数学分析第七章
- 格式:ppt
- 大小:4.05 MB
- 文档页数:80
第七章实数的完备性§1.Cauchy 收敛准则及迭代数列极限一引言问题极限{}n x 收敛、发散是什么意思?答如果存在数a ,使得lim n n x a →∞=,则称数列{}n x 收敛;反之称为发散。
问题上述关于数列“收敛性”的定义有何缺陷?答涉及数a ,这在理论上不够完美。
问题能否不涉及数a ,仅根据{}n x 本身的特性判断{}n x 的收敛性?答可以,如前面已学过的“单调有界定理”,“两边夹法则”,“Stolz 定理”等。
问题上述方法只是数列{}n x 收敛的“充分条件”,有无“充要条件”?答有,Cauchy 收敛准则――它是具有重要原则意义的敛散性充要判别法则,它揭示了实数的完备性。
二、基本数列(引进此概念仅为叙述方便)不严格的讲,如果lim n n x a →∞=⇒n 充分大时,n x a ≈⇒当n ,m 充分大时,0n m x x a a -≈-=,即从第m 个起,数列{}n x 的任意两项差别可以任意小。
严格的讲,有以下定义:定义1对每个ε>0,都能找到一个自然数N ,对一切n ,m ≥N ,成立不等式n m x x ε-<,则称{}n x 为(cauchy )基本数列,记作,lim ()0n m n m x x →∞-=。
简写:{}n x 是收敛数列⇔,lim ()0n m n m x x →∞-=⇔0,,,N n m N ε∀>∃∀≥,n m x x ε-<。
例1若{}n x 收敛,则{}n x 必是基本数列例2{}(1)n -不是基本数列例31n n +⎧⎫⎨⎬⎩⎭是基本数列。
三、Cauchy 收敛准则{}n x 收敛⇔{}n x 是基本数列四、实数系的完备性实数所组成的基本数列{}n x 比存在实数极限――实数系完备性;有理数域不具有完备性,如1(1)n n ⎧⎫+⎨⎬⎩⎭:1lim(1)n n e n →∞+=(无理数)。
五、函数极限的Cauchy 收敛准则设f 在点a 某个去心邻域有定义,则极限lim ()x a f x →存在且为有限⇔lim[()()]0x a x af x f x '→''→'''-=0ε⇔∀>,0δ∃>,当0x a δ'<-<,0x a δ''<-<时,()()f x f x ε'''-<。
第七章 实数的完备性§1关于实数集完备性的基本定理前面我们学习了:戴德金切割原理、确界原理、单调有界定理、致密性定理、柯西收敛准则,这些命题都是从不同方式反映实数集的一种特性,通常称为实数的完备性或实数的连续性公理。
本节再学习见个实数的完备性公理,即区间套定理、聚点定理、有限覆盖定理。
最后我们要证明这些命题都是等价的。
一、区间套定理]}定义1 设闭区间列具有如下性质: [{n n b a ,(i) []n n b a ,[]11,++⊃n n b a , ,2,1=n ; (ii) 0)(lim =-∞→n n n a b ,则称为闭区间套,或简称区间套。
[{n n b a ,]} 这里性质(¡)表明,构成区间套的闭区间列是前一个套着后一个,即各闭区间的端点满足如下不等式:.1221b b b a a a n n ≤≤≤≤≤≤≤≤ (1) 左端点{}n a 是单调递增的点列,右端点{}n b 是单调递减的点列。
定理1 (区间套定理) 若是一个区间套,则在实数系中存在唯一的一点[{n n b a ,]}ξ,使得ξ∈[]n n b a ,,,即,2,1=n ξ≤n a n b ≤, .,2,1 =n (2) 证 (由柯西收敛准则证明)设是一区间套.下面证明[{n n b a ,]}{}n a 是基本点列。
设,由区间套的条件(i)得m n >()()()()m n m n m m n n m m a a b a b a b a b a -=---≤---再由区间套的条件(ii ),易知{}n a 是基本点列。
按Cauchy 收敛准则,{}n a 有极限,记为ξ。
于是()lim lim ()lim n n n n n n n n b b a a a ξ→∞→∞→∞=-+==由{}n a 单调递增,{}n b 单调递减,易知ξ≤n a n b ≤,.,2,1 =n下面再证明满足(2)的ξ是唯一的。
第七章 实数基本定理 ( 1 8 时)§1 关于实数集完备性的基本定理( 4 时 )一. 确界存在定理:回顾确界概念.Th 1 非空有上界数集必有上确界;非空有下界数集必有下确界.二. 单调有界原理: 回顾单调和有界概念 .Th 2 单调有界数列必收敛.三. Cantor 闭区间套定理:1. 区间套: 设} ] , [ {n n b a 是一闭区间序列. 若满足条件ⅰ> 对n ∀, 有 ] , [11++n n b a ⊂] , [n n b a , 即 n n n n b b a a ≤<≤++11, 亦即 后一个闭区间包含在前一个闭区间中;ⅱ> ,0→-n n a b )(∞→n . 即当∞→n 时区间长度趋于零.则称该闭区间序列为一个递缩闭区间套, 简称为区间套 .简而言之, 所谓区间套是指一个 “闭、缩、套” 区间列.区间套还可表达为:, 1221b b b a a a n n ≤≤≤≤<≤≤≤≤ ,0→-n n a b )(∞→n . 注:这里涉及两个数列} {n a 和 } {n b , 其中} {n a 递增,} {n b 递减.例如 } ] 1 , 1 [ {n n -和} ] 1 , 0 [ {n 都是区间套.但} ] 21 , ) 1 (1 [ {nn n +-+、} ] 1 , 0 ( {n 和 } ] 11 , 1 [ {nn +-都不是. 2. Cantor 区间套定理:Th 3设} ] , [ {n n b a 是一闭区间套. 则存在唯一的点ξ,使对n ∀有∈ξ] , [n n b a .简言之, 区间套必有唯一公共点.四. Cauchy 收敛准则 —— 数列收敛的充要条件:1. 基本列:回顾基本列概念.基本列的直观意义.基本列亦称为Cauchy 列. Cauchy 列的否定:2. Cauchy 收敛原理:Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.五. 致密性定理:数集的聚点(亦称为接触点):定义 设E 是无穷点集. 若在点ξ(未必属于E )的任何邻域内有E 的无穷多个点, 则称点ξ为E 的一个聚点.数集E =} 1{n有唯一聚点0, 但E ∉0; 开区间 ) 1 , 0 (的全体聚点之集是闭区间 ] 1 , 0 [; 设Q 是] 1 , 0 [中全体有理数所成之集, 易见Q 的聚点集是闭区间] 1 , 0 [.1. 列紧性: 亦称为Weierstrass 收敛子列定理.Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.2. 聚点原理 : Weierstrass 聚点原理.Th 6 每一个有界无穷点集必有聚点.六. Heine –Borel 有限复盖定理:复盖: 先介绍区间族} , {Λ∈=λλI G .定义 (复盖 )设E 是一个数集,G 是区间族.若对∍Λ∈∃∈∀ , , λE x λI x ∈,则称区间族G 复盖了E , 或称区间族G 是数集E 的一个复盖. 记为. ,Λ∈⊂λλλI E 若每个λI 都是开区间,则称区间族G 是开区间族.开区间族常记为}, , ) , ( { Λ∈<=λβαβαλλλλM . 定义 (开复盖 )数集E 的一个开区间族复盖称为E 的一个开复盖,简称为E 的一个复盖.子复盖、有限复盖、有限子复盖.例1 } ) 1 , 0 ( ), 23 , 2 ( {∈=x x x M 复盖了区间) 1 , 0 (, 但不能复盖] 1 , 0 [; } ) , ( , ) 2 , 2 ( {b a x x b x x b x H ∈-+--=复盖) , [b a , 但不能复盖] , [b a . 1. Heine –Borel 有限复盖定理:Th 7 闭区间的任一开复盖必有有限子复盖.七 实数基本定理等价性的证明证明若干个命题等价的一般方法.本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行:Ⅰ: 确界原理 ⇒ 单调有界原理 ⇒ 区间套定理 ⇒ Cauchy 收敛准则 ⇒ 确界原理 ;Ⅱ: 区间套定理 ⇒ 致密性定理 ⇒ Cauchy 收敛准则 ;Ⅲ: 区间套定理 ⇒ Heine –Borel 有限复盖定理 ⇒ 区间套定理 .一. “Ⅰ” 的证明: (“确界原理 ⇒ 单调有界原理”已证明过 ).1. 用“确界原理”证明“单调有界原理”:Th 2 单调有界数列必收敛 .证2. 用“单调有界原理”证明“区间套定理”:Th 3 设} ] , [ {n n b a 是一闭区间套. 则存在唯一的点ξ,使对n ∀有∈ξ] , [n n b a . 证推论1 若∈ξ] , [n n b a 是区间套} ] , [ {n n b a 确定的公共点, 则对0>∀ε,,N ∃当N n >时, 总有] , [n n b a ) , (εξ ⊂.推论 2 若∈ξ] , [n n b a 是区间套} ] , [ {n n b a 确定的公共点,则有n a ↗ξ, n b ↘ξ, ) (∞→n .3. 用“区间套定理”证明“Cauchy 收敛准则”:Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.引理 Cauchy 列是有界列. ( 证 )Th 4 的证明: ( 只证充分性 ) 教科书P 217—218上的证明留作阅读.现采用[3]P 70—71例2的证明, 即三等分的方法, 该证法比较直观.4. 用“Cauchy 收敛准则” 证明“确界原理” :Th 1 非空有上界数集必有上确界 ;非空有下界数集必有下确界 .证 (只证“非空有上界数集必有上确界”)设E 为非空有上界数集 . 当E 为有 限集时 , 显然有上确界 .下设E 为无限集, 取1a 不是E 的上界, 1b 为E 的上界. 对 分区间] , [11b a , 取] , [22b a , 使2a 不是E 的上界, 2b 为E 的上界. 依此得闭区间列} ] , [ {n n b a . 验证} {n b 为Cauchy 列, 由Cauchy 收敛准则,} {n b 收敛; 同理} {n a 收敛. 易见n b ↘. 设n b ↘β.有 n a ↗β.下证β=E sup .用反证法验证β的上界性和最小性.二. “Ⅱ” 的证明:1. 用“区间套定理”证明“致密性定理”:Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.证 ( 突出子列抽取技巧 )Th 6 每一个有界无穷点集必有聚点.证 ( 用对分法 )2.用“致密性定理” 证明“Cauch y 收敛准则” :Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.证 (只证充分性)证明思路 :Cauchy 列有界→ 有收敛子列→验证收敛子列的极限即为} {n a 的极限.Ex [1]P 223—224 1—7,11.三. “Ⅲ” 的证明:1. 用“区间套定理”证明“Heine –Borel 有限复盖定理”:证2. 用“Heine –Borel 有限复盖定理” 证明“区间套定理”:证 采用[3]P 72例4的证明.Ex [1]P 224 8—12 选做,其中 1 0 必做.§3 闭区间上连续函数性质的证明 ( 4 时 )一. 有界性:命题1 ] , [)(b a C x f ∈, ⇒ 在] , [b a 上)(x f =) 1 (O .证法 一 ( 用区间套定理 ). 反证法.证法 二 ( 用列紧性 ). 反证法.证法 三 ( 用有限复盖定理 ).二. 最值性:命题2 ] , [)(b a C x f ∈⇒)(x f 在] , [b a 上取得最大值和最小值. (只证取得最大值) 证( 用确界原理) 参阅[1]P 170.三. 介值性: 证明与其等价的“零点定理 ”.命题3 (零点定理)证法一(用区间套定理).证法二(用确界原理).不妨设,0)(>a f 0)(<b f .令} ] , [ , 0)( | {b a x x f x E ∈>=, 则E 非空有界, ⇒ E 有上确界. 设E sup =ξ,有∈ξ] , [b a . 现证 0)(=ξf , ( 为此证明)(ξf 0≥且)(ξf 0≤ ).取n x >ξ且n x ) ( ,∞→→n ξ.由)(x f 在点ξ连续和0)(≤n x f ,⇒,0)(lim )(≤=∞→n n x f f ξ,⇒ξE ∉.于是) ( , ∞→→∍∈∃n t E t n n ξ. 由)(x f 在点ξ连续和0)(>n t f ,⇒0)(lim )(≥=∞→n n t f f ξ.因此只能有0)(=ξf . 证法三 (用有限复盖定理).Ex [1]P 232 1,2,5.四. 一致连续性:命题4 ( Cantor 定理 )证法一 (用区间套定理).参阅[1]P 171[ 证法一 ]证法二 (用列紧性).参阅[1]P 171[ 证法二 ]Ex [1]P 232 3,4, 6*;P 236 1,2,4.。
