专题七 几何证明之三角形中的面积综合问题 2020年中考数学冲刺难点突破 几何证明问题(原卷版)
- 格式:docx
- 大小:104.44 KB
- 文档页数:7
三轮冲刺:《三角形综合》(四)1.已知△ABC中,AB=AC.(1)如图1,在△ADE中,AD=AE,连接BD、CE,若∠DAE=∠BAC,求证:BD=CE;(2)如图2,在△ADE中,AD=AE,连接BE、CE,若∠DAE=∠BAC=60°,CE⊥AD于点F,AE=4,,求BE的长;(3)如图3,在△BCD中,∠CBD=∠CDB=45°,连接AD,若∠CAB=45°,求的值.2.在等边△ABC中,点E,F分别在边AB,BC上.(1)如图1,若AE=BF,以AC为边作等边△ACD,AF交CE于点O,连接OD.求证:①AF=CE;②OD平分∠AOC;(2)如图2,若AE=2CF,作∠BCP=∠AEC,CP交AF的延长线于点P,求证:CE=CP.3.如图(1),在Rt△ABC中,∠C=90°,∠ABC=30°,点D,E分别是AB,AC的中点,过点B作直线DE的垂线段BM,垂足为M,点F是直线ED上一动点,作Rt△BFG,使∠BFG =90°,∠FGB=30°,连接GD.【观察猜想】如图(2),当点F与点D重合时,则的值为.【问题探究】如图(1),当点F与点D不重合时,请求出的值及两直线GD、ED夹角锐角的度数,并说明理由.【问题解决】如图(3),当点F、G、A在同一直线上时,请直接写出的值.4.△ABC中,AB=AC,∠BAC=120°,AD,BE分别为△ABC的高与中线.(1)如图1,求证:AE=AD;(2)如图2,点F在AD的延长线上,连接BF,CF,若BE=CF,求证:∠AEB=∠AFB;(3)在(2)的条件下,如图3,过点A作BF的平行线交CF于点G,若FG=6,求BE 的长.5.如图1,在直角三角形ABC中,∠BAC=90°,AD为斜边BC上的高线.(1)求证:AD2=BD⋅CD;(2)如图2,过A分别作∠BAD,∠DAC的角平分线,交BC于E,M两点,过E作AE的垂线,交AM于F.①当tan C=时,求的值;②如图3,过C作AF的垂线CG,过G点作GN∥AD交AC于M点,连接MN.若∠EAD=15°,AB=1,直接写出MN的长度.6.已知等边△ABC和等腰△CDE,CD=DE,∠CDE=120°.(1)如图1,点D在BC上,点E在AB上,P是BE的中点,连接AD,PD,则线段AD与PD之间的数量关系为;(2)如图2,点D在△ABC内部,点E在△ABC外部,P是BE的中点,连接AD,PD,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若点D在△ABC内部,点E和点B重合,点P在BC下方,且PB+PC为定值,当PD最大时,∠BPC的度数为.7.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6.动点P从点A出发,沿AB以每秒5个单位长度的速度向终点B运动.当点P不与点A重合时,过点P作PD⊥AC于点D、PE ∥AC,过点D作DE∥AB,DE与PE交于点E.设点P的运动时间为t秒.(1)线段AD的长为.(用含t的代数式表示).(2)当点E落在BC边上时,求t的值.(3)设△DPE与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.(4)若线段PE的中点为Q,当点Q落在△ABC一边垂直平分线上时,直接写出t的值.8.在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB 于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上9.已知:△ABC与△ABD中,∠CAB=∠DBA=β,且∠ADB+∠ACB=180°.提出问题:如图1,当∠ADB=∠ACB=90°时,求证:AD=BC;类比探究:如图2,当∠ADB≠∠ACB时,AD=BC是否还成立?并说明理由.综合运用:如图3,当β=18°,BC=1,且AB⊥BC时,求AC的长.10.如图1,△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC于D.(1)点E、F分别在DA、DC的延长线上,且AE=CF,连接BE、AF,猜想线段BE和AF 的数量关系和位置关系,并证明你的结论;(2)如图2,连接EF,将△DEF绕点D顺时针旋转角α(0°<α<90°),连接AE、CE,若四边形ABCE恰为平行四边形,求DA与DE的数量关系;(3)如图3,连接EF,将△DEF绕点D逆时针旋转,当点A落在线段EF上时,设DE与AB交于点G,若AE:AF=3:4,求的值.参考答案1.(1)证明:如图1中,∵∠DAE=∠BAC,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△EAC≌△DAB(SAS),∴EC=BD.(2)解:如图2中,连接BD.∵AE=AD,∠EAD=60°,∴△AED是等边三角形,∴∠DEA=∠CDE=60°,∵EF⊥AD,∴∠FEA=∠DEA=30°∵∠DAE=∠BAC,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△EAC≌△DAB(SAS),∴∠BDA=∠AEC=30°,EC=BD,∴∠EDB=90°,∵AE=4,AF=2,AC=,∠EFA=∠AFC=90°,∴EF===2,CF===,∴EC=BD=3,∴BE===.(3)解:如图3中,作CM⊥CA,使得CM=CA,连接AM,BM.∵CA=CM,∠ACM=90°,∴∠CAM=45°,∵∠CAB=45°,∴∠MAB=45°+45°=90°,设AB=AC=m,则AM=m,BM==m,∵∠ACM=∠BCD=90°,∴∠BCM=∠ACD,∵CA=CM,CB=CD,∴△ACD≌△MCB(SAS),∴AD=BM=m,∴==.2.(1)证明:①如图1中,∵△ABC是等边三角形,∴AB=BC,∠B=∠BAC=60°,∵AE=BF,∴△ABF≌△CAE(SAS),∴AF=EC.②如图1中,∵△ABF≌△CAE,∴∠BAF=∠ACE,∵∠AOE=∠OAC+∠ACO=∠OCA+∠BAF=∠BAC=60°,又∵△ACD是等边三角形,∴∠ADC=∠DAC=∠DCA=60°,∴∠AOE=∠ADC,∵∠AOE+∠AOC=180°,∴∠ADC+∠AOC=180°,∴A,D,C,O四点共圆,∴∠AOD=∠ACD=60°,∠COD=∠CAD=60°,∴∠AOD=∠COD,∴OD平分∠AOC.(2)证明:如图2中,取AE的中点M,连接CM.∵AE=2CF,AM=ME,∴AM=CF,∵∠CAM=∠ACF=60°,AC=CA,∴△ACM≌△CAF(SAS),∴∠ACM=∠CAF,∵∠CME=∠CAM+∠ACM=60°+∠ACM,∠CFP=∠ACF+∠CAF=60°+∠CAF,∴∠CME=∠CFP,∵EM=CF,∠PCF=∠CEM,∴△CME≌△PFC(ASA),∴CE=PC.3.解:【观察猜想】如图(2)中,结论:当点F与点D重合时,则的值为2.理由:设BM=a.∵AE=EC,AD=DB,∴DE∥BC,∴∠BDM=∠ABC=30°,∵BM⊥EM,∴∠BMD=90°,∴BD=2BM=2a,DM=BM=a,在Rt△GDB中,∵∠GDB=90°,∠G=30°,∴GD=BD=2a,∴==2.故答案为2.【问题探究】如图(1)中,结论:的值为2,两直线GD、ED夹角锐角的度数为60°.理由:延长GD交BF的延长线于P.在Rt△BDM中,设BM=a,则BD=2a,DM=a,在Rt△BGF中,设BF=b,则BG=2b,FG=,在△BGD与△BFM中,∵BG:BF=2b:b=2a:a=BF:BM,∠DBG=60°﹣∠FBD=∠FBM,∴△BGD∽△BFM,∴DG:FM=BD:BM=2a:a=2:1,即的值为2,∵△BGD∽△BFM,∴∠PFD=∠MFB=∠BGD,则在△PDF与△PBG中,∠PDF=∠PBG=60°.故的值为2,两直线GD、ED夹角锐角的度数为60°.【问题解决】结论:的值为4+或4﹣.如图(3)﹣1中,当点G在线段AF上时,∵△BDG∽△BMF,∴∠BDG=∠BMF=90°,∴GD⊥AB,∵AD=BD,∴GD垂直平分线段AB,∴GA=GB,设BF=x,则BG=2x=AG,FG=,∴BG:AF=2x:=4﹣.如图(3)﹣2中,当点G在线段AF的延长线上时,设BF=x,同法可得:BG=AG=2x,GF=x,∴AF=2x﹣x,∴BG:AF=2x:(2x﹣x)=4+.∴的值为4+或4﹣.4.(1)证明:如图1中,∵AB=AC,∠BAC=120°,∴∠ABC=∠C=30°,∵BD=CD,∴AD⊥BC,∴AD=AC,∵BE是△ABC的中线,∴AE=EC=AC,∴AD=AE.(2)证明:如图2中,作BP⊥CA交CA的延长线于P.∵∠P=90°,∠BCP=30°,∴BP=BC=CD,∵∠FDC=∠P=90°,BE=CF,BP=CD,∴Rt△BPE≌Rt△CDF(HL),∴∠BEP=∠CFD,∵DF⊥BC,CD=DB,∴FB=FC,∴∠BFD=∠CFD,∴∠AEB=∠AFB.(3)解:如图3中,设AG交BE于H,交BC于M,作CN∥AD交AM的延长线于G.∵AG∥BF,∴∠GAF=∠AFB,∵∠FAB=∠AFC,∴∠GAF=∠AFG,∴GA=GF=6,∵CN∥AF,∴∠N=∠FAG,∠GCN=∠AFG,∴∠N=∠GCN,∴CG=GN,∴CF=AN=BE,∵∠ACB=30°,∠DCN=90°,∴∠BAE=∠ACN=120°,∵∠AEB=∠AFC=∠N,∴△BAE≌△ACN(AAS),∴AE=CN=AD,∵∠ADM=∠MCN=90°,AMD=∠CMN,∴△ADM≌△NCM(AAS),∴AM=MN,∵∠N+∠NMG=90∠NCG+∠MCG=90°,∴∠GMC=∠GCM,∴CG=GM=GN,∴AG=3GN=6,∴CG=GN=2,∴BE=CF=FG+CG=6+2=8.5.(1)证明:如图1中,∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠BAC=90°,∴∠B+∠C=90°,∵∠B+∠BAD=90°,∴∠BAD=∠C,∴△BAD∽△ACD,∴=,∴AD2=BD•CD.(2)①解:如图2中,作EH⊥AB于H,MG⊥AC于G.∵AD⊥BC,∴∠tan C==,∴可以假设AD=3k,CD=4k,则AC=5k,BD=k,AB=k,∵MA平分∠CAD,MD⊥AD,MG⊥AC,∴DM=MG,∵∠ADM=∠AGM=90°,AM=AM,∴Rt△MAD≌Rt△MAG(HL)∴AD=AG=3k,设MD=MG=x,则CG=2k,CM=4k﹣x,在Rt△CMG中,∵CM2=MG2+CG2,∴(4k﹣x)2=x2+(2k)2,∴x=k,∴DM=k,同法可得DE=k,∴==.②如图3中,∵AE平分∠BAD,∠EAD=15°,∴∠BAD=30°,∵AD⊥BC,∠BAC=90°,∴∠B=∠DAC=60°,∠C=30°,∵MA平分∠CAD,∴∠MAC=∠MAD=30°,∴∠MAC=∠MCA=30°,∴∠AMB=∠MAC+∠MCA=60°=∠B=∠BAM,∴MA=MC,△ABM是等边三角形,∴AM=BM,∵GN∥AD,∴∠GNC=∠DAC=60°,∵CG⊥AG,∴∠AGC=90°,∴∠ACG=60°=∠CNG,∴△CGN是等边三角形,∴NC=CG,∵AC=2CG,∴AN=CN,∵BM=MC,∴MN=AB=.6.解:(1)结论:AD=2PD.理由:如图1中,∵△ABC是等边三角形,∴∠B=60°,∵∠EDC=120°,∴∠EDB=180°﹣120°=60°,∴∠B=∠EDB=∠BED=60°,∴△BDE是等边三角形,∵BP=PE,∴DP⊥AB,∴∠APD=90°,∵DE=DC,DE=DB,∵AB=AC,∠BAC=60°,∴∠PAD=∠BAC=30°,∴AD=2PD.(2)结论成立.理由:延长DP到N,使得PN=PD,连接BN,EN,延长ED到M,使得DM=DE,连接BD,BM,CM.∵DE=DC=DM,∠MDC=180°﹣∠EDC=60°,∴△DCM是等边三角形,∵CA=CB,CM=CD,∠DCM=∠ACB=60°,∴∠BCM=∠ACD,∴△BCM≌△ACD(SAS),∴AD=BM,∵PB=PE,PD=PN,∴四边形BNED是平行四边形,∴BN∥DE,BN=DE,∵DE=DM,∴BN=DM,BN∥DM,∴四边形BNDM是平行四边形,∴BM=DN=2PD,∴AD=2PD.(3)如图3中,作∠PDK=∠BDC=120°,且PD=PK,连接PK,CK.∵DB=DC,DP=DK,∠BDC=∠PDK,∴∠BDP=∠CDK,∴△PDB≌△KDC(SAS),∴PB=CK,∵PB+PC=PC+CK=定值,∴P,C,K共线时,PK定值最大,此时PD的值最大,此时,∠DPB=∠DKP=∠DPK=30°,∠BPC=∠DPB+∠DPK=60°.故答案为60°.7.解:(1)如图1中,在Rt△ACB中,∵∠C=90°,AC=8,BC=6,∴AB===10,∵PD⊥AC,∴cos A==,∴=,∴AD=4t,故答案为4t.(2)如图2中,当点E落在BC上时,∵DE∥AB,PE∥AD,∴四边形APED是平行四边形,∴DE=AP=5t,AD=PE=4t,∴=,∴=,解得t=1,∴当点E落在BC边上时,t的值为1.(3)①如图1中,当0<t≤1时,重叠部分是△PDE,∵PE∥AD,∴∠DPE=∠ADP=90°,∵DE=5t,PE=4t,∴PD=3t,∴S=•PD•PE=×3t×4t=6t2.②如图3中,当1<t≤2时,S=•(MN+PD)•PN=[3t+3t﹣(10﹣5t)]•(10﹣5t)=﹣18t2+48t﹣24.综上所述,S=.(4)①如图4﹣1中,当点Q落在线段AC的垂直平分线MN上时,由题意:=,可得=,解得t=.②如图4﹣2中,当点Q落在线段AB的垂直平分线MN上时,由题意:=,可得=,解得t=③如图4﹣3中,当点Q落在线段BC的垂直平分线上时,AP=PB,此时t=1,综上所述,满足条件的t的值为或或1.8.(1)解:四边形AEDF的形状是菱形;理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠FAD,∵DE∥AC,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴四边形AEDF是菱形;(2)(i)解:连接EF交AD于点Q,如图2所示:∵∠BAC=60°,四边形AEDF是菱形,∴∠EAD=30°,AD、EF相互垂直平分,△AEF是等边三角形,∴∠EAF=∠AEF=∠AFE=60°,∵AD=4,∴AQ=2,在Rt△AQE中,cos∠EAQ=,即cos30°=,∴AE===4,∴AE=AF=EF=4,在△AEG和△EFH中,,∴△AEG≌△EFH(SAS),∴∠AEG=∠EFH,∴∠ENH=∠EFH+∠GEF=∠AEG+∠GEF=60°,∴∠ENH=∠EAG,∵∠AEG=∠NEH,∴△AEG∽△NEH,∴=,∴EN•EG=EH•AE=3×4=12;(ii)证明:如图3,连接FM',∵DE∥AC,∴∠AED=180°﹣∠BAC=120°,由(1)得:△EDF是等边三角形,∴DE=DF,∠EDF=∠FED=∠EFD=60°,由旋转的性质得:∠MDM'=60°,DM=DM',∴∠EDM=∠FDM',在△EDM和△FDM'中,,∴△EDM≌△FDM'(SAS),∴∠MED=∠DFM',由(i)知,∠AEG=∠EFH,∴∠DFM'+∠EFH=∠MED+∠AEG=∠AED=120°,∴∠HFM'=∠DFM'+∠HFE+∠EFD=120°+60°=180°,∴H,F,M′三点在同一条直线上.9.提出问题:解:在△DBA和△CAB中,∵.∴△DBA≌△CAB(AAS),∴AD=BC;类比探究:结论仍然成立.理由:作∠BEC=∠BCE,BE交AC于E.∵∠ADB+∠ACB=∠AEB+∠BEC=180°,∴∠ADB=∠AEB.∵∠CAB=∠DBA,AB=BA,∴△DBA≌△EAB(AAS),∴BE=AD,∵∠BEC=∠BCE,∴BC=BE,∴AD=BC.综合运用:作∠BEC=∠BCE,BE交AC于E.由(2)得,AD=BC=BE=1.在Rt△ACB中,∠CAB=18°,∴∠C=72°,∠BEC=∠C=72°.由∠CFB=∠CAB+∠DBA=36°,∴∠EBF=∠CEB﹣∠CFB=36°,∴EF=BE=1.在△BCF中,∠FBC=180°﹣∠BFC﹣∠C=72°,∴∠FBC=∠BEC,∠C=∠C,∴△CBE∽△CFB.∴=,令CE=x,∴1=x(x+1).解得,x=,∴CF=.由∠FBC=∠C,∴BF=CF.又AF=BF,∴AC=2CF=+1.10.解:(1)BE=AF,BE⊥AF,理由如下:延长FA交BE于H,∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴∠BAD=∠ACD=45°,AB=AC,∴∠BAE=∠ACF=135°,又∵AB=AC,AE=CF,∴△ABE≌△CAF(SAS),∴AF=BE,∠EBA=∠FAC,∵∠BAF=∠ABE+∠BHA=∠BAC+∠CAF,∴∠BAC=∠BHA=90°,∴BE⊥AF;(2)∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴AD=BC,∵四边形ABCE恰为平行四边形,∴AE=BC=2AD,AE∥BC,∴∠EAD=∠ADB=90°,∴DE===AD;(3)如图3,连接BE,过点E作EH⊥AB于H,DN⊥AB于N,由图1可得:∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴AD=BD=CD,AD⊥CD,又∵AE=CF,∴DE=DF,∴△DEF是等腰直角三角形,∴∠DFE=∠DEF=45°由图3可得:∠EDF=∠BDA=90°,∴∠ADF=∠BDE,又∵AD=BD,DE=DF,∴△ADF ≌△BDE (SAS ), ∴BE =AF ,∠DFE =∠BED =45°, ∴∠AEB =90°, ∵AE :AF =3:4,∴设AE =3a ,AF =BE =4a , ∴AB ===5a ,∵AD =BD ,∠ADB =90°,DN ⊥AB , ∴DN =BN =AN =a ,∵S △ABE =AE ×BE =AB ×EH , ∴EH ==a ,∴AH ==a ,∵∠BED =∠AED =45°, ∴, ∴BG =,AG =,∴GH =a ,GN =a ,∴EG ==a ,DG ==a ,∴==.1、在最软入的时候,你会想起谁。
中考重点三角形的面积和余弦定理中考重点:三角形的面积和余弦定理三角形是数学中的基本图形之一,它在中考数学考试中占据了重要的地位。
在解题过程中,掌握三角形的面积计算公式以及余弦定理将会为我们提供很多便利。
本文将从概念解释、面积计算、余弦定理的推导和应用等方面进行论述,并提供实例进行说明。
1. 三角形的面积计算三角形的面积计算是数学中的基础概念,一般有以下两种计算方法:1.1 高乘以底边的一半法当我们知道一个三角形的底边长度和高的长度时,可以使用该方法进行计算。
公式如下:面积 = 底边长 ×高 ÷ 21.2 海伦公式海伦公式适用于已知三个边长的三角形,它可以直接计算出三角形的面积。
公式如下:面积= √[s × (s - a) × (s - b) × (s - c)]其中a、b、c 分别表示三角形的三边长度,而s 表示周长的一半。
2. 余弦定理的推导和应用余弦定理是解决三角形问题的重要工具之一,它可以用于计算三角形的边长、角度等。
下面是余弦定理的表述和推导过程:余弦定理表述:在任意三角形ABC中,令 a、b 和 c 分别表示三边的边长,而 A、B 和 C 分别表示对应的内角,则余弦定理可以表述为:c² = a² + b² - 2abcosC余弦定理的推导过程:根据三角形的余弦定理可以得到以下推导过程:设点 D 为边 BC 上距离 B 点距离为 h 的垂足,则有 BD = a - h,CD = b + h;根据直角三角形的性质可以得到 BD² = a² - h²,CD² = b² - h²;由此可以得到:c² = a² - h² + b² - h² = a² + b² - 2h²;而根据正弦定理可得 sinC = h / c,从而可得 h² = c² - (c sin C)²;代入前面求得的推导式可以得到 c² = a² + b² - 2abcosC。
