平面直角坐标系中如何求几何图形的面积
- 格式:doc
- 大小:69.50 KB
- 文档页数:2
【期末复习】浙教版八年级上册提分专题:一次函数与几何图形面积探究考点一 一次函数图象与坐标轴围成图形的面积 【知识点睛】❖ 求三角形面积时,三角形有边在水平或者竖直边上,常以这条边为底,再由底所对顶点的坐标确定高; 类型一 一条直线与坐标轴围成的三角形面积 解题步骤:①求出直线与x 轴、y 轴的交点坐标,从而得出直线与坐标轴围成的直角三角形的两条直角边长; ②利用三角形面积公式求出三角形的面积 【类题训练】1.已知一次函数图象经过A (﹣4,﹣10)和B (3,4)两点,与x 轴的交于点C ,与y 轴的交于点D . (1)求该一次函数解析式;(2)点C 坐标为 ,点D 坐标为 ;(3)画出该一次函数图象,并求该直线和坐标轴围成的图形面积.【分析】(1)用待定系数法求直线AB 的解析式; (2)令y =0求得点C 的坐标,令x =0求得点D 的坐标;(3)利用已知的点A 和点B 画出一次函数的图象,然后利用求得的点C 和点D 求出OC 和OD 的长度,最后求得直线和坐标轴围成的图形面积.【解答】解:(1)设一次函数的解析式为y =kx +b (k ≠0),则,解得:,∴一次函数的解析式为y =2x ﹣2.(2)当x =0时,y =﹣2,当y =0时,x =1, ∴C (1,0),D (0,﹣2). 故答案为:(1,0),(0,﹣2).(3)由点A和点B,可以画出一次函数的图象,如下如所示,∵C(1,0),D(0,﹣2),∴OC=1,OD=2,∴S△OCD==1,∴一次函数与坐标轴围成的图形的面积为1.2.在平面直角坐标系中,一条直线经过A(﹣1,5),与B(3,﹣3)两点.(1)求这条直线与坐标轴围成的图形的面积.(2)若这条直线与y=﹣x+1交于点C,求点C的坐标.【分析】(1)根据待定系数法求得直线的解析式,进一步求出直线与x轴和y轴的交点坐标,然后根据三角形面积公式求解;(2)联立方程,解方程即可.【解答】(1)解:设直线解析式为y=kx+b(k≠0),将A(﹣1,5),与B(3,﹣3)两点代入得,解得,∴直线解析式为y=﹣2x+3,将x=0代入得y=3,∴与y轴交于点(0,3),将y=0代入得x=,∴与x轴交于点(,0),∴S=×3×=.(2)解得,∴点C的坐标是(2,﹣1).变式.已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是.【分析】先根据一次函数y=kx+b(k≠0)图象过点(2,0)可知b=﹣2k,用k表示出函数图象与y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.【解答】解:∵一次函数y=kx+b(k≠0)图象过点(2,0),∴2k+b=0,b=﹣2k,∴y=kx﹣2k,令x=0,则y=﹣2k,∵函数图象与两坐标轴围成的三角形面积为1,∴×2×|﹣2k|=1,即|2k|=1,解得:k=±,则函数的解析式是y=x﹣1或y=﹣x+1.故答案为y=x﹣1或y=﹣x+1.类型二两条直线与坐标轴围成的三角形面积解题标准:在平面直角坐标系内求三角形的面积,通常以坐标轴上的边为底,高就是底所对的顶点到这条边的距离【类题训练】1.如图,若直线y=﹣2x+1与直线y=kx+4交于点B(﹣1,m),且两条直线与y轴分别交于点C、点A;那么△ABC 的面积为.【分析】根据B点在直线y=﹣2x+1上,且横坐标为﹣1,求出B点的坐标,再根据直线y=kx+4过B点,将(﹣1,3)代入直线y=kx+4解析式,即可求出答案,根据已知得出B点的坐标,再根据直线y=﹣2x+1和直线y=x+4求得与y轴交点A和C点的坐标,再根据三角形的面积公式得出S△ABC.【解答】解:∵B点在直线y=﹣2x+1上,且横坐标为﹣1,∴y=﹣2×(﹣1)+1=3,即B点的坐标为(﹣1,3)又直线y=kx+4过B点,将(﹣1,3)代入直线y=kx+4得:3=﹣k+4,解得k=1;∴直线AB的解析式为y=x+4,∴直线AB与y轴交点A的坐标为(0,4),∵直线y=﹣2x+1与y轴交点C的坐标为(0,1),∴AC=4﹣1=3,∴S△ABC=AC•|x B|=×3×1=.故答案为.2.如图,直线l1:y=﹣2x+b与直线l2:y=kx﹣2相交于点P(1,﹣1),直线l1交y轴于点A,直线交y轴于点B,则△PAB的面积为.【分析】利用一次函数y=kx+b(k,b为常数,k≠0)可得直线l1与直线l2:与y轴交点,然后可求出△PAB 的面积.【解答】解:∵直线l1:y=﹣2x+b与直线l2:y=kx﹣2相交于点P(1,﹣1),∴﹣1=﹣2×1+b,解得:b=1,∴A点坐标为(0,1),∵直线l2:y=kx﹣2交y轴于B,∴B(0,﹣2),∴AB=3,∴△PAB的面积为:3×1=,故答案为:.变式.已知直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为()A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣4【分析】首先求出直线y=kx﹣4(k<0)与两坐标轴的交点坐标,然后根据三角形面积等于4,得到一个关于k 的方程,求出此方程的解,即可得到直线的解析式.【解答】解:直线y=kx﹣4(k<0)与两坐标轴的交点坐标为(0,﹣4)(,0),∵直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,∴4×(﹣)×0.5=4,解得k=﹣2,则直线的解析式为y=﹣2x﹣4.故选:B.类型三三条直线围成的三角形面积解题标准:在平面直角坐标系内求三角形的面积,通常以坐标轴上的边为底,高就是底所对的顶点到这条边的距离【类题训练】1.如图,已知点A(2,4),B(﹣2,2),C(4,0),求△ABC的面积.【分析】先利用待定系数法求直线AB的解析式,再确定直线AB与x轴的交点D的坐标,然后根据三角形面积公式和以S△ABC=S△ACD﹣S△BDC进行计算.【解答】解:设直线AB的解析式为y=kx+b,把A(2,4)、B(﹣2,2)代入得,解得.所以直线AB的解析式为y=x+3,当y=0时,y=x+3=0,解得x=﹣6,则D点坐标为(﹣6,0),所以S△ABC=S△ACD﹣S△BDC=×(4+6)×4﹣×(4+6)×2=10.2.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D(0,﹣6)在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,直线CD交AB于点E.(1)求点A、B、C的坐标;(2)求△ADE的面积;(3)y轴上是否存在一点P,使得S△PAD=S△ADE,若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,在Rt △AOB 中,利用勾股定理可求出AB 的长度,由折叠的性质可得出AC =AB ,结合OC =OA +AC 可得出OC 的长度,进而可得出点C 的坐标;(2)根据点E 为直线AB 与直线CD 的交点,联立两直线解析式可求出点E 坐标,再由△ADE 和△ADB 组成△BDE ,得△ADE 的面积=△BDE 的面积-△ABD 的面积,即可求出△ADE 的面积;(3)假设存在,设点P 的坐标为(0,m ),则DP =|m +6|,利用三角形的面积公式可得出关于m 的含绝对值符号的一元一次方程,解之即可得出结论. 【解答】解:(1)当x =0时,y =﹣x +4=4, ∴点B 的坐标为(0,4); 当y =0时,﹣x +4=0, 解得:x =3,∴点A 的坐标为(3,0). 在Rt △AOB 中,OA =3,OB =4, ∴AB ==5.由折叠的性质,可知:∠BDA =∠CDA ,∠D =∠C ,AC =AB =5, ∴OC =OA +AC =8, ∴点C 的坐标为(8,0). (2)∵C (8,0),D (0,﹣6), ∴直线CD 的解析式为:y=43x-6, ∵点E 为直线AB 与直线CD 的交点.由⎪⎩⎪⎨⎧-=+-=643434x y x y 求得点E 坐标为⎪⎭⎫ ⎝⎛512-524,, ∴S △ADE =S △BDE ﹣S △ABD =BD •|x E |﹣BD •|x A |=9(3)假设存在,设点P 的坐标为(0,m ),则DP =|m +6|. ∵S △PAD =S △ADE ,即DP •OA =×OD •OA ,∴|m+6|=3,解得:m=﹣3或m=﹣9,∴假设成立,即y轴上存在一点P(0,﹣3)或(0,﹣9),使得S△PAD=S△ADE.3.如图,已知:直线AB:分别与x轴、y轴交于点A、B,直线CD:y=x+b分别与x轴、y轴交于点C、D,直线AB与CD相交于点P,S△ABD=2.求:(1)b的值和点P的坐标;(2)求△ADP的面积.【分析】(1)首先根据分别与x轴、y轴交于点A、B可求得A、B坐标,然后根据S△ABD=2可求得D点坐标,代入直线CD:y=x+b可求得b,直线AB与CD相交于点P,联立两方程可求得P点坐标.(2)可把S△ADP的面积分解为S△ABD+S△BDP,而S△BDP=|x P|,即可求得.【解答】解:(1)∵直线AB:分别与x轴、y轴交于点A、B,令y=0则x=﹣2,A(﹣2,0),令x=0则y=1∴B(0,1),又∵S△ABD=2∴|BD|•|OA|=2而|OA|=2∴|BD|=2,又B(0,1),∴D(0,﹣1)∴b=﹣1;∵直线AB与CD相交于点P,联立两方程得:,解得x=4,y=3,∴P(4,3);(2)由图象坐标可知:S△ADP=S△ABD+S△BDP=2+|x P|=6或S△ADP=S△PAC+S△DAC=|y P|)=×3×(1+3)=6.4.已知直线m经过两点(1,6)、(﹣3,﹣2),它和x轴、y轴的交点式B、A,直线n过点(2,﹣2),且与y轴交点的纵坐标是﹣3,它和x轴、y轴的交点是D、C;(1)分别写出两条直线解析式,并画草图;(2)计算四边形ABCD的面积;(3)若直线AB与DC交于点E,求△BCE的面积.【分析】(1)利用待定系数法可分别求出直线AB的解析式为y=2x+4;直线CD的解析式为y=x﹣3;然后利用两点确定一直线画函数图象;(2)利用坐标轴上点的坐标特征确定A点坐标为(0,4)=B点坐标为(﹣2,0)、D点坐标为(6,0),然后根据三角形面积公式和四边形ABCD的面积=S△ABD+S△CBD进行计算;(3)根据一次函数的交点问题通过解方程组得到E点坐标,然后利用△BCE的面积=S△EBD﹣S△CBD进行计算.【解答】解:(1)设直线AB的解析式为y=kx+b,把(1,6)、(﹣3,﹣2)代入得,解得.所以直线AB的解析式为y=2x+4;设直线CD的解析式为y=mx+n,把(2,﹣2)、(0,﹣3)代入得,解得,所以直线CD的解析式为y=x﹣3;如图所示;(2)把x=0代入y=2x+4得y=4,则A点坐标为(0,4);把y=0代入y=2x+4得2x+4=0,解得x=﹣2,则B点坐标为(﹣2,0);把y=0代入y=x﹣3得x﹣3=0,解得x=6,则D点坐标为(6,0),所以四边形ABCD的面积=S△ABD+S△CBD=×(6+2)×4+×(6+2)×3=28;(3)解方程组得,所以E点坐标为(﹣,﹣),所以△BCE的面积=S△EBD﹣S△CBD=×(6+2)×﹣×(6+2)×3=.变式.已知点A(2,4),B(﹣2,2),C(x,2),若△ABC的面积为10,求x的值.【分析】审题知B、C纵坐标相等,所以BC是一条平行于x轴的直线,所以A到BC的距离为2,而且B、C两点之间的距离可用两点的横坐标之差的绝对值表示,即x+2的绝对值.已知三角形的面积为10,依此列出方程求解即可.【解答】解:由B、C纵坐标相等,所以BC是一条平行于x轴的直线,所以A到BC的距离为4﹣2=2,BC=|x ﹣(﹣2)|=|x+2|,因为△ABC的面积为10,所以×2×|x+2|=10,|x+2|=10,x+2=10,或x+2=﹣10,解得:x=8,或x=﹣12.考点二一次函数图象与几何图形动点面积【知识点睛】❖此类问题需要将动点所在几何图形与一次函数图象同时分析,对照一次函数图象得出动点所在几何图形的边长信息❖对函数图象的分析重点抓住以下两点:①分清坐标系的x轴、y轴的具体意义②特别分析图象的拐点——拐点一般表示动点运动到几何图形的一个顶点❖动点所在几何图形如果是特殊图形,如等腰三角形、等腰直角三角形、含30°的直角三角形,注意对应图形性质与辅助线的应用。
计算机科学中的计算几何学计算几何学是计算机科学中一个重要的领域,它涵盖了许多与图形和几何有关的问题,例如计算多边形的面积和周长、求解几何元素之间的关系和位置、以及生成三维图形等等。
计算几何学在许多应用领域中都有广泛的应用,例如计算机辅助设计、虚拟现实、机器人技术等等。
在计算几何学中,最基本的问题是如何表示和存储几何对象。
传统的方式是使用点、线和面等基本元素来描述几何对象。
对于平面几何问题,经典的数据结构是平面直角坐标系(Cartesian coordinates)和极坐标系(polar coordinates)。
在三维几何问题中,一般使用欧几里得空间(Euclidean space)或齐次坐标系(homogeneous coordinates)来表示和计算。
此外,还可以使用参数曲线和曲面等高级数据结构来描述更复杂的几何对象。
计算几何学中的许多问题都涉及到了求解几何元素之间的关系和位置。
其中最常见的问题之一是交点问题(intersection problem),即求解两条或多条直线或曲线在二维或三维空间中的交点。
还有一类常见问题是求解点与线、点与面之间的位置关系。
例如,如何判断一个点是否在一个多边形内部?如何判断两个三角形是否相交?这些问题的解决方法涉及到了许多经典的算法,例如扫描线算法(scanline algorithm)、凸包算法(convex hull algorithm)和线性规划算法(linear programming algorithm)等等。
计算几何学的另一个重要领域是计算几何优化。
它涉及在给定约束条件下求解几何问题的最优解。
例如,在给定的几何对象中,如何找到包含最大面积的矩形?如何找到通过给定点的最短路径?这些问题需要一些经典的数学工具和算法,例如拉格朗日乘数法(Lagrange multiplier method)、离散化技术(discretization)和动态规划算法(dynamic programming algorithm)等等。