第七章 实数的完备性(9学时)§1 关于实数完备性的基本定理教学目的要求: 掌握实数完备性的基本定理的内容,知道其证明方法.教学重点、难点:重点实数完备性的基本定理.难点是定理的证明,特别是柯西收敛准则和充分性的证明.. 学时安排: 4学时 教学方法: 讲授法. 教学过程如下:一、区间套定理与柯西收敛准则定义1 设闭区间列{[,]}n n a b 具有如下性质: (1)11[,][,],1,2,;n n n n a b a b n ++⊃= (2)lim ()0n n n b a →∞-=则称{[,]}n n a b 为闭区间套,或简称区间套.定理7.1(区间套定理) 若{[,]}n n a b 是一个区间套,则在实数系中存在唯一的一点ξ使得[,],1,2,n n a b n ξ∈= ,即 ,1,2,.n n a b n ξ≤≤=证: 先证存在性{[,]}nn ab 是一个区间套, 所以 1221,n n a a a b b b ≤≤≤≤≤≤≤≤∴可设lim n n a ξ→∞=且由条件2有lim lim ()lim n n n n n n n n b b a b a ξ→∞→∞→∞=-+==由单调有界定理的证明过程有,1,2,.n n a b n ξ≤≤= 再证唯一性设ξ'也满足,1,2,.n n a b n ξ'≤≤= 那么,,1,2,.n n b a n ξξ'-≤-= 由区间套的条件2得lim ()0n n n b a ξξ→∞'-≤-=故有ξξ'=推论 若[,](1,2,)n n a b n ξ∈= 是区间套{[,]}n n a b 所确定的点,则对任给的0ε>,存在0N >,使得当n N >时有[,](,)n n a b U ξε⊂柯西收敛准则 数列{}n a 收敛的充要条件是: 对任给的0ε>,存在0N >,使得对,m n N >有 ||m n a a ε-<.证 [必要性] 略.[充分性] 已知条件可改为:对任给的0ε>,存在0N >,使得对,m n N ≥有||m n a a ε-≤.取m N =,有对任给的0ε>,存在0N >,使得对n N ≥有||m n a a ε-≤,即 在区间[,]N N a a εε-+内含有{}n a 中几乎所有的项(指的是{}n a 中除有限项的所有项)∴令12ε=则存在1N ,在区间1111[,]22N N a a -+内含有{}n a 中几乎所有的项,记该区间为11[,]αβ. 再令212ε=则存在21()N N >,在区间112211[,]22N N a a -+内含有{}n a 中几乎所有的项,记该区间为1122112211[,][,][,]22N N a a αβαβ=-+也含有{}n a 中几乎所有的项,且满足1122[,][,]αβαβ⊃及221.2βα-≤依次继续令311,,,,22nε=得一区间列{[,]}n n αβ,其中每个区间中都含有{}n a 中几乎所有的项,且满足11[,][,],1,2,;n n n n n αβαβ++⊃=110(),2n n n n βα--≤→→∞即时{[,]}n n αβ是区间套.由区间套定理,存在唯一的一个数[,],1,2,n n n ξαβ∈= . 再证lim n n a ξ→∞=.由定理7.1的推论对任给的0ε>,存在0N >,使得当n N >时有[,](,)n n U αβξε⊂即在(,)U ξε内含{}n a 中除有限项的所有项,由定义1'lim n n a ξ→∞=. 二、聚点定理与有限覆盖定理定义 2 设S 为数轴上产的点集,ξ为定点,若ξ的任何邻域内都有含有S 中无穷多个点,则称ξ为点集S 的一个聚点.例如:1{(1)}nn -+有两聚点1,1ξξ==-.1{}n 有一个聚点0ξ=.(,)a b 内的点都是它的聚点,所以开区间集(,)a b 有无穷多个聚点. 聚点的等价定义;定义2'对于点集S ,若点ξ的任何ε邻域内都含有S 中异于ξ的点,即(;)U S ξε≠∅ ,则称ξ为S 的一个聚点.定义2''若存在各项互异的数列{}n x S ⊂,则其极限lim n n x ξ→∞=称为S 的一个聚点.三个定义等价性的证明: 证明思路为:2222'''⇒⇒⇒.定义22'''⇒的证明:由定义2'设ξ为S 的一个聚点,则对任给的0ε>,存在0(,)x U S ξε∈ .令11ε=,则存在01(,)x U S ξε∈ ;令211m in(,||)2x εξ=-,则存在022(;)x U S ξε∈ ,且显然21x x ≠;令11m in(,||)2n n x εξ-=-,则存在0(;)n n x U S ξε∈ ,且显然n x 与11,,n x x - 互异;得S 中各项互异的数列{}n x ,且由1||n n n x n ξε-<≤,知lim n n x ξ→∞=.由闭区间套定理可证聚点定理.定理7.2 (Weierstrass 聚点定理) 实数轴上的任一有界无限点集S 致少有一个聚点. 证 S 有界, ∴存在0M >,使得[,]S M M ⊂-,记11[,][,]a b M M =-,将11[,]a b 等分为两个子区间.因S 为无限点集,故意两个子区间中至少有一个含有S 中无穷多个点,记此子区间为22[,]a b ,则1122[,][,]a b a b ⊃且122112()b a b a M -=-=.再将22[,]a b 等分为两个子区间,则其中至少有一个含有S 中无穷多个点,取出这样一个子区间记为33[,]a b ,则2233[,][,]a b a b ⊃,且133222()2M b a b a -=-=依次继续得一区间列{[,]}n n a b ,它满足:11[,][,],1,2,;n n n n a b a b n ++⊃= 20(),2n n n M b a n --=→→∞即{[,]}n n a b 为闭区间套,且其中每一个闭区间都含有S 中无穷多个点.由区间套定理, 存在唯一的一点ξ使得[,],1,2,n n a b n ξ∈= .由定理1的推论, 对任给的0ε>,存在0N >,使得当n N >时有[,](,)n n a b U ξε⊂.从而(;)U ξε含有S 中无穷多个点按定义2ξ为S 的一个聚点.推论(致密性定理) 有界数列必含有收敛子列.证: 设{}n x 为有界数列.若{}n x 中有无限多个相等的项,显然成立.若数列{}n x 中不含有无限多个相等的项,则{}n x 在数轴上对应的点集必为有界无限点集,故由聚点定理,点集{}n x 至少有一个聚点,记为ξ.由定义2'',存在{}n x 的一个收敛子列(以ξ为极限).由致密性定理证柯西收敛准则的充分性.柯西收敛准则 数列{}n a 收敛的充要条件是: 对任给的0ε>,存在0N >,使得对,m n N >有 ||m n a a ε-<.证: [充分性] 先证{}n a 有界,由忆知条件取1ε=,则存在正整数N, 则1m N =+及n N >时有1||1n N a a +-<由此得111||||1||n n N N N a a a a a +++=-+<+.取121m ax{||,||,,||,1||}N N M a a a a +=+ 则对一切的正整数n 均有||n a M ≤. 再证{}n a 收敛,由致密性定理,数列{}n a 有收敛子列{}k n a ,设lim k n k a A→∞=由条件及数列极限的定义, 对任给的0ε>,存在0K >,使得对,,m n k N >有||m n a a ε-<,||k n a A ε-<取()k m n k K =≥>时得到 ||||||2kkn n n n a A a a a A ε-≤-+-<所以lim k n k a A→∞=定义3 设S 为数思轴上的点集,H 为开区间集合(即H 的每一个元素都是形如(,)αβ的开区间).若S 中的任何一个点都有含在H 中至少一个开区间内,则称H 为S 的一个开覆盖,( H 覆盖S ).若H 中开区间的个数是无限的(有限)的,则称H 为S 的一个无限开覆盖(人限开覆盖).如(,),S a b ={(,)|(,)},x x H x x x a b δδ=-+∈H 为S 的一个无限开覆盖.定理7.3(海涅---博雷尔(Heine-Borel)有限覆盖定理) 设H 为闭区间[,]a b 的一个(无限)开覆盖,则从H 中可选出有限个开区间来覆盖[,]a b .证 用反证法 设定理的结论不成立,即不能用H 中有限个开区间来覆盖[,]a b . 将[,]a b 等分为两个子区间,其中至少有一个不区间不能用H 中有限个开区间来覆盖.记这个子区间为11[,]a b ,则11[,][,]a b a b ⊂,且111()2b a b a -=-.再将11[,]a b 等分为两个子区间,同样,其中至少有一个不区间不能用H 中有限个开区间来覆盖.记这个子区间为22[,]a b ,则2211[,][,]a b a b ⊂,且2221()2b a b a -=-.依次继续得一区间列{[,]}n n a b ,它满足:11[,][,],1,2,;n n n n a b a b n ++⊃= 1()0(),2n n nb a b a n -=-→→∞即{[,]}n n a b 为闭区间套,且其中每一个闭区间都不能用H 中有限个开区间来覆盖 由闭区间套定理, 存在唯一的一点ξ使得[,],1,2,n n a b n ξ∈= ,由于H 为闭区间[,]a b 的一个(无限)开覆盖,故存在(,),H αβ∈使得(,)ξαβ∈.于是,由定理7.1的推论,当n 充分大时有[,](,)n n a b αβ⊂.即用H 中一个开区间就能覆盖[,]n n a b 矛盾.课后记:这一节理论性强,学生学习困难较大,我认为应从以下几个方面和学生共同学习这一节.1 如何理解记忆定理内容.2 如何掌握定理的证明方法.3 怎样应用定理及定理的证明方法去解决问题.在应用闭区间套定理时,应先构造一个闭区间套,构造的方法一般是二等分法,在应用有限覆盖定理时,应先构造一个开覆盖构造的方法一般与函数的连续性定义结合.应用聚点定理时,应先构造一数列等.教材中P 16322[,]αβ中包含{}n a 的几乎所有项,是因为它中包含{}n a 的第2N 项以后的所有项,这里应强掉,容易被忽略.在下节的教学中就让学一注意到在什么时候用实数的完备性定理,这是一个难点,重点.三、 实数基本定理等价性的证明(未讲)证明若干个命题等价的一般方法.本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行: Ⅰ: 确界原理单调有界原理区间套定理Cauchy 收敛准则确界原理 ; Ⅱ: 区间套定理 致密性定理Cauchy 收敛准则 ;Ⅲ: 区间套定理Heine –Borel 有限复盖定理区间套定理 .一. “Ⅰ” 的证明: (“确界原理 单调有界原理”已证明过 ).1. 用“确界原理”证明“单调有界原理”: 定理7.4 单调有界数列必收敛 .2. 用“单调有界原理”证明“区间套定理”: 定理 7.5 设是一闭区间套. 则存在唯一的点,使对有.推论1 若是区间套确定的公共点, 则对,当时, 总有.推论2 若是区间套确定的公共点, 则有↗,↘,. 3. 用“区间套定理”证明“Cauchy 收敛准则”:定理 7.6数列收敛是Cauchy列.引理Cauchy列是有界列. ( 证 )定理 7.6 的证明: ( 只证充分性 ) 教科书P217—218上的证明留作阅读 . 现采用三等分的方法证明,该证法比较直观.4.用“Cauchy收敛准则”证明“确界原理”:定理7.7非空有上界数集必有上确界;非空有下界数集必有下确界 .证(只证“非空有上界数集必有上确界”)设为非空有上界数集 . 当为有限集时 , 显然有上确界 .下设为无限集, 取不是的上界, 为的上界. 对分区间, 取, 使不是的上界, 为的上界. 依此得闭区间列. 验证为Cauchy列, 由Cauchy收敛准则,收敛; 同理收敛. 易见↘. 设↘.有↗.下证.用反证法验证的上界性和最小性.