几何综合--中考数学抢分秘籍(全国通用)几何综合问题在中考中以填空题和解答题的形式出现,考查难度较大.此类问题在中考中多考查面积平分、面积最值和几何变换的综合问题,一般要用到特殊三角形、特殊四边形、相似三角形、圆、锐角三角函数、勾股定理、图形变换的性质和二次函数的最值等相关知识,以及分类讨论、数形结合、转化与化归等数学思想.此类题型常涉及以下问题:①几何图形中的线段最值问题②探究图形面积的分割问题;③探究图形面积的最值问题.右图为几何综合问题中各题型的考查热度.题型1:线段最值问题①动点路径问题②“胡不归”问题③“将军饮马”问题④“造桥选址”问题解题模板:1.(2021秋•白云区校级月考)如图,正方形ABCD的边长为4,⊙O的半径为1.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切,则点A到⊙O上的点的距离的最大值为()A.B.C.D.【分析】由题意画出符合题意的图形,当⊙O与BC,CD相切时,点A到⊙O上的点的距离取得最大值,利用勾股定理即可求得结论.【解答】解:由题意,当⊙O与BC,CD相切时,点A到⊙O上的点的距离取得最大值,如图,由对称性可知:圆心O在AC上.AC==4.∵BC与⊙O相切于点E,∴OE⊥EC.∵四边形ABCD是正方形,∴∠ACB=45°.∴△OEC为等腰直角三角形.∴OC=OE=.∴CG=OC﹣OG=﹣1.∴AG=AC﹣CG=4﹣(﹣1)=3+1.故选:C.【点评】本题主要考查了切线的性质,正方形的性质,直线和圆的位置关系,勾股定理,连接OE,利用切线的性质得到OE⊥EC是解题的关键.【变式1-1】(2020•遵义)如图,在边长为4的正方形ABCD中,点E为对角线AC上一动点(点E与点A、C不重合),连接DE,作EF⊥DE交射线BA于点F,过点E作MN∥BC分别交CD、AB于点M、N,作射线DF交射线CA于点G.(1)求证:EF=DE;(2)当AF=2时,求GE的长.【分析】(1)要证明EF=DE,只要证明△DME≌△ENF即可,然后根据题目中的条件和正方形的性质,可以得到△DME≌△ENF的条件,从而可以证明结论成立;(2)根据勾股定理和三角形相似,可以得到AG和CG、CE的长,然后即可得到GE的长.【解答】(1)证明:∵四边形ABCD是正方形,AC是对角线,∴∠ECM=45°,∵MN∥BC,∠BCM=90°,∴∠NMC+∠BCM=180°,∠MNB+∠B=180°,∴∠NMC=90°,∠MNB=90°,∴∠MEC=∠MCE=45°,∠DME=∠ENF=90°,∴MC=ME,∵CD=MN,∴DM=EN,∵DE⊥EF,∠EDM+∠DEM=90°,∴∠DEF=90°,∴∠DEM+∠FEN=90°,∴∠EDM=∠FEN,在△DME和△ENF中,∴△DME≌△ENF(ASA),∴EF=DE;(2)解:如图1所示,由(1)知,△DME≌△ENF,∴ME=NF,∵四边形MNBC是矩形,∴MC=BN,又∵ME=MC,AB=4,AF=2,∴BN=MC=NF=1,∵∠EMC=90°,∴CE=,∵AF∥CD,∴△DGC∽△FGA,∴,∴,∵AB=BC=4,∠B=90°,∴AC=4,∵AC=AG+GC,∴AG=,CG=,∴GE=GC﹣CE==;如图2所示,同理可得,FN=BN,∵AF=2,AB=4,∴AN=1,∵AB=BC=4,∠B=90°,∴AC=4,∵AF∥CD,∴△GAF∽△GCD,∴,即,解得,AG=4,∵AN=NE=1,∠ENA=90°,∴AE=,∴GE=GA+AE=5.综上所述:GE的长为:,5.【点评】本题考查正方形的性质、全等三角形的判定与性质、三角形相似,解答本题的关键是明确题意,利用数形结合的思想解答.2.(2022春•广陵区期末)如图,在菱形ABCD中,AB=AC=10,对角线AC、BD相交于点O,点M在线段AC上,且AM=2,点P为线段BD上的一个动点,则MP+PB的最小值是4.【分析】过P点作PH⊥BC于H,过M点作MN⊥BC于N,如图,根据菱形的性质得到AB=BC,BO 平分∠ABC,AO⊥BD,再判断△ABC为等边三角形得到∠ABC=∠ACB=60°,则∠OBC=30°,所以PH=BP,则MP+PB=MP+PH,所以MP+PH的最小值为MN的长,然后利用含30度角的直角三角形三边的关系求出MN即可.【解答】解:过P点作PH⊥BC于H,过M点作MN⊥BC于N,如图,∵四边形ABCD为菱形,∴AB=BC,BO平分∠ABC,AO⊥BD,∵AB=AC=10,∴AB=AC=BC=10,∴△ABC为等边三角形,∴∠ABC=∠ACB=60°,∴∠OBC=30°,∴PH=BP,∴MP+PB=MP+PH,当M、P、H共线时,MP+PH的值最小,即MP+PH的最小值为MN的长,∵AM=2,∴CM=10﹣2=8,在Rt△MNC中,∵∠MCN=60°,∴CN=CM=4,∴MN=CN=4,即MP+PB的最小值为4.故答案为:.【点评】本题考查了胡不归问题:利用垂线段最短解决最短路径问题,把PB转化为PH是解决问题的关键.也考查了菱形的性质和等边三角形的性质.【变式2-1】(2021•郴州)如图,在△ABC中,AB=5,AC=4,sin A=,BD⊥AC交AC于点D.点P为线段BD上的动点,则PC+PB的最小值为.【分析】过点P作PE⊥AB于点E,过点C作CH⊥AB于点H,首先得出BD=4,AD=3,根据sin∠ABD=,得EP=,则PC+PB的最小值为PC+PE的最小值,即求CH的长,再通过等积法即可解决问题.【解答】解:过点P作PE⊥AB于点E,过点C作CH⊥AB于点H,∵BD⊥AC,∴∠ADB=90°,∵sin A==,AB=5,∴BD=4,由勾股定理得AD=,∴sin∠ABD=,∴EP=,∴PC+PB=PC+PE,即点C、P、E三点共线时,PC+PB最小,∴PC+PB的最小值为CH的长,=,∵S△ABC∴4×4=5×CH,∴CH=.∴PC+PB的最小值为.故答案为:.【点评】本题主要考查了锐角三角函数,垂线段最短、勾股定理等知识,将PC+PB的最小值转化为求CH的长,是解题的关键.3.(2022秋•朝阳区校级月考)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的纵坐标为.【分析】根据已知条件得到AB=OB=4,∠AOB=45°,求得BC=3,OD=BD=2,得到D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E (0,2),求得直线EC的解析式为y=x+2,解方程组即可得到结论.【解答】解:∵∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,则,解得:,∴直线EC的解析式为y=x+2,解,得,∴P(,),故答案为:.【点评】本题考查了轴对称﹣最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.【变式3-1】(2021•聊城)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x 轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为(﹣,0).【分析】在BC上截取BH=3,可证四边形BHEF是平行四边形,可得BF=EH,由对称性可得DE=D'E,则四边形BDEF的周长=EH+ED'+BD+EF,由EF和BD是定值,则当EH+D'E有最小值时,四边形BDEF 的周长有最小值,即当点E,点H,点D'共线时,EH+D'E有最小值,利用待定系数法可求HD'解析式,即可求解.【解答】解:在BC上截取BH=3,作点D关于x轴的对称点D',连接D'H交AO于点E,∴BH=EF=3,BC∥AO,∴四边形BHEF是平行四边形,∴BF=EH,∵点D与点D'关于x轴对称,∴DE=D'E,点D'坐标为(0,﹣4),∵四边形BDEF的周长=EF+BF+BD+DE,∴四边形BDEF的周长=EH+ED'+BD+EF,∵EF和BD是定值,∴当EH+D'E有最小值时,四边形BDEF的周长有最小值,∴当点E,点H,点D'共线时,EH+D'E有最小值,∵点B(﹣4,6),∴点H(﹣1,6),设直线D'H的解析式为y=kx+b,则,解得:,∴直线D'H的解析式为y=﹣10x﹣4,∴当y=0时,x=﹣,∴点E(﹣,0),故答案为:(﹣,0).【点评】本题考查了轴对称﹣最短路线问题,坐标与图形,平行四边形的判定和性质,一次函数的性质等知识,确定点E的位置是解题的关键.4.如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是.【分析】根据题意得出作EF∥AC且EF=,连接DF交AC于M,在AC上截取MN=,此时四边形BMNE的周长最小,进而利用相似三角形的判定与性质得出答案.【解答】解:作EF∥AC且EF=,连接DF交AC于M,在AC上截取MN=,延长DF交BC于P,作FQ⊥BC于Q,作出点E关于AC的对称点E′,则CE′=CE=1,将MN平移至E′F′处,则四边形MNE′F′为平行四边形,则当BM+EN=BM+FM=BF′时四边形BMNE的周长最小,由∠FEQ=∠ACB=45°,可求得FQ=EQ=1,∵∠DPC=∠FPQ,∠DCP=∠FQP,∴△PFQ∽△PDC,∴=,∴=,解得:PQ=,∴PC=,由对称性可求得tan∠MBC=tan∠PDC==.故答案为.【点评】此题主要考查了正方形的性质以及相似三角形的判定与性质,得出M,N的位置是解题关键.【变式4-1】如图,已知四边形ABCD四个顶点的坐标为A(1,3),B(m,0),C(m+2,0),D(5,1),当四边形ABCD的周长最小时,m的值为.【分析】因为AD,BC的长度都是固定的,所以求出AB+CD的长度就行了.问题就是AB+CD什么时候最短.把D点向左平移2个单位到D′点;作D′关于x轴的对称点D″,连接AD″,交x轴于P,从而确定C点位置,此时AB+CD最短.设直线AD″的解析式为y=kx+b,待定系数法求直线解析式.即可求得m的值.【解答】解:将C点向左平移2单位与B重合,点D向左平移2单位到D′(3,1),作D′关于x轴的对称点D″,根据作法知点D″(3,﹣1),设直线AD″的解析式为y=kx+b,则,解得k=﹣2,b=5.∴直线AD″的解析式为y=﹣2x+5.当y=0时,x=,即B(,0),m=.故答案为:.【点评】考查了轴对称﹣最短路线问题,关键是熟悉关于x轴的对称点,两点之间线段最短等知识.题型2:面积平分问题解题模板:技巧精讲1:利用中线平分图形面积的方法2.利用对称性平分图形面积的方法5.(1)问题提出:如图(1),在直角△ABC中,∠C=90°,AC=8,BC=6,点D为AC上一点且AD=2,过点D作直线DE交△ABC于点E,使得△ABC被分成面积相等的两部分,则DE的长为2.(2)类比发现:如图(2),五边形ABOCD,各顶点坐标为:A(3,4),B(0,2),O(0,0),C (4,0),D(4,2)请你找出一条经过顶点A的直线,将五边形ABOCD分为面积相等的两部分,求出该直线对应的函数表达式.(3)如图(3),王叔叔家有一块四边形菜地ABCD,他打算过D点修一条笔直的小路把四边形菜地ABCD 分成面积相等的两部分,分别种植不同的农作物,已知AB=AD=200米,BC=DC=200米,∠BAD =90°过点D是否存在一条直线将四边形ABCD的面积平分?若存在,求出平分该四边形面积的线段长:若不存在,请说明理由.【分析】(1)如图1中,取AC的中点F,连接BF,BD,作FE∥BD交BC于E,连接DE交BF于O.证明DE平分△ABC的面积,利用平行线分线段成比例定理求出CE即可解决问题.(2)如图2中,连接AO、AC,作BE∥AO交x轴于E,DF∥AC交x轴于F,EF的中点为M,则直线AM平分五边形ABCOD的面积,求出点M的坐标即可解决问题.(3)先求出四边形ABCD的面积,即可得出四边形ABQD的面积,从而求出QM,再用平行线分线段成比例定理求出BM,即可得出DM,最后用勾股定理即可.【解答】解:(1)如图1中,取AC的中点F,连接BF,BD,作FE∥BD交BC于E,连接DE交BF 于O.∵AF=FC,=S△BFC,∴S△AFB∵BD∥EF,=S△BDF,∴S△BDE=S△BOE,∴S△DFO=S四边形ABED,∴S△ECD∴DE平分△ABC的面积,∵AC=8,AD=2,∴AF=CF=4,DF=2,∵EF∥BD,∴=,∴=,∴CE=4,∴DE===2,故答案为2.(2)如图2中,连接AO、AC,作BE∥AO交x轴于E,DF∥AC交x轴于F,EF的中点为M,则直线AM平分五边形ABCOD的面积,∵直线AO的解析式为y=x,∴直线BE解析式为y=x+2,∴点E坐标(﹣,0),∵直线AC的解析式为y=﹣4x+16,∴直线DF的解析式为y=﹣4x+18,∴点F坐标为(,0)∴EF的中点M坐标为(,0),∴直线AM的解析式为:y=x﹣4.(3)如图3中,连接BD,AC交于点O.在BC上取一点Q,过Q作QM⊥BD,∵AB=AD=200、BC=CD=200,∴AC是BD的垂直平分线,在Rt△ABD中,BD=AB=200,∴DO=BO=OA=100,在Rt△BCO中,OC==300,=S△ABD+S△CBD=BD×(AO+CO)=×200×(100+300)=80000,∴S四边形ABCD∵在一条过点D的直线将筝形ABCD的面积二等分,=S四边形ABCD=40000,∴S四边形ABQD=×BD×OA=20000,∵S△ABD=BD×QM=×200×QM=100QM=S四边形ABQD﹣S△ABD=20000,∴S△QBD∴QM=100,∵QM∥CO.∴=,∴=,∴BM=,∴DM=BD﹣BM=,在Rt△MQD中,DQ===.【点评】此题是一次函数综合题,主要考查了等腰三角形的性质,三角形的中线,几何作图,勾股定理,等积问题等知识,解题的关键是把多边形转化为三角形是解决问题的关键,记住三角形的中线把三角形分成面积相等的两个三角形.【变式5-1】(2022•江北区模拟)新知学习:若一条线段把一个平面图形分成面积相等的两部分,我们把这条线段叫做该平面图形的二分线.解决问题:(1)①三角形的中线、高线、角平分线中,一定是三角形的二分线的是三角形的中线;②如图1,已知△ABC中,AD是BC边上的中线,点E,F分别在AB,DC上,连接EF,与AD交于=S△DGF,则EF是(填“是”或“不是”)△ABC的一条二分线.点G.若S△AEG(2)如图2,四边形ABCD中,CD平行于AB,点G是AD的中点,射线CG交射线BA于点E,取EB 的中点F,连接CF.求证:CF是四边形ABCD的二分线.(3)如图3,在△ABC中,AB=CB=CE=7,∠A=∠C,∠CBE=∠CEB,D,E分别是线段BC,AC上的点,且∠BED=∠A,EF是四边形ABDE的一条二分线,求DF的长.【分析】(1)①由平面图形的二分线定义可求解;②由面积的和差关系可得S△BEF=S△ABD=S△ABC,可得EF是△ABC的一条二分线;=S△CEF,由AB∥DC,G是AD的中点,证明△CDG≌△EAG,所(2)根据EB的中点F,所以S△CBF=S△CEF,所以S四边形AFCD=S△CBF,可得CF是四边形ABCD的二分线;以S四边形AFCD=S△DEC=S△ABE,可得S△HED=(3)延长CB使BH=CD,连接EH,通过全等三角形的判定可得S△BEHS四边形ABDE,即可得DF=DH=.【解答】解:(1)∵三角形的中线把三角形分成面积相等的两部分;∴三角形的中线是三角形的二分线,故答案为三角形的中线②∵AD是BC边上的中线=S△ACD=S△ABC,∴S△ABD=S△DGF,∵S△AEG+S△AEG=S四边形BDGE+S△DGF,∴S四边形BDGE=S△ABD=S△ABC,∴S△BEF∴EF是△ABC的一条二分线故答案为:是(2)∵EB的中点F,=S△CEF,∴S△CBF∵AB∥DC,∴∠E=∠DCG,∵G是AD的中点,∴DG=AG,在△CDG和△EAG中,∴△CDG≌△EAG(AAS),=S△DCG,∴S△AEG=S△CEF,∴S四边形AFCD=S△CBF,∴S四边形AFCD∴CF是四边形ABCD的二分线.(3)如图,延长CB使BH=CD,连接EH,AB=CB=CE=7,∠A=∠C,∠CBE=∠CEB,D,E分别是线段BC,AC上的点,且∠BED=∠A,∵BC=7∴BD+CD=7∴BD+BH=7=HD∵∠BED=∠A,∠BED+∠DEC=∠A+∠ABE∴∠ABE=∠CED,且AB=CE=7,∠A=∠C∴△ABE≌△CED(ASA)=S△EDC,∴AE=CD,BE=DE,∠AEB=∠EDC,S△ABE∴AE=BH,∵∠CBE=∠CEB∴∠AEB=∠EBH∴∠EBH=∠EDC,且BE=DE,BH=CD∴△BEH≌△DEC(SAS)、=S△DEC,∴S△BEH=S△DEC=S△ABE,∴S△BEH=S四边形ABDE,∴S△HED∵EF是四边形ABDE的一条二分线,=S四边形ABDE=S△HED,∴S△DEF∴DF=DH=【点评】本题是三角形综合题,考查了全等三角形的判定和性质,三角形中线的性质,平行线的性质,理解新定义是本题的关键.【变式5-2】(2021•西安一模)问题提出(1)如图①,在Rt△ABC中,∠A=90°,AB=3,AC=4,在BC上找一点D,使得AD将△ABC分成面积相等的两部分,作出线段AD,并求出AD的长度;问题探究(2)如图②,点A、B在直线a上,点M、N在直线b上,且a∥b,连接AN、BM交于点O,连接AM、BN,试判断△AOM与△BON的面积关系,并说明你的理由;解决问题(3)如图③,刘老伯有一个形状为筝形OACB的养鸡场,在平面直角坐标系中,O(0,0)、A(4,0)、B(0,4)、C(6,6),是否在边AC上存在一点P,使得过B、P两点修一道笔直的墙(墙的宽度不计),将这个养鸡场分成面积相等的两部分?若存在,请求出直线BP的表达式;若不存在,请说明理由.【分析】(1)当点D是BC的中点时,AD将△ABC分成面积相等的两部分,根据直角三角形斜边中线等于斜边的一般,可求出AD的长度;(2)根据同底等高的三角形面积相等,再减去相等的部分,就可以得出△AOM与△BON的面积相等;(3)连接AB,过点O作AB的平行线,交CA的延长线于点F,交OA于点G,则△OBG的面积等于△AFG的面积,则四边形OACB的面积转化为△BCF的面积,取CF的中点P,求出点P的坐标,即可求出直线BP的表达式.【解答】解:(1)如图①,取BC边的中点D,连接AD,则线段AD即为所求.在Rt△ABC中,∠BAC=90°,AB=3,AC=4,∴BC=,∵点D为BC的中点,∴AD=BC=.=S△BON,理由如下:(2)S△AOM=S△ABM﹣S△AOB,S△BON=S△ABN﹣S△AOB,由图可知,S△AOM如图②,过点M作MD⊥AB于点D,过点N作NE⊥AB于点E,∴MD∥NE,∠MDE=90°,又∵MN∥DE,∴四边形MDEN是矩形,∴MD=NE,=,S△ABN=,∵S△ABM=S△ABN,∴S△ABM=S△BON.∴S△AOM(3)存在,直线BP的表达式为:y=x+4.如图③,连接AB,过点O作OF∥AB,交CA的延长线于点F,交OA于点G,=S△AFG,由(2)的结论可知,S△OBG=S△BCF,∴S四边形OACB取CF的中点P,作直线BP,直线BP即为所求.∵A(4,0),B(0,4),C(6,6),∴线段AB所在直线表达式为:y=﹣x+4,线段AC所在直线的表达式为:y=3x﹣12,∴直线OF的表达式为:y=﹣x,联立,解得,∴F(3,﹣3),∵点P是CF的中点,∴P(,),∴直线BP的表达式为:y=x+4.【点评】主要考查了勾股定理,中点的性质,面积转化以及待定系数法求一次函数表达式等内容,熟练掌握勾股定理的内容,中点性质的应用,作出辅助线,进行面积的转化是解答本题的关键.题型3:面积最值问题6.(2019•无锡)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为8.得到BM=CM=2,易证△AMB∽△CGB,求得GB=8,设BD=x,则DG=8﹣x,易证△EDH≌△DCG,EH=DG=8﹣x,所以S△BDE===,当x=4时,△BDE面积的最大值为8.【解答】解:过点C作CG⊥BA于点G,作EH⊥AB于点H,作AM⊥BC于点M.∵AB=AC=5,BC=4,∴△AMB∽△CGB,∴,∴GB=8,设BD=x,则DG=8﹣x,∵ED=DC,∠EHD=∠DGC,∠HED=∠GDC,∴△EDH≌△DCG(AAS),∴EH=DG=8﹣x,===,∴S△BDE当x=4时,△BDE面积的最大值为8.故答案为8.【点评】本题考查了正方形,熟练运用正方形的性质与相似三角形的判定与性质以及全等三角形的判定与性质是解题的关键.;【变式6-1】(1)如图①,若BC=6,AC=4,∠C=60°,求△ABC的面积S△ABC;(2)如图②,若BC=a,AC=b,∠C=α,求△ABC的面积S△ABC(3)如图③,四边形ABCD,AC=m,BD=n,对角线AC交于O点,他们所成锐角为β,求四边形ABCD .的面积S四边形ABCD【分析】(1)过A作AM⊥BC于M,解直角三角形求出AM,再根据三角形面积公式求出即可;(2)过A作AM⊥BC于M,解直角三角形求出AM,再根据三角形面积公式求出即可;(3)过A作AE⊥BD于E,过C作CF⊥BD于F,解直角三角形求出AE、CF,根据三角形面积公式求出即可.【解答】解:(1)如图①,过A作AM⊥BC于M,则∠AMC=90°,∵∠C=60°,AC=4,∴AM=AC×sin60°=4×=2,∵BC=6,=×BC×AM=×6×2=6;∴△ABC的面积S△ABC(2)如图②,过A作AM⊥BC于M,则∠AMC=90°,∵∠C=α,AC=b,∴AM=AC×sinα=b×sinα=b sinα,∵BC=a,=×BC×AM=×a×b sinα=ab sinα;∴△ABC的面积S△ABC(3)如图3,过A作AE⊥BD于E,过C作CF⊥BD于F,BD=n,OA+OC=m,∵AC、BD夹角为β,∴AE=OA•sinβ,CF=OC•sinβ,=S△ABD+S△BDC∴S四边形ABCD=BD•AE+BD•CF=BD•(AE+CF)=BD•(OA•sinβ+OC•sinβ)=BD•AC•sinβ=mn sinβ.=mn sinβ.即四边形ABCD的面积S四边形ABCD【点评】本题考查了解直角三角形,三角形的面积的应用,此题比较难,解题时关键要找对思路,即原四边形的高已经发生了变化,只要把高求出来,一切将迎刃而解.【变式6-2】如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB﹣BC向终点C运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E运动的速度为每秒1个单位,运动的时间为x秒.(1)如图1,当点E在AB上时,求证:点G在直线BC上;(2)设正方形ABCD与正方形DEFG重叠部分的面积为S,求S与x之间的函数关系式;(3)直接写出整个运动过程中,点F经过的路径长.【分析】(1)由正方形的性质得出AD=CD,DE=DG,∠ADE+∠EDC=∠EDC+∠CDG=90°,证出∠ADE=∠CDG,由SAS证明△ADE≌△CDG,得出∠DCG=∠DAE=90°,证出∠DCG+∠DCB=180°,即可得出结论;(2)分情况讨论:①当点E在AB边上时,过点E作EK∥AD,交CD于点K,则AC∥EK∥AD,证明△ADE∽△BEH,由相似三角形的性质得出=,求出BH=,S=正方形ABCD的面积﹣△ADE的面积﹣△BEH的面积,即可得出结果;②当点E在BC边上时,S=△DEC的面积=4﹣x;(3)由(1)知,当点E在AB上时,点G在直线BC上,当点E与B点重合时,点F的位置如图2所示:点F运动的路径为BF;同理,点E在BC上时,当点E与C点重合时,点F运动的路径为FG;由勾股定理求出BD,即可得出结果.