人教版八年级数学下册期末复习专题训练——在直角坐标系中求几何图形的面积1.如图,四边形OABC是矩形,点A,C在坐标轴上,△ODE是由△OCB绕点O顺时针旋转90∘得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC =2,OC=4(1)求直线BD的解析式.(2)求△OFH的面积.2.直线a:y=x+2和直线b:y=﹣x+4相交于点A,分别与x轴相交于点B和点C,与y轴相交于点D和点E.(1)在同一坐标系中画出函数图象;(2)求△ABC的面积;(3)求四边形ADOC的面积;(4)观察图象直接写出不等式x+2≤﹣x+4的解集和不等式﹣x+4≤0的解集.3.如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2,b1≠b2,那么称这两个一次函数为“平行一次函数”.已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b与y=﹣2x+4是“平行一次函数”(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的面积是△AOB面积的,求y=kx+b的解析式.4.如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,求该直线l的解析式5.如图1,直线3y分别与y轴、x轴交于点A、点B,点C的坐标为(-3,0),D为直线AB -=x3+3上一动点,连接CD交y轴于点E(1) 点B的坐标为__________,不等式+3>-x的解集为___________33(2) 若S△COE=S△ADE,求点D的坐标(3) 如图2,以CD为边作菱形CDFG,且∠CDF=60°.当点D运动时,点G在一条定直线上运动,请求出这条定直线的解析式.6.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.7.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,求线段BC扫过的面积8.已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x 轴于点E,PF⊥y轴于点F,连接EF,若△PAO 的面积为S ,求S 关于m 的函数关系式,并写出m 的取值范围;9. 如图,已知直线343+=x y 与坐标轴交于B,C 两点,点A 是x 轴正半轴上一点,并且15=∆ABC S .点F 是线段AB 上一动点(不与端点重合),过点F 作FE ∥x 轴,交BC 于E.(1) 求AB 所在直线的解析式;(2) 若FD ⊥x 轴于D,且点D 的坐标为)0,(m ,请用含m 的代数式,表示DF 与EF 的长;(3) 在x 轴上是否存在一点P,使得△PEF 为等腰直角三角形,若存在,请直接写出点P 的坐标,若不存在,请说明理由.10.如图,在平面直角坐标系xOy 中,直线y=﹣2x +a 与y 轴交于点C (0,6),与x 轴交于点B . (1)求这条直线的解析式;(2)直线AD 与(1)中所求的直线相交于点D (﹣1,n ),点A 的坐标为(﹣3,0).①求n 的值及直线AD 的解析式; ②求△ABD 的面积;③点M 是直线y=﹣2x+a 上的一点(不与点B 重合),且点M 的横坐标为m ,求△ABM 的面积S 与m 之间的关系式.11.已知一次函数的图象经过(1,1)和(﹣1,﹣5).(1)求这个一次函数的表达式;(2)求这个一次函数的图象与x 轴、y 轴的交点坐标,并求出该图象与两坐标轴围成的三角形的面积.12.如图,边长为5的正方形OABC的顶点0在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是0A边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.(1)求证:CE=EP;(2)若点E的坐标为(3,O),在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,求出点M的坐标:若不存在,说明理由.13.已知一次函数的图象经过(1,1)和(﹣1,﹣5).(1)求这个一次函数的表达式;(2)求这个一次函数的图象与x轴、y轴的交点坐标,并求出该图象与两坐标轴围成的三角形的面积.14.直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上一点C在第一象限且点C的坐标为(2,2),求△BOC的面积.15.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1、直线y=kx+4与y轴所围成的△ABC的面积等于____________;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x0<-1,求k的取值范围.16.如图,己知直线l:y=x+1(k≠0)的图象与x轴、y轴交于A、B两点.(1)直接写出A、B两点的坐标;(2)若P是x轴上的一个动点,求出当△PAB是等腰三角形时P的坐标;(3)在y轴上有点C(0,3),点D在直线l上.若△ACD面积等于4.请直接写出D的坐标.17.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数解析式;(3)当t为何值时,三角形APD的面积为10 cm2?18.已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;答案:1. (1) OC=4,BC=2,B(-2,4)∵OD =OC =4,∴D (4,0).设 BD 解析式为 y =kx +b (k ≠0), ∴{−2k +b =4,4k +b =0 ∴{k =−23,b =83.∴y =−23x +83. (2) ∵DE =2, ∴E (4,2). ∴ 直线 OE:y =12x ,∴{y =−23x +83,y =12x, ∴{x =167,y =87, ∴H (167,87).当 x =0,y =83, ∴F (0,83), ∴S △OFH =12×83×167=6421. 2.(1)依照题意画出图形,如图所示.(2)令y=x +2中y=0,则x +2=0,解得:x=﹣2,∴点B (﹣2,0);令y=﹣x +4中y=0,则﹣x +4=0,解得:x=4,∴点C (4,0);联立两直线解析式得:,解得:,∴点A (1,3).S △ABC =BC•y A =×[4﹣(﹣2)]×3=9.(3)令y=x +2中x=0,则y=2,∴点D (0,2).S 四边形ADOC =S △ABC ﹣S △DBO =9﹣×2×2=7.(4)观察函数图形,发现:当x <1时,直线a 在直线b 的下方,∴不等式x +2≤﹣x +4的解集为x ≤1;当x >4时,直线b 在x 轴的下方,∴不等式﹣x +4≤0的解集为x ≥4.3.(1)∵一次函数y=kx +b 与y=﹣2x +4是“平行一次函数”,∴k=﹣2,即y=﹣2x +b . ∵函数y=kx +b 的图象过点(3,1),∴1=﹣2×3+b ,∴b=7.(2)在y=﹣2x +4中,令x=0,得y=4,令y=0,得x=2,∴A (2,0),B (0,4),∴S △AOB =OA•OB=4.由(1)知k=﹣2,则直线y=﹣2x +b 与两坐标轴交点的坐标为(,0),(0,b ),于是有|b |•||=4×=1,∴b=±2,即y=kx +b 的解析式为y=﹣2x +2或y=﹣2x ﹣2.4.设直线l 和10个正方形的最上面交点为A ,过A 作AB ⊥OB 于B ,过A 作AC ⊥OC 于C , ∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l 将这10个正方形分成面积相等的两部分,∴两边分别是5,∴三角形ABO 面积是7,∴OB•AB=7,∴AB=,∴OC=AB=,由此可知直线l 经过(,3),设直线方程为y=kx (k ≠0),则3=k ,解得k=∴直线l 解析式为y=x .故答案为:y=x .5.(1) (3,0)、x <3(2) ∵S △COE =S △ADE ∴S △AOB =S △CBD 即33321621⨯⨯=⨯⨯D y ,y D =233 当y =233时,23233333==+-x x ,∴D (23323,) (3) 连接CF ∵∠CDF =60°∴△CDF 为等边三角形连接AC ∵AB =AC =BC =6∴△ABC 为等边三角形∴△CAF ≌△CBD (SAS )∴∠CAF =∠ACB =60°∴AF ∥x 轴设D (m ,333+-m )过点D 作DH ⊥x 轴于H ∴BH =3-m ,DB =6-2m =AF∴F (2m -6,33)由平移可知:G (m -9,m 3-)令⎪⎩⎪⎨⎧-=-=m y m x 39∴点G 在直线393--=x y 上6. (1)设直线的解析式为y=kx +b ,把A (﹣1,5),B (3,﹣3)代入,可得:{533=+--=+b k b k ,解得:,所以直线解析式为:y=﹣2x +3,把P (﹣2,a )代入y=﹣2x +3中,得:a=7;(2)由(1)得点P 的坐标为(﹣2,7),令x=0,则y=3,所以直线与y 轴的交点坐标为(0,3),所以△OPD 的面积=.7.∵点A 、B 的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10, ∴CA==8,∴C 点纵坐标为:8,∵将△ABC 沿x 轴向右平移,当点C 落在直线y=x ﹣5上时,∴y=8时,8=x ﹣5,解得:x=13,即A 点向右平移13﹣2=11个单位, ∴线段BC 扫过的面积为:11×8=88.故选:B .8.(1)令x=0,则y=8,∴B (0,8),令y=0,则﹣2x +8=0,∴x=4,∴A (4,0), (2)∵点P (m ,n )为线段AB 上的一个动点,∴﹣2m +8=n ,∵A (4,0),∴OA=4,∴0<m <4∴S △PAO =OA ×PE=×4×n=2(﹣2m +8)=﹣4m +16,(0<m <4) )3,0(30343)1(,9B y x x y 即时,中,当在==+= ∴OB=3同理OC=4 ∵15)(21=⋅+OB OA OC ,153)4(21=⨯+⨯OA ∴OA=6 即点A 的坐标为(6,0) 设AB 所在直线的解析式为y=kx+b⎩⎨⎧⎩⎨⎧=+=-==213063k b b k b 解得则∴AB 所在直线的解析式为 (2)在中,当,即DF= 在中,当mx m y 32,321-=+-=时mm m EF 35)32(=--= (3)10.(1)∵直线y=﹣2x +a 与y 轴交于点C (0,6),∴a=6,∴该直线解析式为y=﹣2x +6 (2)①∵点D (﹣1,n )在直线BC 上,∴n=﹣2×(﹣1)+6=8,∴点D (﹣1,8) 设直线AD 的解析式为y=kx +b ,将点A (﹣3,0)、D (﹣1,8)代入y=kx +b 中, 得:,解得:,∴直线AD 的解析式为y=4x +12.②令y=﹣2x +6中y=0,则﹣2x +6=0,解得:x=3,∴点B (3,0).∵A(﹣3,0)、D (﹣1,8),∴AB=6.S △ABD =AB•y D =×6×8=24.③∵点M 在直线y=-2x+6上,∴M (m ,-2m+6),当m <3时,S=16(26)2m ⨯⨯-+即618S m =-+;当m >3时,即S=6m -18.11. (1)设函数解析式为y=kx +b ,由题意将两点代入得:{15=+-=+-b k b k ,解得:{32=-=k b .∴一次函数的解析式为:y=3x ﹣2;(2)令y=0,得x=32,令x=0,得y=﹣2, 3232221=⨯⨯=∴s 12.(1)在OC 上截取OK =OE .连接EK .∵OC =OA ,∠1=90°,∠OEK =∠OKE =45°,∵AP 为矩形外角平分线,∴∠BAP =45°∴∠EKC =∠PAE =135°.∴CK =EA .∵EC ⊥EP ,∴∠3=∠4.∴△EKC ≌△PAE . ∴EC =EP (2)y 轴上存在点M ,使得四边形BMEP 是平行四边形.如图,过点B 作BM ∥PE 交y 轴于点M ,∴∠5=∠CEP =90°,∴∠6=∠ 4.在△BCM 和△COE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,,46COE BCM OC BC ∴△BCM ≌△COE ,∴BM =CE 而CE =EP ,∴BM =EP .由于BM ∥EP ,∴四边形BMEP 是平行四边形由△BCM ≌△COE可得CM =OE =3,∴OM =CO -CM =2.故点M 的坐标为(0,2).13.(1)设函数解析式为y=kx +b ,由题意将两点代入得:,解得:.∴一次函数的解析式为:y=3x ﹣2;(2)令y=0,得x=,令x=0,得y=﹣2,∴S=×2×=.14.(1)设直线AB 的解析式为y =kx +b(k ≠0).将A(1,0),B(0,-2)代入解析式,得⎩⎪⎨⎪⎧k +b =0,b =-2.解得⎩⎪⎨⎪⎧k =2,b =-2.∴直线AB 的解析式为y =2x -2.(2)S △BOC =12×2×2=2.15.(1)32 当x =-1时,y =-2×(-1)+1=3,∴B(-1,3).将B(-1,3)代入y =kx +4,得k =1.(2)y =kx +4与x 轴的交点为(-4k ,0),∵-2<x 0<-1,∴-2<-4k <-1,(1) 解得2<k <4.16.(1)当y=0时,x+1=0,解得x=﹣2,则A (﹣2,0),当x=0时,y=x+1=1,则B (0,1);(2)AB==,当AP=AB 时,P 点坐标为(﹣,0)或(,0);当BP=BA时,P点坐标为(2,0);当PA=PB时,作AB的垂直平分线交x轴于P,连结PB,如图1,则PA=PB,设P(t,0),则OA=t+2,OB=t+2,在Rt△OBP中,12+t2=(t+2)2,解得t=﹣,此时P 点坐标为(﹣,0);(3)如图2,设D(x,x+1),当x>0时,∵S△ABC+S△BCD=S△ACD,∴•2•2+•2•x=4,解得x=2,此时D点坐标为(2,2);当x<0时,∵S△BCD﹣S△ABC=S△ACD,∴•2•(﹣x)﹣•2•2=4,解得x=﹣6,此时D点坐标为(﹣6,﹣2),综上所述,D点坐标为(2,2)或(﹣6,﹣2).故答案为(﹣2,0),(0,1);(2,2)或(﹣6,﹣2).17.略18.(1)令x=0,则y=8,∴B(0,8),令y=0,则﹣2x+8=0,∴x=4,∴A(4,0),(2)∵点P(m,n)为线段AB上的一个动点,∴﹣2m+8=n,∵A(4,0),∴OA=4,∴0<m<4∴S△PAO=OA×PE=×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4)。