二. “Ⅱ”的证明:1. 用“区间套定理”证明“致密性定理”:定理7.8 (Weierstrass )任一有界数列必有收敛子列.证(突出子列抽取技巧)定理7.9每一个有界无穷点集必有聚点.2.用“致密性定理”证明“Cauchy收敛准则”:定理7.10数列收敛是Cauchy列.证(只证充分性)证明思路:Cauchy列有界有收敛子列验证收敛子列的极限即为的极限.三.“Ⅲ”的证明:1. 用“区间套定理”证明“Heine–Borel 有限复盖定理”:2. 用“Heine–Borel 有限复盖定理”证明“区间套定理”:§2 闭区间上连续函数性质的证明教学目的要求:掌握定理的证明方法.教学重点、难点:重点是定理的证明方法,难点是什么情况下用哪一个定理.学时安排: 2学时教学方法: 讲授法.教学过程:一. 有界性:命题1 , 在上.证法一 ( 用区间套定理 ). 反证法.证法二 ( 用列紧性 ). 反证法.证法三 ( 用有限复盖定理 ).二.最值性:命题2 , 在上取得最大值和最小值.( 只证取得最大值 )证 ( 用确界原理 ) 参阅[1]P226[ 证法二 ] 后半段.三.介值性:证明与其等价的“零点定理”.命题3 ( 零点定理 )证法一 ( 用区间套定理 ) .证法二 ( 用确界原理 ). 不妨设.令, 则非空有界, 有上确界. 设有. 现证, ( 为此证明且). 取>且.由在点连续和, ,. 于是. 由在点连续和,. 因此只能有.证法三 ( 用有限复盖定理 ).四.一致连续性:命题4 ( Cantor定理 )证法一 ( 用区间套定理 ) .证法二 ( 用列紧性 ).五.实数基本定理应用举例:例1 设是闭区间上的递增函数, 但不必连续 . 如果,, 则, 使. ( 山东大学研究生入学试题 )证法一 ( 用确界技术 . 参阅[3] P76例10 证法1 )设集合. 则, 不空 ; ,有界 . 由确界原理 ,有上确界. 设, 则.下证.ⅰ)若, 有; 又, 得.由递增和, 有, 可见. 由,. 于是 , 只能有.ⅱ)若, 则存在内的数列, 使↗, ; 也存在数列, ↘,. 由递增, 以及, 就有式对任何成立 . 令, 得于是有.证法二 ( 用区间套技术, 参阅[3] P77例10 证法2 ) 当或时,或就是方程在上的实根 . 以下总设. 对分区间, 设分点为. 倘有, 就是方程在上的实根.(为行文简练计, 以下总设不会出现这种情况 ) . 若, 取; 若, 取, 如此得一级区间. 依此构造区间套, 对,有. 由区间套定理, , 使对任何,有.现证.事实上, 注意到时↗和↘以及递增,就有.令, 得于是有.例2 设在闭区间上函数连续, 递增 , 且有,. 试证明: 方程在区间内有实根 .证构造区间套,使.由区间套定理,, 使对,有. 现证. 事实上, 由在上的递增性和的构造以及↗和↘,, 有.注意到在点连续,由Heine归并原则, 有,, . 为方程在区间内的实根.例3 试证明: 区间上的全体实数是不可列的 .证 ( 用区间套技术, 具体用反证法 ) 反设区间上的全体实数是可列的,即可排成一列:把区间三等分,所得三个区间中至少有一个区间不含,记该区间为一级区间. 把区间三等分,所得三个区间中至少有一个区间不含,记该区间为二级区间. …… .依此得区间套, 其中区间不含. 由区间套定理,, 使对, 有. 当然有. 但对有而, . 矛盾.习题课( 3学时)一.实数基本定理互证举例:例4 用“区间套定理”证明“单调有界原理”.证设数列递增有上界. 取闭区间, 使不是的上界, 是的上界. 易见在闭区间内含有数列的无穷多项, 而在外仅含有的有限项. 对分, 取使有的性质.…….于是得区间套,有公共点. 易见在点的任何邻域内有数列的无穷多项而在其外仅含有的有限项, .例5 用“确界原理”证明“区间套定理”.证为区间套. 先证每个为数列的下界, 而每个为数列的上界. 由确界原理 , 数列有上确界, 数列有下确界 .设, .易见有和.由,.例6 用“有限复盖定理”证明“聚点原理”.证 ( 用反证法 ) 设为有界无限点集, . 反设的每一点都不是的聚点, 则对, 存在开区间, 使在内仅有的有限个点. …… .例7 用“确界原理”证明“聚点原理”.证设为有界无限点集. 构造数集中大于的点有无穷多个.易见数集非空有上界, 由确界原理, 有上确界. 设. 则对,由不是的上界中大于的点有无穷多个; 由是的上界,中大于的点仅有有限个. 于是, 在内有的无穷多个点,即是的一个聚点 .课后记强掉应先构造闭区间套、构造开覆盖、构造数列等的方法.通过大量的例子让同学们体会在什么时候用哪一个定理.。
1数值分析第七章第七章非线性方程求根一、重点内容提要(一)问题简介求单变量函数方程f(x)?0(7.1)f(x*)?0x*x*x*为也称为方程的根是指求(7.1).(实数或复数),使得称的根,m f(x)?(x?x*)g(x)f(x)f(x)函数的零点.若可以分解为g(x)g(x)?0x*x*为单称m=1满足时,是方程(7.1)的根.,则当其中m为正整数,g(x)x*x*是方程(7.1)的m称,充分光滑,为m重根.若重根,则有根;当m>1时(m?1)(m)f(x*)?f'(x*)?...?f(x*)?0,f(x*)?0f(x)f(a)f(b)?0,则方程(7.1)在(a,b)[a,b]若上连续且内至少有一个实根,称在[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得.(二)方程求根的几种常用方法1.二分法f(x)f(a)f(b)?0f(x)?0f(x)?0*x在上连续,再设内有根,则设.在(a,b)在[a,b]1x?(a?b)a?a,b?bf(x)f(x)?0000计算和.,若则(a,b)内仅有一个根.令20000a?xb?b[a,b])f(a)f(x?0x*?x;,则令,结束计算;若若得新的有根区间,10,11001a?ab?x0)?(f(a)fx,得新,则令的有根区间0110,0011b?a?(b?a)x?(a?b)[a,b][a,b]?[a,b]f(x)0101111再令计算,.,.同上法得221110101[a,b],如此反复进行出新的有根区间,可得一有根区间套22...?[a,b]?[a,b]?...?[a,b]001?n1?nnn2数值分析第七章11a?x*?b,n?0,1,2,...,b?a?(b?a)?...?(b?a)0n0?1nnn?1nn且. 221lim(b?a)?0,lim x?lim(a?b)?x* nnnnn故2????n??nn1x?(a?b)f(x)?0nnn的近似根,可作为,且有误差估计因此21(b?a)|x?x*|?n1?n(7.2)22.迭代法?(x?)x等价变形为将方程式(7.1) (7.3)??(x*)?)(xf(x*)?0x**xx*的一个不动点为函数.;反之亦然则.若要求称满足?(x)的不动点由式(7.3)产生的不动点迭代关系式(也求方程(7.1)的根等价于求称简单迭代法)为?(x),k?0,1,2...x?(7.4)k1?k?(x),k??x0,1,2...?(x)称为迭代函数.函数如果对任意,由式(7.4)产生的序列??x有极限kk??k则称不动点迭代法(7.4)收敛.kk?1x?x*lim?(x)?C[a,b]满足以下两个条件: 定理7.1(不动点存在性定理)设?(x)??b;x?[a,b]a有1.对任意??(y)|?|x?y|?,y[a,b]|(x)?x 2.存在正常数使对任意, ,都有(7.5)1?L?(x)[a,b]x*.则在上存在惟一的不动点?(x)?C[a,b]满足定理7.2(定理不动点迭代法的全局收敛性定理)设7.1中的两个??x]b,?x[a?(x)并条件,由,(7.4),的不动点式得到的迭代序列则对任意到.收敛k0有误差估计式3数值分析第七章L|x?*|?x||x?x1kkk?(7.6)L1?k L|x?x*|?|x?x|1?kkk L1?(7.7)和??'(xx))(xx**的某,为设在的不动点定理7.3(不动点迭代法的局部收敛性定理)?'(x)|?|1,则迭代法(7.4)局部收敛个邻域连续,且.?(xx?)x*,的根如果迭代误差收敛阶的概念设迭代过程(7.4)收敛于方程e?x?x*k??时成产下列渐近关系式当kk e k?1?C(常数C?0)e(7.8) k则称该迭代过程是p阶收敛的.特别地,p=1时称线性收敛,p>1时称超线性收敛,p=2时称平方收敛.(K)?(x)x*的邻近连续,并定理7.4(收敛阶定理在所求根)对于迭代过程(7.4),如果且(p?1)???(x*)?...?*)?'(x*)?0''(x(p)?(x*)?0(7.9)*x的邻近是收敛的,则该迭代过程在点并有e1)(p?1k?*)x?lim(p!ep??k (7.10)k斯蒂芬森(Steffensen)迭代法当不动点迭代法(7.4)只有线性收敛阶,甚至于不收敛时,可用斯蒂芬森迭代法进行加速.具体公式为??(y?)(x),zy?kkkk2)?x(y kk x?x?kk?1z?2y?x kkk k?0,1,2,...(7.11)4数值分析第七章此法也可写成如下不动点迭代式?(x),kx??0,1,2,...kk?12?)?x(x)(?(x)?x????(x)?2?(x(x))(7.12)?(x)x**x是为式(7.12)中则的不动点7.5(定理斯蒂芬森迭代收敛定理)设,?(x)???1*)''(x)?'(x(x)*x的不动点,存在,的不动点;设则,则斯蒂芬森迭代法是(7.11)是2阶收敛的.3.牛顿迭代法牛顿迭代法是一种特殊的不动点迭代法,其计算公式为f(x)k,x?k?0,1,2,...?x k?k1)xf'(其迭代函数为(7.13)k f(x)??(x)?x f'(x)f(x*)?0,f'(x*)?0,f''(x*)?0时牛顿迭代法的收敛速度当,容易证f''(x*)??0*)?''(x 0'(x*)?ff'(x*),由定理,明,7.4知,牛顿迭代法是平方收敛的,且ef''(x*)1?k?lim2*)f'(ex2??k(7.14)k f(x)?0(m?2)*x时,迭代函数的m重顿重根情形的牛迭代法当根是f(x)1??x)?(x?'(x*)?1??0?'(x*)|?1|)xf'(*x.所以牛顿迭代法求处的导数在,且m x*的重数m知道,重根只是线性收敛.若则迭代式f(x)k,k?0,1,2,...??xx?m kk?1)'(xf(7.15)k f(x)??x()f'(x)*x此时迭代式,的单重零点一定是函数,未知时m当.求重根二阶收敛5数值分析第七章?(x)f(x)f'(x)kkk?xx??x?kk?1k?)f''(x)x)]?f(x'(x)[f'(kkkk k?0,1,2,...(7.16)也是二阶收敛的.f(x)k,?k?0,1,2,...x?x k1k?)xf'(如下迭代法简化牛顿法0称为简化牛顿法或平行弦法.牛顿下山法为防止迭代不收敛,可采用牛顿下山法.具体方法见教材.4.弦截法f'(x)xxf(x)在,处的一阶差商来代替,将牛顿迭代法(7.13)中的即可得弦用kkk?1截法f(x)k(xx?x??x)1kk?1k?k f(x)?f(x)(7.17)??x*|:|x??*x内具有二阶连续导数,的邻域在其零点定理7.6假设且对任1kk?)(xfx,x??10f'(x)?0?x?,又初值,,意则当邻域充分小时,有弦截法(7.17)将按阶?1?5?p?1.6182???1?0?*x2的正根收敛到是方程..这里p5.抛物线法(x,f(x)),(x?f(x))两点的直线方程的根近似替弦截法可以理解为用过kk?1kk?1xxx0x)?(fx)?0f(用,过三若的根.已知个近似根,的2kk?1k?(x,f(x)),(x,f(x)),(x,f(x))f(x)?0的根,的抛物线方程的根近似代替2??k?k121k?kkk所得的迭代法称为抛物线法,也称密勒(Muller)法.f(x)f'(x*)?0*x,则抛物线法局部收敛当,在,的邻近有三阶连续导数且收敛阶p?1.839?1.84. 为数值分析第七章二、知识结构图三、常考题型及典型题精解3上有一个实根x*,并用二分法2]在[1,?1?例7-1 证明方程x0?x-6-3,需二分区间[1,2]10.若要求|x-x*|?求这个根,要求|x-x*|?10kk多少次?3在[1,2],则f(1)=-1<0,f(2)=5>0,故方程f(x)=0x?解设f(x)=x1?2在[1,2]时,f'(x)>0,即f(x)=0-1,所以当x?上有根x*.又因f'(x)=3x上有惟一实根x*.用二分法计算结果如表7-1所示.