xx???1-1<0,当x>1时f(x)单增,x<1时f(x)单减,故f(x)=0在(-?,+?)内f'(1)=-e有且仅有一根x*,即x*?[2,3].x?xx?.由于当?将(x-2)e[2,3].则=1等价变形为x=2+ee(x)=2+,x(2)2??x??<1'(x)|=|-e?e[2,3]x?时2?|(x)?3,|x?[2,3]均收敛.??故不动点迭代法x=2+e x,k=0,1,2,...,对k0k+1x?进行迭代计算,结果如表7-2所示.e(3)取x=2.5,利用x=2+k k+10表7-28数值分析第七章此时x已满足误差要求,即x*?x?2.120094976.44例7?3考虑求解方程2cos x?3x?12?0的迭代公式2 x=4+cos x,k=0,1,2,...k k+13(1)试证:对任意初始近似x?R,该方法收敛;0-3;10-x|?(2)取x=4,求根的近似值x,要求|x k0k+1k+1(3)所给方法的收敛阶是多少?2?(x)=4+cos x,解 (1)由迭代公式知,迭代函数322?(x)的值域介于(4-)与(4+由于)之间,且(??,??).x?3322?'(x)|=|-sin x|??1|33?(x)在(??,??)内存在惟一的故根据定理7.1,7.2知,??收敛于x*.x?x?R,迭代公式得到的序列不动点x*,且对k0(2) 取x=4,迭代计算结果如表7-3所示.0表7-3x*?xx?3.347529903已满足误差要求,即此时55?'(x*)?0.136323129?0,故根据定理7 .4)由于(3知方法是线性收敛的,并e?1k?'(x?*)lim e??k。
第七章 实数的完备性 3 上极限和下极限定义1:若在数a 的任一邻域内含有数列{x n }的无限多个项,则称a 为{x n }的一个聚点.注:点列(或数列)的聚点邻域中可以包含无限个相同的项;而点集(或数集)的聚点邻域中只能包含无限个不同的项。
定理7.4:有界点列(数列){x n }至少有一个聚点,且存在最大聚点与最小聚点.证:∵{x n }为有界数列,∴存在M>0,使得|x n |≤M ,记[a 1,b 1]=[-M,M]. 将[a 1,b 1]等分成两个子区间,若右边的子区间含有{x n }中无穷多个项,则取右边的区间,否则取左边的区间为[a 2,b 2],则[a 1,b 1]⊃[a 2,b 2],且b 2-a 2=21(b 1-a 1)=M. [a 2,b 2]含有{x n }中无穷多个项; 将[a 2,b 2]等分成两个子区间,若右边的子区间含有{x n }中无穷多个项,则取右边的区间,否则取左边的区间为[a 3,b 3],则 ∴[a 2,b 2]⊃[a 3,b 3],且b 3-a 3=21(b 2-a 2)=2M. [a 3,b 3]含有{x n }中无穷多个项; 依此规律,将等分区间无限进行下去,可得区间列{[a n ,b n ]}满足 [a n ,b n ]⊃[a n+1,b n+1],且b n -a n =2-n 2M→0 (n →∞),即{[a n ,b n ]}是区间套,且 每一个闭区间都含有{x n }中无穷多个项,而 其右边至多只有{x n }中有限多个项.由区间套定理,存在唯一的一点ξ,使得ξ∈[a n ,b n ], n=1,2,….又对任给的ε>0,存在N>0,使得当n>N 时有[a n ,b n ]⊂U(ξ; ε), ∴U(ξ; ε)内含有{x n }中无穷多个项,∴ξ为{x n }的一个聚点. 若ξ为{x n }的唯一的聚点,则ξ同时为{x n }的最大聚点和最小聚点. 若{x n }有聚点ζ>ξ,则令δ=31(ζ-ξ)>0,在U(ζ,δ)内含有{x n }中无穷多个项, 且当n 充分大时,U(ζ,δ)将落在[a n ,b n ]的右边,矛盾。