坐标的面积公式在数学中,我们经常需要计算平面上各种图形的面积。
当图形的边界由坐标轴上的点确定时,我们可以使用坐标的面积公式来计算图形的面积。
坐标的面积公式是一个基础且实用的数学工具,在几何学、物理学以及工程学等领域都有广泛的应用。
1. 点与坐标轴在平面直角坐标系中,我们将平面分成四个象限,我们通常用两个数来表示一个点在坐标系中的位置。
这两个数分别为x坐标和y坐标,分别对应横轴和纵轴的位置。
例如,点A的坐标为(x, y)。
2. 矩形的面积公式首先,让我们以矩形为例来介绍坐标的面积公式。
矩形是由四条边界分割的图形,两条边界分别与x轴和y轴平行。
假设矩形的两个顶点坐标分别为(Ax, Ay),(Bx, By),(Cx, Cy)和(Dx, Dy)。
则矩形的面积可以通过以下公式计算:面积 = |(Bx - Ax) * (Cy - Ay)|上述公式表示矩形的面积为矩形两条边长之积的绝对值。
3. 三角形的面积公式接下来,我们来介绍计算三角形面积的公式。
假设三角形的三个顶点坐标分别为(Ax, Ay),(Bx, By)和(Cx, Cy)。
三角形的面积可以通过以下公式计算:面积 = |(Ax * (By - Cy) + Bx * (Cy - Ay) + Cx * (Ay - By)) / 2|上述公式使用了行列式的概念来计算三角形的面积,其中绝对值保证了面积的正值。
4. 多边形的面积公式除了矩形和三角形,我们还可以使用坐标的面积公式计算更复杂的多边形的面积。
对于n边形,我们可以将其划分为若干个三角形,然后使用三角形的面积公式分别计算每个三角形的面积,再将这些面积相加得到多边形的面积。
这个方法被称为三角剖分。
三角剖分方法的基本思想是找到多边形中一个顶点和相邻的两个顶点形成的三角形,计算该三角形的面积,并将它加入到总面积中。
然后,我们再移动到下一个顶点,重复相同的计算过程,直到遍历完所有的顶点。
最后,将得到的所有三角形的面积相加即可得到多边形的面积。
铅垂法求三角形面积最值问题求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法.【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积.这是在“补”,同样可以采用“割”:()111222ABC ACD BCD S S S CD AE CD BF CD AE BF =+=⋅+⋅=+ 此处AE +AF 即为A 、B 两点之间的水平距离.由题意得:AE +BF =6.下求CD :根据A 、B 两点坐标求得直线AB 解析式为:1233y x =+由点C 坐标(4,7)可得D 点横坐标为4,将4代入直线AB 解析式得D 点纵坐标为2,故D 点坐标为(4,2),CD =5,165152ABC S =⨯⨯= .【方法总结】作以下定义:A 、B 两点之间的水平距离称为“水平宽”;过点C 作x 轴的垂线与AB 交点为D ,线段CD 即为AB 边的“铅垂高”.如图可得:=2ABC S ⨯ 水平宽铅垂高【解题步骤】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ;(3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标;(4)根据C 、D 坐标求得铅垂高;(5)利用公式求得三角形面积.【思考】如果第3个点的位置不像上图一般在两定点之间,如何求面积?铅垂法其实就是在割补,重点不在三个点位置,而是取两个点作水平宽之后,能求出其对应的铅垂高!因此,动点若不在两定点之间,方法类似:【铅垂法大全】(1)取AB 作水平宽,过点C 作铅垂高CD .(2)取AC 作水平宽,过点B 作BD ⊥x 轴交直线AC 于点D ,BD 即对应的铅垂高,=2ABC ABD BCD S S S ⨯-= 水平宽铅垂高(3)取BC 作水平宽,过点A 作铅垂高AD .甚至,还可以横竖互换,在竖直方向作水平宽,在水平方向作铅垂高.(4)取BC作水平宽,过点A作铅垂高AD.(5)取AC作水平宽,过点B作铅垂高BD.(6)取AB作水平宽,过点C作铅垂高CD.方法突破例一、如图,已知抛物线25y ax bx =++经过(5,0)A -,(4,3)B --两点,与x 轴的另一个交点为C .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为m .当点P 在直线BC 的下方运动时,求PBC ∆的面积的最大值.【分析】(1)265y x x =++,(2)取BC 两点之间的水平距离为水平宽,过点P 作PQ ⊥x 轴交直线BC 于点Q ,则PQ 即为铅垂高.根据B 、C 两点坐标得B 、C 水平距离为4,根据B 、C 两点坐标得直线BC 解析式:y =x +1,设P 点坐标为(m ,m ²+6m +5),则点Q (m ,m +1),得PQ =-m ²-5m -4,考虑到水平宽是定值,故铅垂高最大面积就最大.当52-时,△BCP 面积最大,最大值为278.【小结】选两个定点作水平宽,设另外一个动点坐标来表示铅垂高.例二、在平面直角坐标系中,将二次函数2(0)y ax a =>的图像向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数(0)y kx b k =+≠的图像与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图像下方,求ACE ∆面积的最大值,并求出此时点E 的坐标.【分析】(1)抛物线解析式:21322y x x =--;一次函数解析式:1122y x =+.(2)显然,当△ACE 面积最大时,点E 并不在AC 之间.已知A (-1,0)、10,2C ⎛⎫ ⎪⎝⎭,设点E 坐标为213,22m m m ⎛⎫-- ⎪⎝⎭,过点E 作EF ⊥x 轴交直线AD 于F 点,F 点横坐标为m ,代入一次函数解析式得11,22m m ⎛⎫+ ⎪⎝⎭可得213222EF m m =-++考虑到水平宽是定值,故铅垂高最大面积最大.既然都是固定的算法,那就可以总结一点小小的结论了,对坐标系中已知三点()11,A x y 、()22,B x y 、()33,C x y ,按铅垂法思路,可得:12233121321312ABC S x y x y x y x y x y x y =++--- 如果能记住也不要直接用,可以当做是检验的方法咯.【总结】铅垂法是求三角形面积的一种常用方法,尤其适用于二次函数大题中的三角形面积最值问题,弄明白方法原理,熟练方法步骤,加以练习,面积最值问题轻轻松松.专项训练1.已知二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,且二次函数2y x bx c =-++的图象经过点(0,3)B ,一次函数y mx n =+的图象经过点(0,1)C -.(1)分别求m 、n 和b 、c 的值;(2)点P 是二次函数2y x bx c =-++的图象上一动点,且点P 在x 轴上方,写出ACP ∆的面积S 关于点P 的横坐标x 的函数表达式,并求S 的最大值.【分析】(1)把直线和曲线经过的点代入得到方程组,求解即可得到答案;(2)分两种情况:①当点P 在y 轴左侧时,过点P 作//PD y 轴交AC 于点D ,②当点P 在y 轴右侧时,过点P 作//PD y 轴交AC 的延长线于点D ,分别根据三角形面积公式得到关系式,利用函数式表示三角形PAC 的面积,配方可得答案.【解答】解:(1) 二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,一次函数y mx n =+的图象经过点(0,1)C -,∴301m n n -+=⎧⎨=-⎩,∴131m n ⎧=-⎪⎨⎪=-⎩,二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,二次函数2y x bx c =-++的图象经过点(0,3)B ,∴9303b c c --+=⎧⎨=⎩,∴23b c =-⎧⎨=⎩.(2)由(1)知一次函数与二次函数的解析式分别为:113y x =--或223y x x =--+,①当点P 在y 轴左侧时,过点P 作//PD y 轴交AC 于点D ,则13|3|22PAC S PD PD ∆=⨯⨯-=,②当点P 在y 轴右侧时,过点P 作//PD y 轴交AC 的延长线于点D,则13|3|22PAC S PD x x PD ∆=⨯⨯+-=, 点P 在抛物线上,设2(,23)P x x x --+,则1(,1)3D x x --,2215231433PD x x x x x ∴=--+++=--+,233535169(4)(2232624PAC S PD x x x ∆∴==-++=-++,即当56x =-时,PAC S ∆最大16924=.【点评】本题考查的是二次函数综合运用,涉及一次函数、图形面积的计算等,掌握其性质及运算是解决此题关键,2.如图,抛物线经过(2,0)A -,(4,0)B ,(0,3)C -三点.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上有一动点P ,使得PBC ∆的面积最大,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【分析】(1)将点A 、B 、C 的坐标代入抛物线表达式,即可求解;(2)由PBC ∆的面积PHB PHC S S ∆∆=+,即可求解;(3)分AC 是边、AC 是对角线两种情况,利用平移的性质和中点公式即可求解.【解答】解:(1)将点A 、B 、C 的坐标代入抛物线表达式得42016403a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得38343a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩,故抛物线的表达式为233384y x x =--;(2)设直线BC 的表达式为y mx n =+,则043m n n =+⎧⎨=-⎩,解得343m n ⎧=⎪⎨⎪=-⎩,故直线BC 的表达式为334y x =-,过点P 作y 轴的平行线交BC 于点H ,设点P 的坐标为233(,3)84x x x --,则点3(,3)4H x x -,则PBC ∆的面积221133334(33)3224844PHB PHC S S PH OB x x x x x ∆∆=+=⋅=⨯⨯--++=-+,304-< ,故该抛物线开口向下,PBC ∆的面积存在最大值,此时2x =,则点P 的坐标为(2,3)-;(3)存在,理由:设点N 的坐标为(,)m n ,则233384n m m =--①,①当AC 是边时,点A 向下平移3个单位得到点C ,则点()M N 向下平移3个单位得到点()N M ,则03n -=或03n +=②,联立①②并解得23m n =⎧⎨=-⎩或13m n ⎧=-⎪⎨=⎪⎩(不合题意的值已舍去);②当AC 是对角线时,则由中点公式得:11(03)(0)22n -=+③,联立①③并解得23m n =⎧⎨=-⎩(不合题意的值已舍去);综上,点N 的坐标为(2,3)-或(1-3)或(1--3).【点评】本题是二次函数综合题,主要考查了一次函数的性质、平行四边形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.3.综合与探究:如图,在平面直角坐标系中,二次函数的图象交坐标轴于(1,0)A -,(3,0)B ,(0,4)C -三点,点(,)P m n 是直线BC 下方抛物线上的一个动点.(1)求这个二次函数的解析式;(2)动点P 运动到什么位置时,PBC ∆的面积最大,求出此时P 点坐标及PBC ∆面积的最大值;(3)在y 轴上是否存在点Q ,使以O ,B ,Q 为顶点的三角形与AOC ∆相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【分析】(1)将A 、B 、C 坐标代入即可求解析式;(2)设P 坐标,表示出PBC ∆的面积,再求出最大面积和面积最大时P 的坐标;(3)两个直角顶点是对应点,而AOC ∆两直角边的比为14,只需BOQ ∆两直角边比也为14,两个三角形就相似,分两种情况列出比例式即可.【解答】解:(1)设二次函数的解析式为12()()y a x x x x =--,二次函数的图象交坐标轴于(1,0)A -,(3,0)B ,(0,4)C -,11x ∴=-,23x =,124()()a x x x x -=--,解得11x =-,23x =,43a =,∴二次函数的解析式为2448(1)(3)4333y x x x x =+-=--,故答案为:2448(1)(3)4333y x x x x =+-=--;(2)设直线BC 解析式为y kx b =+,将(3,0)B ,(0,4)C -代入得034k b b =+⎧⎨-=⎩,解得43b =,4c =-,BC ∴解析式是443y x =-,如答图1,过P 作//PD y 轴,交BC 于D ,点(,)P m n 是直线BC 下方抛物线上的一个动点,03m ∴<<,248433n m m =--,4(,4)3D m m -,224484(4)(4)43333PD m m m m m ∴=----=-+,22211439()(4)(30)262()22322PBC B C S PD x x m m m m m ∆∴=⋅-=-+⋅-=-+=--+,3032<< ,32m ∴=时,PBC S ∆最大为92,此时224843834()45333232n m m =--=⨯-⨯-=-,3(2P ∴,5)-,故答案为:3(2P ,5)-,PBC S ∆最大为92;(3(1,0)A - ,(0,4)C -,(3,0)B ,∴14OA OC =,3OB =, 点Q 在y 轴上,90BOQ AOC ∴∠=∠=︒,若以O ,B ,Q 为顶点的三角形与AOC ∆相似,则BOQ ∠与AOC ∠对应,分两种情况:①如答图2,AOC QOB∆∆∽,则14OQ OAOB OC==即134OQ=,解得34OQ=,13(0,4Q∴或23 (0,)4Q-;②AOC BOQ∆∆∽,则14OB OAOQ OC==即314OQ=,解得12OQ=,3(0,12)Q∴或4(0,12)Q-,综上所述,存在y轴上的点Q,使以O,B,Q为顶点的三角形与AOC∆相似,这样的点一共4个:13 (0, 4Q或23 (0,)4Q-,3(0,12)Q或4(0,12)Q-,故答案为:存在这样的点Q,坐标分别是:13 (0, 4Q或23 (0,)4Q-,3(0,12)Q或4(0,12)Q-,【点评】本题是二次函数、相似三角形、面积等问题的综合题,主要考查坐标、线段的转化,面积的表示,涉及方程思想,分类思想等,难度适中.4.