[1,2]7-1表k abxf(x)的符号kkkk+ 2 0 1 1.5- 1.5 1 1 1.25+ 2 1.25 1.51.3751.3125 3 1.251.375 -1.375 1.3438 1.3125 4 +1.312551.3282+1.1341.3125-861.32041.32041.32827-1.32431.32431.32821.3263+87数值分析第七章9 1.3243 1.3282 1.3253 +1.32631-3-3,可以作为x*的近??10此时x=1.3253满足|x-x*|?10?0.97799102似值.1-6?6,只需|x10-x*|?-x*|即可,解得k+1?19.932, 若要求|x?10?kkk+12即只需把[1,2]二分20次就能满足精度要求.x=1,(1)确定有根区间[a,b];(2)构造不动e例7-2 已知函数方程(x-2)点迭代公式使之对任意初始近似x?[a,b],迭代方法均收敛;(3)用所构0?3.|?10造的公式计算根的近似值,要求|x?x1k k?xx因此区间[2,3]0,e解 (1)令f(x)=(x-2)-1>-1,由于f(2)=-1<0,f(3)=e x x)=-1,f(,lim,lim f(x)=+?是方程f(x)=0的一个有根区间.又因f'(x)=(x-1)e???xx???1-1<0,当x>1时f(x)单增,x<1时f(x)单减,故f(x)=0在(-?,+?)内f'(1)=-e有且仅有一根x*,即x*?[2,3].x?xx?.由于当?将(x-2)e[2,3].则=1等价变形为x=2+ee(x)=2+,x(2)2??x??<1'(x)|=|-e?e[2,3]x?时2?|(x)?3,|x?[2,3]均收敛.??故不动点迭代法x=2+e x,k=0,1,2,...,对k0k+1x?进行迭代计算,结果如表7-2所示.e(3)取x=2.5,利用x=2+k k+10表7-28数值分析第七章此时x已满足误差要求,即x*?x?2.120094976.44例7?3考虑求解方程2cos x?3x?12?0的迭代公式2 x=4+cos x,k=0,1,2,...k k+13(1)试证:对任意初始近似x?R,该方法收敛;0-3;10-x|?(2)取x=4,求根的近似值x,要求|x k0k+1k+1(3)所给方法的收敛阶是多少?2?(x)=4+cos x,解 (1)由迭代公式知,迭代函数322?(x)的值域介于(4-)与(4+由于)之间,且(??,??).x?3322?'(x)|=|-sin x|??1|33?(x)在(??,??)内存在惟一的故根据定理7.1,7.2知,??收敛于x*.x?x?R,迭代公式得到的序列不动点x*,且对k0(2) 取x=4,迭代计算结果如表7-3所示.0表7-3x*?xx?3.347529903已满足误差要求,即此时55?'(x*)?0.136323129?0,故根据定理7 .4)由于(3知方法是线性收敛的,并e?1k?'(x?*)lim e??k。
第七章 实数的完备性 3 上极限和下极限定义1:若在数a 的任一邻域内含有数列{x n }的无限多个项,则称a 为{x n }的一个聚点.注:点列(或数列)的聚点邻域中可以包含无限个相同的项;而点集(或数集)的聚点邻域中只能包含无限个不同的项。
定理7.4:有界点列(数列){x n }至少有一个聚点,且存在最大聚点与最小聚点.证:∵{x n }为有界数列,∴存在M>0,使得|x n |≤M ,记[a 1,b 1]=[-M,M]. 将[a 1,b 1]等分成两个子区间,若右边的子区间含有{x n }中无穷多个项,则取右边的区间,否则取左边的区间为[a 2,b 2],则[a 1,b 1]⊃[a 2,b 2],且b 2-a 2=21(b 1-a 1)=M. [a 2,b 2]含有{x n }中无穷多个项; 将[a 2,b 2]等分成两个子区间,若右边的子区间含有{x n }中无穷多个项,则取右边的区间,否则取左边的区间为[a 3,b 3],则 ∴[a 2,b 2]⊃[a 3,b 3],且b 3-a 3=21(b 2-a 2)=2M. [a 3,b 3]含有{x n }中无穷多个项; 依此规律,将等分区间无限进行下去,可得区间列{[a n ,b n ]}满足 [a n ,b n ]⊃[a n+1,b n+1],且b n -a n =2-n 2M→0 (n →∞),即{[a n ,b n ]}是区间套,且 每一个闭区间都含有{x n }中无穷多个项,而 其右边至多只有{x n }中有限多个项.由区间套定理,存在唯一的一点ξ,使得ξ∈[a n ,b n ], n=1,2,….又对任给的ε>0,存在N>0,使得当n>N 时有[a n ,b n ]⊂U(ξ; ε), ∴U(ξ; ε)内含有{x n }中无穷多个项,∴ξ为{x n }的一个聚点. 若ξ为{x n }的唯一的聚点,则ξ同时为{x n }的最大聚点和最小聚点. 若{x n }有聚点ζ>ξ,则令δ=31(ζ-ξ)>0,在U(ζ,δ)内含有{x n }中无穷多个项, 且当n 充分大时,U(ζ,δ)将落在[a n ,b n ]的右边,矛盾。
第七章 实数的完备性一、练习题1. 设{(a n ,b n )}是一严格开区间套,即a 1<a 2<…<a n <…<b n …<b 2<b 1,且∞→n lim (b n -a n )=0.证明存在唯一一点ξ,有 a n <ξ<b n ,n=1,2…2. 试举例说明在有理数集内,所有完备性定理都不能成立.3. 试用区间套定理证明数列的单调有界定理.4. 试用确界原理证明区间套定理.5. 设H=⎭⎬⎫⎩⎨⎧=⎪⎭⎫ ⎝⎛+ 1,2,n |n 1,2n 1是一个无限开区间集,问:(1) H 能否覆盖(0,1)?(2) 能否从H 中先出有限个开区间覆盖⎪⎭⎫⎝⎛21,0? (3) 能否从H 中先出有限个开区间覆盖⎪⎭⎫ ⎝⎛1,1001? 6. 证明: 若x ∈[a,b],若x ∈(a,b)的聚点;反之,若x 为[a,b]的聚点,则x ∈[a,b].7. 证明:单调数列{x n }若存在聚点,则一定是唯一的,且是{x n }的确界.8. 试用致密性定理证明单调有界定理.9. 试用聚点定理证明区间套定理.10. 试用有限覆盖定理证明聚点定理.11. 试用聚点定理证明柯西收敛准则.12. 试用确界原理证明聚点定理13. 设f 为(-∞,+∞)上连续的周期函数,试证f 在(-∞,+∞)上有最大值与最小值.14. 证明:任何实系数奇次多项式方程至少有一个实根15. 设I 为有限区间.证明:若f 在I 上一致连续,则f 在I 上有界.16. 证明: 若f 在[)+∞a,上连续,+∞→x lim f(x)存在且有限,则f 在[)+∞a,上一致连续. 17. 设f 在(a,b)内连续,x 1,x 2,…x n ∈(a,b),证明存在ζ∈(a,b),使得f(ζ)=∑=n 1j j )f(x n 1.18. 试用覆盖定理证明根的存在性定理.19. 证明:在(a,b)上连续函数f 为一致连续的充要条件是f(a+0)、f(b-0)存在且有限.20. 求下列数列的上、下极限:(1){1+(-1)n }; (2)⎭⎬⎫⎩⎨⎧+-12n n1)(n ;(3){2n+1}; (4)⎭⎬⎫⎩⎨⎧+4n πsin 1n 2n; (5)⎭⎬⎫⎩⎨⎧+n π}sin n 1n2; (6)⎭⎬⎫⎩⎨⎧n |3n πcos | 21. 证明下列数列上、下极限的关系式: (1) ∞→n lim a n =-∞→n lim (-a n ), ∞→n lim a n =-∞→n lim (-a n ); (2) ∞→n lim a n +∞→n lim b n ≤∞→n lim (a n +b n );∞→n lim a n +∞→n lim b n ≥∞→n lim (a n +b n ) (3) ∞→n lim a n -∞→n lim b n ≤∞→n lim (a n -b n ),∞→n lim a n -∞→n lim b n ≥∞→n lim (a n -b n ); (4) 若a n ,b n >0,则∞→n lim a n ∞→n lim b n ≤∞→n lim a n b n ,∞→n lim a n ∞→n lim b n ≥∞→n lim a n b n ; (5) 若∞→n lim a n >0,则∞→n limn a 1=n n a lim 1∞→.22. 数列{x n }的上(下)确界就是该数列的上(下)极限,对吗?为什么?23. 证明:若{a n }为单调递增数列,则∞→n lim a n =∞→n lim a n 24. 证明:若an>0(n=1,2,…)且∞→n lim a n ·∞→n lim n a 1=1, 则数列 {a n }收敛.25. 证明: 若a n ≤b n (n=1,2,…),则∞→n lim a n ≤∞→n lim b n , ∞→n lim a n ≤∞→n lim b n . 26. 证明设{x n }为有界数列. (1)A 为{x n }上极限的充要条件是A =∞→n lim nk sup ≥{x k }; (2)A 为{x n }下极限的充要条件是A=∞→n lim nk inf ≥{x k }. 27. 证明:{x n }为有界数列的充要条件是{x n }的任一子列都存在它的收敛子列.28. 设f(x)在(a,b)内连续,且+→a x lim f(x)=-→b x lim f(x)=0.证明f(x)在(a,b)内有最大值或最小值.29. 证明: 设f(x)在[a,b]上连续,若{x n}⊂[a,b],且lim f(x n)=A,则必存在点x0∈[a,b],使得n→∞f(x0)=A.30. 设函数f和g都在区间I上一致连续.(1) 证明f+g在I上一致连续;(2) 若I为有限区间,证明f·g在I上一致连续;(3) 若I为无限区间,举例说明f·g在I上不一定一致连续.31. 证明:设函数f(x)定义在有限区间(a,b)上,若对于(a,b)内任一收敛数列{x n},极限lim f(x n)都n→∞存在,则f(x)在(a,b)上一致连续.32. 设函数f在[)a,上连续,且有渐近线,即有数b与c,使得+∞lim[f(x)-bx-c]=0,证明f在x+∞→[)a,上一致连续.+∞。
第七章 实数的完备性目的与要求:使学生掌握反映实数完备性的六个基本定理,能准确地加以表述,并深刻理解其实质意义;明确六个基本定理是数学分析的理论基础,并能应用基本定理证明闭区间上的连续函数性质和一些有关命题.了解数列上极限和下极限的概念及其与数列极限的关系.重点与难点:重点是实数完备性基本定理的证明,难点是实数完备性基本定理的应用.第一节 关于实数集完备性的基本定理一 区间套定理与柯西收敛准则 1 区间套定义1 区间套: 设[]{}n n b a ,是一闭区间序列. 若满足条件 (1) 对n ∀, 有[][]n n n n b a b a ,,11⊂++, 即n n n n b b a a ≤<≤++11, 亦即后一个闭区间包含在前一个闭区间中;(2) 0→-n n a b ()∞→n . 即当∞→n 时区间长度趋于零.则称该闭区间序列为闭区间套, 简称为区间套 .区间套还可表达为:1221b b b a a a n n ≤≤≤≤<≤≤≤≤ , 0→-n n a b ()∞→n .我们要提请大家注意的是, 这里涉及两个数列{}n a 和{}n b , 其中{}n a 递增, {}n b 递减.例如⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-n n 1,1和⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡n 1,0 都是区间套. 但()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-+n n n 21,11、⎭⎬⎫⎩⎨⎧]1,0(n 和⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+-n n11,1都不是. 2 区间套定理定理7.1(区间套定理) 设[]{}n n b a ,是一闭区间套. 则在实数系中存在唯一的点ξ, 使对n ∀有[]n n b a ,∈ξ. 简言之, 区间套必有唯一公共点.证明 (用单调有界定理证明区间套定理)由假设(1)知,序列{}n a 单调上升,有上界1b ;序列{}n b 单调下降,有下界1a .因而有1lim c a n n =+∞→,2lim c b n n =+∞→. n n b c c a ≤≤≤21.