【解答】(1)证明:∵四边形ABCD与四边形DEFG都是正方形,∴AD=CD,DE=DG,∠ADE+∠EDC=∠EDC+∠CDG=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠DCG=∠DAE=90°,∵∠DCB=90°,∴∠DCG+∠DCB=180°,∴点G在直线BC上;(2)解:①当点E在AB边上时,过点E作EK∥AD,交CD于点K,如图1所示:则AC∥EK∥AD,∴∠HEK=∠EHB,∠DEK=∠EDA,∵∠EHB+∠BEH=90°,∠EDA+∠AED=90°,∠HEK+∠DEK=90°,∴∠EDA=∠BEH,∠AED=∠EHB,∴△ADE∽△BEH,∴=,即=,∴BH=,S=正方形ABCD的面积﹣△ADE的面积﹣△BEH的面积=2×2﹣×2×x﹣×(2﹣x)×=;②当点E在BC边上时,S=△DEC的面积=×2×(4﹣x)=4﹣x;(3)解:由(1)知,当点E在AB上时,点G在直线BC上,当点E与B点重合时,点F的位置如图2所示:点F运动的路径为BF;同理,点E在BC上时,当点E与C点重合时,点F运动的路径为FG;∵BD===2,∴BF+FG=2BD=4,∴点F运动的路径长为4.【点评】本题是四边形综合题目,考查了正方形的性质、平行线的判定与性质、三角形面积的计算、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识;熟练掌握正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解决问题的关键.1.如图,在边长为6的菱形ABCD中,∠BCD=60°,连接BD,点E、F分别是边AB、BC上的动点,且AE=BF,连接DE、DP、EF.(1)如图①,当点E是边AB的中点时,求∠EDF的度数;(2)如图②,当点E是边AB上任意一点时,∠EDF的度数是否发生改变?若不改变,请证明;若发生改变,请说明理由;(3)若点P是线段BD上一动点,求PF+DP的最小值.【分析】(1)由菱形的性质可得AB=BC=CD=AD=6,∠BCD=∠BAD=60°,可证△ABD,△BCD 是等边三角形,由等边三角形的性质可证DE=DF,∠EDF=60°,可得结论;(2)证明△ADE≌△BDF(SAS),根据全等三角形的性质得∠ADE=∠BDF,由角的和差即可得∠EDF =∠ADB=60°;(3)过点P作PG⊥AD于点G,连接PF,过点F作FG′⊥AD于点G′,交BD于点P′,可得GP=DP•sin60°=DP,则PF+DP=PF+GP,当点F、P、G三点共銭,且FG⊥AD时,PF+GP有最小值,最小值为FG′的长,过点D作DH⊥BC于点H,则DH=FG',PF+DP的最小值即为DH的长,由△BDC是等边三角形可得DH=CD•sin60°=3,即可求得PF+DP的最小值.【解答】解:(1)∵四边形ABCD是菱形,边长为6,∴AB=BC=CD=AD=6,∠BCD=∠BAD=60°,∴△ABD,△BCD是等边三角形,∵点E是边AB的中点,AE=BF,∴点F是边BC的中点,∴∠ADE=∠BDE=∠BDF=∠CDF=30°,∴∠EDF=∠BDE+∠BDF=60°;(2)∠EDF的度数不改变,证明:△ABD,△BCD是等边三角形,∴AD=BD,∠DAB=∠DBC=60°,∵AE=BF,∴△ADE≌△BDF(SAS),∴∠ADE=∠BDF,∴∠EDF=∠ADB=60°;(3)如图,过点P作PG⊥AD于点G,连接PF,过点F作FG′⊥AD于点G′,交BD于点P′,∵∠ADB=60°,∴GP=DP•sin60°=DP,∴PF+DP=PF+GP,∴当点F、P、G三点共銭,且FG⊥AD时,PF+GP有最小值,最小值为FG′的长,过点D作DH⊥BC于点H,∵四边形ABCD是菱形,∴DH=FG',∴PF+DP的最小值即为DH的长,∵DH⊥BC,△BDC是等边三角形,∴DH=CD•sin60°=3,∴PF+DP的最小值为3.【点评】本题考查了四边形的综合应用,掌握菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,最短路径等知识,添加恰当辅助线构造构造在直角三角形是解本题的关键.2.(2022•连云港)如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,且BE⊥DC.(1)求证:四边形DBCE为菱形;(2)若△DBC是边长为2的等边三角形,点P、M、N分别在线段BE、BC、CE上运动,求PM+PN的最小值.【分析】(1)先证明四边形DBCE是平行四边形,再由BE⊥DC,得四边形DBCE是菱形;(2)作N关于BE的对称点N',过D作DH⊥BC于H,由菱形的对称性知,点N关于BE的对称点N'在DE上,可得PM+PN=PM+PN',即知MN'的最小值为平行线间的距离DH的长,即PM+PN的最小值为DH的长,在Rt△DBH中,可得DH=DB•sin∠DBC=,即可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DE=AD,∴DE=BC,∵E在AD的延长线上,∴DE∥BC,∴四边形DBCE是平行四边形,∵BE⊥DC,∴四边形DBCE是菱形;(2)解:作N关于BE的对称点N',过D作DH⊥BC于H,如图:由菱形的对称性知,点N关于BE的对称点N'在DE上,∴PM+PN=PM+PN',∴当P、M、N'共线时,PM+PN'=MN'=PM+PN,∵DE∥BC,∴MN'的最小值为平行线间的距离DH的长,即PM+PN的最小值为DH的长,在Rt△DBH中,∠DBC=60°,DB=2,∴DH=DB•sin∠DBC=2×=,∴PM+PN的最小值为.【点评】本题考查平行四边形性质及应用,涉及菱形的判定,等边三角形性质及应用,对称变换等,解题的关键是掌握解决“将军饮马”模型的方法.3.(2014•海南)如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.【分析】(1)利用待定系数法求出抛物线的解析式;(2)首先求出四边形MEFP面积的表达式,然后利用二次函数的性质求出最值及点P坐标;(3)四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.如答图3所示,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x 轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.【解答】方法一:解:(1)∵对称轴为直线x=2,∴设抛物线解析式为y=a(x﹣2)2+k.将A(﹣1,0),C(0,5)代入得:,解得,∴y=﹣(x﹣2)2+9=﹣x2+4x+5.(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.设P(x,﹣x2+4x+5),如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=﹣x2+4x+5,∴MN=ON﹣OM=﹣x2+4x+4.S四边形MEFP=S梯形OFPN﹣S△PMN﹣S△OME=(PN+OF)•ON﹣PN•MN﹣OM•OE=(x+2)(﹣x2+4x+5)﹣x•(﹣x2+4x+4)﹣×1×1=﹣x2+x+=﹣(x﹣)2+∴当x=时,四边形MEFP的面积有最大值为,把x=时,y=﹣(﹣2)2+9=.此时点P坐标为(,).(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3.令y=﹣x2+4x+5=3,解得x=2±.∵点P在第一象限,∴P(2+,3).四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.如答图3,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.设直线PM2的解析式为y=mx+n,将P(2+,3),M2(1,﹣1)代入得:,解得:m=,n=﹣,∴y=x﹣.当y=0时,解得x=.∴F(,0).∵a+1=,∴a=.∴a=时,四边形PMEF周长最小.方法二:(1)略.(2)连接MF,过点P作x轴垂线,交MF于点H,有最大值时,四边形MEFP面积最大.显然当S△PMF当a=1时,E(1,0),F(2,0),∵M(0,1),∴l MF:y=﹣x+1,设P(t,﹣t2+4t+5),H(t,﹣t+1),=(P Y﹣H Y)(F X﹣M X),∴S△PMF=(﹣t2+4t+5+t﹣1)(2﹣0)=﹣t2+t+4,∴S△PMF最大值为,∴当t=时,S△PMF=EF×MY=×1×1=,∵S△MEF的最大值为+=,∴S四边形MEFP∴P(,).(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3,∴﹣x2+4x+5=0,解得:x=2±,∵点P在第一象限,∴P(2+,3),PM、EF长度固定,当ME+PF最小时,PMEF的周长取得最小值,将点M向右平移1个单位长度(EF的长度),得M1(1,1),∵四边形MEFM1为平行四边形,∴ME=M1F,作点M1关于x轴的对称点M2,则M2(1,﹣1),∴M2F=M1F=ME,当且仅当P,F,M2三点共线时,此时ME+PF=PM2最小,∵P(2+,3),M2(1,﹣1),F(a+1,0),∴K PF=K M1F,∴,∴a=.【点评】本题是二次函数综合题,第(1)问考查了待定系数法;第(2)问考查了图形面积计算以及二次函数的最值;第(3)问主要考查了轴对称﹣最短路线的性质.试题计算量偏大,注意认真计算.4.(2021•靖江市校级一模)如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,若AE=2,则求EF的长.(请从“线段的长度或线段的位置关系”的方向设计条件及问题,并解答)【分析】过点A和点E作AG⊥BC,EH⊥BC于点G和H,可得矩形AGHE,再根据菱形ABCD中,AB=6,∠B=60°,可得BG=3,AG=3=EH,由题意可得,FH=FC﹣HC=2﹣1=1,进而根据勾股定理可得EF的长.【解答】若AE=2.则求EF的长.解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,得矩形AGHE,∴GH=AE=2,在菱形ABCD中,AB=6,∠B=60°,∴BG=3,AG=3=EH,∴HC=BC﹣BG﹣GH=6﹣3﹣2=1,∵EF平分菱形面积,EF经过菱形对角线交点,∴FC=AE=2,∴FH=FC﹣HC=2﹣1=1,在Rt△EFH中,根据勾股定理,得:EF===2.【点评】本题考查了菱形的性质,勾股定理,矩形的性质,解决本题的关键是掌握菱形的性质.5.(2012•新密市自主招生)如图,菱形ABCD的边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,且AE+CF=4,则△DEF面积的最大值为.【分析】首先过点F作FG⊥AD,交AD的延长线于点G,由菱形ABCD的边长为4,∠BAD=60°,即=DE•FG)=﹣(x﹣2)2+,可求得AD=CD=4,∠FDG=60°,然后设AE=x,即可得S△DEF然后根据二次函数的性质,即可求得答案.【解答】解:过点F作FG⊥AD,交AD的延长线于点G,∵菱形ABCD边长为4,∠BAD=60°,∴AD=CD=4,∠ADC=180°﹣∠BAD=120°,∴∠FDG=180°﹣∠ADB=60°,设AE=x,∵AE+CF=4,∴CF=4﹣x;∴DE=AD﹣AE=4﹣x,DF=CD﹣CF=4﹣(4﹣x)=x,在Rt△DFG中,FG=DF•sin∠GDF=x,=DE•FG=×(4﹣x)×x=﹣x2+x=﹣(x2﹣4x)=﹣(x﹣2)2+,∴S△DEF∴当x=2时,△DEF面积的最大,最大值为.故答案为:.【点评】此题考查了菱形的性质、三角函数的性质以及二次函数的最值问题.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与函数思想的应用.6.(2022•杭州模拟)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为等腰直角三角形,连接BD,BB′与CE的数量关系是BB'=CE.(2)当0°<α<360°且a≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点E,C,D,B′为顶点的四边形是平行四边形时,请直接写出BE与B′E的数量关系.。
中考数学中的三角形与四边形面积计算技巧总结在中考数学考试中,求解三角形与四边形的面积是一个常见的题型。
正确运用计算技巧可以快速准确地得出结果。
本文将总结中考数学中常用的三角形与四边形面积计算技巧,帮助同学们提高解题效率。
一、三角形面积计算技巧1. 直角三角形面积计算直角三角形是最简单的三角形,其面积计算公式为:面积 = 底边长度 ×高其中,底边是直角边,高是与底边垂直的边。
在解题时,可以利用勾股定理求得直角三角形的底边与高,从而计算出面积。
2. 一般三角形面积计算对于一般的三角形,我们可以利用海伦公式计算面积。
海伦公式的表达式为:面积= √[s × (s - a) × (s - b) × (s - c)]其中,s是三角形的半周长,等于三边长之和的一半;a、b、c分别是三角形的边长。
二、四边形面积计算技巧1. 矩形面积计算矩形是一种特殊的四边形,其面积计算公式为:面积 = 长 ×宽矩形的特点是四个角都是直角,且相对的两边长度相等。
在考试中遇到矩形的面积计算问题时,只需知道其长和宽即可直接计算出结果。
2. 平行四边形面积计算平行四边形也是一种常见的四边形,其面积计算公式为:面积 = 底边长度 ×高平行四边形的特点是两对边平行且相等,且相对的两个角也相等。
在计算平行四边形面积时,只需知道底边的长度以及与底边平行的高的长度即可。
3. 梯形面积计算梯形是一种具有两对平行边的四边形,其面积计算公式为:面积 = (上底 + 下底) ×高的一半梯形的关键是知道上底、下底和高的长度,通过将梯形划分为两个三角形和一个矩形,可以利用三角形和矩形的面积计算公式得出最终结果。
4. 菱形面积计算菱形是一种具有四个边相等的四边形,其面积计算公式为:面积 = 对角线1长度 ×对角线2长度的一半在计算菱形面积时,只需知道两条对角线的长度即可。
总结:在中考数学中,掌握三角形与四边形的面积计算技巧对解题非常重要。
中考数学几何证明方法总结在中考数学中,几何证明题是许多同学感到头疼的部分。
但只要掌握了有效的方法和技巧,就能轻松应对。
下面,我将为大家总结一些常见的中考数学几何证明方法。
一、综合法综合法是从已知条件出发,通过一系列的推理和运算,最终得出结论的方法。
这是最基本也是最常用的方法。
例如,已知一个三角形的两条边和它们的夹角,要证明这个三角形的面积。
我们可以从已知条件出发,利用三角形面积公式 S = 1/2 ×两边之积 ×夹角的正弦值,逐步推导出面积的具体数值。
在使用综合法时,要善于将已知条件进行合理的组合和运用,找到它们之间的内在联系。
二、分析法分析法是从要证明的结论出发,逐步追溯到已知条件的方法。
比如说,要证明一个四边形是平行四边形,我们先假设它是平行四边形,然后根据平行四边形的性质,推导出需要满足的条件,再看这些条件是否与已知条件相符。
分析法的优点在于目标明确,能够迅速找到解题的思路和方向。
三、反证法反证法是先假设结论不成立,然后通过推理得出矛盾,从而证明原结论成立的方法。
例如,证明“在一个三角形中,不能有两个角是直角”。
我们先假设一个三角形中有两个角是直角,然后根据三角形内角和为 180 度,得出矛盾,从而证明原结论正确。
反证法常常用于那些直接证明比较困难的命题。
四、同一法同一法是当一个命题的条件和结论所指的对象都唯一存在时,通过证明所作的图形与已知图形全等或重合,从而证明命题成立的方法。
比如,要证明一个点是线段的中点,可以先作出通过这个点且平分线段的直线,然后证明所作直线与已知直线重合,从而得出这个点是中点的结论。
五、构造辅助线法在很多几何证明题中,合理地构造辅助线可以使问题变得简单明了。
比如,在证明三角形全等时,如果条件不足,可以通过作平行线、垂线、中线、角平分线等辅助线来创造全等的条件。
又如,在证明圆的相关问题时,常常连接圆心和切点、作弦心距等。
六、等量代换法利用等量关系进行代换,是证明几何命题的常用手段。
以三角形为载体的几何综合问题【考点1】关于三角形角度计算与证明的综合问题【例1】(2020•衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°【分析】根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC,进一步根据三角形的外角性质可知∠BDE=3∠ODC=75°,即可求出∠ODC的度数,进而求出∠CDE的度数.【解析】∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=75°,∵∠CDE+∠ODC=180°﹣∠BDE=105°,∴∠CDE=105°﹣∠ODC=80°.故选:D.点评:本题主要考查了等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.【例2】(2020•杭州)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.【分析】(1)根据线段垂直平分线的性质可知PA=PB,根据等腰三角形的性质可得∠B=∠BAP,根据三角形的外角性质即可证得APC=2∠B;(2)根据题意可知BA=BQ,根据等腰三角形的性质可得∠BAQ=∠BQA,再根据三角形的内角和公式即可解答.【解析】(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴∠B =36°.点评:本题主要考查了等腰三角形的性质、垂直平分线的性质以及三角形的外角性质,难度适中. 【考点2】关于三角形的线段计算综合问题【例3】(2020•绍兴)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )A .245B .325C .12√3417D .20√3417【分析】设DE =x ,则AD =8﹣x ,由长方体容器内水的体积得出方程,解方程求出DE ,再由勾股定理求出CD ,过点C 作CF ⊥BG 于F ,由△CDE ∽△CBF 的比例线段求得结果即可. 【解析】过点C 作CF ⊥BG 于F ,如图所示:设DE =x ,则AD =8﹣x ,根据题意得:12(8﹣x +8)×3×3=3×3×6,解得:x =4, ∴DE =4, ∵∠E =90°,由勾股定理得:CD =2+CE 2=√42+32=5, ∵∠BCE =∠DCF =90°,∵∠DEC =∠BFC =90°, ∴△CDE ∽△CBF , ∴CE CF =CD CB ,即3CF=58,∴CF =245. 故选:A .点评:本题考查了勾股定理的应用、长方体的体积、梯形的面积的计算方法;熟练掌握勾股定理,由长方体容器内水的体积得出方程是解决问题的关键.【例4】(2020•浙江自主招生)如图,等边三角形ABC 中,AO 是∠BAC 的平分线,D 为AO 上一点,以CD 为一边且在CD 下方作等边三角形CDE ,连结BE ,延长BE 至点Q ,P 为BQ 上一点,连结CP ,CQ ,使CP =CQ =5,若BC =8时,则PQ 的长为 6 .【分析】根据SAS 即可证得△ACD ≌△BCE ,过点C 作CH ⊥BQ 于H ,由等边三角形的性质,即可求得∠DAC =30°,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ 的长. 【解析】过点C 作CH ⊥BQ 于H ,∵△ABC 是等边三角形,AO 是角平分线,∵△ABC与△DCE是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠ECB+∠DCB=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS);∴∠PBC=∠DAC=30°,∴在Rt△BHC中,CH=12BC=12×8=4,∵PC=CQ=5,CH=4,∴PH=QH=3,∴PQ=6.故答案为:6.点评:此题考查了全等三角形的判定与性质,等腰三角形、等边三角形以及直角三角形的性质等知识,熟练掌握全等三角形的判定是解题的关键.【考点3】全等三角形的计算与证明【例5】(2020•温州)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED 的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;(2)根据全等三角形的性质得到BE=CF=2,求得AB=AE+BE=1+2=3,于是得到结论.【解答】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.点评:本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.【考点4】三角形与旋转变换综合问题【例6】(2020•绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.【分析】(1)①分两种情形分别求解即可.②显然∠MAD不能为直角.当∠AMD为直角时,根据AM2=AD2﹣DM2,计算即可,当∠ADM=90°时,根据AM2=AD2+DM2,计算即可.(2)连接CD.首先利用勾股定理求出CD1,再利用全等三角形的性质证明BD2=CD1即可.【解析】(1)①AM=AD+DM=40,或AM=AD﹣DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2﹣DM2=302﹣102=800,∴AM=20√2或(﹣20√2舍弃).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∴AM=10√10或(﹣10√10舍弃).综上所述,满足条件的AM的值为20√2或10√10.(2)如图2中,连接CD.