如图1,抛物线2y x bx c=-++与x轴交于A、B两点,与y轴交于点C,已知点B坐标为(3,0),点C 坐标为(0,3).(1)求抛物线的表达式;(2)点P 为直线BC 上方抛物线上的一个动点,当PBC ∆的面积最大时,求点P 的坐标;(3)如图2,点M 为该抛物线的顶点,直线MD x ⊥轴于点D ,在直线MD 上是否存在点N ,使点N 到直线MC 的距离等于点N 到点A 的距离?若存在,求出点N 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法可求解析式;(2)过点P 作PH x ⊥轴于H ,交BC 于点G ,先求出BC 的解析式,设点2(,23)P m m m -++,则点(,3)G m m -+,由三角形面积公式可得221133273(3)()22228PBC S PG OB m m m ∆=⨯⨯=⨯⨯-+=--+,由二次函数的性质可求解;(3)设直线MC 与x 轴交于点E ,过点N 作NQ MC ⊥于Q ,先求出点A ,点M 坐标,可求MC 解析式,可得4DE MD ==,由等腰直角三角形的性质可得MQ NQ ==,由两点距离公式可列222(|4|)42n n -=+,即可求解.【解答】解:(1) 点(3,0)B ,点(0,3)C 在抛物线2y x bx c =-++图象上,∴9303b c c -++=⎧⎨=⎩,解得:23b c =⎧⎨=⎩,∴抛物线解析式为:223y x x =-++;(2) 点(3,0)B ,点(0,3)C ,∴直线BC 解析式为:3y x =-+,如图,过点P 作PH x ⊥轴于H ,交BC 于点G ,设点2(,23)P m m m -++,则点(,3)G m m -+,22(23)(3)3PG m m m m m ∴=-++--+=-+,221133273(3)()22228PBC S PG OB m m m ∆=⨯⨯=⨯⨯-+=--+ ,∴当32m =时,PBC S ∆有最大值,∴点3(2P ,154;(3)存在N 满足条件,理由如下: 抛物线223y x x =-++与x 轴交于A 、B 两点,∴点(1,0)A -,2223(1)4y x x x =-++=--+ ,∴顶点M 为(1,4),点M 为(1,4),点(0,3)C ,∴直线MC 的解析式为:3y x =+,如图,设直线MC 与x 轴交于点E ,过点N 作NQ MC ⊥于Q ,∴点(3,0)E -,4DE MD ∴==,45NMQ ∴∠=︒,NQ MC ⊥ ,45NMQ MNQ ∴∠=∠=︒,MQ NQ ∴=,22MQ NQ ∴==,设点(1,)N n ,点N 到直线MC 的距离等于点N 到点A 的距离,NQ AN ∴=,22NQ AN ∴=,222()2MN AN ∴=,222(|4|)42n n ∴-=+,2880n n ∴+-=,46n ∴=-±,∴存在点N 满足要求,点N 坐标为(1,426)-+或(1,426)--.【点评】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,一次函数的性质,两点距离公式,等腰直角三角形的性质等知识,利用参数列方程是本题的关键.5.如图,抛物线过点(0,1)A 和C ,顶点为D ,直线AC 与抛物线的对称轴BD 的交点为B ,0),平行于y 轴的直线EF 与抛物线交于点E ,与直线AC 交于点F ,点F 的横坐标为3,四边形BDEF 为平行四边形.(1)求点F 的坐标及抛物线的解析式;(2)若点P 为抛物线上的动点,且在直线AC 上方,当PAB ∆面积最大时,求点P 的坐标及PAB ∆面积的最大值;(3)在抛物线的对称轴上取一点Q ,同时在抛物线上取一点R ,使以AC 为一边且以A ,C ,Q ,R 为顶点的四边形为平行四边形,求点Q 和点R 的坐标.【分析】(1)由待定系数法求出直线AB 的解析式为13y x =-+,求出F 点的坐标,由平行四边形的性质得出1613181(33a a a -+=-+--,求出a 的值,则可得出答案;(2)设2(,1)P n n -++,作PP x '⊥轴交AC 于点P ',则(,1)P n '+,得出2PP n '=-+,由二次函数的性质可得出答案;(3)联立直线AC 和抛物线解析式求出C ,4)3-,设Q ,)m ,分两种情况:①当AQ 为对角线时,②当AR 为对角线时,分别求出点Q 和R 的坐标即可.【解答】解:(1)设抛物线的解析式为2(0)y ax bx c a =++≠,(0,1)A ,B ,0),设直线AB 的解析式为y kx m =+,∴01m m +==⎪⎩,解得31k m ⎧=⎪⎨⎪=⎩,∴直线AB的解析式为13y x =+, 点FF ∴点纵坐标为113=-,F ∴点的坐标为,1)3-,又 点A 在抛物线上,1c ∴=,对称轴为:2b x a=-=,b ∴=-,∴解析式化为:21y ax =-+,四边形DBFE 为平行四边形.BD EF ∴=,1613181(33a a a ∴-+=-+--,解得1a =-,∴抛物线的解析式为21y x =-++;(2)设2(,1)P n n -++,作PP x '⊥轴交AC 于点P ',则3(,1)3P n '+,2733PP n n '∴=-+,2213737493)32222624ABP S OB PP n n ∆'==-+=--+ ,∴当736n =ABP ∆49324,此时7(36P 47)12.(3) 231231y y x x ⎧=+⎪⎨⎪=-++⎩,0x ∴=或733x =7(33C ∴,43-,设(3Q ,)m ,①当AQ 为对角线时,47(3,)33R m ∴+,R 在抛物线2(3)4y x =--+上,274(33)433m ∴+=--+,解得443m =-,44(3,3Q ∴-,437(3,33R -;②当AR 为对角线时,107(3,33R m ∴-,R 在抛物线2(4y x =--+上,2743m ∴-=--+,解得10m =-,Q ∴10)-,37)3R -.综上所述,443Q -,37(3R -;或Q ,10)-,37)3R -.【点评】本题是二次函数综合题,考查了待定系数法,二次函数的性质,二次函数图象上点的坐标特征,平行四边形的性质等知识,熟练掌握二次函数的性质及方程思想,分类讨论思想是解题的关键.6.在平面直角坐标系xOy 中,等腰直角ABC ∆的直角顶点C 在y 轴上,另两个顶点A ,B 在x 轴上,且4AB =,抛物线经过A ,B ,C 三点,如图1所示.(1)求抛物线所表示的二次函数表达式.(2)过原点任作直线l 交抛物线于M ,N 两点,如图2所示.①求CMN ∆面积的最小值.②已知3(1,2Q -是抛物线上一定点,问抛物线上是否存在点P ,使得点P 与点Q 关于直线l 对称,若存在,求出点P 的坐标及直线l 的一次函数表达式;若不存在,请说明理由.【分析】(1)先根据等腰直角三角形的性质求得OA 、OB 、OC ,进而得A 、B 、C 三点的坐标,再用待定系数法求得抛物线的解析式;(2)①设直线l 的解析式为y kx =,1(M x ,1)y ,2(N x ,2)y ,联立方程组求得12||x x -,再由三角形的面积公式求得结果;②假设抛物线上存在点21(,2)2P m m -,使得点P 与点Q 关于直线l 对称,由OP OQ =列出方程求得m 的值,再根据题意舍去不合题意的m 值,再求得PQ 的中点坐标,便可求得直线l 的解析式.【解答】解:(1)设抛物线的解析式为2(0)y ax bx c a =++≠,在等腰Rt ABC ∆中,OC 垂直平分AB ,且4AB =,2OA OB OC ∴===,(2,0)A ∴-,(2,0)B ,(0,2)C -,∴4204202a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩,解得,1202a b c ⎧=⎪⎪=⎨⎪=-⎪⎩,∴抛物线的解析式为2122y x =-;(2)①设直线l 的解析式为y kx =,1(M x ,1)y ,2(N x ,2)y ,由2122y x y kx ⎧=-⎪⎨⎪=⎩,可得21202x kx --=,122x x k ∴+=,124x x =- ,∴222121212()()4416x x x x x x k -=+-=+,∴12||x x -=∴121||2CMN S OC x x ∆=-= ,∴当0k =时取最小值为4.CMN ∴∆面积的最小值为4.②假设抛物线上存在点21(,2)2P m m -,使得点P 与点Q 关于直线l 对称,OP OQ ∴==解得,1m 2m =,31m =,41m =-,31m = ,41m =-不合题意,舍去,当1m =1)2P -,线段PQ 的中点为1)-,∴1=-,∴1k =,∴直线l 的表达式为:(1y x =-,当2m =时,点(P 1)2-,线段PQ 的中点为,1)-,∴1=-,∴1k =,∴直线l 的解析式为(1y x =+.综上,点P ,1)2-,直线l 的解析式为(1y x =-或点(P ,1)2-,直线l 的解析式为(1y x =+.【点评】本题是二次函数的综合题,主要考查了二次函数的图象与性质,一次函数的图象与性质,待定系数法,轴对称的性质,第(2)①题关键是求得M 、N 两点的横坐标之差,第(2)②小题关键是根据轴对称性质列出m 的方程,以及求得PQ 的中点坐标.。
十年高考真题精解解析几何十年树木,百年树人,十年磨一剑。
本专辑按照最新2020年考纲,对近十年高考真题精挑细选,去伪存真,挑选符合最新考纲要求的真题,按照考点/考向同类归纳,难度分层精析,对全国卷Ⅰ具有重要的应试性和导向性。
三观指的观三题(观母题、观平行题、观扇形题),一统指的是统一考点/考向,并对十年真题进行标灰(调整不考或低频考点标灰色)。
(一)2020考纲(二)本节考向题型研究汇总一、考向题型研究一: 圆锥曲线的基础性质(2019新课标I 卷T10理科).已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=(2013新课标Ⅰ卷T4理科)已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x(2013新课标Ⅰ卷T10理科)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +(2015新课标I 卷T14理科)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .(2014新课标Ⅰ卷T4理科)已知F 为双曲线C :x 2﹣my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. B. 3 C.m D.3m(2011新课标I 卷T14理科)在平面直角坐标系xoy ,椭圆C 的中心为原点,焦点F 1F 2在x 轴上,离心率为.过F l 的直线交于A ,B 两点,且△ABF 2的周长为16,那么C的方程为.(2012新课标I 卷T10文科)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =C 的实轴长为(A (B ) (C )4 (D )8轨迹条件点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a =点集:{M ||MF 1|-|MF 2|. =±2a,|F 2F 2|>2a}.点集{M | |MF |=点M 到直线l 的距离}.图形方程标准方程 (>0) (a>0,b>0) px y 22=参数方程(t 为参数) 范围 ─a x a ,─b y b |x| a ,y R x 0中心原点O (0,0) 原点O (0,0)顶点(a,0), (─a,0), (0,b) ,(0,─b) (a,0), (─a,0) (0,0)对称轴x 轴,y 轴;长轴长2a,短轴长2bx 轴,y 轴;实轴长2a, 虚轴长2b.x 轴焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0)12222=+b y a x b a >12222=-by a x 为离心角)参数θθθ(sin cos ⎩⎨⎧==b y a x 为离心角)参数θθθ(tan sec ⎩⎨⎧==b y a x ⎩⎨⎧==pt y pt x 222)0,2(p F双曲线:(1)等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率. (2)共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:. (3)共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为. 抛物线:(1)抛物线2y =2px(p>0)的焦点坐标是(2p ,0),准线方程x=-2p,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p,开口向上;抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p,开口向下. (2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20p x MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x pMF -=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p ,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设222a y x ±=-x y ±=2=e λ=-2222b y a x λ-=-2222b y a x 02222=-by a x )0(2222≠=-λλb y a x 02222=-b y a x 0=±b y a x )0(2222≠=-λλby a xA(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2pAB =(α为直线AB 的倾斜角),221p y y -=,2,41221p x AF p x x +==(AF 叫做焦半径).二、考向题型研究二: 简单的离心率求解问题(2019新课标I 卷T10文科)双曲线C :﹣=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C的离心率为( ) A .2sin40° B .2cos40°C .D .(2016新课标I 卷T5文科)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .34(2011新课标I 卷T7理科)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A ,B 两点,|AB|为C 的实轴长的2倍,则C 的离心率为( ) A .B .C .2D .3(2012新课标I 卷T4文科)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D .45一、直接求出或求出a 与b 的比值,以求解。