再由假设(2)知()0lim 12=-=-+∞→c c a b n n n ,记c c c ==12. 从而有==+∞→c a n n lim n n b +∞→lim .若还有*c 满足n n b c a ≤≤*,令+∞→n ,得c c =*.故c 是一切[]n n b a ,的唯一公共点.证毕.注: 这个定理称为区间套定理.关于定理的条件我们作两点说明:(1)要求[]n n b a ,是有界闭区间的这个条件是重要的.若区间是开的,则定理不一定成立.如()⎪⎭⎫⎝⎛=n b a n n 1,0,.显然有 ⎪⎭⎫⎝⎛⊂⎪⎭⎫ ⎝⎛+n n 1,011,0 , 但 ∅=⎪⎭⎫ ⎝⎛+∞= 11,0n n .如果开区间套是严格包含:n n n n b b a a <<<++11,这时定理的结论还是成立的.(2) 若[][],2,1,,11=⊃++n b a b a n n n n ,但()0lim ≠-∞→n n n a b ,此时仍有1lim c a n n =+∞→,2lim c b n n =+∞→,但21c c <,于是对任意的c ,21c c c ≤≤,都有[] +∞=∈1,n n n b a c .全序集中任一区间长趋于零的区间套有非空交集,则称该全序集是完备的,该定理刻划实数集是完备的.该定理也给出通过逐步缩小搜索范围,找出所求点的一种方法.推论 设[]{}n n b a ,为一区间套,[],2,1,=∈n b a n n ξ.则0,0>∃>∀N ε当N n >时,恒有[]()εξ,,U b a n n ⊂.用区间套定理证明其他命题时,最后常会用到这个推论.3 数列的柯西收敛准则的证明 数列的柯西收敛准则:数列{}n a 收敛的充要条件是:0>∀ε,0>∃N ,当N n m >,时,有ε<-n m a a .(后者又称为柯西(Cauchy )条件,满足柯西条件的数列又称为柯西列,或基本列.)证明 必要性设 A a n n =∞→lim .由数列极限定义,0>∀ε,0>∃N ,当N n m >,时有2ε<-A a m , 2ε<-A a n ,因而εεε=+<-+-≤-22A a A a a a n m n m .充分性 按假设,0>∀ε,0>∃N ,使得对一切N n ≥有ε≤-n m a a ,即在区间[]εε+-N N a a ,内含有{}n a 中除有限项外的所有项. 据此,令21=ε,则1N ∃,在区间⎥⎦⎤⎢⎣⎡+-21,2111N N a a 内含有{}n a 中除有限项外的所有项.记这个区间为[]11,βα.再令221=ε,则)(12N N >∃,在区间⎥⎦⎤⎢⎣⎡+-2221,2122N N a a 内含有{}n a 中除有限项外的所有项.记[]=22,βα⎥⎦⎤⎢⎣⎡+-2221,2122N N a a []11,βα,它也含有{}n a 中除有限项外的所有项, 且满足 []11,βα⊃[]22,βα及 2122≤-αβ.继续依次令 ,21,,212n=ε,照以上方法得一闭区间列[]{}n n βα,,其中每一个区间都含有{}n a 中除有限项外的所有项,且满足 []n n βα,⊃[]11,++n n βα, ,2,1=n ,()∞→→≤--n n n n 0211αβ即[]{}n n βα,是区间套.由区间套定理,存在唯一的一个数∈ξ[]n n βα, ( ,2,1=n ).现在证明数ξ就是数列{}n a 的极限.事实上,由区间套定理的推论,,0>∃>∀N ε当N n >时,恒有[]()εξβα,,U n n ⊂.因此在()εξ;U 内含有{}n a 中除有限项外的所有项,这就证得ξ=∞→n n a lim .二 聚点定理与有限覆盖定理 1 聚点定义2 设S 是无穷点集. 若在点ξ (未必属于S )的任何邻域内有S 的无穷多个点, 则称点ξ为S 的一个聚点.数集⎭⎬⎫⎩⎨⎧=n E 1有唯一聚点0, 但E ∉0;开区间)1,0(的全体聚点之集是闭区间[]1,0;设Q 是[]1,0中全体有理数所成之集, 易见Q 的聚点集是闭区间[]1,0. 2 聚点概念的另两个等价定义定义2' 对于点集S ,若点ξ的任何ε邻域内都含有S 中异于ξ的点,即∅≠S U );(0εξ,则称点ξ为S 的一个聚点.定义2'' 若存在各项互异的收敛数列{}S x n ⊂ ,则其极限ξ=∞→n n x lim 称为S 的一个聚点.3 以上三个定义互相等价的证明:证:定义2⇒定义2' 显然成立.定义2'⇒定义2'' 由定义2',取11=ε,S U x );(101εξ∈∃;再取⎪⎭⎫ ⎝⎛-=12,21min x ξε则S U x );(202εξ∈∃,且显然12x x ≠;……一般取⎪⎭⎫ ⎝⎛-=-1,21min n n x ξε则S U x n n );(0εξ∈∃,且显然n x 与11,,-n x x 互异;……无限地重复以上步骤,得到S 中各项互异的数列{}n x ,且由nx n n 1≤<-εξ,易见ξ=∞→n n x lim .定义2''⇒定义2 ξ=∞→n n x lim ⇒0>∀ε,0>∃N ,当N n >时,必有);(εξU x n ∈,且因{}n x 各项互不相同,故);(εξU 内含有S中无限多个点.[证毕]4 聚点定理定理 7.2 (魏尔斯特拉斯聚点定理 Weierstrass ) 直线上的任一有界无限点集S 至少有一个聚点ξ,即在ξ的任意小邻域内都含有S 中无限多个点(ξ本身可以属于S ,也可以不属于S ).证 因为S 为有界无限点集,故存在0>M ,使得[]M M S ,-⊂,记[]11,b a []M M ,-=.现将[]11,b a 等分为两个子区间.因为S 为有界无限点集,故两个子区间中至少有一个含有S 中无穷多个点,记此区间为[]22,b a ,则[]11,b a ⊃[]22,b a ,且=-22a b Ma b =-)(2111.再将[]22,b a 等分为两个子区间.则两个子区间中至少有一个含有S 中无穷多个点,记此区间为[]33,b a ,则[]22,b a ⊃[]33,b a ,且=-33a b 2)(2122M a b =-.将此等分区间的手续无限地进行下去,得到一个闭区间列[]{}n n b a ,,它满足 []n n b a ,⊃[]11,++n n b a , ,2,1=n , ()∞→→≤--n M a b n n n 022即[]{}n n βα,是区间套,且每一个闭区间中都含有S 中无穷多个点. 由区间套定理,存在唯一的一个数∈ξ[]n n b a , ( ,2,1=n ).于是由区间套定理的推论,0,0>∃>∀N ε当N n >时,恒有[]()εξ,,U b a n n ⊂.从而()εξ,U 内含有S 中无穷多个点,按定义2 ,ξ为S 的一个聚点.5 致密性定理.推论:任一有界数列必有收敛子列.证 设{}n x 为有界数列.若{}n x 中有无限多个相等的项,则由这些项组成的子列是一个常数列,而常数列总是收敛的.若{}n x 中不含有无限多个相等的项,则{}n x 在数轴上对应的点集必为有 界无限点集,故由聚点定理,点集{}n x 至少有一个聚点,记为ξ.于是按定 义2'',存在{}n x 的一个收敛的子列以ξ为极限.作为致密性定理的应用,我们用它重证数列的柯西收敛准则的充分性 证明 充分性由已知条件:0>∀ε,0>∃N ,当N n m >,时,有ε<-n m a a .欲证{}n a 收敛.首先证{}n a 有界. 取1=ε,则N ∃,N m n >,有1<-m n a a特别地,N n >时11<-+N n a a ⇒ 11+<+N n a a 设 {}1,,,,m ax 121+=+N N a a a a M ,则n ∀,M a n ≤ 再由致密性定理知,{}n a 有收敛子列{}Kna ,设A a K n k =∞→lim.对任给0>ε,存在0>K ,当K k n m >,,时,同时有2ε<-m n a a ,和 2ε<-A a kn因而当取 k n m =()K k >≥时,得到εεε=+<-+-≤-22A a a a A a k k n n n n故 A a n n =∞→lim .6 海涅–博雷尔(Heine –Borel) 有限覆盖定理: 1. 定义(覆盖 )设S 为数轴上的点集 , H 为开区间的集合(即H 的每一个元素都是形如()βα,的开区间). 若S 中任何一点都含在H 中至少一个开区间内,则称H 为S 的一个开覆盖,或称H 覆盖S .若H 中开区间的个数是无限(有限)的,则称H 为S 的一个无限开覆盖(有限开覆盖).例 ()⎭⎬⎫⎩⎨⎧∈⎪⎭⎫ ⎝⎛=1,023,2x x x M 覆盖了区间()1,0, 但不能覆盖[]1,0;()⎭⎬⎫⎩⎨⎧∈⎪⎭⎫ ⎝⎛-+--=b a x x b x x b x H ,2,2 覆盖 ),[b a , 但不能覆盖],[b a .2. 海涅–博雷尔Heine –Borel 有限复盖定理:定理7.3 (有限覆盖定理) 设(){}βα,=H 是闭区间[]b a ,的一个无限开覆盖,即[]b a ,中每一点都含于H 中至少一个开区间()βα,内.则在H 中必存在有限个开区间,它们构成[]b a ,的一个有限开覆盖.证明 (用区间套定理证明有限覆盖定理)用反证法设H 为闭区间[]b a ,的一个无限开覆盖.假设定理的结论不成立:即[]b a ,不能用H 中有限个开区间来覆盖.对[]b a ,采用逐次二等分法构造区间套[]{}n n b a ,,[]n n b a ,的选择法则:取“不能用H 中有限个开区间来覆盖”的那一半.由区间套定理, []n n b a ,∈∃ξ ,2,1=n . 因为[]b a ,∈ξ,所以()H ∈∃βα, 使 ()βαξ,∈记{}0,m in >--=ξβαξε由推论,当n 足够大时, 有[]()()βαεξ,,,⊂⊂U b a n n这表示[]n n b a ,用H 中一个开区间()βα,就能覆盖,与其选择法则相违背.所以[]b a ,必能用H 中有限个开区间来覆盖.说明 当[]b a ,改为),(b a 时,或者H 不是开覆盖时,有限覆盖定理的结论不一定成立.例如:1) H : ,21,1,1,12,43,21,32,0⎪⎭⎫⎝⎛++-⎪⎭⎫⎝⎛+--⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛n n nn n nn n . H是开区间()1,0的一个无限开覆盖,但不能由此产生()1,0的有限覆盖.2) ∙H :),1,1[,),32,21[),21,0[),3,1[+-n n nn .∙H是[]2,0的一个无限覆盖,但不是开覆盖,由此也无法产生[]2,0的有限覆盖. 三 实数完备性基本定理的等价性1 实数完备性基本定理的等价性至此,我们已经介绍了有关实数完备性的六个基本定理,即 定理1(确界原理)非空有上(下)界的数集必有上(下)确界.确界存在定理(定理1.1)揭示了实数的连续性和实数的完备性. 与它等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理2 (单调有界定理) 任何单调有界数列必定收敛.定理3 (区间套定理) 设[]{}n n b a ,为一区间套: 1)[][],2,1,,11=⊃++n b a b a n n n n2)()0lim =-∞→n n n a b .则存在唯一一点[],2,1,=∈n b a n n ξ定理4 (有限覆盖定理) 设(){}βα,=H 是闭区间[]b a ,的一个无限开覆盖,即[]b a ,中每一点都含于H 中至少一个开区间()βα,内.则在H 中必存在有限个开区间,它们构成[]b a ,的一个有限开覆盖.定理5 (聚点定理) 直线上的任一有界无限点集S 至少有一个聚点ξ,即在ξ的任意小邻域内都含有S 中无限多个点(ξ本身可以属于S ,也可以不属于S ).定理6 (柯西准则) 数列{}n a 收敛的充要条件是:N ∈∃>∀N ,0ε,只要N m n >, 恒有ε<-n m a a .(后者又称为柯西(Cauchy )条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.2 实数完备性基本定理等价性的证明证明若干个命题等价的一般方法.