由题意:∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=30√2,∵∠AD2C=135°,∴∠CD2D1=90°,∴CD1=√CD22+D1D22=30√6,∵∠BAC=∠A1AD2=90°,∴∠BAC﹣∠CAD2=∠D2AD1﹣∠CAD2,∴∠BAD2=∠CAD1,∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=30√6.点评:本题属于四边形综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.【考点5】以三角形为载体的几何综合探究问题【例7】(2018•舟山)已知,△ABC中,∠B=∠C,P是BC边上一点,作∠CPE=∠BPF,分别交边AC,AB 于点E,F.(1)若∠CPE=∠C(如图1),求证:PE+PF=AB.(2)若∠CPE≠∠C,过点B作∠CBD=∠CPE,交CA(或CA的延长线)于点D.试猜想:线段PE,PF和BD之间的数量关系,并就∠CPE>∠C情形(如图2)说明理由.(3)若点F与A重合(如图3),∠C=27°,且PA=AE.①求∠CPE的度数;②设PB=a,PA=b,AB=c,试证明:b=a2−c2 c.【分析】(1)只要证明PF=BF,PE=AF即可解决问题;(2)结论:BD=PE+PF.如图1中,作BG∥CD交EP的延长线于G.只要证明BD=EG,PF=PG即可解决问题;(3)①设∠CPE=∠BPF=x,根据三角形内角和定理构建方程即可解决问题;②延长BA到M,使得AM=AP.连接PM.由△ABP∽△PBM,可得BPAB =BMBP,推出PB2=BA•BM,又PB=a,PA=AM=b,AB=c,可得a2=c(b+c)解决问题;【解答】(1)证明:如图1中,∵∠B=∠C,∠CPE=∠BPF,∠CPE=∠C,∴∠B=∠BPF=∠CPE,∠BPF=∠C,∴PF=BF,PE∥AF,PF∥AE,∴四边形AEPF是平行四边形,∴PE=AF,∴PE+PF=AF+BF=AB.(2)结论:BD=PE+PF.理由:如图1中,作BG∥CD交EP的延长线于G.∴∠ABC=∠C=∠CBG,∵∠CPE=∠BPF,∴∠BPF=∠CPE=∠BPG,∵BP=BP,∴△FBP≌△GBP(ASA),∴PF=PG,∵∠CBD=∠CPE,∴PE∥BD,∴四边形BDEG是平行四边形,∴BD=EG=PG+PE=PF+PE.(3)①设∠CPE=∠BPF=x,∵∠C=27°,PA=AE,∴∠APE=∠PEA=∠C+∠CPE=27°+x,∵∠BPA+∠APE+∠CPE=180°,∴x+x+27°+x=180°,∴x=51°,即∠CPE=51°.②延长BA到M,使得AM=AP.连接PM.∵∠C=27°,∠BPA=∠CPE=51°,∴∠BAP=180°﹣27°﹣51°=102°=∠M+∠APM,∵AM=AP,∴∠M=∠APM=51°,∴∠M=∠BPA,∵∠B=∠B,∴△ABP∽△PBM,∴BPAB =BMBP,∴PB2=BA•BM,∵PB=a,PA=AM=b,AB=c,∴a2=c(b+c),∴b=a2−c2 c.点评:本题考查三角形综合题、等腰三角形的判定和性质、平行四边形的判定和性质、全等三角形的判定和性质.相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.【例8】(2018•台州)如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2√2,CE=1,求△CGF的面积.【分析】(1)直接判断出△ACE≌△BCD即可得出结论;(2)先判断出∠BCF=∠CBF,进而得出∠BCF=∠CAE,即可得出结论;(3)先求出BD=3,进而求出CF=32,同理:EG=32,再利用等面积法求出ME,进而求出GM,最后用面积公式即可得出结论.【解析】(1)在△ACE和△BCD中,{AC=BC∠ACB=∠ACB=90°CE=CD,∴△ACE≌△BCD,∴∠CAE=∠CBD;(2)如图2,记AE与CF的交点为M,在Rt△BCD中,点F是BD的中点,∴CF=BF,∴∠BCF=∠CBF,由(1)知,∠CAE=∠CBD,∴∠BCF=∠CAE,∴∠CAE+∠ACF=∠BCF+∠ACF=∠ACB=90°,∴∠AMC=90°,∴AE⊥CF;(3)如图3,记AE与CF的交点为M,∵AC=2√2,∴BC=AC=2√2,∵CE=1,∴CD=CE=1,在Rt△BCD中,根据勾股定理得,BD=√CD2+BC2=3,∵点F是BD中点,∴CF=DF=12BD=32,同理:EG=12AE=32,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=12CD=12,∴S △CEF =12CE •FH =12×1×12=14, 由(2)知,AE ⊥CF ,∴S △CEF =12CF •ME =12×32ME =34ME ,∴34ME =14, ∴ME =13,∴GM =EG ﹣ME =32−13=76, ∴S △CFG =12CF •GM =12×32×76=78. 点评:此题是三角形综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,三角形的中位线定理,三角形的面积公式,勾股定理,作出辅助线求出△CFG 的边CF 上的是解本题的关键.【考点5】以三角形为载体的几何阅读创新题【例9】(2018•绍兴)数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,∠A =110°,求∠B 的度数.(答案:35°)例2 等腰三角形ABC 中,∠A =40°,求∠B 的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式 等腰三角形ABC 中,∠A =80°,求∠B 的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A 的度数不同,得到∠B 的度数的个数也可能不同,如果在等腰三角形ABC 中,设∠A =x °,当∠B 有三个不同的度数时,请你探索x 的取值范围.【分析】(1)由于等腰三角形的顶角和底角没有明确,因此要分类讨论;(2)分两种情况:①90≤x <180;②0<x <90,结合三角形内角和定理求解即可.【解析】(1)若∠A 为顶角,则∠B =(180°﹣∠A )÷2=50°;若∠A 为底角,∠B 为顶角,则∠B =180°﹣2×80°=20°;若∠A 为底角,∠B 为底角,则∠B =80°;故∠B =50°或20°或80°;(2)分两种情况:①当90≤x <180时,∠A 只能为顶角,∴∠B 的度数只有一个;②当0<x <90时,若∠A 为顶角,则∠B =(180−x 2)°;若∠A 为底角,∠B 为顶角,则∠B =(180﹣2x )°;若∠A 为底角,∠B 为底角,则∠B =x °.当180−x2≠180﹣2x 且180﹣2x ≠x 且180−x2≠x ,即x ≠60时,∠B 有三个不同的度数.综上所述,可知当0<x <90且x ≠60时,∠B 有三个不同的度数.点评:本题考查了等腰三角形的性质及三角形内角和定理,进行分类讨论是解题的关键.一.选择题(共5小题)1.(2020•衢州模拟)在我国古代数学著作《九章算术》“勾股”章中有一题:“今有开门去阃(k ǔn )一尺,不合二寸,问门广几何?”大意是说:如图,推开双门(AD 和BC ),门边缘D ,C 两点到门槛AB 的距离为1尺(1尺=10寸),双门间的缝隙CD 为2寸,那么门的宽度(两扇门的和)AB 为( )A .103寸B .102寸C .101寸D .100寸【分析】画出直角三角形,根据勾股定理即可得到结论.【解答】解:设OA =OB =AD =BC =r ,过D 作DE ⊥AB 于E ,则DE =10,OE =12CD =1,AE =r ﹣1.在Rt △ADE 中, AE 2+DE 2=AD 2,即(r ﹣1)2+102=r 2,解得2r =101.故门的宽度(两扇门的和)AB 为101寸.故选:C .2.(2020•拱墅区校级一模)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A .5+3√2B .2+2√15C .7√2D .√113【分析】延长CB 到E ,使得BE =BA .设BE =AB =a .利用相似三角形的性质,勾股定理构建方程即可解决问题.【解答】解:如图,延长CB 到E ,使得BE =BA .设BE =AB =a .∵BE =BA ,∴∠E =∠BAE ,∵∠ADC =∠ABD +∠BAD =2∠E +∠BAD =3∠BAD ,∴∠BAD =∠E ,∵∠ADB =∠EDA ,∴△ADB ∽△EDA ,∴AD ED=DB AD , ∴AD 2=4(4+a )=16+4a ,∵AC 2=AD 2﹣CD 2=AB 2﹣BC 2,∴16+4a ﹣32=a 2﹣72,解得a =2+2√15或2﹣2√15(舍弃).∴AB =2+2√15,故选:B .3.(2020•温州模拟)如图,已知∠ACB =∠DBC ,添加以下条件,不能判定△ABC ≌△DCB 的是( )A .∠ABC =∠DCB B .∠ABD =∠DCAC .AC =DBD .AB =DC【分析】根据全等三角形的判定定理 逐个判断即可.【解答】解:A 、∵在△ABC 和△DCB 中{∠ABC =∠DCBBC =CB ∠ACB =∠DBC∴△ABC ≌△DCB (ASA ),故本选项不符合题意; B 、∵∠ABD =∠DCA ,∠DBC =∠ACB ,∴∠ABD +∠DBC =∠ACD +∠ACB ,即∠ABC =∠DCB ,∵在△ABC 和△DCB 中{∠ABC =∠DCBBC =CB ∠ACB =∠DBC∴△ABC ≌△DCB (ASA ),故本选项不符合题意; C 、∵在△ABC 和△DCB 中{BC =CB ∠ACB =∠DBC AC =DB∴△ABC ≌△DCB (SAS ),故本选项不符合题意;D 、根据∠ACB =∠DBC ,BC =BC ,AB =DC 不能推出△ABC ≌△DCB ,故本选项符合题意;故选:D .4.(2020•周村区一模)如图,在△ABC 中,∠B =50°,∠C =30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN 交BC 于点D ,连接AD ,则∠BAD 的度数为( )A.50°B.60°C.70°D.80°【分析】根据内角和定理求得∠BAC=95°,由中垂线性质知DA=DC,即∠DAC=∠C=30°,从而得出答案.【解答】解:在△ABC中,∵∠B=50°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=100°,由作图可知MN为AC的中垂线,∴DA=DC,∴∠DAC=∠C=30°,∴∠BAD=∠BAC﹣∠DAC=70°,故选:C.5.(2020•黄岩区模拟)如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PB 与CE交于点H,PG∥AD交BC于F,交AB于G,连接CP.下列结论:①∠ACB=2∠APB;②S△PAC:S△PAB =AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.其中,正确的有()A.1个B.2个C.3个D.4个【分析】利用角平分线的性质以及已知条件对①②③④进行一一判断,从而求解.【解答】解:∵PA平分∠CAB,PB平分∠CBE,∴∠PAB=12∠CAB,∠PBE=12∠CBE,∵∠CBE=∠CAB+∠ACB,∠PBE=∠PAB+∠APB,∴∠ACB=2∠APB;故①正确;过P作PM⊥AB于M,PN⊥AC于N,PS⊥BC于S,∴PM=PN=PS,∴PC 平分∠BCD ,∵S △PAC :S △PAB =(12AC •PN ):(12AB •PM )=AC :AB ;故②正确; ∵BE =BC ,BP 平分∠CBE∴BP 垂直平分CE (三线合一),故③正确;∵PG ∥AD ,∴∠FPC =∠DCP∵PC 平分∠DCB ,∴∠DCP =∠PCF ,∴∠PCF =∠CPF ,故④正确.故选:D .二.填空题(共4小题)6.(2020•温州模拟)如图,已知OP 平分∠AOB ,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .CP =254,PD =6.如果点M 是OP 的中点,则DM 的长是 5 .【分析】由角平分线的性质得出∠AOP =∠BOP ,PC =PD =6,∠PDO =∠PEO =90°,由勾股定理得出CE =√CP 2−PE 2=74,由平行线的性质得出∠OPC =∠AOP ,得出∠OPC =∠BOP ,证出CO =CP =254,得出OE =CE +CO =8,由勾股定理求出OP =√OE 2+PE 2=10,再由直角三角形斜边上的中线性质即可得出答案.【解答】解:∵OP 平分∠AOB ,PD ⊥OA 于点D ,PE ⊥OB 于点E ,∴∠AOP =∠BOP ,PC =PD =6,∠PDO =∠PEO =90°,∴CE =√CP 2−PE 2=√(254)2−62=74,∵CP ∥OA ,∴∠OPC =∠AOP ,∴∠OPC =∠BOP ,∴OE =CE +CO =74+254=8, ∴OP =√OE 2+PE 2=√82+62=10,在Rt △OPD 中,点M 是OP 的中点,∴DM =12OP =5;故答案为:5.7.(2020•温岭市校级一模)在半径为2的⊙O 中,弦AB =2√2,连接OA ,OB .在直线OB 上取一点K ,使tan ∠BAK =12,则△OAK 的面积为 23或6 .【分析】由勾股定理的逆定理得出△AOB 是等腰直角三角形,得出∠OBA =45°,分两种情况:①点K 在线段OB 上时;②点K 在线段OB 延长线上时;由三角函数定义和等腰直角三角形的性质求出BK ,得出OK ,再由三角形面积公式即可得出答案.【解答】解:∵OA =OB =2,AB =2√2,∴OA 2+OB 2=AB 2,∴△AOB 是等腰直角三角形,∴∠OBA =45°,分两种情况:①点K 在线段OB 上时,如图1所示:作KD ⊥AB 于D ,则DB =DK ,∵tan ∠BAK =12,∴DK AD =12, ∴AD =2DK =2DB ,∴DK =13AB =2√23,∴OK =OB ﹣BK =23,∴S △OAK =12OA •OK =12×2×23=23; ②点K 在线段OB 延长线上时,如图2所示:作KD ⊥AB 于D ,则DB =DK ,∵tan ∠BAK =12,∴DK AD =12, ∴AD =2DK ,∵DK =DB ,∴DB =AB =2√2,∴BK =√2DB =4,∴OK =OB +BK =6,∴S △OAK =12OA •OK =12×2×6=6;故答案为:23或6.8.(2020•萧山区一模)如图,CE 、BF 分别是△ABC 的高线,连接EF ,EF =6,BC =10,D 、G 分别是EF 、BC 的中点,则DG 的长为 4 .【分析】连接EG、FG,根据直角三角形的性质得到EG=FG=12BC=5,根据等腰三角形的性质求出ED,根据勾股定理计算,得到答案.【解答】解:连接EG、FG,∵CE,BF分别是△ABC的高线,∴∠BEC=90°,∠BFC=90°,∵G是BC的中点,∴EG=FG=12BC=5,∵D是EF的中点,∴ED=12EF=3,GD⊥EF,由勾股定理得,DG=√GE2−DE2=4,故答案为:4.9.(2020•海宁市二模)如图,四边形ABCD中,∠ABC=∠BCD=90°,AB=1,AE⊥AD,交BC于点E,EA 平分∠BED.(1)CD的长是 2 ;(2)当点F是AC中点时,四边形ABCD的周长是5+√3.【分析】(1)如图,延长DA ,CB 交于点H ,由“ASA ”可证△ADE ≌△AHE ,可得AH =AD ,由平行线分线段成比例可求解;(2)如图2中,作AH ⊥CD 于H ,利用垂径定理证明以及线段的垂直平分线的性质证明△ADC 是等边三角形即可解决问题.【解答】解:(1)如图1中,延长DA ,CB 交于点H ,∵EA 平分∠BED ,∴∠AEH =∠AED ,且AE =AE ,∠EAH =∠EAD =90°,∴△ADE ≌△AHE (ASA )∴AH =AD ,∵∠ABC =∠BCD =90°,∴AB ∥CD , ∴AB CD =AHDH ,且AB =1,AH =AD =12HD , ∴CD =2,故答案为:2.(2)如图2中,作AH ⊥CD 于H ,∵∠DAE =∠DCE =90°,∴A,D,C,E四点共圆,设圆心为O,则点O是线段DE的中点,∵AF=CF,∴DE⊥AC,∴DA=DC,∵∠ABC=∠BCH=∠AHC=90°,∴四边形ABCH是矩形,∴CH=AB=1,∵CD=2,∴CH=HD=1,∵AH⊥CD,∴AD=AC,∴AD=CD=AC=2,∴BC=√AC2−AB2=√22−12=√3,∴四边形ABCD的周长为2+2+1+√3=5+√3.故答案为5+√3.三.解答题(共11小题)10.(2020•拱墅区校级一模)在△ABC和△DBE中,CA=CB,EB=ED,点D在AC上.(1)如图1,若∠ABC=∠DBE=60°,求证:∠ECB=∠A;(2)如图2,设BC与DE交于点F.当∠ABC=∠DBE=45°时,求证:CE∥AB;(3)在(2)的条件下,若tan∠DEC=12时,求EFDF的值.【分析】(1)根据SAS可证明△ABD≌△CBE.得出∠A=∠ECB;(2)得出△ABC和△DBE都是等腰直角三角形,证明△ABD∽△CBE,则∠BAD=∠BCE=45°,可得出结论;(3)过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,设DM=MC=a,得出DN=2a,CE=a,证明△CEF ∽△DNF ,可得出答案.【解答】(1)证明:∵CA =CB ,EB =ED ,∠ABC =∠DBE =60°,∴△ABC 和△DBE 都是等边三角形,∴AB =BC ,DB =BE ,∠A =60°.∵∠ABC =∠DBE =60°,∴∠ABD =∠CBE ,∴△ABD ≌△CBE (SAS ).∴∠A =∠ECB ;(2)证明:∵∠ABC =∠DBE =45°,CA =CB ,EB =ED ,∴△ABC 和△DBE 都是等腰直角三角形,∴∠CAB =45°, ∴AB BC =√2,DB BE =√2, ∴ABBC =DBBE ,∵∠ABC =∠DBE ,∴∠ABD =∠CBE ,∴△ABD ∽△CBE ,∴∠BAD =∠BCE =45°,∵∠ABC =45°,∴∠ABC =∠BCE ,∴CE ∥AB ;(3)解:过点D 作DM ⊥CE 于点M ,过点D 作DN ∥AB 交CB 于点N ,∵∠ACB =90°,∠BCE =45°,∴∠DCM =45°,∴∠MDC =∠DCM =45°,∴DM =MC ,设DM=MC=a,∴DC=√2a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=√2DC=2a,∵tan∠DEC=DMME=12,∴ME=2DM,∴CE=a,∴CEDN =a2a=12,∵CE∥DN,∴△CEF∽△DNF,∴EFDF =CEDN=12.11.(2020•天台县模拟)某校组织数学兴趣探究活动,爱思考的小实同学在探究两条直线的位置关系查阅资料时发现,两条中线互相垂直的三角形称为“中垂三角形”.如图1、图2、图3中,AF、BE是△ABC 的中线,AF⊥BE于点P,像△ABC这样的三角形均称为“中垂三角形”.【特例探究】(1)如图1,当∠PAB=45°,AB=6√2时,AC=6√5,BC=6√5;如图2,当sin∠PAB=12,AB=4时,AC=2√13,BC=2√7;【归纳证明】(2)请你观察(1)中的计算结果,猜想AB2、BC2、AC2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,在△ABC中,AB=4√3,BC=2√5,D、E、F分别是边AB、AC、BC的中点,连结DE并延长至G,使得GE=DE,连结BG,当BG⊥AC于点M时,求GF的长.【分析】(1)如图1,由等腰直角三角形的性质得到AP=BP=6,根据三角形中位线的性质和平行线分线段成比例定理可得PE=PF=3,利用勾股定理可得AC和BC的长;如图2,根据特殊三角函数值可得∠BAP =30°,计算PB和AP的长,同理由中线的性质和勾股定理可得结论;(2)设PF=m,PE=n则AP=2m,PB=2n,根据勾股定理分别列等式,可得结论;(3)如图4,作辅助线,证明四边形EFCG是平行四边形,得Q是FG的中点,根据中垂三角形的定义可知:△FCG是中垂三角形,利用(2)中三边的关系可得GF的长.【解答】(1)解:如图1,∵AF⊥BE,∴∠APB=∠APE=∠BPF=90°,∵∠PAB=45°,AB=6√2,∴AP=PB=6,如图1,连接EF,∵AF,BE是△ABC的中线,∴EF是△ABC的中位线,∴EF∥AB.且EF=12AB,∴PE PB =PF PA =12, ∴PE =PF =3,由勾股定理得:AE =BF =√AP 2+PE 2=√62+32=3√5,∴AC =BC =2AE =6√5,如图2,∵sin ∠PAB =12,AB =4,AF ⊥BE ,∴∠PAB =30°,∴BP =12AB =2,AP =2√3,∵AF 、BE 是△ABC 的中线,∴PE =12PB =1,PF =12AP =√3,由勾股定理得:AE =√PE 2+AP 2=√12+(2√3)2=√13, BF =√PF 2+PB 2=√(√3)2+22=√7,∴AC =2AE =2√13,BC =2BF =2√7,故答案为:6√5,6√5,2√13,2√7;(2)解:猜想:AB 2、BC 2、AC 2三者之间的关系是:AC 2+BC 2=5AB 2,证明:如图3,设 PF =m ,PE =n 则AP =2m ,PB =2n ,在Rt △APB 中,(2m )2+(2n )2=AB 2①,在Rt △APE 中,(2m )2+n 2=(AC 2)2②, 在Rt △BPF 中,m 2+(2n )2=(BC 2)2③,由①得:m 2+n 2=AB 24,由②+③得:5( m 2+n 2)=AC 2+BC 24, ∴AC 2+BC 2=5AB 2;(3)解:如图4,连接CG ,EF ,过点F 作FN ∥BG 交CG 于点N ,FG 与AC 交于点Q ,∵FN∥BG,BG⊥AC,∴FN⊥AC,∵F是BC的中点,∴N是CG的中点,∵D、E分别是AB、AC的中点,∴DE=FC,DE∥FC,∵ED=EG,∴EG=FC,EG∥FC,∴四边形EFCG是平行四边形,∴Q是FG的中点,∴△FCG是中垂三角形,∵AB=4√3,BC=2√5,∴CG=EF=BD=2√3,FC=√5,由(2)中结论可知:5FC2=CG2+FG2,即5×5=(2√3)2+FG2,∴GF=√13.12.