【期末复习】浙教版八年级上册提分专题:平面直角坐标系与几何图形的综合各问题归纳总结若点()11y x A ,、()22y x B ,、()b a P ,问题一:若点P 在x 轴上,则b=0; 若点P 在y 轴上,则a=0;若点P 在第一象限,则a >0,b >0; 若点P 在第二象限,则a <0,b >0; 若点P 在第三象限,则a <0,b <0; 若点P 在第四象限,则a >0,b <0;问题二:若点A 、B 在同一水平线上,则21y y =; 若点A 、B 在同一竖直线上,则21x x =; 若点P 在第一、三象限角平分线上,则b a =;若点P 在第二、四象限角平分线上,则b a -=;问题三:点()b a P ,关于x 轴对称的点P 1坐标为()b a P -,1; 点()b a P ,关于y 轴对称的点P 2坐标为()b a P ,-2;点()b a P ,关于原点对称的点P 3坐标为()b a P --,3; 问题四:点的平移口诀“左减右加,上加下减”; 问题五:线段AB 的中点公式:⎪⎭⎫⎝⎛++222121y y x x ,;若点A 、B 在同一水平线上,则AB=21x x -;若点A 、B 在同一竖直线上,则AB=21y y -;若点A 、B 所在直线是倾斜的,则AB=()()221221y y x x AB -+-=(两点间距离公式)问题六:点()b a P ,到x 轴的距离=|b|;点()b a P ,到y 轴的距离=|a|;问题七:割补法,优先分割,然后才是补全 问题八:周期型:①判断周期数(一般3到4个);②总数÷周期数=整周期……余数(余数是谁就和每周期的第几个规律一样) 注意横纵坐标的规律可能不同。
【类题训练】1.如图,A (8,0),B (0,6),以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点C 的坐标为( )A .(10,0)B .(0,10)C .(﹣2,0)D .(0,﹣2)【分析】根据勾股定理求出AB ,根据坐标与图形性质解答即可. 【解答】解:由题意得,OB =6,OA =8, ∴AB ==10,则AC =10, ∴OC =AC ﹣OA =2, ∴点C 坐标为(﹣2,0), 故选:C .2.在平面直角坐标系中,点A 的坐标为(﹣1,3),点B 的坐标为(5,3),则线段AB 上任意一点的坐标可表示为( )A.(3,x)(﹣1≤x≤5)B.(x,3)(﹣1≤x≤5)C.(3,x)(﹣5≤x≤1)D.(x,3)(﹣5≤x≤1)【分析】根据A、B两点纵坐标相等,可确定AB与x轴平行,即可求解.【解答】解:∵点A的坐标为(﹣1,3),点B的坐标为(5,3),A、B两点纵坐标都为3,∴AB∥x轴,∴线段AB上任意一点的坐标可表示为(x,3)(﹣1≤x≤5),故选:B.3.如图,在四边形ABCD中,AD∥BC∥x轴,下列说法中正确的是()A.点A与点D的纵坐标相同B.点A与点B的横坐标相同C.点A与点C的纵坐标相同D.点B与点D的横坐标相同【分析】根据与x轴平行的直线上点的坐标特征计算判断.【解答】解:∵平行四边形ABCD中,AD∥BC∥x轴,∴点A与D的纵坐标相同,点B与C的纵坐标相同.故选:A.4.如图,已知∠AOB=30°,∠AOC=60°,∠AOD=90°,∠AOE=120°,∠AOF=150°,若点B可表示为点B(2,30),点C可表示为点C(1,60),点E可表示为点E(3,120),点F可表示为点F(4,150),点B 可表示为点B(2,30),则D点可表示为()A.D(0,90)B.D(90,0)C.D(90,5)D.D(5,90)【分析】根据题干得出规律,从而得出答案.【解答】解:根据题意知:横坐标表示长度,纵坐标表示角度,从而得出D点可表示为(5,90),故选:D.5.在平面直角坐标系中,若A(m+3,m﹣1),B(1﹣m,3﹣m),且直线AB∥x轴,则m的值是()A.﹣1B.1C.2D.3【分析】根据平行于x轴的直线上的点的纵坐标相等,建立方程求解即可求得答案.【解答】解:∵直线AB∥x轴,∴m﹣1=3﹣m,解得:m=2,故选:C.6.如图,在平面直角坐标系中,半径均为1个单位长度的半圆组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2022秒时,点P的坐标是()A.(2021,0)B.(2022,﹣1)C.(2021,﹣1)D.(2022,0)【分析】利用坐标与图形的关系,结合路程问题求解.【解答】解:一个半圆的周长是π,速度是每秒,所以走一个半圆需要2秒,2022秒正好可以走1011个半圆,故选:D.7.如图,在平面直角坐标系中,点A(1,1),B(3,1),C(3,3),D(1,3),动点P从点A出发,以每秒1个单位长度的速度沿AB﹣BC﹣CD﹣DA﹣AB﹣…路线运动,当运动到2022秒时,点P的坐标为()A.(1,1)B.(3,1)C.(3,3)D.(1,3)【分析】利用路程找规律,看最后的路脚点,再求解.【解答】解:由题意得:四边形ABCD是正方形,且边长是2,点P运动一周需要8秒,2022÷8商252余6,结果到点D处,故坐标为(1,3),故选:D.8.如图,在平面直角坐标系中,三角形ABC三个顶点A、B、C的坐标A(0,4),B(﹣1,b),C(2,c),BC 经过原点O,且CD⊥AB,垂足为点D,则AB•CD的值为()A.10B.11C.12D.14【分析】AB•CD可以联想到△ABC的面积公式,根据S△ABO+S△ACO=S△ABC即可求解.【解答】解:∵A(0,4),∴OA=4,∵B(﹣1,b),C(2,c),∴点B,C到y轴的距离分别为1,2,∵S△ABO+S△ACO=S△ABC,∴×4×1+×4×2=×AB•CD,∴AB•CD=12,故答案为:C.9.如图,在平面直角坐标系中,A,B,C三点坐标分别为(0,a),(0,3﹣a),(1,2),且点A在点B的下方,连接AC,BC,若在AB,BC,AC若所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为5个,那么a的取值范围是()A.﹣1<a≤0B.﹣1≤a≤1C.1≤a<2D.0<a≤1【分析】根据题意得出除了点C外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB上,从而求出a的取值范围.【解答】解:∵点A(0,a),点B(0,3﹣a),且A在B的下方,∴a<3﹣a,解得:a<1.5,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为5个,∵点A,B,C的坐标分别是(0,a),(0,3﹣a),(1,2),∴区域内部(不含边界)没有横纵坐标都为整数的点,∴已知的5个横纵坐标都为整数的点都在区域的边界上,∵点C(1,2)的横纵坐标都为整数且在区域的边界上,∴其他的4个都在线段AB上,∴3≤3﹣a<4.解得:﹣1<a≤0,故选:A.10.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2,故OD=4﹣2,即B′点的坐标为(2,).【解答】解:过点B′作B′D⊥OC∵∠CPB=60°,CB′=OC=OA=4∴∠B′CD=30°,B′D=2根据勾股定理得DC=2∴OD=4﹣2,即B′点的坐标为(2,)故选:C.11.如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a的值为.【分析】根据作图方法可知点P在∠BOA的角平分线上,由角平分线的性质可知点P到x轴和y轴的距离相等,可得关于a的方程,求解即可.【解答】解:∵OA=OB,分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P的坐标为(a,2a﹣3),∴a=2a﹣3,∴a=3.故答案为:3.12.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是.【分析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.【解答】解:△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).13.教材上曾让同学们探索过线段的中点坐标:在平面直角坐标系中,有两点A(x1,y1)、B(x2,y2),所连线段AB的中点是M,则M的坐标为(,),如:点A(1,2)、点B(3,6),则线段AB的中点M 的坐标为(,),即M(2,4).利用以上结论解决问题:平面直角坐标系中,若E(a﹣1,a),F(b,a﹣b),线段EF的中点G恰好位于y轴上,且到x轴的距离是1,则4a+b的值等于.【分析】根据中点坐标公式求出点G的坐标,根据线段EF的中点G恰好位于y轴上,且到x轴的距离是1,得到点G的横坐标等于0,纵坐标的绝对值为1,列出方程组求解即可.【解答】解:根据题意得:G(,),∵线段EF的中点G恰好位于y轴上,且到x轴的距离是1,∴,解得:4a+b=4或0.故答案为:4或0.14.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|,例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).已知点,B为y轴上的一个动点.(1)若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;(2)直接写出点A与点B的“非常距离”的最小值.【分析】(1)根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;(2)设点B的坐标为(0,y).因为|﹣﹣0|≥|0﹣y|,所以点A与点B的“非常距离”最小值为|﹣﹣0|=.【解答】解:(1)∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠4,∴|0﹣y|=2,解得y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);故答案为:(0,2)或(0,﹣2);(2)∵|﹣﹣0|≥|0﹣y|,∴点A与点B的“非常距离”最小值为|﹣﹣0|=;∴点A与点B的“非常距离”的最小值为.故答案为:.15.如图,在平面直角坐标系中,已知三点的坐标分别为A(0,4),B(2,0),C(2,5),连接AB,AC,BC.(1)求AC,AB的长;(2)∠CAB是直角吗?请说明理由.【分析】(1 )过点A作AH⊥BC于点H,再利用勾股定理求解即可;(2 )利用勾股定理的逆定理即可得出结论.【解答】解:(1)如图,∵A(0,4),B(2,0),C(2,5),∴OA=4,OB=2,BC=5,过点A作AH⊥BC于点H,∴BH=OA=4,AH=OB=2,∴CH=BC﹣BH=5﹣4=1,在Rt△OAB中,AB=,在Rt△ACH中,AC=;(2)∠CAB是直角,理由:由(1)得,AC=,AB=2,BC=5,∵,∴AC2+AB2=BC2,∴∠CAB是直角.16.对于某些三角形或四边形,我们可以直接用面积公式或者用割补法来求它们的面积.下面我们再研究一种求某些三角形或四边形面积的新方法:如图1,2所示,分别过三角形或四边形的顶点A,C作水平线的铅垂线l1,l2,l1,l2之间的距离d叫做水平宽;如图1所示,过点B作水平线的铅垂线交AC于点D,称线段BD的长叫做这个三角形的铅垂高;如图2所示,分别过四边形的顶点B,D作水平线l3,l4,l3,l4之间的距离h叫做四边形的铅垂高.【结论提炼】容易证明:“三角形的面积等于水平宽与铅垂高乘积的一半”,即“S=dh”【结论应用】为了便于计算水平宽和铅垂高,我们不妨借助平面直角坐标系.已知:如图3,点A(﹣5,2),B(5,0),C(0,5),则△ABC的水平宽为10,铅垂高为,所以△ABC 面积的大小为.【再探新知】三角形的面积可以用“水平宽与铅垂高乘积的一半”来求,那四边形的面积是不是也可以这样求呢?带着这个问题,我们进行如下探索:(1)在图4所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(4,1),D(﹣2,﹣4)四个点,得到四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是;用其它的方法进行计算得到其面积的大小是,由此发现:用“S=dh”这一方法对求图4中四边形的面积.(填“适合”或“不适合”)(2)在图5所示的平面直角坐标系中,取A(﹣5,2),B(1,5),C(4,2),D(﹣2,﹣3)四个点,得到了四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是,用其它的方法进行计算得到面积的大小是,由此发现:用“S=dh”这一方法对求图5中四边形的面积.(“适合”或“不适合”)(3)在图6所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(5,1),D(﹣1,﹣5)四个点,得到了四边形ABCD.通过计算发现:用“S=dh”这一方法对求图6中四边形的面积.