即循环论证,当然也可以用其他的方法进行,下面我们按循环论证来进行实数完备性基本定理等价性的证明:定理1(确界原理)⇒ 定理2 (单调有界定理)⇒ 定理3 (区间套定理) ⇒ 定理4 (有限覆盖定理) ⇒定理5 (聚点定理) ⇒定理6 (柯西准则)⇒定理1(确界原理)其中 定理1(确界原理)⇒ 定理2 (单调有界定理),定理2 (单调有界定理)⇒ 定理3 (区间套定理)与定理3 (区间套定理) ⇒ 定理4 (有限覆盖定理)分别见定理2.9, 7.1与7.3; 定理4 (有限覆盖定理) ⇒定理5 (聚点定理)和定理5 (聚点定理) ⇒定理6 (柯西准则)⇒定理1(确界原理)作为练习自证;而定理6 (柯西准则)⇒定理1(确界原理)见下例.例1 用“数列柯西收敛准则” 证明“确界原理” :即 非空有上界数集必有上确界 ;非空有下界数集必有下确界 . 证 (只证“非空有上界数集必有上确界”)设S 为非空有上界数集 . 由实数的阿基米德性,对任何正数α ,存在整数αk ,使得αλααk =为S 的上界,而()ααλαα1-=-k 不是S 的上界,即存在S ∈'α,使得()ααα1->'k .分别取n1=α, ,2,1=n ,则对每一个正整数n ,存在相应的n λ,使得n λ为S 的上界,而nn 1-λ不是S 的上界,故存在S ∈'α,使得nn 1->'λα.又对正整数m ,m λ是S 的上界,故有αλ'≥m .再由nn 1->'λα得nm n 1<-λλ;同理有mn m 1<-λλ.从而得⎭⎬⎫⎩⎨⎧<-n m n m 1,1max λλ.于是,对任给的0>ε,存在0>N ,使得当N n m >,时有ελλ<-m n . 由柯西收敛准则,知数列{}n λ收敛.记λλ=∞→n n lim .下面证明λ就是S 的上确界.首先,对任何S ∈α和正整数n 有n λα≤, 由λλ=∞→n n lim 得λα≤,即λ是S 的上界.其次, 对任何0>δ,由()∞→→nn1及λλ=∞→n n lim ,对充分大的n 同时有21δ<n,2δλλ->n .又因nn 1-λ不是S 的上界, 故存在S ∈'α,使得nn 1->'λα.再结合21δ<n,2δλλ->n 得 δλδδλλα-=-->->'221nn .这说明λ为S 的上确界.同理可证:非空有下界数集必有下确界. 作业 P168 1,2,3,4,5,6,7.第二节 闭区间上连续函数性质的证明在本节中,将利用关于实数完备性的基本定理来证明第四章第二节中给出的闭区间上连续函数的基本性质 一 有界性定理若函数)(x f 在闭区间],[b a 上连续,则)(x f 在],[b a 上有界 证法 一 ( 用区间套定理 ). 反证法. 参阅[3]P106—107证法 二 ( 用致密性定理). 反证法.证明: 如若不然,)(x f 在],[b a 上无界,N n ∈∀,],[b a x n ∈∃,使得()n x f n >,对于序列{}n x ,它有上下界b x a n ≤≤,致密性定理告诉我们kn x ∃使得],[0b a x x kn ∈→,由)(x f 在0x 连续,及()knnx f k>有()()+∞==∞→knk x f x f lim 0,矛盾.证法 三 ( 用有限复盖定理 ).证明:(应用有限覆盖定理) 由连续函数的局部有界性(定理4.2)对每一点],[b a x ∈'都存在邻域()x x U ''δ,及正数x M '使x Mx f '≤)(,()],[,b a x U x x ''∈δ考虑开区间集 ){}],[,b a x x U H x ∈''='δ显然H 是],[b a 的一个无限开覆盖,由有限开覆盖定理,存在H 的一个有限点集(){}ki b a x x U Hi x i i ,,2,1],[, =∈''='*δ覆盖了],[b a ,且存在正整数k M M M ,,21使对一切()],[,b a x U x ix i ''∈δ有i M x f ≤)( k i ,,2,1 =,令i ki M M ≤≤=1max 则对],[b a x ∈∀,x 必属于某()ix i x U ''δ,,M M x f i ≤≤⇒)(,即证得)(x f 在],[b a 上有上界. 二 最大、最小值定理若函数)(x f 在闭区间] , [b a 上连续, 则)(x f 在] , [b a 上取得最大值和最小值.证 ( 用确界原理 ) ( 只证取得最大值 )令{})(sup x f M bx a ≤≤=,+∞<M , 如果)(x f 达不到M ,则恒有M x f <)(.考虑函数)(1)(x f M x g -=,则)(x g 在] , [b a 上连续,因而有界,设G 是)(x g 的一个上界,则Gx f M x g ≤-=<)(1)(0, ],[b a x ∈从而GM x f 1)(-≤,],[b a x ∈这与M 是上确界矛盾,因此],[b a ∈∃ξ,使得M f =)(ξ. 类似地可以证明达到下确界. 三 介值性定理设)(x f 在闭区间] , [b a 上连续,且)()(b f a f ≠若c 为介于)(a f 与)(b f 之间的任何实数)()(b f c a f <<或)()(b f c a f >>,则存在),(0b a x ∈使c x f =)(0.证法一 (应用确界定理)不妨设)()(b f c a f <<,令c x f x g -=)()(则)(x g 也是] , [b a 上连续函数,0)(<a g ,0)(>b g ,于是定理的结论转为: 存在),(0b a x ∈,使0)(0=x g 这个简化的情形称为根的存在性定理(定理4.7的推论)记{}],[,0)(b a x x g x E ∈>=,显然E 为非空有界数集()E b B A E∈⊂且],,[故有确界定理, E 有下确界,记E x inf 0=.因0)(<a g ,0)(>b g 由连续函数的局部保号性, 0>∃δ,使在),[δ+a a 内0)(<x g ,在],(b b δ-内0)(>x g .由此易见a x ≠0,b x ≠0,即),(0b a x ∈. 下证)(0=x g .倘若0)(0≠x g ,不妨设0)(>x g ,则又由局部保号性,存在()()),(,0b a x U ⊂η使在其内0)(>x g ,特别有Ex x g ∈-⇒>⎪⎭⎫ ⎝⎛-2200ηη,但此与E x inf 0=矛盾,则必有0)(0=x g .几何解释: 直线c y =与曲线)(x f y =相交.把x 轴平移到c y =,则问题成为零点存在问题.这启发我们想办法作一个辅助函数,把待证问题转化为零点存在问题.辅助函数如何作?① 从几何上,x x =',c y y -='启示我们作函数c x f x g -=)()(;② 从结果c x f =)(0着手.利用零点定理证:令c x f x g -=)()(,则)(x g 在] , [b a 上连续,往下即转化为零点存在问题.证法二 ( 用区间套定理 ) .这里我们证明与介值性定理等价的“零点定理 ”.命题(零点存在定理或根的存在性定理)设函数)(x f 在闭区间] , [b a 上连续,即()],[)(b a C x f ∈,且)(a f 与)(b f 异号,则在),(b a 内至少存在一点0x 使得0)(0=x f .即方程0)(=x f 在),(b a 内至少存在一个实根.证明 设0)(<a f ,0)(>b f .将] , [b a 二等分为] , [c a 、] , [b c ,若0)(=c f 则c x =0即为所求;若0)(≠c f ,当0)(>c f 时取] , [c a 否则取] , [b c ,将所取区间记为] , [11b a ,从而有0)(1<a f ,0)(1>b f .如此继续,如某一次中点i c 有0)(=i c f 终止(ic 即为所求);否则得[]{}n n b a ,满足:(1) ⊃⊃⊃⊃],[] , [],[11n n b a b a b a ;(2) 02lim)(lim =-=-∞→∞→nn n n n a b a b ;(3) 0)(<n a f ,0)(>n b f由闭区间套定理知,∃唯一的],[0n n b a x ∈, ,2,1=n ,且0lim lim x b a n n n n ==∞→∞→由)(x f 在0x 处的连续性及极限的保号性得()()0lim 0≤=∞→x f a f n n ,()()0lim 0≥=∞→x f b f n n ,0)(0=⇒x f这种先证特殊、再作辅助函数化一般为特殊,最后证明一般的方法是处理数学问题的常用方法,以后会经常用到.四 一致连续性定理若函数)(x f 在闭区间] , [b a 上连续, 则)(x f 在] , [b a 上一致连续. 证法 一 ( 用有限复盖定理) .证明: 由)(x f 在闭区间] , [b a 上连续性, 0>∀ε,对每一点] , [b a x ∈,都存在0>x δ,使当()x x U x δ,∈'时,有()()2ε<-'x f x f (2)考虑开区间集合 ⎭⎬⎫⎩⎨⎧∈⎪⎭⎫⎝⎛=],[2,b a x x U H x δ显然H 是] , [b a 的一个开覆盖,由有限覆盖定理,存在H 的一个有限子集⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎪⎭⎫⎝⎛=*k i x U Hix i ,,2,12, δ覆盖了] , [b a . 记02min 1>⎭⎬⎫⎩⎨⎧=≤≤i ki δδ对],[,b a x x ∈'''∀,δ<''-'x x ,x '必属于*H 中某开区间,设⎪⎪⎭⎫ ⎝⎛2,i x ix U δ,即2ixi x x δ<-',此时有iiiix xxxi i x x x x x x δδδδδ=+≤+<-'+'-''≤-''222故由(2)式同时有 2)()(ε<-'i x f x f 和2)()(ε<-''i x f x f由此得 ε<''-')()(x f x f .所以)(x f 在] , [b a 上一致连续.证法二 ( 用致密性定理).证明: 如果不然,)(x f 在] , [b a 上不一致连续,0>∃ε,0>∀δ,],[,b a x x ∈'''∃,δ<''-'x x ,而0)()(ε≥''-'x f x f .取n1=δ,(n 为正整数)],[,b a x x n n∈'''∃,nx x n n 1<''-',而0)()(ε≥''-'n nx f x f ,当n 取遍所有正整数时,得数列{}n x '与{}],[b a x n ⊂''. 由致密性定理,存在{}nx '的收敛子序列{}kn x ',设)(],[0∞→∈→'k b a x x kn , 而由kn nn x x kk1<''-',可推出)(000∞→→-'+''-'≤-''k x x x x x x kkkkn n n n又得)(0∞→→''k x x k n .再由)(x f 在0x 连续,在0)()(ε≥''-'kk n n x f x f 中令∞→k ,得 ()()000)()(lim 0ε≥''-'=-=∞→kk n n k x f x f x f x f , 与00>ε矛盾.所以)(x f 在] , [b a 上一致连续.作业 P172 1,2,3,4, 5.第三节 上极限和下极限一 上(下)极限的定义对于数列,我们最关心的是其收敛性;如果不收敛,我们希望它有收敛的子列,这个愿望往往可以实现.例如:(){}n 1-.一般地,数列{}n x ,若{}k n x :a x k n → ()∞→k ,则称a 是数列{}n x 的一个极限点.如点例(){}n1-有2个极限点.数列{}n x 的最大(最小)极限点如果存在,则称为该数列的上(下)极限,并记为n n x ∞→lim (n n x ∞→lim ).如1)1(lim =-∞→n n ,1)1(lim -=-∞→nn . 例1 求数列⎭⎬⎫⎩⎨⎧3sinπn 的上、下极限 例2 设[]n n n x )1(1-+=,求上、下极限.二 上(下)极限的存在性下面定理指出,对任何数列{}n x ,它的上(下)极限必定存在.定理1 每个数列{}n x 的上极限和下极限必定唯一,且n n x ∞→lim ={}k nk n n n x x x ≥∞→+=sup lim ,,sup 1 , n n x ∞→lim ={}k nk n n n x x x ≥∞→+=inf lim ,,inf1 . 三 上下极限和极限的关系≥∞→n n x lim n n x ∞→lim . 定理2 {}n x 存在极限则{}n x 的上极限和下极限相等, 即n n x ∞→lim =n n x ∞→lim =n n x ∞→lim .四 上(下)极限的运算普通的极限运算公式对上(下)极限不再成立.例如: 2)1(lim )1(lim 0])1()1[(lim 11=-+-<=-+-+∞→∞→+∞→n n n n n n n . 一般地有:n n n n n n n y x y x ∞→∞→∞→+≤+lim lim )(lim ,当{}n x 收敛时,等号成立. 作业 p175 1,2,3.。