(2020•拱墅区校级模拟)如图,在Rt△ABC中,∠CAB=90°,AF为BC边上的中线,DE经过△ABC的重心G,且∠ADE=∠C.(1)问:线段AG是△ADE的高线还是中线?请说明理由.(2)若AB=6,AC=8,求AD的长.【分析】(1)说明∠DAG+∠ADE=90°可得结论;(2)先根据重心的性质:重心到顶点的距离等于它到对边中点距离的2倍,可得AG的长,根据等角的三角函数列式可得结论.【解答】解:(1)∵∠CAB=90°,AF为BC边上的中线,∴AF=12BC=CF,∴∠C=∠FAC,∵∠ADE=∠C,∴∠ADE=∠FAC,∵∠FAC+∠DAG=90°,∴∠DAG+∠ADE=90°,∴∠AGD=90°∴线段AG是△ADE的高线;(2)在Rt△ABC中,AB=6,AC=8,∴BC=√AC2+AB2=√62+82=10,∵AF为BC边上的中线,∴AF=5,∵G为△ABC的重心,∴AG=23×5=103,∵∠ADE=∠C,∴sin∠ADG=AGAD=sin∠C=AB BC,∴103AD=610,AD=509.13.(2020•温州模拟)如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°﹣18°=57°,于是得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,①如图1,当点D在点B的左侧时,∠ADC=x°﹣α,②如图2,当点D在线段BC上时,∠ADC=x°+α,③如图3,当点D在点C 右侧时,∠ADC=x°﹣α,根据题意列方程组即可得到结论.【解答】解:(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∴∠ADE=∠AED=75°,∴∠CDE=180°﹣35°﹣30°﹣75°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°﹣18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α,∴{y°=x°+α(1)y°=x°−α+β(2),(1)﹣(2)得2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=x°+α,∴{x°=y°+α(1)x°+α=y°+β(2),(2)﹣(1)得α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=x°﹣α,∴{x°−α+y°+β=180°(1) y°+x°+α=180°(2),(2)﹣(1)得2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.14.(2020•上城区模拟)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.【分析】(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,根据勾股定理列方程即可得到结论;(2)当点P在∠CAB的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,根据勾股定理列方程即可得到结论;(3)在Rt△ABC中,根据勾股定理得到AC=4cm,根据题意得:AP=2t,当P在AC上时,△BCP为等腰三角形,得到PC=BC,即4﹣2t=3,求得t=12,当P在AB上时,△BCP为等腰三角形,若CP=PB,点P在BC的垂直平分线上,如图2,过P作PE⊥BC于E,求得t=194,若PB=BC,即2t﹣3﹣4=3,解得t=5,③PC=BC,如图3,过C作CF⊥AB于F,由射影定理得;BC2=BF•AB,列方程32=2t−3−42×5,即可得到结论.【解答】解:(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=25 16,∴当t=2516时,PA=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=8 3,当t=6时,点P与A重合,也符合条件,∴当t=83或6时,P在△ABC的角平分线上;(3)在Rt△ABC中,∵AB=5cm,BC=3cm,∴AC=4cm,根据题意得:AP=2t,当P在AC上时,△BCP为等腰三角形,∴PC=BC,即4﹣2t=3,∴t=1 2,当P在AB上时,△BCP为等腰三角形,①CP=PB,点P在BC的垂直平分线上,如图2,过P作PE⊥BC于E,∴BE=12BC=32,∴PB=12AB,即2t﹣3﹣4=52,解得:t=194,②PB=BC,即2t﹣3﹣4=3,解得:t=5,③PC=BC,如图3,过C作CF⊥AB于F,∴BF=12BP,∵∠ACB=90°,由射影定理得;BC2=BF•AB,即32=2t−3−42×5,解得:t=53 10,∴当t=12,5,5310或194时,△BCP为等腰三角形.15.(2020•杭州模拟)定义:若一个三角形一条边上的高等于这条边长的一半,则称该三角形为“半高”三角形,这条高称为“半高”.(1)如图1,△ABC中,∠ACB=90°,BC=2AC,点P在AB上,PD⊥AC于点D,PE⊥BC于点E,连接BD,DE求证:△BDE是“半高”三角形;(2)如图2,△ABC是“半高”三角形,且BC边上的高是“半高”,点P在AB上,PQ∥BC交AC于点Q,PM⊥BC于点M,QN⊥BC于点N.①请探究BM,PM,CN之间的等量关系,并说明理由;②若△ABC的面积等于16,求MQ的最小值.【分析】(1)根据新定义“半高”三角形进行证明;(2)①利用新定义的概念进行转化;②将MQ的长度根据勾股定理用二次函数表示出来,利用二次函数的性质进行求解.【解答】(1)证明:∵PE⊥BC,∴∠PEC=∠PEB=90°=∠ACB,又∵∠PBE=∠ABC,∴△PBE~△ABC,∴PEBE =ACBC=12,∴BE=2PE,∵PD⊥AC,∴∠PDC=90°,∴四边形CEPD为矩形,∴DC=PE,∴BE=2DC,∴△BDE是“半高”三角形.(2)解:①BM+CN=2PM.理由如下:如图2,过A作AE⊥BC于E,交PQ于D,∵△ABC 是“半高”三角形,且BC 边上的高是“半高”, ∴BC =2AE ∵PQ ∥BC , ∴△APQ ~△ABC , ∴AD AE =PQ BC, 即AD AE=PQ 2AE,∴PQ =2AD ,∴BC ﹣PQ =2AE ﹣2AD =2(AE ﹣AD ), ∵PQ ∥BC ,PM ⊥BC ,QN ⊥BC , ∴四边形MNQP 是矩形, ∴PQ =MN ,PM =DE =QN , ∴BC ﹣MN =2PM , 即BM +CN =2PM .②∵S △ABC =12BC ×AE =14BC 2=16, ∴BC =8, 设PM =x , 由①得PQ =8﹣2x ,∴MQ 2=x 2+(8﹣2x )2=5x 2﹣32x +64=5(x −165)2+645, ∴当x =165时,MQ 2取得最小值645,则MQ 取得最小值为8√55.16.(2020•南浔区二模)(1)尝试探究如图1,等腰Rt △ABC 的两个顶点B ,C 在直线MN 上,点D 是直线MN 上一个动点(点D 在点C 的右边),BC =3,BD =m ,在△ABC 同侧作等腰Rt △ADE ,∠ABC =∠ADE =90°,EF ⊥MN 于点F ,连接CE .①求DF 的长;②在判断AC ⊥CE 是否成立时,小明同学发现可以由以下两种思路解决此问题: 思路一:先证CF =EF ,求出∠ECF =45°,从而证得结论成立.思路二:先求DF ,EF 的长,再求CF 的长,然后证AC 2+CE 2=AE 2,从而证得结论成立.请你任选一种思路,完整地书写本小题的证明过程.(如用两种方法作答,则以第一种方法评分) (2)拓展探究将(1)中的两个等腰直角三角形都改为有一个角为30°的直角三角形,如图2,∠ABC =∠ADE =90°,∠BAC =∠DAE =30°,BC =3,BD =m ,当4≤m ≤6时,求CE 长的范围. 【分析】(1)①根据AAS 证明△ABD ≌△DFE ,可得结论; ②思路一:先证CF =EF ,求出∠ECF =45°,从而证得结论成立.思路二:先求DF ,EF 的长,再求CF 的长,然后证AC 2+CE 2=AE 2,从而证得结论成立.(2)如图2,作EF ⊥MN ,同理证明AC ⊥CE ,则无论m 取何大于3的数,AC ⊥CE 总成立,即点E 在一条直线上运动,可得结论.【解答】解:(1)①在等腰Rt △ABC 和等腰Rt △ADE 中,∠ABC =∠ADE =90°, ∴∠ADB +∠EDF =90°, ∵EF ⊥MN ,∴∠DEF +∠EDF =90°, ∴∠ADB =∠DEF , 在△ABD 和△DFE 中, {∠ADB =∠DEF∠ABD =∠DFE AD =DE ,∴△ABD ≌△DFE (AAS ), ∴DF =AB =BC =3; ②证明:思路一:由①得△ABD≌△DFE(AAS),∴DF=AB=BC=3,EF=BD=m,∴CF=CD+DF=CD+BC=BD=m,∴CF=EF,∵EF⊥MN,∴∠ECF=45°,∵∠ACB=45°,∴∠ACE=90°,即AC⊥CE;思路二:由①得△ABD≌△DFE(AAS),∴DF=AB=BC=3,EF=BD=m,∴CF=CD+DF=CD+BC=BD=m,由勾股定理得:DE2=DF2+EF2=32+m2=9+m2,∴AE2=2DE2=2(9+m2),AC2=32+32=18,CE2=CF2+EF2=2m2,∴AC2+CE2=AE2,∴∠ACE=90°,即AC⊥CE;(2)如图2,作EF⊥MN,∴∠DEF+∠EDF=90°,∵∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD∽△DFE,∴EF BD=DF AB =DE AD=tan30°=√33, ∴EF =√3m3,DF =3,∴CF =CD +DF =CD +BC =BD =m , ∴在Rt △CEF 中,tan ∠ECF =√33, ∴∠ECF =30°,CE =2EF =2√3m3, ∴∠ACE =90°, 即AC ⊥CE ,∴无论m 取何大于3的数,AC ⊥CE 总成立,即点E 在一条直线上运动, ∴4≤m ≤6时,CE 长的范围是8√33≤CE ≤4√3. 17.(2020•瑞安市三模)如图,在等腰△ABC 中,AB =BC ,点D 是AC 边的中点,延长BD 至点E ,使得DE =BD ,连结CE .(1)求证:△ABD ≌△CED .(2)当BC =5,CD =3时,求△BCE 的周长.【分析】(1)利用全等三角形的判定定理SAS 证得结论;(2)利用勾股定理求得BD =4,然后利用三角形的周长公式解答. 【解答】(1)证明:∵AB =BC ,点D 是AC 边的中点, ∴AD =CD ,∠ADB =∠CDE =90°. 又∵DE =BD ,∴△ABD ≌△CED (SAS );(2)解:∵BD =√BC 2−CD 2=√52−32=4, ∴BE =2BD =8. 又∵CE =AB =BC =5,∴BC +CE +BE =5+5+8=18,即△BCE 的周长为18.18.(2020•黄岩区二模)如图,△ABC 和△ADE 是两个不全等的等腰直角三角形,其中点B 与点D 是直角顶点,现固定△ABC,而将△ADE绕点A在平面内旋转.(1)如图1,当点D在CA延长线上时,点M为EC的中点,求证:△DMB是等腰三角形.(2)如图2,当点E在CA延长线上时,M是EC上一点,若△DMB是等腰直角三角形,∠DMB为直角,求证:点M是EC的中点.(3)如图3,当△ADE绕点A旋转任意角度时,线段EC上是否都存在点M,使△BMD为等腰直角三角形,若不存在,请举出反例;若存在,请予以证明.【分析】(1)利用直角三角形斜边上的中线等于斜边的一半得出BM=DM=12EC,即可得出答案;(2)根据AAS证明△DFM≌∠MGB,得FM=BG,DF=MG,根据线段的和表示EM和MC,可得结论;(3)线段EC上都存在中点M,使△BMD为等腰直角三角形,作辅助线,构建全等三角形,证明△DFM≌∠MGB(SAS),得BM=DM,∠FMD=∠GBM,再证明∠DMB=90°,可得结论.【解答】证明:(1)如图1,∵∠EDC=90°,点M为EC的中点,∴DM=12EC.同理可得:BM=12EC.∴DM=BM,∴△DMB是等腰三角形;(2)证明:过点D作DF⊥EA,过点B作BG⊥AC,∴∠DFM=∠BGM=90°,∴∠FDM+∠DMF=90°,∵△DMB是等腰直角三角形,∴DM=BM,∠DMB=90°,∴∠BMG+∠DMF=90°,∴∠FDM=∠BMG,∴△DFM≌∠MGB(AAS),∴FM=BG,DF=MG,∵BG=GC,DF=EF,∴FM=GC,MG=EF,∵EM=EF+FM,MC=MG+GC,∴EM=MC,∴点M是EC的中点;(3)线段EC上都存在中点M,使△BMD为等腰直角三角形,理由是:取AE中点F,AC中点G,连接FD,FM,BG,GM,∵点M是EC的中点,点G是AC的中点,∴GM=12AE,GM∥AE,∵F是AE中点,∴AF=12AE,∴AF∥GM,AF=GM,∴四边形AFMG是平行四边形,∴∠AFM=∠AGM,∴∠EFM=∠MGC.∴∠DFM=∠BGM,∵GM=AF=DF,∴DF=GM,同理可得BG=FM,∴△DFM≌∠MGB(SAS),∴BM=DM,∠FMD=∠GBM,∵FM∥AC,∴∠FMG=∠CGM,∴∠DMB=∠FMD+∠FMG+∠GMB,=∠GBM+∠CGM+∠GMB,=180°﹣∠BGC,=90°,∴△BMD是等腰直角三角形.19.(2020•余杭区二模)如图,在正方形ABCD中,点E,F分别在BC,AB上,且DE=DF,连结AC,分别交DE,DF于点M,N.(1)求证:△ADF≌△CDE;(2)设△DMN和△AFN的面积分别为S1和S2;①若∠ADF=∠EDF,求S2:S1的值.②若S2=2S1,求tan∠ADF.【分析】(1)根据HL证明三角形全等即可.(2)①如图,作NH ⊥AB 于H .设FH =a .利用参数表示S 2,S 1即可.②如图,作NH ⊥AB 于H .易证∠ADF =∠HNF ,设tan ∠ADF =tan ∠FNH =k ,设NH =AH =b ,则FH =kb ,利用面积关系构建方程求出k 即可解决问题.【解答】(1)证明:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠DAF =∠DCE =∠ADC =90°,∵DF =DE ,∴Rt △ADF ≌Rt △CDE (HL ).(2)①如图,作NH ⊥AB 于H .设FH =a .∵Rt △ADF ≌Rt △CDE (HL ),∵∠ADF =∠CDE ,∵∠ADF =∠DEF ,∴∠ADF =∠EDF =∠CDE =30°,∴∠AFD =60°,∵∠NHF =90°,∴∠FNH =30°,∴HN =√3a ,∵∠NAH =45°,∠AHN =90°,∴∠NAH =∠ANH =45°,∴HA =HN =√3a ,∴AF =(1+√3)a ,AD =√3AF =(3+√3)a ,∴S 2=12•AF •NH =12•(1+√3)a ⋅√3a =3+√32a 2, ∵∠ADN =∠CDM ,AD =DC ,∠DAN =∠DCM =45°,∴△ADN ≌△CDM (ASA ),∴S △ADN =S △DCM ,∴S 1=S △ADC ﹣2S △ADN =12•[(3+√3)a ]2﹣2×12•(3+√3)a •√3a =3a 2,∴S 2S 1=3+√32a 23a 2=3+√36.。
中考专题——怎样证明面积问题以及用面积法解几何问题(一)证明面积问题常用的理论依据1. 三角形的中线把三角形分成两个面积相等的部分。
2. 同底同高或等底等高的两个三角形面积相等。
3. 平行四边形的对角线把其分成两个面积相等的部分。
4. 同底(等底)的两个三角形面积的比等于高的比。
同高(或等高)的两个三角形面积的比等于底的比。
5. 三角形的面积等于等底等高的平行四边形的面积的一半。
8. 有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。
(二)证明面积问题常用的证题思路和方法1. 分解法:通常把一个复杂的图形,分解成几个三角形。
2. 作平行线法:通过平行线找出同高(或等高)的三角形。
3. 利用有关性质法:比如利用中点、中位线等的性质。
4. 还可以利用面积解决其它问题。
【典型例题】(一)怎样证明面积问题1. 分解法例1. 从△ABC的各顶点作三条平行线AD、BE、CF,各与对边或延长线交于D、E、F,求证:△DEF的面积=2△ABC的面积。
2. 作平行线法例2. 已知:在梯形ABCD中,DC//AB,M为腰BC上的中点(二)用面积法解几何问题有些几何问题,往往可以用面积法来解决,用面积法解几何问题常用到下列性质:性质1:等底等高的三角形面积相等性质2:同底等高的三角形面积相等性质3:三角形面积等于与它同底等高的平行四边形面积的一半性质4:等高的两个三角形的面积比等于底之比性质5:等底的两个三角形的面积比等于高之比1. 证线段之积相等例3. 设AD、BE和CF是△ABC的三条高,求证:AD·BC=BE·AC=CF·AB2. 证等积问题例4. 过平行四边形ABCD的顶点A引直线,和BC、DC或其延长线分别交于E、F,求证:S△ABF=S△ADE3. 证线段之和例5. 已知△ABC中,AB=AC,P为底边BC上任一点,PE⊥AB,PF⊥AC,BH⊥AC,求证:PE+PF=BH4. 证角平分线例6. 在平行四边形ABCD的两边AD、CD上各取一点F、E,使AE=CF,连AE、CF 交于P,求证:BP平分∠APC。
三角形的面积计算与性质知识点总结三角形是初中数学中最基础的几何图形之一,它具有许多重要的性质。
本文将总结三角形的面积计算方法以及一些常见的性质,为读者提供清晰的知识点总结。
一、三角形的面积计算方法1. 高度法:对于任意三角形,可以通过某一边作垂线,确定垂线与底边的交点,即可按照“底边×高÷2”的公式计算三角形的面积。
这种方法适用于所有三角形。
2. 海伦公式:对于已知三角形的三边长a、b、c,可以利用海伦公式求解其面积。
海伦公式的表达式为:面积= √(s(s-a)(s-b)(s-c))其中,s为三角形的半周长,计算公式为s = (a + b + c)÷2。
这种方法适用于任意三角形。
3. 底边乘高法:对于直角三角形,可以利用底边乘高的方法计算面积。
即面积 = 底边×高÷2。
其中,高为直角边上的高度。
这种方法适用于直角三角形。
二、三角形的性质总结1. 内角和性质:任意一个三角形的三个内角的和等于180度。
即∠A + ∠B + ∠C = 180°。
这个性质适用于所有三角形。
2. 角的分类:(1) 锐角三角形:三个内角都小于90度的三角形。
(2) 直角三角形:一个内角为90度的三角形。
(3) 钝角三角形:一个内角大于90度的三角形。
3. 三边关系:(1) 等腰三角形:两边长度相等的三角形,对应的两个内角也相等。
(2) 等边三角形:三边长度都相等的三角形,对应的三个内角都为60度。
(3) 直角三角形:一个角度为90度的三角形。
4. 角平分线性质:三角形的内角平分线可以将相应的内角分为大小相等的两部分。
这个性质适用于任意三角形。
5. 中线性质:三角形的三条中线交于一点,且这个交点距离三个顶点的距离相等。
这个交点称为三角形的重心。
6. 外角性质:三角形的外角等于其对应的两个内角的和。
即∠D =∠A + ∠B 或∠E = ∠A + ∠C。
这个性质适用于所有三角形。