(填“适合”或“不适合”)【归纳总结】我们经历上面的探索过程,通过猜想、归纳,验证,便可得到:当四边形满足某些条件时,可以用“S=dh”来求面积.那么,可以用“S=dh”来求面积的四边形应满足的条件是:.【分析】【结论应用】直接代入公式即可;【再探新知】(1)求出水平宽,铅垂高,代入公式求出面积,再利用矩形面积减去周围四个三角形面积可得答案;(2)(3)与(1)同理;【归纳总结】当四边形满足一条对角线等于水平宽或铅垂高时,四边形可以用“S=dh”来求面积.【解答】解:【结论应用】由图形知,铅垂高为4,S△ABC==20,故答案为:4,20;【再探新知】(1)∵四边形ABCD的水平宽为8,铅垂高为9,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为36,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为8×9﹣=37.5,∴用“S=dh”这一方法对求图4中四边形的面积不合适,故答案为:36,37.5,不合适;(2)∵四边形ABCD的水平宽为9,铅垂高为8,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为36,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为8×9﹣=36,∴用“S=dh”这一方法对求图4中四边形的面积,合适,故答案为:36,36,合适;(3)∵四边形ABCD的水平宽为9,铅垂高为10,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为45,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为10×9﹣=45,∴用“S=dh”这一方法对求图4中四边形的面积,合适,故答案为:合适;【归纳总结】当四边形满足一条对角线等于水平宽或铅垂高时,四边形可以用“S=dh”来求面积,故答案为:一条对角线等于水平宽或铅垂高.17.如图所示,在平面直角坐标系中,P(2,2),(1)点A在x的正半轴运动,点B在y的正半轴上,且P A=PB,①求证:P A⊥PB;②求OA+OB的值;(2)点A在x的正半轴运动,点B在y的负半轴上,且P A=PB,③求OA﹣OB的值;④点A的坐标为(8,0),求点B的坐标.【分析】(1)①过点P作PE⊥x轴于E,作PF⊥y轴于F,根据点P的坐标可得PE=PF=2,然后利用“HL”证明Rt△APE和Rt△BPF全等,根据全等三角形对应角相等可得∠APE=∠BPF,然后求出∠APB=∠EPF=90°,再根据垂直的定义证明;②根据全等三角形对应边相等可得AE=BF,再表示出OA、OB,然后列出方程整理即可得解;(2)③根据全等三角形对应边相等可得AE=BF,再表示出PE、PF,然后列出方程整理即可得解;④求出AE的长度,再根据全等三角形对应边相等可得AE=BF,然后求出OB,再写出点B的坐标即可.【解答】(1)①证明:如图1,过点P作PE⊥x轴于E,作PF⊥y轴于F,∵P(2,2),∴PE=PF=2,在Rt△APE和Rt△BPF中,,∴Rt△APE≌Rt△BPF(HL),∴∠APE=∠BPF,∴∠APB=∠APE+∠BPE=∠BPF+∠BPE=∠EPF=90°,∴P A⊥PB;②解:∵Rt△APE≌Rt△BPF,∴BF=AE,∵OA=OE+AE,OB=OF﹣BF,∴OA+OB=OE+AE+OF﹣BF=OE+OF=2+2=4;(2)解:③如图2,∵Rt△APE≌Rt△BPF,∴AE=BF,∵AE=OA﹣OE=OA﹣2,BF=OB+OF=OB+2,∴OA﹣2=OB+2,∴OA﹣OB=4;④∵PE=PF=2,PE⊥x轴于E,作PF⊥y轴于F,∴四边形OEPF是正方形,∴OE=OF=2,∵A(8,0),∴OA=8,∴AE=OA﹣OE=8﹣2=6,∵Rt△APE≌Rt△BPF,∴AE=BF=6,∴OB=BF﹣OF=6﹣2=4,∴点B的坐标为(0,﹣4).18.如图,在平面直角坐标系xOy中,点B(1,0),点C(5,0),以BC为边在x轴的上方作正方形ABCD,点M(﹣5,0),N(0,5).(1)点A的坐标为;点D的坐标为;(2)将正方形ABCD向左平移m个单位,得到正方形A'B'C'D',记正方形A'B'C'D'与△OMN重叠的区域(不含边界)为W:①当m=3时,区域内整点(横,纵坐标都是整数)的个数为;②若区域W内恰好有3个整点,请直接写出m的取值范围.【分析】(1)先求出正方形的边长为BC=4,再求点的坐标即可;(2)①画出正方形A'B'C'D',结合图形求解即可;②在△OMN中共有6个整数点,在平移正方形ABCD,找到恰好有3个整数解的情况即可.【解答】解:(1)∵点B(1,0),点C(5,0),∴BC=4,∵四边形ABCD是正方形,∴A(1,4),D(5,4),故答案为:(1,4),(5,4);(2)①如图:共有3个,故答案为:3;②在△OMN中共有6个整数点,分别是(﹣1,1),(﹣1,2),(﹣1,3),(﹣2,1),(﹣2,2),(﹣3,1),∵区域W内恰好有3个整点,∴2<m≤3或6≤m<7.19.类比学习是知识内化的有效途径,认真读题是正确审题的第一步:对于平面直角坐标系xOy中的点P(a,b),若点P'的坐标为(其中k为常数,且k≠0),则称点P'为点P的“k系好友点”;例如:P(1,2)的“3系好友点”为即.请完成下列各题.(1)点P(﹣3,1)的“2系好友点”P'的坐标为.(2)若点P在y轴的正半轴上,点P的“k系好友点”为P'点,若在三角形OPP'中,pp′=3OP,求k的值.(3)已知点A(x,y)在第四象限,且满足xy=﹣8;点A是点B(m,n)的“﹣2系好友点”,求m﹣2n的值.【分析】(1)根据“k系好友点”的定义列式计算求解;(2)设P(0,t)(t>0),根据定义得点P′(kt,t),则PP′=|kt|=3OP=3t,即可求解;(3)点A是点B(m,n)的“﹣2系好有点”,可得点A(m﹣2n,n﹣),由xy=﹣8得到(m﹣2n)2=16,即可求解.【解答】解:(1)点P(﹣3,1),根据“k系好友点”的求法可知,k=2,∵﹣3+2×1=﹣1,1+=﹣,∴P′的坐标为(﹣1,﹣),故答案为(﹣1,﹣);(2)设P(0,t)其中t>0,根据“k系好友点”的求法可知,P′(kt,t),∴PP'∥x轴,∴PP'=|kt|,又∵OP=t,PP'=3OP,∴|kt|=3t,∴k=±3;(3)∵B(m,n)的﹣3系好有点A为(m﹣2n,n﹣),∴x=m﹣2n,y=n﹣,又∵xy=﹣8,∴(m﹣2n)•(n﹣)=﹣8,∴m﹣2n=±4,∵点A在第四象限,∴x>0,即m﹣2n=4.20.如图,在以点O为原点的平面直角坐标系中点A,B的坐标分别为(a,0),(a,b),点C在y轴上,且BC∥x轴,a,b满足|a﹣3|+=0.点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线运动(回到O为止).(1)直接写出点A,B,C的坐标;(2)当点P运动3秒时,连接PC,PO,求出点P的坐标,并直接写出∠CPO,∠BCP,∠AOP之间满足的数量关系;(3)点P运动t秒后(t≠0),是否存在点P到x轴的距离为t个单位长度的情况.若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用绝对值和二次根式的非负性即可求得;(2)当P运动3秒时,点P运动了6个单位长度,根据AO=3,即可得点P在线段AB上且AP=3,写出P 的坐标即可;作PE∥AO.利用平行线的性质证明即可;(3)由t≠0得点P可能运动到AB或BC或OC上.再分类讨论列出一元一次方程解得t即可.【解答】解:(1)∵|a﹣3|+=0且|a﹣3|≥0,≥0,∴|a﹣3|=0,=0,∴a=3,b=4,∴A(3,0),B(3,4),C(0,4);(2)如图,当P运动3秒时,点P运动了6个单位长度,∵AO=3,∴点P运动3秒时,点P在线段AB上,且AP=3,∴点P的坐标是(3,3);如图,作PE∥AO.∵CB∥AO,PE∥AO,∴CB∥PE,∴∠BCP=∠EPC,∠AOP=∠EPO,∴∠CPO=∠BCP+∠AOP;(3)存在.∵t≠0,∴点P可能运动到AB或BC或OC上.①当点P运动到AB上时,2t≤7,∵0<t≤,P A=2t﹣OA=2t﹣3,∴2t﹣3=t,解得:t=2,∴P A=2×2﹣3=1,∴点P的坐标为(3,1);②当点P运动到BC上时,7≤2t≤10,即≤t≤5,∵点P到x轴的距离为4,∴t=4,解得t=8,∵≤t≤5,∴此种情况不符合题意;③当点P运动到OC上时,10≤2t≤14,即5≤t≤7,∵PO=OA+AB+BC+OC﹣2t=14﹣2t,∴14﹣2t=t,解得:t=,∴PO=﹣2×+14=,∴点P的坐标为(0,).综上所述,点P运动t秒后,存在点P到x轴的距离为t个单位长度的情况,点P的坐标为(3,1)或(0,).。
几何图形的面积问题(与函数值域转化)一、考情分析圆锥曲线中几何图形的面积问题,是近几年高考命题的重点和难点。
在2018年的全国卷和2019年的全国卷中,都有圆锥曲线的大题压轴的第二问出现。
题目的难度是可想而知的,这其中涉及到:距离,斜率,切线,直线与圆,三角形的面积,四边形的面积等。
此专题,从这个出发点出发,梳理了最近的高考题和诊断性考试题,得出曲径通幽的解题之法。
归根结底,最终都是转换到函数值域。
二、经验分享圆锥曲线中的几何图形的面积问题,以及围绕与几何图形的面积问题关键是: 其一,选取合适的变量,第二,建立目标函数,转化函数的取值范围与最值问题(也就是转化成函数值域问题), 第三,构造函数,用导数的方法求其最大值与最小值。
其求解策略一般有以下几种:①几何法:根据题目上传达的几何图形以及几何关系,建立目标函数,若目标函数有明显几何特征和意义,则考虑几何图形的性质求解;②代数法: 若目标函数的几何意义不明显,利用基本不等式、导数等方法求函数的值域或最值,注意变量的范围,在对目标函数求最值前,常要对函数进行变换,注意变形技巧,若一个函数式的分母中含有一次式或二次式、分子中含有一次式或二次式的二次根式,则可以通过换元的方法把其转化为分母为二次式、分子为一次式的函数式,这样便于求解此函数式的最值.三、题型分析(一)角的最值问题例1. 已知椭圆22221(0)x y a b a b +=>>上一点A 关于原点O 的对称点为,B F 为其右焦点,若,AF BF ⊥设,ABF α∠=且,,124ππα⎡⎤∈⎢⎥⎣⎦则椭圆离心率的取值范围是 .【答案】26[,]23【点评】本题的关键是利用椭圆的定义建立等量关系式2sin 2cos 2c c a αα+=,然后借助已知条件,,124ππα⎡⎤∈⎢⎥⎣⎦利用三角函数的图象求解离心率的范围. 【变式训练1】【百校联盟2018届TOP202018届高三三月联考】.已知平行四边形ABCD 内接于椭圆()2222:10x y a b a b Ω+=>>,且AB , AD 斜率之积的范围为32,43⎛⎫-- ⎪⎝⎭,则椭圆Ω离心率的取值范围是( ) A. 13,23⎛⎫⎪⎪⎝⎭ B. 32,32⎛⎫⎪ ⎪⎝⎭ C. 13,43⎛⎫⎪ ⎪⎝⎭D. 11,43⎛⎫⎪⎝⎭【答案】A【变式训练2】【2019届河北武邑中学高三周考】已知直线:60l x y +-=和曲线22:2220M x y x y +---=,点A 在直线l 上,若直线AC 与曲线M 至少有一个公共点C ,且030MAC ∠=,则点A 的横坐标的取值范围是( )A .()0,5B .[]1,5C .[]1,3D .(]0,3 【答案】B【解析】设()00,6A x x -,依题意有圆心到直线的距离sin302d AM =≤,即()()22001516x x -+-≤,解得[]01,5x ∈.【变式训练3】【2019届山东省济宁市高三3月模拟】已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为12,F F ,焦距为2(0)c c >,抛物线22y cx =的准线交双曲线左支于,A B 两点,且0120(AOB O ∠=为坐标原点),则该双曲线的离心率为 ( ) A.31 B. 2 C. 21 D. 51【答案】A【解析】由题意得,当()22222424c a b cx y a-=-⇒= ,则 ()()2222222244,,2424ca b ca b c cA B aa⎛⎛-- -- ⎝⎝,又因为120AOB ∠=︒, ()22242242244244tan 384084032ca b c c a c a c a a aπ-==-+=⇒-+=4222840423(4231,)331e e e e e ∴-+=⇒=±-<⇒=⇒=舍去.(二)距离的最值问题例2.【2019届山东菏泽一中宏志部高三上学期月考】若过点()2 3 2P --,的直线与圆224x y +=有公共点,则该直线的倾斜角的取值范围是( )A .0 6π⎛⎫ ⎪⎝⎭,B .0 3π⎡⎤⎢⎥⎣⎦, C. 0 6π⎡⎤⎢⎥⎣⎦, D .0 3π⎛⎤ ⎥⎝⎦, 【答案】B【解析】当过点(23,2)P --的直线与圆224x y += 相切时,设斜率为k ,则此直线方程为+2=k(23)y x +,即k 2320x y k -+-=.由圆心到直线的距离等于半径可得2|232|21k k -=+,求得0k =或3k =,故直线的倾斜角的取值范围是[0,]3π,所以B 选项是正确的.【变式训练1】【2020届河北省武邑中学高三上学期测试】在平面直角坐标系x y O 中,圆1C :()()221625x y ++-=,圆2C :()()2221730x y r -+-=.若圆2C 上存在一点P ,使得过点P 可作一条射线与圆1C 依次交于点A ,B ,满足2PA =AB ,则半径r 的取值范围是( ) A .[]5,55 B .[]5,50 C .[]10,50 D .[]10,55 【答案】A【解析】由题,知圆1C 的圆心为(1,6)-,半径为5,圆2C 的圆心为(17,30),半径为r ,两圆圆心距为22(171)(306)30++-=,如图,可知当AB 为圆1C 的直径时取得最大值,所以当点P 位于点1P 所在位置时r 取得最小值,当点P 位于点2P 所在位置时r 取得最大值.因为max ||10AB =,||2||PA AB =,所以min 5r =,max 55r =,故选A .(三)几何图形的面积的范围问题例3.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( )A.45πB.34πC.