第七章实数的完备性§1 关于实数集完备性的基本定理在第一、二章中,我们证明了关于实数集的确界原理和数列的单调有界定理,给出了数列的柯西收敛准则.这三个命题以不同方式反映了实数集R的一种特性,通常称为实数的完备性或实数的连续性.可以举例说明,有理数集就不具有这种特性(本节习题4).有关实数集完备性的基本定理,除上述三个外,还有区间套定理、聚点定理和有限覆盖定理,在本节中将阐述这三个基本定理,并指出所有这六个基本定理的等价性.下一节中将应用这些基本定理证明第四章中已给出的关于闭区间上连续函数的性质.从而使极限理论乃至整个数学分析能建立在坚实的基础之上.一区间套定理与柯西收敛准则定义1 设闭区间列{[ a n,b n ]}具有如下性质: ( i)[ a n , b n ] É [ a n + 1 , b n + 1 ] , n = 1 ,2, ;(i i)) lim ( b n - a n ) = 0,n →∞则称{[ a n , b n ] } 为闭区间套, 或简称区间套.这里性质(i)表明,构成区间套的闭区间列是前一个套着后一个,即各闭区间的端点满足如下不等式:a1 ≤a2 ≤≤a n ≤≤b n ≤≤ b2 ≤b1 . (1) 定理7.1 ( 区间套定理)若{ [ a n , b n ]}是一个区间套, 则在实数系中存在唯一的一点ξ, 使得ξ∈[ a n , b n ] , n = 1 , 2 ,, 即a n ≤ ξ≤b n , n = 1 ,2, . (2) 证由(1 ) 式, { a n } 为递增有界数列, 依单调有界定理, { a n } 有极限ξ, 且有a n ≤ ξ, n = 1 ,2, . (3) 同理, 递减有界数列{b n } 也有极限, 并按区间套的条件( ii) 有limn →∞且b n = lim a n =ξ, (4)n →∞162第七章 实数的完备性b n ≥ ξ, n = 1 ,2, . (5)联合(3)、(5)即得(2)式.最后证明满足(2)的ξ是唯一的.设数ξ′也满足a n ≤ξ′≤b n , n = 1,2,,则由 (2 ) 式有 由区间套的条件(ii )得故有ξ′=ξ.|ξ- ξ′|≤b n -a n , n = 1,2,.|ξ- ξ′|≤lim (b n -a n ) = 0,n →∞由(4 ) 式容易推得如下很有用的区间套性质:推论 若 ξ∈ [ a n , b n ] ( n = 1 ,2, )是区间套{[a n ,b n ]}所确定的点,则对 任给的 ε>0 , 存在 N > 0 , 使得当 n >N 时有[ a n , b n ] Ì U (ξ;ε) .注 区间套定理中要求各个区间都是闭区间 , 才能保证定理的结论成立.对于开区间列, 如{ ( 0 , 1) } , 虽然其中各个开区间也是前一个包含后一个, 且nlim ( 1- 0) = 0 , 但不存在属于所有开区间的公共点. n →∞ n作为区间套定理的应用,我们来证明第二章中叙述而未证明的“数列的柯西 收敛准则”(定理2 .10),即数列{ a n } 收敛的充要条件是: 对任给的ε>0 , 存在 N > 0 , 使得对 m , n >N 有 | a m - a n | <ε.证 [ 必要性] 设lim n →∞a n = A.由数列极限定义, 对任给的 ε>0 , 存在N > 0 , 当 m , n >N 时有| a m - A |<ε ε2 , | a n - A|< 2, 因而 | a m - a n | ≤ | a m - A | + | a n - A | <ε ε2 + 2= ε. [ 充分性] 按假设, 对任给的ε>0 , 存在 N > 0 , 使得对一切n ≥ N 有|a n -a N |≤ε,即在区间[a N -ε,a N +ε]内含有{a n }中几乎所有的项(这里及以 下,为叙述简单起见,我们用“{a n }中几乎所有的项”表示“{a n }中除有限项外的 所有项”) .据此, 令ε= 1 , 则存在 N 1 , 在区间[ a N 21 所有的项.记这个区间为[α1 ,β1].- 12 , a N 1+ 1] 内含有{ a n } 中几乎 2§1 关于实数集完备性的基本定理163再令ε= 1 , 则存在 N 2 ( >N 1 ) , 在区间[ a N 22 2 几乎所有的项 .记- 1 , a N 222 + 1] 内含有{ a n } 中22[α2 ,β2]= [a N2 - 1 , a N 222 + 1 ]∩[α1 ,β1] , 22 它也含有{ a n } 中几乎所有的项, 且满足[α1 ,β1]É[α2 ,β2 ]及 β2 - α2 ≤1.2继续依次令 ε= 123,, 1 ,,照以上方法得一闭区间列{[αn ,βn ]},其中每2n个区间都含有{ a n } 中几乎所有的项, 且满足[αn ,βn ]É[αn+1 ,βn+1], n = 1,2, ,1βn - αn ≤ 2n - 1 → 0 ( n → ∞) ,即{[αn ,βn ]}是区间套.由区间套定理,存在唯一的一个数ξ∈[αn ,βn ]( n =1, 2,).现在证明数ξ就是数列{ a n } 的极限 .事实上, 由定理 7 .1的推论, 对任给的 ε>0 , 存在 N > 0 , 使得当 n >N 时有[αn ,βn ]ÌU(ξ;ε) .因此在 U(ξ;ε) 内含有{ a n } 中除有限项外的所有项, 这就证得lim n →∞a n = ξ.二 聚点定理与有限覆盖定理定义2 设 S 为数轴上的点集, ξ为定点( 它可以属于S , 也可以不属于 S).若ξ的任何邻域内都含有 S 中无穷多个点, 则称ξ为点集 S 的一个聚点 .例如, 点集 S = { (- 1 ) n + 1 } 有两个聚点ξ = - 1 和ξ = 1 ; 点集 S = { 1}n 1 2n只有一个聚点ξ= 0; 又若 S 为开区间( a , b) , 则( a , b) 内每一点以及端点 a 、b都是 S 的聚点; 而正整数集N + 没有聚点, 任何有限数集也没有聚点 .聚点概念的另两个等价定义如下:定义2′ 对于点集 S , 若点ξ的任何ε邻域内都含有 S 中异于ξ的点, 即 U °(ξ;ε)∩S ≠¹?,则称ξ为S 的一个聚点.定义2″ 若存在各项互异的收敛数列{ x n } ÌS , 则其极限lim n →∞x n = ξ称为 S的一个聚点 .关于以上三个定义等价性的证明, 我们简述如下 .定义2ª定义2′是显然的,定义2″ª定义2也不难得到;现证定义2′ª定义164第七章 实数的完备性2″:设ξ为S(按定义2′)的聚点,则对任给的ε>0,存在x ∈U °(ξ;ε)∩S .令ε1 =1,则存在x 1∈U °(ξ;ε1 )∩S;令ε2 =min (1,|ξ- x 1 |),则存在x 2 ∈U °(ξ;ε2)∩S,且显然x 2 ≠x 1 ;2令 εn =min (1, |ξ- x n - 1 |),则存在x n ∈U °(ξ;εn )∩S,且x n 与x 1 ,,nx n - 1 互异 .无限地重复以上步骤,得到S 中各项互异的数列{x n },且由|ξ- x n |<εn ≤ 1, 易见lim n →∞x n = ξ.下面我们应用区间套定理来证明聚点定理 .定理7 .2 ( 魏尔斯特拉斯( Weierstrass) 聚点定理) 实轴上的任一有界无 限点集S 至少有一个聚点 . 证 因 S 为有界点 集 , 故存 在 M > 0 , 使 得 S Ì [ - M , M ] , 记[ a 1 , b 1 ] =[ - M , M] .现将[ a 1 , b 1 ] 等分为两个子区间 .因 S 为无限点集, 故两个子区间中至少有 一个含有 S 中无穷多个点, 记此子区间为[ a 2 , b 2 ] , 则[ a 1 , b 1 ] É[ a 2 , b 2 ] , 且 b 2 - a 2 = 12(b 1 - a 1 ) = M.再将[ a 2 , b 2 ] 等分为两个子区间, 则其中至少有一个子区间含有 S 中无穷 多个点, 取出这样的一个子区间, 记为[ a 3 , b 3 ] , 则[ a 2 , b 2 ]É[ a 3 , b 3 ] , 且b 3 - a 3 = 1 (b 2 - a 2 ) = M.2 2将此等分子区间的手续无限地进行下去, 得到一个区间列{ [ a n , b n ]} , 它满 足[ a n , b n ] É [ a n + 1 , b n + 1 ] , n = 1 ,2,,b n - a n = M→ 0 ( n → ∞ ),2n - 1即{[ a n , b n ] } 是区间套, 且其中每一个闭区间都含有 S 中无穷多个点 .由区间套定理, 存在唯一的一点ξ∈[ a n , b n ] ,n = 1 , 2 ,.于是由定理 7 .1 的推论, 对任给的ε> 0 , 存在 N > 0 , 当 n >N 时有[ a n ,b n ] Ì U ( ξ; ε) .从而 U(ξ;ε) 内含有 S 中无穷多个点, 按定义2 , ξ为 S 的一个聚点 .推论( 致密性定理) 有界数列必含有收敛子列 .n§1 关于实数集完备性的基本定理165证 设{ x n } 为有界数列 .若{x n } 中有无限多个相等的项, 则由这些项组成 的子列是一个常数列, 而常数列总是收敛的 .若数列{ x n } 不含有无限多个相等的项, 则{ x n } 在数轴上对应的点集必为有 界无限点集,故由聚点定理,点集{x n }至少有一个聚点,记为ξ.于是按定义2″, 存在{ x n } 的一个收敛子列( 以ξ为其极限) .作为致密性定理的应用, 我们用它重证数列的柯西收敛准则中的充分性 . 证 设数列{ a n } 满足柯西条件 .先证明{ a n } 是有界的 .为此, 取ε= 1 , 则存 在正整数 N, 当 m = N + 1 及 n >N 时有| a n -a N + 1 | <1.由此得 | a n | = | a n - a N + 1 + a N + 1 | ≤ | a n - a N + 1 | + | a N + 1 | < | a N + 1 | + 1 .令M = max { | a 1 | , | a 2 |,, | a N | , | a N + 1 | + 1},则对一切正整数 n 均有 | a n | ≤ M .于是, 由致密性定理, 有界数列{ a n } 必有收敛子列{ a n k 给的ε>0 , 存在 K > 0 , 当 m , n ,k >K 时, 同时有ε } , 设limk →∞ a n = A.对任k | a n - a m |<2( 由柯西条件) , | a n - A |< ε( 由lim a n = A ) .k 2因而当取 m = n k ( ≥k >K)时, 得到k →∞ k ε ε | a n - A | ≤ |a n - a n k | + | a n k - A |<2 + 2 = ε. 这就证明了lim n →∞a n = A .定义3设S 为数轴上的点集,H 为开区间的集合(即H 的每一个元素都 是形如(α,β)的开区间).若S 中任何一点都含在H 中至少一个开区间内,则称 H 为S 的一个开覆盖,或称H 覆盖S.若H 中开区间的个数是无限(有限)的, 则称H 为S 的一个无限开覆盖(有限开覆盖).在具体问题中,一个点集的开覆盖常由该问题的某些条件所确定.例如,若 函数f 在(a,b)内连续,则给定ε>0,对每一点x ∈(a, b),都可确定正数δx (它 依赖于ε与x),使得当x ′∈U ( x ;δx )时有|f( x ′) - f( x)|<ε.这样就得到一 个开区间集H = {( x - δx , x +δx )x ∈(a,b)},它是区间( a , b) 的一个无限开覆盖 .定理7 .3(海涅—博雷尔(H eine 6B .orel)有限覆盖定理) 设H 为闭区间 [ a , b] 的一个( 无限) 开覆盖, 则从 H 中可选出有限个开区间来覆盖[ a , b].166第七章 实数的完备性证 用反证法 假设定理的结论不成立 , 即不能用 H 中有限个开区间来 覆 盖 [ a , b] .将[a,b]等分为两个子区间,则其中至少有一个子区间不能用H 中有限个 开区间来覆盖.记这个子区间为[a 1,b 1],则[a 1,b 1]Ì[a,b] ,且b 1 - a 1 =12( b - a) . 