专题冲刺训练:《三角形综合》1.数学活动课上,小明同学根据学习函数的经验,对函数的图象、性质进行了探究.下面是小明同学探究过程,请补充完整:如图1,已知在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm,点P为AB边上的一个动点,连接PC,设BP=xcm,CP=ycm,【初步感知】(1)当CP⊥AB时,则①x= 1 ;②y=;【深入思考】(2)试求y与x之间的函数关系式并写出自变量x的取值范围;(3)通过取点测量,得到了x与y的几组值,如表:x/cm0 0.5 1 1.5 2 2.5 3 3.5 4 y/cm 2 1.8 1.7 1.8 2 2.3 2.6 3 3.5 (说明:补全表格时相关数值保留一位小数)1)建立平面直角坐标系,如图2,提出已补全后的表格中各对应值为坐标的点,画出该函数的图象;2)结合画出的函数图象,写出该函数的两条性质:①当0≤x≤1时,y随x增大而减小;②当1≤x≤4时,y随x增大而增大.解:(1)①当CP⊥AB时,∵∠CPB=∠ACB=90°,∴∠BCP=∠A=30°,∴BP=BC=1cm,∴x=1,故答案为:1.②∵∠BCP=30°,∠BPC=90°,BC=2cm,∴CP=BC•cos30°=2×=(cm),∴y=.故答案为:.(2)过点C作CD⊥AB于点D,∵∠ACB=90°,∠A=30°,BC=2cm,∴BD=1,CD=,①当0≤x≤1时,如图1,PD=1﹣x,PC===,∴,②当1<x≤4时,如图2,PD=x﹣1,PC===.综合①②得:y=(0≤x≤4).(3)1)由(2)知y=(0≤x≤4).当x=1.5时,y=≈1.8.当x=4时,y==2.故答案为:1.8;3.5.补图:如图3,2)性质:①当0≤x≤1时,y随x增大而减小;②当1≤x≤4时,y随x增大而增大;③y的最小值为.故答案为:当0≤x≤1时,y随x增大而减小;当1≤x≤4时,y随x增大而增大.2.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.解:(1)如图1中,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=,tan A==3,∴AH=1,CH=3,∵∠CBH=45°,∠CHB=90°,∴∠HCB=∠CBH=45°,∴CH=BH=3,∴BC=CH=3.(2)①结论:∠EMF=90°不变.理由:如图2中,∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∵DM=MB,∴ME=BD,MF=BD,∴ME=MF=BM,∴∠MBE=∠MEB,∠MBF=∠MFB,∵∠DME=∠MEB+∠MBE,∠DMF=∠MFB+∠MBF,∴∠EMF=∠DME+∠DMF=2(∠MBE+∠MBF)=90°,②如图2中,作CH⊥AB于H,由①可知△MEF是等腰直角三角形,∴当ME的值最小时,△MEF的面积最小,∵ME=BD,∴当BD⊥AC时,ME的值最小,此时BD===,∴EM的最小值=,∴△MEF的面积的最小值=××=.故答案为.3.△ABC与△ADE都是等边三角形,DE与AC交于点P,点P恰为DE的中点,延长AD交BC 于点F,连结BD、CD,取CD的中点Q,连结PQ.求证:PQ=BD.(1)如图1,厘清思路,完成解答:本题证明的思路可以用下列框图表示:根据上述思路,请你完整地书写本题的证明过程;(2)如图2,特殊位置,求线段长:若点P为AC的中点,连接PF,已知PQ=,求PF的长.(3)知识迁移,探索新知:若点P是线段AC上任意一点,直接写出PF与CD的数量关系.(1)证明:如图1中,∵△ADE是等边三角形,DP=PE,∴AP⊥DE,∠EAC=∠DAP=∠DAE=30°,∵△ABC是等边三角形,∴∠BAC=60°,∴∠CAF=∠BAF=30°,∴AF垂直平分线段BC,∴BD=CD,∵∠CPD=90°,DQ=QC,∴PQ=CD,∴PQ=BD.(2)解:如图2中,当点P是AC的中点时,∵DO是线段AC的垂直平分线,∴B,D,P共线,∵BA=CD=2PQ=2,∠DFC=90°,∠DCF=30°,∴CF=CD•cos30°=3,∵PC=AC,CF=BC,AC=BC,∴CF=CP=3,∵∠PCF=60°,∴△PCF是等边三角形,∴PF=CF=3.(3)解:结论:PF=CD.理由:如图1﹣1中,连接PF,EC.∵AC垂直平分线段DE,∴CD=CE,∵△ABC,△ADE都是等边三角形,AF是△ABC的高,AP是△ADE的高,∴AP=AE,AF=AC,∴=,∴=,∵∠PAF=∠EAC=30°,∴△PAF∽△EAC,∴==,∴PF=EC=CD.4.综合与实践:操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同法可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=EC=2.5.在△ABC中,CA=CB=3,∠ACB=120°,将一块足够大的直角三角尺PMN(∠M=90°、∠MPN=30°)按如图所示放置,顶点P在线段AB上滑动,三角尺的直角边PM始终经过点C,并且与CB的夹角∠PCB=α,斜边PN交AC于点D.(1)当PN∥BC时,判断△ACP的形状,并说明理由.(2)在点P滑动的过程中,当AP长度为多少时,△ADP≌△BPC,为什么?(3)在点P的滑动过程中,△PCD的形状可以是等腰三角形吗?若不可以,请说明理由:若可以,请直接写出α的度数.解:(1)当PN∥BC时,∠α=∠NPM=30°,又∵∠ACB=120°,∴∠ACP=120°﹣30°=90°,(2)当AP=3时,△ADP≌△BPC,理由为:∵∠ACB=120°,CA=CB,∴∠A=∠B=30°,又∵∠APC是△BPC的一个外角,∴∠APC=∠B+∠α=30°+∠α,∵∠APC=∠DPC+∠APD=30°+∠APD,∴∠α=∠APD,又∵AP=BC=3,∴△ADP≌△BPC;(3)△PCD的形状可以是等腰三角形,则∠PCD=120°﹣α,∠CPD=30°,①当PC=PD时,△PCD是等腰三角形,∴∠PCD=∠PDC==75°,即120°﹣α=75°,∴∠α=45°;②当PD=CD时,△PCD是等腰三角形,∴∠PCD=∠CPD=30°,即120°﹣α=30°,∴α=90°;③当PC=CD时,△PCD是等腰三角形,∴∠CDP=∠CPD=30°,∴∠PCD=180°﹣2×30°=120°,即120°﹣α=120°,∴α=0°,此时点P与点B重合,点D和A重合,综合所述:当α=45°或90°或0°时,△PCD是等腰三角形.6.如图,△ABC是等边三角形,AB=2cm.动点P从点C出发,以lcm/s的速度在边BC的延长线上运动.以CP为边作等边三角形CPQ,点A、Q在直线BC同侧.连结AP、BQ 相交于点E.设点P的运动时间为t(s)(t>0).(1)当t= 2 s时,△ABC≌△QCP.(2)求证:△ACP≌△BCQ.(3)求∠BEP的度数.(4)设AP与CQ交于点F,BQ与AC交于点G,连结FG,当点G将边AC分成1:2的两部分时,直接写出△CFG的周长.解:(1)∵△ABC,△CPQ都是等边三角形,∴当PC=AB=2时,△ABC≌△QCP.∴t=2s,故答案为2.(2)∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵△CPQ是等边三角形,∴∠PCQ=60°,CP=CQ,∴∠ACP=∠BCQ=120°,∴△ACP≌△BCQ(SAS).(3)∵△ACP≌△BCQ,∴∠CAP=∠CBQ,∵∠BEP=∠ABE+∠BAE,∴∠BEP=∠ABC+∠BAC,∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,∴∠BEP=120°.(4)如图1中,∵△ACP≌△BCQ,∴∠CAF=∠CBG,∵CA=CB,∠ACF=∠BCG=60°,∴△ACF≌△BCG(ASA),∴CF=CG,∵∠GCF=60°,∴△GCF是等边三角形,当AG=2CG时,CG=cm,∴△CFG的周长为2cm如图2中,当CG=2AG时,CG=cm,△FCG的周长为4cm.综上所述,△CFG的周长为2cm或4cm.7.如图,在△ABC中,∠BAC=90°,AB=5cm,BC=13cm,点D在线段AC上,且CD=7cm,动点P从距B点15cm的E点出发,以每秒2cm的速度沿射线EA的方向运动,时间为t 秒.(1)求AD的长.(2)用含有t的代数式表示AP的长.(3)在运动过程中,是否存在某个时刻,使△ABC与△ADP全等?若存在,请求出t值;若不存在,请说明理由.(4)直接写出t=1或14或12.5或秒时,△PBC为等腰三角形.解:(1)在Rt△ABC中,∵∠BAC=90°,AB=5cm,BC=13cm,∴AC===12(cm),∵CD=7cm,∴AD=AC﹣CD=12﹣7=5(cm).(2)当0≤t≤10时,PA=20﹣2t.当t>10时,PA=2t﹣20.(3)∵AD=BD=5cm,∠BAC=∠PAD=90°,∴当AC=PA时,△ABC与△ADP全等,∴20﹣2t=12或2t﹣20=12,解得t=4或16,∴满足条件的t的值为4或16.(4)当BC=BP时,15﹣2t=13或2t﹣15=13,解得t=1或14.当CP=CB时,PA=AB=5,则有2t﹣20=5,解得t=12.5.当PC=PB时,122+(2t﹣20)2=(2t﹣15)2,解得t=,故答案为1或14或12.5或.8.(1)如图①,已知线段AB,以AB为边作等边△ABC.(尺规作图,保留作图痕迹,不写作法)(2)如图②,已知△ABC,AB=3,AC=2分别以AB,BC为边作等边△ABD和等边△BCE,连接DE,AE.求AE的最大值.(3)如图③,已知△ABC,∠ABC=30°,AB=3,BC=4,P为△ABC内一点,连接AP,BP,CP.求AP+BP+PC的最小值.解:(1)如图1中,△ABC即为所求.(2)如图2中,∵△ABD,△BCE都是等边三角形,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∴∠ABC=∠DBE,∴△ABC≌△DBE(SAS),∴DE=AC=2,∵AD=AB=3,AE≤AD+DE,∴AE≤2+3,∴AE≤5,∴AE的最大值为5.(3)如图3中,将△ABP绕点B逆时针旋转90°得到△TBD,连接PD,TC.作TE⊥CB 交CB的延长线于E.∵∠ABP=∠TBD,∠PBD=90°,∴∠CBT=∠CBP+∠PBD+∠DBT=∠PBD+∠CBP+∠ABP=90°+30°=120°,∴∠CBT是定值,BT=AB=3,BC=4,∵PB=PD,∠PBD=90°,∴PD=PB,∴PA+PB+PC=DT+PD+PC,∵TC≤TD+DP+PC,∴PA+PB+PC的最小值为线段TC的长,在Rt△ETB中,∵∠TBE=60°,BT=3,∴BE=BT=,TE=EB=,在Rt△ECT中,TC===,∴AP+BP+PC的最小值为.9.【教材呈现】下图是华师版九年级上册数学教材第77页的部分内容.请根据教材提示,结合图23.4.2,写出完整的证明过程.【结论应用】如图,△ABC是等边三角形,点D在边AB上(点D与点A、B不重合),过点D作DE∥BC交AC于点E,连结BE,M、N、P分别为DE、BE、BC的中点,顺次连结M、N、P.(1)求证:MN=PN;(2)∠MNP的大小是.【教材呈现】:证明:∵点D,E分别是AB,AC的中点,∴==,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,==,∴DE∥BC,DE=BC.【结论应用】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∵DE∥AB,∴∠ABC=∠ADE=60°,∠ACB=∠AED=60°,∴∠ADE=∠AED=60°,∴△ADE是等边三角形,∴AD=AE,∴BD=CE,∵EM=MD,EN=NB,∴MN=BD,∵BN=NE,BP=PC,∴PN=EC,∴NM=NP.(2)∵EM=MD,EN=NB,∴MN∥BD,∵BN=NE,BP=PC,∴PN∥EC,∴∠MNE∠ABE,∠PNE=∠AEB,∵∠AEB=∠EBC+∠C,∠ABC=∠C=60°,∴∠MNP=∠ABE+∠EBC+∠C=∠ABC+∠C=120°.10.如图1,在△ABC中,∠BAC=90°,点D为AC边上一点,连接BD,点E为BD上一点,连接CE,∠CED=∠ABD,过点A作AG⊥CE垂直为G,交ED于点F.(1)求证:∠FAD=2∠ABD;(2)如图2,若AC=CE,点D为AC的中点,求证AB=AC;(3)在(2)的条件下,如图3,若EF=3,求线段DF的长.(1)证明:如图1中,∵∠BAC=90°,∴∠ADB=90°﹣∠ABD,∵AG⊥CE,∴∠FGE=90°,∴∠EFG=∠AFD=90°﹣∠CED,∴∠FAD=180°﹣∠AFD﹣∠ADF=∠CED+∠ABD,∵∠CED=∠ABD,∴∠FAD=2∠ABD.(2)如图2中,∵∠AFD=90°﹣∠CED,∠ADB=90°﹣∠ABD,∠CED=∠ABD,∴∠AFD=∠ADF,∴AF=AD,∠BFA=180°﹣∠AFD=180°﹣∠ADF=∠CDE,∵D为AC的中点,∴AD=CD=AF,∴△ABF≌△CED(AAS),∴AB=CE,∵CE=AC,∴AB=AC.(3)连接AE,过点A作AH⊥AE交BD延长线于点H,连接CH.∵∠BAC=90°,∴∠BAE=∠CAH,设∠ABD=∠CED=α,则∠FAD=2α,∠ACG=90°﹣2α,∵CA=CE,∴∠AEC=∠EAC=45°+α,∴∠AED=45°,∴∠AHE=45°,∴AE=AH,∵AB=AC,∴△ABE≌△ACH(SAS),∴∠AEB=∠AHC=135°,∴∠CHD=90°,过点A作AK⊥ED于H,∴∠AKD=∠CHD=90°,∵AD=CD,∠ADK=∠CDH,∴△AKD≌△CHD(AAS)∴DK=DH,∵AK⊥DF,AF=AD,AE=AH,∴FK=DK,EK=HK,∴DH=EF=3,∴DF=6.11.如图(1)AB=9cm,AC⊥AB,AC=BD=7cm,点P在线段AB上以2cm/s的速度由点A 向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t(s).(1)若点Q的速度与点P的速度相等,当t=1时,求证:△ACP≌△BPQ;(2)在(1)的条件下,判断此时PC和PQ的位置关系,并证明;(3)将图(1)中的“AC⊥AB,BD⊥AB”,改为“∠CAB=∠DBA=70°”,得到图(2),其他条件不变.设点Q的运动速度为xcm/s,请问是否存在实数x,使得△ACP与△BPQ 全等?若存在,求出相应的x和t的值;若不存在,请说明理由.解:(1)△ACP与△BPQ全等,理由如下:当t=1时,AP=BQ=2,则BP=9﹣2=7,∴BP=AC=7,又∵∠A=∠B=90°,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS);(2)结论:PC⊥PQ,证明:∵△ACP≌△BPQ,∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即PC⊥PQ;(3)AP=2t,BP=9﹣2t,BQ=xt①若△ACP≌△BPQ则AC=BP=7,AP=BQ,∴9﹣2t=7,解得:t=1(s),则x=2(cm/s);②若△ACP≌△BPQ,则AC=BQ=7,AP=BP,则,解得,t=2.25(s),∴xt=7,解得,,故当t=1s,x=2cm/s或t=2.25s,时,△ACP与△BPQ全等.12.如图①,△ABC是等边三角形,点P是BC上一动点(点P与点B、C不重合),过点P 作PM∥AC交AB于M,PN∥AB交AC于N,连接BN、CM.(1)求证:PM+PN=BC;(2)在点P的位置变化过程中,BN=CM是否成立?试证明你的结论;(3)如图②,作ND∥BC交AB于D,则图②成轴对称图形,类似地,请你在图③中添加一条或几条线段,使图③成轴对称图形(画出一种情形即可).(1)证明:如图①中,∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°,∵PM∥AC,PN∥AB,∴四边形PMAN是平行四边形,∠BPM=∠ACB=60°,∠CPN=∠ABC=60°,∴PN=AM,△BMP,∴PM=BM,P∴PM+PN=BM+AM=AB=BC,∴PM+PN=BC.(2)解:如图②中,结论成立.理由:连接BN,CM.∵△PNM是等边三角形,∴BM=PB,∵ND∥BC,PN∥AB,∴四边形PNDB是平行四边形,∴DN=PN,∵∠ADN=∠ABC=60°,∠AND=∠ACB=60°,∠A=60°,∴△ADN是等边三角形,∴AN=DN=PB=BM,∵∠A=∠CBM,AB=BC,∴△ABN≌△CBM(SAS),∴BN=CM.(3)解:如图③即为所求.作ND∥BC交AB于N,作ME∥BC交AC于M,作EF∥AB交BC于F,连接DF.13.如图1,已知Rt△ABC,∠ACB=90°,∠BAC=30°,斜边AB=4,ED为AB垂直平分线,且DE=2,连接DB,DA.(1)直接写出BC= 2 ,AC=2;(2)求证:△ABD是等边三角形;(3)如图2,连接CD,作BF⊥CD,垂足为点F,直接写出BF的长;(4)P是直线AC上的一点,且CP=AC,连接PE,直接写出PE的长.(1)解:如图1中,在Rt△ABC中,∵∠ACB=90°,∠BAC=30°,AB=4,∴BC=AB=2,AC===2.故答案为2,(2)证明:如图1中,∵DE垂直平分AB,∴AE=EB=2,AD=DB==4,∴AB=BD=AD=4,∴△ABD是等边三角形.(3)解:如图2中,∵△ABD是等边三角形,∴∠BAD=60°,∵∠BAC=30°,∴∠CAD=90°,∴CD===2,∵S△BCD =S△ABC+S△ABD﹣S△ACD,∴•2•BF=×2×2+×42﹣×4×2,∴BF=.(4)如图3中,延长DE交AC于P,连接PB.∵DP垂直平分线段AB,∴PB=PA,∵∠PBC=30°,∠C=90°,∴PB=2PC,∴PA=2PC,∴PC=AC满足条件,∴PE=AE•tan30°=.当CP′=AC时,作EH⊥AC于H.则EH=AE=1,PH=,P′H=++=,∴P′E===.14.用一条直线分割一个三角形,如果能分割出一个等腰三角形,那么就称这条直线为该三角形的一条等腰分割线.在直角三角形ABC中,∠ACB=90°,AC=4,BC=3.(1)如图1,O为AB的中点,则直线OC是△ABC的等腰分割线(填“是”或“不是”).(2)如图2,点P是边AC上一个动点,当直线BP是△ABC的等腰分割线时,求PC的长度.(3)如图3,若将△ABC放置在如图所示的平面直角坐标系中,点Q是边AB上的一点,如果直线CQ是△ABC的等腰分割线,则点Q的坐标为(﹣,0)或或或.(直接写出答案).解:(1)∵∠ACB=90°,O为AB中点,在Rt△ACB中,OC=AB=AO=BO,∴等腰△AOC和等腰△BOC.则直线OC是△ABC的等腰分割线;故答案为:是.(2)①当AP=BP时,BC=3,设CP=x,①当PA=PB=4﹣x,在Rt△BPC中,BC2+PC2=PB2,∴32+x2=(4﹣x)2,解得x=.即:CP=.②CP=CB时,CP=BC=3;即CP的长为或3.(3)∵∠ACB=90°,AC=4,BC=3,∴AB===5,=BC•AC=AB•OC,∵S△ABC∴OC=,∴==,①若△ACQ为等腰三角形,如图1,当AC=AQ时,AC=4,AQ=4,∴OQ=AQ﹣OA=4﹣=.∴Q,如图2,当QC=QA时,Q为AB中点,AQ=BQ=AB=.∴OQ=OA﹣AQ==,∴Q(,0),当CA=CQ时,Q不在边AB上,舍去.②若△BCQ为等腰三角形.如图3,当CQ=CB时,OQ=OB=,∴Q(,0),如图4,当BC=BQ时,BQ=BC=3,∴=,∴Q(,0),如图2,当QC=QB时,Q为AB中点,BQ=AQ=,此时Q(,0).综合以上可得点Q的坐标为(﹣,0)或或或.故答案为:(﹣,0)或或或.15.已知△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC 上(点M,N不与所在线段端点重合),BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AC于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时,请直接写出△BCM与△ACN的关系:△BCM≌△ACN;BD与DE的位置关系:BD⊥DE.(2)当∠ACB=α,其他条件不变时,∠BDE的度数是多少?(用含α的代数式表示)(3)若△ABC是等边三角形,AB=3,N是BC边上的三等分点,直线ED与直线BC交于点F,求线段CF的长.解:(1)△BCM≌△ACN,BD⊥DE,理由如下:如图1:∵CA=CB,BN=AM,∴CB﹣BN=CA﹣AM即CN=CM,在△BCM和△ACN中,,∴△BCM≌△ACN(SAS).∴∠MBC=∠NAC,∵EA=ED,∴∠EAD=∠EDA,∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°﹣90°=90°,∴∠BDE=90°,∴BD⊥DE.故答案为:△BCM≌△ACN,BD⊥DE;(2)①如图2中,当点E在AN的延长线上时,同(1)得:△BCM≌△ACN(SAS).∴∠CBM=∠CAN,∵AG∥BC,∴∠CBM=∠ADB=∠CAN,∠ACB=∠CAD,∵EA=ED,∴∠EAD=∠EDA,∴∠CAN+∠CAD=∠BDE+∠ADB,∴∠BDE=∠ACB=α.②如图3中,当点E在NA的延长线上时,则∠1+∠2=180°﹣∠EDA=180°﹣∠EAD=∠CAN+∠DAC,∵∠2=∠ADM=∠CBD=∠CAN,∴∠1=∠CAD=∠ACB=α,∴∠BDE=180°﹣α.综上所述,∠BDE=α或180°﹣α.(3)∵△ABC是等边三角形,∴AC=BC=AB=3,①如图4中,当BN=BC=时,作AK⊥BC于K.∵AD∥BC,∴==,∴AD=BC=,∵AC=3,∠DAC=∠ACB=60°,∴△ADC是直角三角形,则四边形ADCK是矩形,∴AK=DC,∠AKN=∠DCF=90°,∵AG∥BC,∴∠EAD=∠ANK,∠EDA=∠DFC,∵AE=DE,∴∠EAD=∠EDA,∴∠ANK=∠DFC,在△AKN和△DCF中,,∴△AKN≌△DCF(AAS),∴CF=NK=BK﹣BN=﹣=.②如图5中,当CN=BC=时,作AK⊥BC于K,DH⊥BC于H.∵AD∥BC,∴==2,∴AD=2BC=6,则△ACD是直角三角形,△ACK∽△CDH,则CH=AK=,同①得:△AKN≌△DHF(AAS),∴KN=FH=,∴CF=CH﹣FH=4.综上所述,CF的长为或4.16.在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB 于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上(1)解:四边形AEDF的形状是菱形;理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠FAD,∵DE∥AC,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴四边形AEDF是菱形;(2)(i)解:连接EF交AD于点Q,如图2所示:∵∠BAC=60°,四边形AEDF是菱形,∴∠EAD=30°,AD、EF相互垂直平分,△AEF是等边三角形,∴∠EAF=∠AEF=∠AFE=60°,∵AD=4,∴AQ=2,在Rt△AQE中,cos∠EAQ=,即cos30°=,∴AE===4,∴AE=AF=EF=4,在△AEG和△EFH中,,∴△AEG≌△EFH(SAS),∴∠AEG=∠EFH,∴∠ENH=∠EFH+∠GEF=∠AEG+∠GEF=60°,∴∠ENH=∠EAG,∵∠AEG=∠NEH,∴△AEG∽△NEH,∴=,∴EN•EG=EH•AE=3×4=12;(ii)证明:如图3,连接FM',∵DE∥AC,∴∠AED=180°﹣∠BAC=120°,由(1)得:△EDF是等边三角形,∴DE=DF,∠EDF=∠FED=∠EFD=60°,由旋转的性质得:∠MDM'=60°,DM=DM',∴∠EDM=∠FDM',在△EDM和△FDM'中,,∴△EDM≌△FDM'(SAS),∴∠MED=∠DFM',由(i)知,∠AEG=∠EFH,∴∠DFM'+∠EFH=∠MED+∠AEG=∠AED=120°,∴∠HFM'=∠DFM'+∠HFE+∠EFD=120°+60°=180°,∴H,F,M′三点在同一条直线上.17.