(625)π-D.54π 【答案】A【解析】设直线l :240x y +-=.因为1||||2C l OC AB d -==,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线.圆C 半径最小值为11422255O l d -=⨯=,圆C 面积的最小值为1. 【变式训练1】【北京市朝阳区2018届高三第一学期期末】阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,A B 间的距离为2,动点P 与A , B 距离之比为2,当,,P A B 不共线时, PAB ∆面积的最大值是 A. 22 B. 2 C.223 D. 23【答案】A【变式训练2】【吉林省普通中学2020届第二次调研】已知F 为抛物线2y x =的焦点,点,A B 在该抛物线上且位于x 轴的两侧,而且·6OAOB =(O 为坐标原点),若ABO ∆与AFO ∆的面积分别为1S 和2S ,则124S S +最小值是( )A .73 B . 6 C . 132D . 3【答案】B【变式训练3】【2016高考新课标1卷】设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【解析】(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N .由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k .可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为)38,12[.(四)函数转化例4.【2019届成都一诊】设椭圆()012222>>=+b a by a x C :的左右顶点为A,B.P 是椭圆上不同于A,B 的一点,设直线AP,BP 的斜率分别为m,n ,则当()||ln ||ln 32323n m mnmn b a +++⎪⎭⎫ ⎝⎛-取得最小值时,椭圆C 的离心率为( )A.51 B.22 C.54D.23【答案】D【解析】设()()(),,,0,,0,00y x P a B a A -,点P 在双曲线上,得()01220220>>=+b a b y a x C :,2202220)(ax a b y -=,所以a x y m +=00,a x y m -=00,化简,22ab mn -=原式⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+-+⎪⎪⎪⎪⎭⎫⎝⎛--=b a b a b a b a a b a b a b b a ln 63232ln 62323232222所以设1>=b a t ,函数t t t t t f ln 63232)(23++-=,求导可以得到:2t =时,函数取得最小值=)2(f ,2=ba,23=e 。
一次函数与几何图形综合考点一、面积问题一次函数求面积的常用方法:(1)直接法(公式法)适用于规则图形,三角形中至少有一边与坐标轴重合或平行时,常用直接法求面积;(2)割补法(分割求和、补形作差)适用于不规则四边形,将四边形分割成两个三角形,分别计算两个三角形的面积再求和。
或者将四边形放在一个规则图形中(需要时做辅助线),此时四边形的面积可以看作一个规则图形面积减去补充的规则图形面积;(3)铅锤法(底相同,高运算)适用于三边均不与坐标轴平行的三角形(不规则三角形);(4)平行线面积转化适用于存在平行线的情况下,利用平行线的性质,平行线间的距离处处相等做高;题型一:直接求图形面积1、正比例函数()110y k x k =≠与一次函数()220y k x b k =+≠的图象的交点坐标为()43A ,,一次函数的图象与y 轴的交点坐标为()03B -,.(1)求正比例函数和一次函数的解析式;(2)求AOB 的面积.2、如图,一次函数5y x =-+和1y kx =-的图象与x 轴分别交于A 、C 两点,与y 轴分别交于B 、D 两点,两个函数图象的交点为点E ,且E 点的横坐标为2.(1)求k 的值;(2)不解方程组,请直接写出方程组51x y kx y +=⎧⎨-=⎩的解;(3)求两函数图象与x 轴所围成的ACE △的面积.3、如图,直线443y x =-+与y 轴交于点A ,与直线4455y x =+交于点B ,且直线4455y x =+与x 轴交于点C ,求ABC 的面积.4、如图,在平面直角坐标系中,直线132x m l y =+:与直线2l 交于点()23A -,,直线2l 与x 轴交于点()40C ,,与y 轴交于点B ,将直线l 2向下平移8个单位长度得到直线3l ,3l 与y 轴交于点D ,与1l 交于点E ,连接AD .(1)求直线2l 的解析式;(2)求△ADE V 的面积;5、如图,直线l 1:y =x +m 与y 轴交于点B ,与x 轴相交于点F .直线l 2:y =kx ﹣9与x 轴交于点A ,与y 轴交于点C ,两条直线相交于点D ,连接AB ,且OA :OC :AB =1:3:.(1)求直线l 1、l 2的解析式;(2)过点C 作l 3∥l 1交x 轴于点E ,连接BE 、DE .求△BDE 的面积.5、如图,一次函数()0y kx b k =+≠的图象与正比例函数2y x =-的图象交于点A ,与x 轴交于点C ,与y 轴交于点B ,5OB =,点A 的纵坐标为4.(1)求一次函数的解析式;(2)点D 和点B 关于x 轴对称,将直线2y x =-沿y 轴向上平移8个单位后分别交x 轴,y 轴于点,M N ,与直线()0y kx b k =+≠交于点E ,连接DE ,DC ,求ECD 的面积.题型二:已知面积求点的坐标1、如图,一次函数y kx b =+与反比例函数a y x=的图象在第一象限交于点()4,3A ,与y 轴的负半轴交于点B ,且OA OB =.(1)求一次函数y kx b =+与反比例函数a y x =的表达式;(2)已知点C 在x 轴上,且ABC 的面积是8,求此时点C 的坐标;2、如图,在平面直角坐标系中直线13:2l x m +与直线2l 交于点()2,3A -,直线2l 与x 轴交于点()4,0C ,与y 轴交于点B ,过BD 中点E 作直线3l y ⊥轴.(1)求直线2l 的解析式和m 的值;(2)点P 在直线1l 上,当6PBC S = 时,求点P 坐标;。
1.面积公式:(1)三角形的面积:S三角形=1/2×底×高(2)梯形的面积:S梯形=1/2×(上底+下底)×高2.两点间的距离:(1)当两点横坐标相同时,两点间的距离为这两点纵坐标差的绝对值(2)当两点纵坐标相同时,两点间的距离为这两点横坐标差的绝对值基础篇——三角形面积的求法题型1 三角形有一边在坐标轴上【例1】如图,平面直角坐标系中,已知三角形ABC的三个顶点的坐标分别是A(2,3),B(-4,0),C(4,0),求三角形ABC的面积.温馨提示:【思路及解答】请观看视频【方法归纳】当三角边有一边在坐标轴上时,将此边作为底边,那么高便垂直于坐标轴,底和高就能通过两点间的距离很快求出.题型2 三角形有一边与坐标轴平行【例2】如图,平面直角坐标系中,已知三角形ABC的三个顶点的坐标分别是A(-1,-4),B(2,0),C(-4,-4),求三角形ABC 的面积.温馨提示:【思路及解答】请观看视频【方法归纳】当三角边有一边与坐标轴平行时,将此边作为底边,那么高便垂直于坐标轴,底和高就能通过两点间的距离很快求出.根据图形特殊,我们通常把平行于坐标轴的一边作为底边.题型3 三角形三边均不与坐标轴平行【例3】在如图所示的正方形网格中,每个小正方形的单位长度均为1,三角形ABC的三个顶点恰好是正方形网格的格点.(1)写出图中所示各顶点的坐标;(2)求三角形ABC的面积.温馨提示:【思路及解答】请观看视频【方法归纳】当三角边的三边均不与坐标轴平行时:(1)将原三角形围在一个梯形或长方形中,用长方形或梯形的面积,减去长方形或梯形边缘的直角三角形的面积,即可求得原三角形的面积,这种方法叫做补形法;(2)若三角形内一割线长度已知,并且它平行于坐标轴,那么可将其作为底边,把原三角形拆分为两个三角形,则两高的长度可得,面积即可求得,这种方法叫做分割法.以上两种方法就是数学几何图形运算中常用的割补法.例题讲授视频三角形面积的求法同学们,例题看明白了吗?方法掌握了吧!快来试试下面的变式训练吧!变式训练【变式训练1】如图,在平面直角坐标系中,三角形ABC的顶点坐标分别为A(-3,0),B(0,3),C(0,-1),则三角形ABC的面积为.。
因动点产生的面积问题解题策略一.解题策略解读:面积的存在性问题常见的题型和解题策略有两类:图1 图2 图3 计算面积常用到的策略还有:图4 图5 图6例1.已知抛物线y=mx2+(1-2m)x+1-3m与x轴交于不同的两点A、 B.(1) 求m的取值范围;(2) 证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3) 当<m≤8时,由(2)求出的点P和点A、 B构成的△ABP的面积是否有最值,若有,求出最值及相应的m的值;若没有,请说明理由.思路:1. 已知的抛物线的解析式可以因式分解的,抛物线过x轴上的定点(-1, 0).2. 第(2)题分两步,先对m赋予两个不同的值,联立求方程组的解,再验证这个点是确定的.3. 第(3)题中△ABP的高为定值,点A为定点,求△ABP的最大面积,其实就是求点B的横坐标的最大值.例2.问题提出(1) 如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2) 如图2,在矩形ABCD中,AB=4, AD=6, AE=4, AF=2.是否在边BC、CD上分别存在点G、 H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3) 如图3,有一块矩形板材ABCD, AB=3米, AD=6米,现想从此板材中截出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,米,∠EHG=45°.经研究,只有当点E、 F、 G分别在边AD、 AB、 BC上时,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能截出符合要求的部件.试问能否截得符合要求的面积尽可能大的四边形EFGH部件?若能,求出截得的四边形EFGH 部件的面积;若不能,请说明理由.图1 图2 图3思路:1. 第(2)题的模型是“打台球”两次碰壁问题,依据光的反射原理.2. 第(3)题需先设AF的长并求解,再验证点H在矩形内部,然后计算面积.例3.如图1,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8, OE=17.抛物线y=x2-3x+m与y轴交于点A,抛物线的对称轴与x轴交于点B,与CD交于点K.(1) 将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①求点F的坐标;②请直接写出抛物线的函数表达式;(2) 将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连结OG,折痕与OG交于点H,点M是线段EH上的一个动点(不与点H重合),连结MG, MO,过点G作GP⊥OM于点P,交EH于点N,连结ON.点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1·S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化的范围;若不变,请直接写出这个值.温馨提示: 考生可以根据题意,在备用图中补充图形,以便作答.图1 备用图思路:1. 第(1)题中点F的位置是由A、 B两点确定的,A、 B两点的坐标都隐含在抛物线的解析式中.2. 第(2)题思路在画示意图过程中,点G是关键点.以E为圆心,EO为半径画弧,交CD于点G.例 4.如图,已知平行四边形ABCD的三个顶点A(n, 0)、 B(m, 0)、 D(0,2n)(m>n>0),作平行四边形ABCD关于直线AD的对称图形AB1C1 D.(1) 若m=3,试求四边形CC1B1B面积S的最大值;(2) 若点B1恰好落在y轴上,试求的值.思路:1. 第(1)题先说理再计算,说理四边形CC1B1B是矩形.2. 第(2)题根据AB1=AB列关于m、 n的方程,整理就可以得到m与n的关系.例5.如图,在平面直角坐标系中,抛物线y=-x2+bx+c经过点A(3, 0)和点B(2, 3),过点A的直线与y轴的负半轴相交于点C,且tan∠CAO=.(1) 求这条抛物线的表达式及对称轴;(2) 连结AB、 BC,求∠ABC的正切值;(3) 若点D在x轴下方抛物线的对称轴上,当S△ABC =S△ADC时,求点D的坐标.解析:1. 直觉告诉我们,△ABC是直角三角形.2. 第(3)题的意思可以表达为: B、 D在直线AC的两侧,到直线AC的距离相等.于是我们容易想到,平行线间的距离处处相等.例6.如图,半圆O的直径AB=10,有一条定长为6的动弦CD在弧AB上滑动(点C、D分别不与点A、 B重合),点E、 F在AB上,EC⊥CD, FD⊥CD.(1) 求证:EO=FO;(2) 连结OC,如果△ECO中有一个内角等于45°,求线段EF的长;(3) 当动弦CD在弧AB上滑动时,设变量CE=x,四边形CDFE的面积为S,周长为l,问:S与l是否分别随着x变化而变化?试用所学过的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.思路:1. 用垂径定理和平行线等分线段定理证明点O是EF的中点.2. 第(2)题的△ECO中,∠ECO是定值,45°的角分两种情况.3. 第(3)题用x表示OE的长,在△ECO中,∠ECO是定值.例7.直线y=2x+m与抛物线y=ax2+ax+b都过点M(1, 0),且a<b.(1) 求抛物线顶点Q的坐标(用含a的式子表示);(2) 试说明抛物线与直线有两个交点;(3) 设抛物线与直线的另一个交点为N.①若-1≤a≤-时,求MN的取值范围;②求△QMN的面积最小值.思路:1. 将M(1, 0)分别代入直线和抛物线的解析式,可以确定m的值,用a表示b.2. 联立直线与抛物线的解析式,消去y,得到关于a的一元二次方程,判断Δ>0.3. 第(3)题①,分别求a=-1和a=-时直线与抛物线的交点M、 N的坐标,再求MN的长,两个MN的长,就是MN的取值范围的两端值.