再将[ a 1 , b 1 ] 等分为两个子区间, 同样, 其中至少有一个子区间不能用 H 中 有限个开区间来覆盖 .记这个子区间为[ a 2 , b 2 ] , 则[ a 2 , b 2 ]Ì[ a 1 , b 1 ] , 且 b 2 - a 2 = 1( b - a) .22重复上述步骤并不断地进行下去, 则得到一个闭区间列{ [ a n , b n ]} , 它满足[ a n , b n ] É [ a n + 1 , b n + 1 ] , n = 1 ,2, ,b n - a n = 1(b- a) → 0 ( n → ∞) ,2n即{[ a n , b n ] } 是区间套, 且其中每一个闭区间都不能用 H 中有限个开区间来覆 盖 .由区间套定理 , 存在唯一的一点 ξ∈ [ a n , b n ] , n = 1 , 2 , .由于 H 是 [ a , b] 的一个开覆盖, 故存在开区间(α, β) ∈H , 使ξ∈( α, β) .于是, 由定理 7 .1 推论, 当 n 充分大时有[ a n , b n ] Ì (α, β) .这表明[ a n , b n ] 只须用 H 中的一个开区间(α, β) 就能覆盖, 与挑选[ a n , b n ] 时的 假设“不能用 H 中有限个开区间来覆盖”相矛盾 .从而证得必存在属于 H 的有 限个开区间能覆盖[ a , b] .注 定理7 .3 的结论只对闭区间[ a , b]成立, 而对开区间则不一定成立 .例如,开区间集合( 1,1) (n =1,2, )构成了开区间(0,1)的一个开覆盖,但n + 1不能从中选出有限个开区间盖住(0 , 1 ) .*三 实数完备性基本定理的等价性至此, 我们已经介绍了有关实数完备性的六个基本定理, 即 1 . 确界原理( 定理1 .1 ) ;2 . 单调有界定理( 定理2 .9 ) ;3 . 区间套定理( 定理7 .1 ) ;4 . 有限覆盖定理( 定理7 .3 ) ;5 . 聚点定理( 定理7 .2 ) ;§1 关于实数集完备性的基本定理1676 . 柯西收敛准则 ( 定理2 .10) .在本书中,我们首先证明了确界原理,由它证明单调有界定理,再用单调有 界定理导出区间套定理,最后用区间套定理分别证明余下的三个定理.事实上, 在实数系中这六个命题是相互等价的,即从其中任何一个命题都可推出其余的 五个命题.对此,我们可按下列顺序给予证明:1ª2 ª3ª4 ª5ª6 ª1 .其中 1ª2 , 2ª 3 与 3ª4 分别见定理 2 .9 , 7 .1 与 7 .3; 4 ª5 和 5 ª 6 请读 者作 为 练习自证( 见本节习题8 和9 ) ; 而6 ª1 见下例 .例 1 用数列的柯西收敛准则证明确界原理.证设S 为非空有上界数集.由实数的阿基米德性,对任何正数α,存在整 数K α,使得λα= k αα为S 的上界,而λα- α= (k α- 1)α不是S 的上界,即存在 α′∈S,使得α′>( k α-1)α.分别取 α= 1, n = 1 ,2,,则对每一个正整数n,存在相应的λ,使得λn nn为S 的上界,而λn - 1不是S 的上界,故存在a ′∈S,使得na ′>λn - 1 n.(6)又对正整数m ,λm 是S 的上界,故有λm ≥a ′.结合(6)式得 λn -λm <1;同理有nλm -λn < 1m .从而得 | λm - λn | <max1 1m , n. 于是, 对任给的ε>0 , 存在 N > 0 , 使得当 m , n >N 时有|λm - λn | <ε.由柯西收敛准则,数列{λn }收敛.记lim λn = λ.(7)n →∞现在证明λ就是S 的上确界.首先,对任何a ∈S 和正整数n 有a ≤λn ,由(7 ) 式得 a ≤λ, 即λ是 S 的一个上界 .其次, 对任何δ> 0 , 由1→0 ( n →∞) 及n(7 ) 式, 对充分大的 n 同时有1 n < δ δ2 , λn >λ- 2. 又因λn - 1不是S 的上界,故存在a ′∈S,使得a ′>λn - 1.结合上式得n n168 第七章实数的完备性这说明λ为S的上确界. a′>λ-δ2-δ= λ- δ.2同理可证: 若S 为非空有下界数集, 则必存在下确界.习题1 . 验证数集{ ( - 1) n + 1}有且只有两个聚点ξ= - 1 和ξ= 1 . n 1 22 . 证明: 任何有限数集都没有聚点.3 . 设{ ( a n , b n ) }是一个严格开区间套, 即满足a1<a2 < <a n <b n < <b2 <b1,且lim ( b n - a n ) = 0 .证明:存在唯一的一点ξ, 使得n →∞a n <ξ<b n , n = 1 ,2, .4 . 试举例说明:在有理数集内, 确界原理、单调有界定理、聚点定理和柯西收敛准则一般都不能成立.5 . 设H = {( 1,1) | n = 1 ,2, } .问n+2 n( 1) H 能否覆盖( 0 , 1 ) ?( 2) 能否从H 中选出有限个开区间覆盖( i) (0 , 1) , ( ii) (1, 1) ?2 1006 . 证明: 闭区间[ a , b] 的全体聚点的集合是[ a , b]本身.7. 设{ x n }为单调数列.证明:若{ x n } 存在聚点, 则必是唯一的, 且为{ x n }的确界。
一第七章 定积分第一节 定积分的概念0121.(1) (0);[,], ,.ba n i xdx ab a b n a x x x x b b ax a n<<=<<<<=-=+⎰已知下列函数在指定区间上可积,用定义求下列积分:解:注意到函数已经可积,我们只需要找到一种满足条件的分法求和求极限就可以啦。
将区间等分为份分点为其中小区间长度为 1111.(),lim i i i nni i i i nba n ib ax x x n b a b ax x a n nb a b a xdx I a n n σ-==→∞=-∆=-=--=∆=+--⎛⎫==+ ⎪⎝⎭∑∑∑⎰ 那么则 ()()222212lim 2 .2n n i b a ab a n n n n b a →∞=⎡⎤--+=+⎢⎥⎢⎥⎣⎦-=∑0121(2) (0) (;[,], ,..ban i i i i kdx a b k a b n a x x x x b b ax a nb ax x x n -<<=<<<<=-=+-∆=-=⎰为任意常数)解:将区间等分为份分点为其中小区间长度为 那么111,lim lim ()nni i i nban i n b ak x kn b a xdx I kn k b a σ==→∞=→∞-=∆=-===-∑∑∑⎰ 则 ().k b a =-二221212122211(3);[1,2],2(1)2(1)1331,33lim 1ni ni nn i x dx n i n n i n n i x dx n n σ-==-→∞=-----⎛⎫=-+⎪⎝⎭⎛⎫=-+ ⎪⎝⎭⎛⎫=-+ ⎪⎝⎭⎰∑∑∑⎰解:将区间等分为小分取于是221223123369lim 131827lim 18(1)27(1)(21)lim 32n n i nn i n i i n n n i i nn n n n n n n n n →∞=→∞=→∞⎛⎫=-+ ⎪⎝⎭⎛⎫=-+ ⎪⎝⎭+++⎛⎫=-+ ⎪⎝⎭∑∑ 399 3.=-+= ()()11110111/1/1(4).1[0,1],,1lim 1lim1limx nn i i nxnn i n n nn n nn a dx n a na dx ana a a na σ=→∞=→∞→∞==⎡⎤-⎢⎥⎣⎦=-=⎰∑∑⎰解:将区间均分为等分取那么()11ln 1.ln a a n n a a---=三0122.()[,],()[,],()().(),;[,] bb c a a cb ca cn f x a c b c f x c a b f x c dx f x dx f x dx I a c b c a c x c x c x c x c ++++++++==+++=+<+<+<<+⎰⎰⎰设在区间上可积证明:在上可积且 证明:设即将区间被分点1110111,(1,2,,),max ,[,],(),lim (),()lim ().i i i i i nnni i i i i i i i i i nb ci i a ci b cn x x x i n x c x c x c f x f x I f x dx f c x I λλλξησξξη-≤≤-→==++→==+∆=-==∆=+∈++=∆∆==+∆=∑∑∑⎰任意分成个小区间小区间长度为记在每个小区间上任取一点做和式应有即01211101[,] ,(1,2,,),max ,[,],(),lim (n i i i i i nni i i i i i a b a x x x x bn x x x i n x x x f c x f λλησξη-≤≤-→==<<<<=∆=-==∆∈=+∆∑ 于是可知:将区间被分点任意分成个小区间小区间长度为记在每个小区间上任取一点做和式满足11),()lim ().()().ni i i nbi i ai bb c a a cc x I f x c dx f c x I f x c dx f x dx λη=→=+++∆=+=+∆=+=∑∑⎰⎰⎰即因此有0123. 1 (,)(),0 [,)(,]()0.[,] ,ba n i i x c c ab f x x ac c b f x dx a b a x x x x bn x x x =∈⎧=⎨∈⎩==<<<<=∆=-⎰设求证:证明:区间被分点任意分成个小区间小区间长度为111111(1,2,,),max ,[,],(),0()(),lim ()0,i i i nni i i i i i i niii ni i i i n x x x f x f xf c f x λλξησξξλλλξ-≤≤-==→===∆=∈=∆≤∆≤=∆=∑∑∑记在每个小区间上任取一点做和式应有于是当趋近于零时,根据夹迫性原理可知即()0.ba f x dx =⎰四12***14.()[,],,[,]()(),()[,],.()(),().()[,n ji i i mi j f x a b I a b f x f x f x a b I f x m x x x f x f xM f x a b =<<<=∑若函数在区间可积其积分是今在内有限个点上改变函数的值使它变成另一个函数证明:也在区间可积其积分也是证明:首先设将函数改变个点后得到函数并设由于在区间0121111],,[,] ,(1,2,,),max ,[,],(),n i i i i i nni i i i i i i I a b a x x x x b n x x x i n x x x f x λξησξ-≤≤-==<<<<=∆=-==∆=∈=∆∑可积且积分为我们知道区间被分点任意分成个小区间小区间长度为记在每个小区间上任取一点做和式应该有11*111lim ().0,0,min(,)();22()()()jni i i ni i i nnmi i iii i i i j f x I f x I M fx I f x I f xx λξεεεδλδξξξ→=====∆=>∃><∆-<∆-≤∆-+∆∑∑∑∑∑ 那么对任意的当时有同时1*().22()[,],.ni i i f x I M f x a b I εεξλε=≤∆-+<+=∑因此函数也在区间可积其积分也是第二节 定积分的基本性质00000001.()[,],()0,(),()0.[,]()0,:0,0()0.2()0,2()[,ba x x x x f x ab f x f x f x dx x a b f x x x f x f x dx dx f x a b δδδδαδαδααδ++--≥>∈=>∃><-<>>>=>⎰⎰⎰设在连续不恒为零证明:证明:设有一点使得那么有函数极限的局部保号性原理可知当时于是有又由于函数在区间000000]()0,()()0,()()()()00.x bax bx x ba ax x f x f x dx f x dx f x dx f x dx f x dx f x dx δδδδδδαδ-+-+-+≥+≥=++>+>⎰⎰⎰⎰⎰⎰上满足故有则五2222222.()[,],()0,()[,]()[,]()[,]()0,()()0,()0,()0babaf x a b f x dx f x a b f x a b f x a b f x f x f x dx f x f x =≥>≡≡⎰⎰设在上连续证明在区间上恒等于零。