已知:在△ABC中,∠ACB=90°,AC=BC,过点A、B向过点C的直线作垂线,垂足分别为D、E,CE交AB于点F.(1)如图1,求证:CD=BE;(2)如图2,连接AE、BD,若DE=BE,在不添加任何辅助线的情况下,请直接写出四个角,使写出的每一个角的正切值都等于.解:(1)∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,又∵∠ACD+∠CAD=90°,∴∠CAD=∠BCE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE;(2)∵DE=BE,CD=BE,∴CD=DE=BE,∵∴△ACD≌△CBE,∴AD=CE=2CD=2DF,∴ran∠CAD=,tan∠DAE=,tan,∵∠DBE=∠CBA=45°,∴∠ABD=∠CBD,∵∠BCD+∠CBD=∠BDE=45°,∠ABD+∠ABE=∠DBE=45°,∴∠BCD=∠ABD,∴tan∠ABD=tan∠BCD=,故∠CAD、∠EAD、∠BCE、∠ABD的正切值都为.18.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点A与点O、D在同一条直线上时AD的长.解:(1)如图1中,设BD交AD于J.∵OA=OB,OC=OD,∠AOB=∠COD=40°,∴∠DOB=∠COA,∴△OAC≌△OBD(SAS),∴AC=BD,∠CAO=∠DBO,∵∠AJM=∠BJO,∴∠AMJ=∠BOJ=40°,∴=1,∠AMB=40°,故答案为:1,40°.(2)如图2中,结论:=,∠AMB=90°.理由:设AO交BM于J.在Rt△COD中,∵∠DOC=90°,∠DCO=30°,∴=tan60°=,同理可得:=,∴=,∵∠COD=∠AOB=90°,∴∠COA=∠DOB,∴△COA∽△DOB,∴==,∠JAM=∠JBO,∵∠AJM=∠BJO,∴∠AMJ=∠JOB=90°.(3)如图3﹣1中,当点D在线段OA上时,在Rt△AOB中,∵∠AOB=90°,OB=,∠A=30°,∴OA=OB=3,∵OD=1,∴AD=OA﹣OD=3﹣1=2.如图3﹣2中,当点D在AO的延长线上时,AD=OA+OD=3+1=4,综上所述,满足条件的AD的值为2或4.19.如图1,在直角三角形ABC中,∠BAC=90°,AD为斜边BC上的高线.(1)求证:AD2=BD⋅CD;(2)如图2,过A分别作∠BAD,∠DAC的角平分线,交BC于E,M两点,过E作AE的垂线,交AM于F.①当tan C=时,求的值;②如图3,过C作AF的垂线CG,过G点作GN∥AD交AC于M点,连接MN.若∠EAD=15°,AB=1,直接写出MN的长度.(1)证明:如图1中,∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠BAC=90°,∴∠B+∠C=90°,∵∠B+∠BAD=90°,∴∠BAD=∠C,∴△BAD∽△ACD,∴=,∴AD2=BD•CD.(2)①解:如图2中,作EH⊥AB于H,MG⊥AC于G.∵AD⊥BC,∴∠tan C==,∴可以假设AD=3k,CD=4k,则AC=5k,BD=k,AB=k,∵MA平分∠CAD,MD⊥AD,MG⊥AC,∴DM=MG,∵∠ADM=∠AGM=90°,AM=AM,∴Rt△MAD≌Rt△MAG(HL)∴AD=AG=3k,设MD=MG=x,则CG=2k,CM=4k﹣x,在Rt△CMG中,∵CM2=MG2+CG2,∴(4k﹣x)2=x2+(2k)2,∴x=k,∴DM=k,同法可得DE=k,∴==.②如图3中,∵AE平分∠BAD,∠EAD=15°,∴∠BAD=30°,∵AD⊥BC,∠BAC=90°,∴∠B=∠DAC=60°,∠C=30°,∵MA平分∠CAD,∴∠MAC=∠MAD=30°,∴∠MAC=∠MCA=30°,∴∠AMB=∠MAC+∠MCA=60°=∠B=∠BAM,∴MA=MC,△ABM是等边三角形,∴AM=BM,∴BM=CM,∵GN∥AD,∴∠GNC=∠DAC=60°,∵CG⊥AG,∴∠AGC=90°,∴∠ACG=60°=∠CNG,∴△CGN是等边三角形,∴NC =CG ,∵AC =2CG ,∴AN =CN ,∵BM =MC ,∴MN =AB =.20.如图,以直角三角形AOC 的直角顶点O 为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足.D 为线段AC 的中点.在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为,.(1)则A 点的坐标为 (0,4) ;点C 的坐标为 (2,0) .D 点的坐标为 (1,2) .(2)已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.设运动时间为t (t >0)秒.问:是否存在这样的t ,使S △ODP =S △ODQ ,若存在,请求出t 的值;若不存在,请说明理由.(3)点F 是线段AC 上一点,满足∠FOC =∠FCO ,点G 是第二象限中一点,连OG ,使得∠AOG =∠AOF .点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.解:(1)∵. ∴a ﹣2b =0,b ﹣2=0,解得a =4,b =2,∴A(0,4),C(2,0);∴x==1,y==2,∴D(1,2).故答案为(0,4),(2,0),(1,2).(2)如图1中,由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,∴0<t≤2时,点Q在线段AO上,即CP=t,OP=2﹣t,OQ=2t,AQ=4﹣2t,∴S△DOP =OP•y D=(2﹣t)×2=2﹣t,S△DOQ=OQ•x D=×2t×1=t,∵S△ODP =S△ODQ,∴2﹣t=t,∴t=1;(3)的值不变,其值为2.理由如下:如图2中,∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴=,=,=2.。
2020 年中考数学考点提分专题七三角形(分析版)必考点 1 三角形基础知识一、三角形中的线段1、三角形的角均分线三角形的角均分线是一条线段(极点与内角均分线和对边交线间的距离)2、三角形的中线三角形的中线也是一条线段(极点到对边中点间的距离)3.三角形的高三角形的高线也是一条线段(极点到对边的距离)注意:三角形的中线和角均分线都在三角形内。
二、三角形三条边的关系三角形三边都不相等,叫不等边三角形;有两条边相等的叫等腰三角形;三边都相等的则叫等边三角形。
等腰三角形中,相等的两条边叫腰,另一边叫底边,腰和底边的夹角叫底角,两腰的夹角叫项角。
三角形接边相等关系来分类:不等边三角形三角形底边和腰不相等的等腰三角形等腰三角形等边三角形推论三角形两边的差小于第三边。
三、三角形的内角和定理三角形三个内角的和等于180 °推论 1 :直角三角形的两个锐角互余。
三角形按角分类:直角三角形三角形锐角三角形斜三角形钝角三角形三角形一边与另一边的延伸线构成的角,叫三角形的外角。
推论 2 :三角形的一个外角等于和它不相邻的两个内角的和。
推论 3 :三角形的一个外角大于任何一个和它不相邻的内角。
1】a,3,5a【典例(2019·的三条线段能构成一个三角形,则的值能够是()浙江中考真题)若长度分别为A. 1B. 2C. 3D.8【贯通融会】1.(2019 ·河南初二期中)如图,在△ ABC中,∠ B=40°,∠ C=30°,延伸BA至点D,则∠ CAD的大小为()A. 110 °B. 80°C. 70°D. 60°2.( 2019 ·浙江中考真题)以下长度的三条线段,能构成三角形的是()A.3,4,8B. 5, 6, 10C. 5, 5, 11D.5, 6, 113.( 2019 ·江苏中考真题)已知n 正整数,若一个三角形的三边长分别是n+2、 n+8、 3n,则知足条件的n 的值有()A.4 个B.5个C.6 个D.7 个必考点 2全等三角形的判断1、边角边公义:有两边和它们的夹角对应相等的两个三角形全等(能够简写成“边角边”或“SAS)”注意:必定假如两边夹角,而不可以是边边角。
三角形的面积知识点总结在数学的广袤天地中,三角形是一个极为基础且重要的几何图形。
而三角形的面积计算,更是我们必须掌握的关键知识点。
接下来,就让我们一同深入探究三角形面积的相关知识。
一、三角形面积的定义三角形的面积,简单来说,就是指三角形所占平面区域的大小。
它的衡量单位通常是平方单位,比如平方厘米、平方米等。
二、三角形面积的计算公式1、最常见的公式是:面积=底×高÷2 ,用字母表示为 S = 1/2 × a × h (其中 S 表示面积,a 表示底边长,h 表示这条底边对应的高)。
这个公式的原理其实很好理解。
我们可以把三角形想象成一个平行四边形的一半。
当一个平行四边形沿着对角线分成两个三角形时,每个三角形的面积就是平行四边形面积的一半。
而平行四边形的面积是底乘高,所以三角形的面积就是底乘高除以 2 。
2、已知三角形的两边及其夹角,面积公式为:S = 1/2 × a × b ×sinC (其中 a 、b 是三角形的两条边,C 是它们的夹角)这个公式在一些特定的题目中会非常有用,比如已知两边和夹角求面积的情况。
3、已知三角形的三条边长 a 、b 、c ,可以使用海伦公式求面积:S =√p(p a)(p b)(p c) ,其中 p =(a + b + c) / 2 。
海伦公式相对来说较为复杂,但在某些条件下,它能发挥独特的作用。
三、三角形面积公式的推导1、对于“面积=底×高÷2”这个公式,我们可以通过以下方式推导:假设我们有一个三角形 ABC ,底边为 BC ,对应的高为 AD 。
我们以 BC 为底边,作一个与三角形 ABC 等高的平行四边形 BCDE 。
因为平行四边形的面积=底×高,而三角形 ABC 的面积是平行四边形BCDE 面积的一半,所以三角形 ABC 的面积= BC × AD ÷ 2 。
掌握中考数学解题技巧如何解决三角形的面积和角度问题数学作为一门理科学科,对学生而言常常是一个难以捉摸的存在。
然而,在中考中,数学成绩常常被视为考生评价的重要指标之一。
因此,掌握数学解题技巧成为了中学生迫切需要解决的问题之一。
尤其是在解决三角形的面积和角度问题时,合理的解题技巧显得尤为重要。
本文将介绍几种常用的解决三角形面积和角度问题的数学技巧。
一、三角形的面积问题(1)海伦公式三角形的面积问题是中考中常见的一个知识点。
其中,面积公式的运用是解决三角形面积问题的关键。
在解决三角形面积问题时,海伦公式是一种常用的求解方法。
该公式可以通过三角形的三边长来计算其面积。
假设三角形的三边长分别为a、b、c,令s为三角形的半周长,则海伦公式可以表示为:```面积= √(s(s-a)(s-b)(s-c))```其中,s = (a+b+c)/2。
(2)高度法除了海伦公式,我们还可以通过高度法来解决三角形的面积问题。
这种方法将三角形的面积与其底边长度和高度有关联。
假设三角形的底边长为b,高度为h,则三角形的面积可以表示为:```面积 = 1/2 * b * h```通过计算实际三角形的底边长和高度,可以求得其面积。
二、三角形的角度问题(1)三角形内角和三角形内角和是指三角形内部的三个角度之和。
对于任意一个三角形来说,其内角和是一个固定的值。
根据几何定理,三角形的内角和等于180度,即:```A +B +C = 180```其中,A、B、C分别表示三角形的三个内角。
在解决三角形的角度问题时,我们可以利用这一性质解出未知的角度,从而得到正确的答案。
(2)余弦定理除了内角和,我们还可以运用余弦定理解决三角形的角度问题。
当我们知道三角形的两边长和夹角时,可以利用余弦定理求得第三边的长度。
假设三角形的三边长分别为a、b、c,夹角为A,则余弦定理可以表示为:```c^2 = a^2 + b^2 - 2abcosA```通过利用余弦定理,我们可以求得三角形的其中一个夹角,从而解决三角形的角度问题。
三角形的面积知识点总结在数学的广袤天地中,三角形是一个基础且重要的图形,而三角形的面积计算则是我们需要重点掌握的知识之一。
下面就让我们一起来详细梳理一下三角形面积的相关知识点。
一、三角形面积的定义三角形的面积是指三角形所占平面的大小。
通俗来讲,就是三角形在平面上所覆盖区域的度量。
二、三角形面积的计算公式1、最常见的公式是:面积=底×高÷2,通常用字母表示为 S =1/2 × a × h,其中 S 表示面积,a 表示三角形的底,h 表示这条底边对应的高。
这个公式的推导其实很直观。
我们可以把三角形补成一个平行四边形,因为平行四边形的面积是底乘高,而三角形的面积恰好是平行四边形面积的一半,所以就得到了这个公式。
2、已知三角形的两边及其夹角,可以使用正弦定理来计算面积。
公式为:S = 1/2 × a × b × sinC,其中 a、b 是两条边,C 是它们的夹角。
这个公式的原理是利用三角函数的关系,通过两边和夹角来计算三角形的面积。
三、三角形面积公式的应用1、已知底和高求面积这是最直接的应用。
比如一个三角形的底是 6 厘米,高是 4 厘米,那么它的面积就是 1/2 × 6 × 4 = 12 平方厘米。
2、已知两边及其夹角求面积例如,一个三角形的两条边分别是5 厘米和8 厘米,夹角是60 度,那么面积就是 1/2 × 5 × 8 × sin60°=10√3 平方厘米。
3、求与三角形面积相关的几何问题比如在一个组合图形中,需要通过计算三角形的面积来求出整个图形的面积。
四、三角形面积计算中的注意事项1、底和高要对应在使用“底×高÷2”这个公式时,底和高必须是相互对应的。
也就是说,从底边作的垂线的长度才是这条底边对应的高。
2、单位要统一计算面积时,底和高的长度单位要统一,如果不统一,需要先进行单位换算。
中考复习计算三角形面积的公式与应用在中考数学复习中,计算三角形面积的公式是一个非常重要的知识点。
掌握了三角形面积的计算方法,并且能够灵活运用于实际问题中,不仅可以提高解题的效率,还能够增强对几何概念的理解。
本文将介绍三角形面积的基本公式以及其应用。
1. 三角形面积的基本公式三角形面积的计算公式有很多种,根据已知条件的不同,我们可以选择不同的公式进行计算。
以下是几种常用的计算公式:(1)通过底边和高当我们知道三角形的底边和高时,可以通过公式:$S = \frac{1}{2} \times \text{底边} \times \text{高}$ 来计算三角形的面积。
这个公式是最常见的计算三角形面积的方法,适用于各种类型的三角形。
(2)通过两边和其夹角当我们知道三角形的两边和它们的夹角时,可以通过公式:$S =\frac{1}{2} \times \text{边1} \times \text{边2} \times \sin(\text{夹角})$ 来计算三角形的面积。
这个公式基于三角形面积与正弦的关系,需要注意的是夹角的单位必须是弧度制。
(3)通过三边当我们知道三角形的三边长时,可以通过海伦公式计算三角形的面积。
海伦公式的表达式为:$S = \sqrt{p \times (p-\text{边1}) \times (p-\text{边2}) \times (p-\text{边3})}$,其中 $p$ 是半周长,可以通过公式$p = \frac{\text{边1} + \text{边2} + \text{边3}}{2}$ 计算得到。
2. 三角形面积的应用掌握了三角形面积的计算公式,我们可以将其灵活应用于实际问题中,解决各种与三角形面积相关的题目。
(1)确定图形的面积当我们遇到一个由多个三角形组成的图形时,可以将图形拆分为多个三角形,并利用三角形面积的计算公式求解。
通过将每个三角形的面积相加,即可得到整个图形的面积。
重难点05 几何综合题【命题趋势】几何综合题是中考数学中的重点题型,也是难点所在.几何综合题的难度都比较大,所占分值也比较重,题目数量一般有两题左右,其中一题一般为三角型、四边形综合;另一题通常为圆的综合;它们在试卷中的位置一般都在试卷偏后的位置.只所以几何综合题难度大,学生一般都感觉难做,主要是因为这种类型问题的综合性较强,涉及的知识点或者说考点较多,再加上现在比较热门的动点问题、函数问题,这就导致了几何综合题的难度再次升级,因此这种题的区分度较大.所以我们一定要重视平时多培养自己的综合运用知识的能力,从不同的角度,运用不同的知识去解决同一个问题.【满分技巧】一.熟练掌握平面几何知识﹕要想解决好有关几何综合题,首先就是要熟练掌握关于平面几何的所有知识,尤其是要重点把握三角形、特殊四边形、圆及函数、三角函数相关知识.几何综合题重点考查的是关于三角形、特殊四边形(平行四边形、矩形、菱形、正方形)、圆等相关知识.二.掌握分析问题的基本方法﹕分析法、综合法、“两头堵”法﹕1.分析法是我们最常用的解决问题的方法,也就是从问题出发,执果索因,去寻找解决问题所需要的条件,依次向前推,直至已知条件;例如,我们要证明某两个三角形全等,先看看要证明全等,需要哪些条件,哪些条件已知了,还缺少哪些条件,然后再思考要证缺少的条件,又需要哪些条件,依次向前推,直到所有的条件都已知为止即可.2.综合法﹕即从已知条件出发经过推理得出结论,适合比较简单的问题;3.“两头堵”法﹕当我们用分析法分析到某个地方,不知道如何向下分析时,可以从已知条件出发看看能得到什么结论,把分析法与综合法结合起来运用是我们解决综合题最常用的办策略.三.注意运用数学思想方法﹕对于几何综合题的解决,我们还要注意运用数学思想方法,这样会大大帮助我们解决问题,或者简化我们解决问题的过程,加快我们解决问题的速度,毕竟考场上时间是非常宝贵的.常用数学思想方法﹕转化、类比、归纳等等.【限时检测】(建议用时:60分钟)1. (2019 湖南省郴州市)如图1,矩形ABCD中,点E为AB边上的动点(不与A,B重合),把△ADE沿DE 翻折,点A的对应点为A1,延长EA1交直线DC于点F,再把△BEF折叠,使点B的对应点B1落在EF上,折痕EH交直线BC于点H.(1)求证:△A1DE△△B1EH;(2)如图2,直线MN是矩形ABCD的对称轴,若点A1恰好落在直线MN上,试判断△DEF的形状,并说明理由;(3)如图3,在(2)的条件下,点G为△DEF内一点,且△DGF=150°,试探究DG,EG,FG的数量关系.【解析】(1)证明:由折叠的性质可知:△DAE=△DA1E=90°,△EBH=△EB1H=90°,△AED=△A1ED,△BEH =△B1EH,△△DEA1+△HEB1=90°.又△△HEB1+△EHB1=90°,△△DEA1=△EHB1,△△A1DE△△B1EH;(2)结论:△DEF是等边三角形;理由如下:△直线MN是矩形ABCD的对称轴,△点A1是EF的中点,即A1E=A1F,在△A1DE和△A1DF中△△A1DE△△A1DF(SAS),△DE=DF,△FDA1=△EDA1,又△△ADE△△A1DE,△ADF=90°.△△ADE=△EDA1=△FDA1=30°,△△EDF=60°,△△DEF是等边三角形;(3)DG,EG,FG的数量关系是DG2+GF2=GE2,理由如下:由(2)可知△DEF是等边三角形;将△DGE逆时针旋转60°到△DG'F位置,如解图(1),△G'F=GE,DG'=DG,△GDG'=60°,△△DGG'是等边三角形,△GG'=DG,△DGG'=60°,△△DGF=150°,△△G'GF=90°,△G'G2+GF2=G'F2,△DG2+GF2=GE2,2. (2019 江西省)在图1,2,3中,已知△ABCD,△ABC=120°,点E为线段BC上的动点,连接AE,以AE 为边向上作菱形AEFG,且△EAG=120°.(1)如图1,当点E与点B重合时,△CEF=°;(2)如图2,连接AF.△填空:△F AD△EAB(填“>”,“<“,“=”);△求证:点F在△ABC的平分线上;(3)如图3,连接EG,DG,并延长DG交BA的延长线于点H,当四边形AEGH是平行四边形时,求的值.【解析】(1)△四边形AEFG是菱形,△△AEF=180°﹣△EAG=60°,△△CEF=△AEC﹣△AEF=60°,故答案为:60°;(2)△△四边形ABCD是平行四边形,△△DAB=180°﹣△ABC=60°,△四边形AEFG是菱形,△EAG=120°,△△F AE=60°,△△F AD=△EAB,故答案为:=;△作FM△BC于M,FN△BA交BA的延长线于N,则△FNB=△FMB=90°,△△NFM=60°,又△AFE=60°,△△AFN=△EFM,△EF=EA,△F AE=60°,△△AEF为等边三角形,△F A=FE,在△AFN和△EFM中,,△△AFN△△EFM(AAS)△FN=FM,又FM△BC,FN△BA,△点F在△ABC的平分线上;(3)△四边形AEFG是菱形,△EAG=120°,△△AGF=60°,△△FGE=△AGE=30°,△四边形AEGH为平行四边形,△GE△AH,△△GAH=△AGE=30°,△H=△FGE=30°,△△GAN=90°,又△AGE=30°,△GN=2AN,△△DAB=60°,△H=30°,△△ADH=30°,△AD=AH=GE,△四边形ABCD为平行四边形,△BC=AD,△BC=GE,△四边形ABEH为平行四边形,△HAE=△EAB=30°,△平行四边形ABEN为菱形,△AB=AN=NE,△GE=3AB,△=3.3. (2019 浙江省宁波市)如图1,△O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF△EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan△DAE=y.△求y关于x的函数表达式;△如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.【解析】证明:(1)△△ABC是等边三角形,△△BAC=△C=60°,△△DEB=△BAC=60°,△D=△C=60°,△△DEB=△D,△BD=BE;(2)如图1,过点A作AG△BC于点G,△△ABC是等边三角形,AC=6,△BG=,△在Rt△ABG中,AG=BG=3,△BF△EC,△BF△AG,△,△AF:EF=3:2,△BE=BG=2,△EG=BE+BG=3+2=5,在Rt△AEG中,AE=;(3)△如图1,过点E作EH△AD于点H,△△EBD=△ABC=60°,△在Rt△BEH中,,△EH=,BH=,△,△BG=xBE,△AB=BC=2BG=2xBE,△AH=AB+BH=2xBE+BE=(2x+)BE,△在Rt△AHE中,tan△EAD=,△y=;△如图2,过点O作OM△BC于点M,设BE=a,△,△CG=BG=xBE=ax,△EC=CG+BG+BE=a+2ax,△EM=EC=a+ax,△BM=EM﹣BE=ax﹣a,△BF△AG,△△EBF△△EGA,△,△AG=,△BF=,△△OFB的面积=,△△AEC 的面积=,△△AEC 的面积是△OFB 的面积的10倍, △,△2x 2﹣7x +6=0, 解得:,△,探究问题4. (2019 辽宁省沈阳市)思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P (点P 可以直接到达A 点),利用工具过点C 作//CD AB 交AP 的延长线于点D ,此时测得200CD =米,那么A ,B 间的距离是 米. 思维探索:(2)在ABC ∆和ADE ∆中,AC BC =,AE DE =,且AE AC <,90ACB AED ∠=∠=︒,将ADE ∆绕点A 顺时针方向旋转,把点E 在AC 边上时ADE ∆的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点P 是线段BD 的中点,连接PC ,PE .△如图2,当ADE ∆在起始位置时,猜想:PC 与PE 的数量关系和位置关系分别是 ;△如图3,当90α=︒时,点D 落在AB 边上,请判断PC 与PE 的数量关系和位置关系,并证明你的结论; △当150α=︒时,若3BC =,DE l =,请直接写出2PC 的值.【解析】(1)解://CD AB Q ,C B ∴∠=∠, 在ABP ∆和DCP ∆中,BP CPAPB DPC B C =⎧⎪∠=∠⎨⎪∠=∠⎩,()ABP DCP SAS ∴∆≅∆,DC AB ∴=. 200AB =Q 米. 200CD ∴=米,故答案为:200.(2)△PC 与PE 的数量关系和位置关系分别是PC PE =,PC PE ⊥. 理由如下:如解图1,延长EP 交BC 于F , 同(1)理,可知()FBP EDP SAS ∴∆≅∆,PF PE ∴=,BF DE =,又AC BC =Q ,AE DE =,FC EC ∴=,又90ACB ∠=︒Q ,EFC ∴∆是等腰直角三角形,EP FP =Q ,PC PE ∴=,PC PE ⊥.△PC 与PE 的数量关系和位置关系分别是PC PE =,PC PE ⊥.理由如下:如解图2,作//BF DE ,交EP 延长线于点F ,连接CE 、CF , 同△理,可知()FBP EDP SAS ∆≅∆,BF DE ∴=,12PE PF EF ==,DE AE =Q , BF AE ∴=,Q 当90α=︒时,90EAC ∠=︒,//ED AC ∴,//EA BC//FB AC Q ,90FBC ∠=, CBF CAE ∴∠=∠,在FBC ∆和EAC ∆中,BF AE CBE CAE BC AC =⎧⎪∠=∠⎨⎪=⎩,()FBC EAC SAS ∴∆≅∆,CF CE ∴=,FCB ECA ∠=∠, 90ACB ∠=︒Q ,90FCE ∴∠=︒,FCE ∴∆是等腰直角三角形,EP FP =Q ,CP EP ∴⊥,12CP EP EF ==.△如解图2,作//BF DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH AC ⊥交CA 延长线于H 点, 当150α=︒时,由旋转旋转可知,150CAE ∠=︒,DE 与BC 所成夹角的锐角为30︒,150FBC EAC α∴∠=∠==︒,同△可得()FBP EDP SAS ∆≅∆,同△FCE ∆是等腰直角三角形,CP EP ⊥,CP EP ==, 在Rt AHE ∆中,30EAH ∠=︒,1AE DE ==,12HE ∴=,AH =,又3AC AB ==Q ,3AH ∴=22210EC AH HE ∴=+=+2212PC EC ∴==.动点问题5. (2019 湖南省衡阳市)如图,在等边△ABC 中,AB =6cm ,动点P 从点A 出发以lcm /s 的速度沿AB 匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE△AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在△ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.【解析】(1)△△ABC是等边三角形,△△B=60°,△当BQ=2BP时,△BPQ=90°,△6+t=2(6﹣t),△t=3,△t=3时,△BPQ是直角三角形.(2)存在.理由:如图1中,连接BF交AC于M.△BF平分△ABC,BA=BC,△BF△AC,AM=CM=3cm,△EF△BQ,△△EFM=△FBC=△ABC=30°,△EF=2EM,△t=2•(3﹣t),解得t=3.(3)如图2中,作PK△BC交AC于K.△△ABC是等边三角形,△△B=△A=60°,△PK△BC,△△APK=△B=60°,△△A=△APK=△AKP=60°,△△APK是等边三角形,△P A=PK,△PE△AK,△AE=EK,△AP=CQ=PK,△PKD=△DCQ,△PDK=△QDC,△△PKD△△QCD(AAS),△DK=DC,△DE=EK+DK=(AK+CK)=AC=3(cm).(4)如图3中,连接AM,AB′△BM=CM=3,AB=AC,△AM△BC,△AM==3,△AB′≥AM﹣MB′,△AB′≥3﹣3,△AB′的最小值为3﹣3.6. (2019 江苏省扬州市)如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,△G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG运动,点Q沿折线BC﹣CG运动(与点G不重合),在运动过程中始终保持线段PQ△AB.设PQ与AB之间的距离为x.(1)若a=12.△如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为;△在运动过程中,求四边形AMQP的最大面积;(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.【解析】(1)解:△P在线段AD上,PQ=AB=20,AP=x,AM=12,四边形AMQP的面积=(12+20)x=48,解得:x=3;故答案为:3;△当P,在AD上运动时,P到D点时四边形AMQP面积最大,为直角梯形,△0<x≤10时,四边形AMQP面积的最大值=(12+20)10=160,当P在DG上运动,10<x≤20,四边形AMQP为不规则梯形,作PH△AB于M,交CD于N,作GE△CD于E,交AB于F,如图2所示:则PM=x,PN=x﹣10,EF=BC=10,△△GDC是等腰直角三角形,△DE=CE,GE=CD=10,△GF=GE+EF=20,△GH=20﹣x,由题意得:PQ△CD,△△GPQ△△GDC,△=,即=,解得:PQ=40﹣2x,△梯形AMQP的面积=(12+40﹣2x)×x=﹣x2+26x=﹣(x﹣13)2+169,△当x=13时,四边形AMQP的面积最大=169;(2)解:P在DG上,则10≤x≤20,AM=a,PQ=40﹣2x,梯形AMQP的面积S=(a+40﹣2x)×x=﹣x2+x,对称轴为:x=10+,△0≤x≤20,△10≤10+≤15,对称轴在10和15之间,△10≤x≤20,二次函数图象开口向下,△当x=20时,S最小,△﹣202+×20≥50,△a≥5;综上所述,a的取值范围为5≤a≤20.7. (2019 山东省济宁市)如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且△DMN=△DAM,设AM=x,DN =y.△写出y关于x的函数解析式,并求出y的最小值;△是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.【解析】(1)如图1中,△四边形ABCD是矩形,△AD=BC=10,AB=CD=8,△△B=△BCD=90°,由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ABF中,BF==6,△CF=BC﹣BF=10﹣6=4,在Rt△EFC中,则有:(8﹣x)2=x2+42,△x=3,△EC=3.(2)△如图2中,△AD△CG,△=,△=,△CG=6,△BG=BC+CG=16,在Rt△ABG中,AG==8,在Rt△DCG中,DG==10,△AD=DG=10,△△DAG=△AGD,△△DMG=△DMN+△NMG=△DAM+△ADM,△DMN=△DAM,△△ADM=△NMG,△△ADM△△GMN,△=,△=,△y=x2﹣x+10.当x=4时,y有最小值,最小值=2.△存在.有两种情形:如图3﹣1中,当MN=MD时,△△MDN=△GMD,△DMN=△DGM,△△DMN△△DGM,△=,△MN=DM,△DG=GM=10,△x=AM=8﹣10.如图3﹣2中,当MN=DN时,作MH△DG于H.△MN=DN,△△MDN=△DMN,△△DMN=△DGM,△△MDG=△MGD,△MD=MG,△BH△DG,△DH=GH=5,由△GHM△△GBA,可得=,△=,△MG=,△x=AM=8﹣=.综上所述,满足条件的x的值为8﹣10或.8. (2019 山东省青岛市)已知:如图,在四边形ABCD中,AB△CD,△ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE△AB,交BC于点E,过点Q作QF△AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在△BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE△OQ?若存在,求出t的值;若不存在,请说明理由.【解析】(1)在Rt△ABC中,△△ACB=90°,AB=10cm,BC=8cm,△AC==6(cm),△OD垂直平分线段AC,△OC=OA=3(cm),△DOC=90°,△CD△AB,△△BAC=△DCO,△△DOC=△ACB,△△DOC△△BCA,△==,△==,△CD=5(cm),OD=4(cm),△PB=t,PE△AB,易知:PE=t,BE=t,当点E在△BAC的平分线上时,△EP△AB,EC△AC,△PE=EC,△t=8﹣t,△t=4.△当t为4秒时,点E在△BAC的平分线上.(2)如图,连接OE,PC.S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)=•(4﹣t)•3+[•3•(8﹣t)+•(8﹣t)•t﹣•3•(8﹣t)=﹣t2+t+16(0<t<5).(3)存在.△S=﹣(t﹣)2+(0<t<5),△t=时,四边形OPEG的面积最大,最大值为.(4)存在.如图,连接OQ.△OE△OQ,△△EOC+△QOC=90°,△△QOC+△QOG=90°,△△EOC=△QOG,△tan△EOC=tan△QOG,△=,△=,整理得:5t2﹣66t+160=0,解得t=或10(舍弃)△当t=秒时,OE△OQ.9. (2019 四川省绵阳市) 如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.【解析】(1)证明:∵四边形ABCD是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,∴∠DEF=90°,∴△DEF是等腰直角三角形;(2)设OE=t,连接OD,∴∠DOE=∠DAF=90°,∵∠OED=∠DFA,∴△DOE∽△DAF,∴OEAF=ODAD=22,∴AF=2t ,又∵∠AEF=∠ADG,∠EAF=∠DAG,∴△AEF∽△ADG,∴AEAD= AF AG,∴AG · AE=AD · AF=42t ,又∵AE=OA+OE=2 2 +t,∴AG=42t22+t,∴EG=AE-AG=t2+822+t,当点H恰好落在线段BC上∠DFH=∠DFE+∠HFE=45°+45°=90°,∴△ADF∽△BFH,∴FHFD=FBAD=4-2t4,∵AF∥CD,∴FGDF=2t4+2t,∴4-2t4=2t4+2t,解得:t1=10 - 2 ,t2=10 + 2 (舍去),∴EG=EH=t2+822+t =(10-2)2+822+10-2= 310 - 5 2 ;(3)过点F作FK⊥AC于点K,由(2)得EG=t2+822+t,∵DE=EF,∠DEF=90°,∴∠DEO=∠EFK,∴△DOE≌△EKF(AAS),∴FK=OE=t,∴S△EFG=12EG · FK =t3+8t42+2t.10. (2019 四川省资阳市)在矩形ABCD中,连结AC,点E从点B出发,以每秒1个单位的速度沿着B→A→C 的路径运动,运动时间为t(秒).过点E作EF△BC于点F,在矩形ABCD的内部作正方形EFGH.(1)如图,当AB=BC=8时,△若点H在△ABC的内部,连结AH、CH,求证:AH=CH;△当0<t≤8时,设正方形EFGH与△ABC的重叠部分面积为S,求S与t的函数关系式;(2)当AB=6,BC=8时,若直线AH将矩形ABCD的面积分成1:3两部分,求t的值.【解析】(1)△如图1中,△四边形EFGH是正方形,AB=BC,△BE=BG,AE=CG,△BHE=△BGH=90°,△△AEH=△CGH=90°,△EH=HG,△△AEH△△CGH(SAS),△AH=CH.△如图1中,当0<t≤4时,重叠部分是正方形EFGH,S=t2.如图2中,当4<t≤8时,重叠部分是五边形EFGMN,S=S△ABC﹣S△AEN﹣S△CGM=×8×8﹣2×(8﹣t)2=﹣t2+32t﹣32.综上所述,S=.(2)如图3﹣1中,延长AH交BC于M,当BM=CM=4时,直线AH将矩形ABCD的面积分成1:3两部分.△EH△BM,△=,△=,△t=.如图3﹣2中,延长AH交CD于M交BC的延长线于K,当CM=DM=3时,直线AH将矩形ABCD的面积分成1:3两部分,易证AD=CK=8,△EH△BK,△=,△=,△t=.如图3﹣3中,当点E在线段AC上时,延长AH交CD于M,交BC的延长线于N.当CM=DM时,直线AH将矩形ABCD的面积分成1:3两部分,易证AD=CN=8.在Rt△ABC中,AC==10,△EF△AB,△=,△=,△EF=(16﹣t),△EH△CN,△=,△=,解得t=.综上所述,满足条件的t的值为s或s或s.11. (2019 天津市)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,△ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(△)如图△,求点E的坐标;(△)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.△如图△,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;△当≤S≤5时,求t的取值范围(直接写出结果即可).【解析】(△)△点A(6,0),△OA=6,△OD=2,△AD=OA﹣OD=6﹣2=4,△四边形CODE是矩形,△DE△OC,△△AED=△ABO=30°,在Rt△AED中,AE=2AD=8,ED===4,△OD=2,△点E的坐标为(2,4);(△)△由平移的性质得:O′D′=2,E′D′=4,ME′=OO′=t,D′E′△O′C′△OB,△△E′FM=△ABO=30°,△在Rt△MFE′中,MF=2ME′=2t,FE′===t,△S△MFE′=ME′•FE′=×t×t=,△S矩形C′O′D′E′=O′D′•E′D′=2×4=8,△S=S矩形C′O′D′E′﹣S△MFE′=8﹣,△S=﹣t2+8,其中t的取值范围是:0<t<2;△当S=时,如图△所示:O'A=OA﹣OO'=6﹣t,△△AO'F=90°,△AFO'=△ABO=30°,△O'F=O'A=(6﹣t)△S=(6﹣t)×(6﹣t)=,解得:t=6﹣,或t=6+(舍去),△t=6﹣;当S=5时,如图△所示:O'A=6﹣t,D'A=6﹣t﹣2=4﹣t,△O'G=(6﹣t),D'F=(4﹣t),△S=[(6﹣t)+(4﹣t)]×2=5,解得:t=,△当≤S≤5时,t的取值范围为≤t≤6﹣.12. (2019 四川省南充市)如图,在正方形ABCD 中,点E 是AB 边上的一点,以DE 为边作正方形DEFG ,DF 与BC 交于点M ,延长EM 交GF 于点H ,EF 与GB 交于点N ,连接CG.(1)求证:CD△CG ;(2)若tan△MEN=31,求EMMN的值;(3)已知正方形ABCD 的边长为1,点E 在运动过程中,EM 的长能否为21?请说明理由.【解析】(1)证明:在正方形ABCD ,DEFG 中, DA=DC ,DE=DG ,△ADC=△EDG=△A=90°(1分)△△ADC -△EDC=△EDG -△EDC ,即△ADE=△CDG ,△△ADE△△CDG (SAS )(2分) △△DCG=△A=90°,△CD△CG (3分)(2)解:△CD△CG ,DC△BC ,△G 、C 、M 三点共线△四边形DEFG 是正方形,△DG=DE ,△EDM=△GDM=45°,又△DM=DM △△EDM△△GDM ,△△DME=△DMG (4分)又△DMG=△NMF ,△△DME=△NMF ,又△△EDM=△NFM=45° △△DME△△FMN ,△DMFMME MN =(5分) 又△DE△HF ,△DM FM ED HF =,又△ED=EF ,△EFHFME MN =(6分) 在Rt△EFH 中,tan△HEF=31=EF HF ,△31=ME MN (7分) (3)设AE=x ,则BE=1-x ,CG=x ,设CM=y ,则BM=1-y ,EM=GM=x+y (8分)在Rt△BEM 中,222EM BM BE =+,△222)()1()1(y x y x +=-+-,解得11+-=x xy (9分) △112++=+=x x y x EM ,若21=EM ,则21112=++x x , 化简得:0122=+-x x ,△=-7<0,△方程无解,故EM 长不可能为21. 13. (2019 浙江省台州市)如图,正方形ABCD 的边长为2,E 为AB 的中点,P 是BA 延长线上的一点,连接PC 交AD 于点F ,AP =FD . (1)求的值;(2)如图1,连接EC ,在线段EC 上取一点M ,使EM =EB ,连接MF ,求证:MF =PF ;(3)如图2,过点E 作EN △CD 于点N ,在线段EN 上取一点Q ,使AQ =AP ,连接BQ ,BN .将△AQB 绕点A 旋转,使点Q 旋转后的对应点Q '落在边AD 上.请判断点B 旋转后的对应点B '是否落在线段BN 上,并说明理由.【解析】(1)设AP =FD =a ,△AF =2﹣a , △四边形ABCD 是正方形,△AB △CD , △△AFP △△DFC ,△,即,△a =﹣1,△AP =FD =﹣1,△AF=AD﹣DF=3﹣△=(2)在CD上截取DH=AF△AF=DH,△P AF=△D=90°,AP=FD,△△P AF△△HDF(SAS),△PF=FH,△AD=CD,AF=DH,△FD=CH=AP=﹣1,△点E是AB中点,△BE=AE=1=EM,△PE=P A+AE=,△EC2=BE2+BC2=1+4=5,△EC=,△EC=PE,CM=﹣1,△△P=△ECP,△AP△CD,△△P=△PCD,△△ECP=△PCD,且CM=CH=﹣1,CF=CF,△△FCM△△FCH(S AS),△FM=FH,△FM=PF.(3)若点B'在BN上,如图,以A原点,AB为y轴,AD为x轴建立平面直角坐标系,△EN△AB,AE=BE△AQ=BQ=AP=﹣1由旋转的性质可得AQ=AQ'=﹣1,AB=AB'=2,Q'B'=QB=﹣1,△点B(0,﹣2),点N(2,﹣1)△直线BN解析式为:y=x﹣2设点B'(x,x﹣2)△AB'==2△x=△点B'(,﹣)△点Q'(﹣1,0)△B'Q'=≠﹣1△点B旋转后的对应点B'不落在线段BN上.。
2020年中考数学冲刺难点突破几何证明问题
专题七几何证明之三角形中的面积综合问题
1、如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于F,交AC于E,
过点O作OD⊥BC于D.
(1)求证:∠AOB=90°+∠C;
(2)求证:AE+BF=EF;
(3)若OD=a,CE+CF=2b,请用含a,b的代数式表示△CEF的面积,S△CEF=(直接写出结果).
2、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.
(1)如图1,求证:AD=2DC.
(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;
(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.
3、如图.CP是等边△ABC的外角∠ACE的平分线,点D在边BC上,以D为顶点,DA为一条边作∠ADF
=60°,另一边交射线CP于F.
(1)求证.AD=FD;
(2)若AB=2,BD=x,DF=y,求y关于x的函数解析式;
(3)联结AF,当△ADF的面积为时,求BD的长.。