例8.已知Rt△EFP和矩形ABCD如图1摆放(点P与点B重合),点F、 B(P)、 C 在同一直线上,AB=EF=6cm, BC=FP=8cm, ∠EFP=90°.如图2, △EFP从图1位置出发,沿BC方向匀速运动,速度为1cm/s, EP与AB交于点G;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连结AF、 PQ.当点Q停止运动时,△EFP也停止运动.设运动时间为t(s)(0<t<6).解答下列问题:(1) 当t为何值时,PQ∥BD?(2) 设五边形AFPQM的面积为y(cm2),求y与t之间的函数关系式;(3) 在运动过程中,是否存在某一时刻t,使S五边形AFPQM ∶S矩形ABCD=9∶8?若存在,求出t的值;若不存在,请说明理由;(4) 在运动过程中,是否存在某一时刻t,使点M在线段PG的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.图1 图2思路:1. 把线段BP、 PC、 CQ、 DQ的长用t表示出来.再把线段BG、 DM的长用t表示出来.2. 用割补法求五边形AFPQM的面积,等于直角梯形减去两个直角三角形的面积.3. 第(3)题用第(2)题的结果,直接解方程就可以了.4. 第(4)题是根据MP2=MG2列方程,需要构造以MP为斜边的直角三角形.例9.如图1,在平面直角坐标系中,过原点O及点A(8, 0)、 C(0, 6)作矩形OABC,连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从点A出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1) 如图1,当t=3时,求DF的长;(2) 如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值;(3) 连结AD,当AD将△DEF分成的两部分的面积比为1∶2时,求相应的t的值.图1 图2思路;1. 作DM⊥AB于M, DN⊥OA于N,那么△NDF与△MDE的相似比为3∶4.2. 面积比为1∶2要分两种情况讨论.把面积比转化为两个同高三角形底边的比.3. 过点E作OA的平行线,构造“8字型”相似,这样就把底边的比利用起来了.例10.如图1,二次函数y=x2+bx+c的图象与x轴交于A、 B两点,与y轴交于点C, OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1) 求b、 c的值;(2) 如图1,连结BE,线段OC上点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3) 如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.图1 图2思路:1. 由已知抛物线的解析式可得C(0, c),再用c表示B、 D两点的坐标,然后将B、 D代入抛物线的解析式列关于b、 c的方程组.2. 第(2)题: 通过点C、 F分别与点D、 F'关于直线l对称,得到点F'是BE的中点,从而求得点F的坐标.3. 第(3)题: 设点P的横坐标为m,用m表示点M、 N的坐标,进而用m表示线段PM、 PN、 PA的长,根据两个三角形的面积相等,求出PN边上的高QH.最后讨论NQ与QH的关系.例11.如图,在平面直角坐标系中,直线y=12x+2与x 轴交于点A,与y 轴交于点C.抛物线y=-x 2+bx+c 经过A 、 C 两点,与x 轴的另一个交点为点B.(1) 求抛物线的函数表达式;(2) 点D 为直线AC 上方抛物线上一动点.① 连结BC 、 CD.设直线BD 交线段AC 于点E, △CDE 的面积为S 1, △BCE 的面积为S 2,求 12S S 的最大值; ② 过点D 作DF ⊥AC,垂足为F,连结CD.是否存在点D,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求出点D 的坐标;若不存在,请说明理由.图1 备用图思路: 1. △CDE 与△BCE 是同高三角形,面积比等于底边的比.构造“8字型”,把底边的比转化为竖直线段的比.2. 第(3)题的第一种情况∠DCF=2∠BAC,过点C 作x 轴的平行线,通过内错角相等,再作轴对称的角,很容易找到点D 的位置.3. 第(3)题的第二种情况∠CDF=2∠BAC,先要探求2∠BAC的大小(正切值),如果这一步探究不出来,基本上进行不下去.例12.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O 顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= ;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN 的面积为y,求当x为何值时y取得最大值?最大值为多少?思路:(1)由旋转的性质可以证明△OBC是等边三角形,从而可得∠OBC的度数;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤83时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E,利用面积公式表示出△OMN的面积(y值);②当8 3<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H,利用∠CBO=60°表示出MH,再利用面积公式表示出△OMN的面积(y值);③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G,易求OG,再利用面积公式表示出△OMN的面积(y值),最后分别求出三种情况下面积最大值,从而求出整个运动过程中y的最大值.例13. 在平面直角坐标系中,抛物线2y ax bx c=++交x轴于A、B两点,交y轴于点C(0,43-),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=34.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方向以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由;②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.思路:本题是代数几何综合题,以平面直角坐标系为背景,考查了求二次函数解析式,二次函数的性质,,方程组的解法,几何图形面积的表示,相似三角形的判定与性质,分类讨论思想,三角形的面积的最值问题,综合性强,难度大,解题的关键是需要学生有良好的运算能力及分析问题和解决问题的能力,还得富有耐心.(1)利用A、B、C三点的坐标确定二次函数的解析式.(2)利用题目的已知条件表示出相关线段的长,①中利用三角函数值探索出∠PAQ=∠ACD,再根据题目中的要求使得△ADC与△PQA相似,进行分类讨论得到对应线段成比例,列出关于t的方程求解即可;②直接利用三角形的面积公式列出△APQ与△CAQ 的面积之和与时间t之间的函数关系式,再将所得的二次函数的解析式配方确定最值即可得到答案.。
平面直角坐标系找规律技巧(一)平面直角坐标系找规律技巧介绍平面直角坐标系是数学中常用的工具,可以帮助我们描述平面上的各种图形和现象。
在解决问题时,我们经常需要找出规律来简化计算或推导过程。
本文将介绍一些在平面直角坐标系中找规律的常用技巧。
技巧一:观察坐标轴上的点•观察点在坐标轴上的位置,可以帮助我们找出两个量之间的关系。
例如,如果一个点的横坐标和纵坐标相等,则它在坐标系中呈现出对称的特点。
•另外,当点的横坐标或纵坐标为0时,它们通常代表特殊的情况。
我们可以通过观察这些点来找到一些特殊的规律。
技巧二:观察图形的对称性•当图形呈现出对称的形态时,我们可以利用对称性来简化问题。
例如,如果一个图形在横轴或纵轴上对称,则它的性质可能也在对称轴上相同。
•另外,如果一个图形在原点对称,则它的性质通常也在原点附近具有一些特殊的规律。
技巧三:利用直角三角形的性质•平面直角坐标系中的直角三角形具有一些特殊的性质,我们可以利用这些性质来找规律。
例如,两条边分别与横轴和纵轴平行的直角三角形可能呈现出相似的形状。
•此外,直角三角形中的角度关系也可以帮助我们找到一些规律。
例如,当两条线段之间的夹角为90度时,它们可能具有一些特殊的性质。
技巧四:利用平移和旋转的性质•在平面直角坐标系中,我们可以通过平移和旋转来改变图形的位置和方向。
利用平移和旋转的性质,我们可以找到一些规律。
例如,当一个图形经过平移后仍具有相似的性质时,我们可以猜测这个性质与平移无关。
•此外,有时候我们可以通过适当的旋转来简化问题。
例如,当一个图形经过旋转后具有一些特殊的性质时,我们可以利用这个性质找规律。
技巧五:利用数学工具辅助分析•平面直角坐标系中的问题通常涉及到数学知识,例如代数和几何。
我们可以利用这些数学工具来辅助分析,找到问题的规律。
例如,利用代数中的方程和函数可以帮助我们推导出一些特殊的关系式。
•此外,几何中的一些定理和性质也可以用来分析图形和推导规律。
专题09 一次函数与几何图形综合问题的五种类型类型一、面积问题例1.在平面直角坐标系xOy 中,已知直线AB 与x 轴交于A 点 (2,0)与y 轴交于点B (0,1). (1)求直线AB 的解析式;(2)点M (-1,y 1),N (3,y 2)在直线AB 上,比较y 1与y 2的大小. (3)若x 轴上有一点C ,且S △ABC =2,求点C 的坐标【变式训练1】已知一次函数12y kx =+的图象与x 轴交于点(2,0)B -,与正比例函数2y mx =的图象交于点(1,)A a .(1)分别求k ,m 的值;(2)点C 为x 轴上一动点,如果ABC 的面积是6,请求出点C 的坐标.【变式训练2】如图,在正方形ABCD 中,4AB =,点P 为线段DC 上的一个动点.设DP x =,由点,,,A B C P 首尾顺次相接形成图形的面积为y .(1)求y 关于x 的函数表达式及x 的取值范围;(2)设(1)中函数图象的两个端点分别为M N 、,且P 为第一象限内位于直线MN 右侧的一个动点,若MNP △正好构成一个等腰直角三角形,请求出满足条件的P 点坐标;(3)在(2)的条件下,若l 为经过(1,0)-且垂直于x 轴的直线,Q 为l 上的一个动点,使得MNQNMPS S=,请直接写出符合条件的点Q 的坐标.【变式训练3】如图,已知直线1:3l y x =+与过点A (3,0)的直线2l 交于点C (1,m ),且与x 轴交于点B ,与y 轴交于点D . (1)求直线2l 的解析式;(2)若点D 关于x 轴的对称点为P ,求△PBC 的面积.类型二、一次函数与平行四边形例1.如图,在平面直角坐标系中,直线AB 与x ,y 轴分别交于点(4,0)A ,(0,3)B ,点C 是直线554y x =-+上的一个动点,连接BC .(1)求直线AB 的函数解析式;(2)如图1,若//BC x 轴,求点C 到直线AB 的距离;(3)如图2,点(1,0)E ,点D 是直线AB 上的动点,试探索点C ,D 在运动过程中,是否存在以B ,C ,D ,E 为顶点的四边形是平行四边形,若存在,请直接写出点C ,D 的坐标;若不存在,请说明理由.【变式训练1】一次函数y = kx+1(k ≠ 0)的图象过点P (-3,2),与x 轴交于点A ,与y 轴交于点B .(1)求k 的值及点A 、B 的坐标;(2)已知点C (-1,0),若以A ,B ,C ,D 为顶点的四边形是平行四边形,请直接写出所有符合条件的点D 的坐标.【变式训练2】平面直角坐标系xOy 中,直线1l :2y x b =+与直线2l :12y x =交于点()2,P m . (1)求m ,b 的值;(2)直线()0x n n =≠与直线1l ,2l 分别交于M ,N 两点,当MN =3时,若以M ,N ,P ,Q 为顶点的四边形是平行四边形,请直接写出点Q 的坐标.类型三、一次函数与等腰三角形例1.一次函数的图像与x 轴、y 轴分别交于点A 0),B (0,1),以AB 为边在第一象限内做等边△ABC . (1)线段AB 的长是 ,△BAO = °,点C 的坐标是 ;(2)如果在第二象限内有一点P (a ,1),试用含a 的代数式表示四边形ABPO 的面积. (3)在y 轴上存在点M ,使△MAB 为等腰三角形,请直接写出点M 的坐标.【变式训练1】如图一,已知直线l :6y x =-+与x 轴交于点A ,与y 轴交于点B ,直线m 与v 轴交于点(0,2)C -,与直线l 交于点(,1)D t .(1)求直线m 的解析式;(2)如图二,点P 在直线l 上且在y 轴左侧,过点P 作//PQ y 轴交直线m 于点Q ,交x 轴于点G ,当2PCG QCG S S ∆∆=,求出P ,Q 两点的坐标;(3)将直线l :6y x =-+向左平移12个单位得到直线n 交x 轴于E 点,点F 是点C 关于原点对称点.过点F 作直线//k x 轴.点M 在直线k 上,写出以点C ,E ,M ,为顶点且CE 为腰的等腰三角形,并把求其中一个点M 的坐标的过程写出来.【变式训练2】在如图的平面直角坐标系中,直线n 过点A (0,﹣2),且与直线l 交于点B (3,2),直线l 与y 轴交于点C .(1)求直线n 的函数表达式;(2)若△ABC 的面积为9,求点C 的坐标;(3)若△ABC 是等腰三角形,求直线l 的函数表达式.【变式训练3】如图,直线1:l y ax a =-,1l 与x 轴交于点B ,直线2l 经过点(4,0)A ,直线1l ,2l 交于点(2,3)C -.(1)a =______;点B 的坐标为______. (2)求直线2l 的解析表达式; (3)求ABC 的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ABP △为等腰三角形,请直接写出P 点的横坐标?类型四、一次函数与直角三角形例1.如图,在平面直角坐标系中,函数y =-x +2的图象与x 轴,y 轴分别交于点A ,B ,与函数y =13x +b 的图象交于点C (-2,m ). (1)求m 和b 的值;(2)函数y =-x +b 的图象与x 轴交于点D ,点E 从点D 出发沿DA 向,以每秒2个单位长度匀速运动到点M (到A 停止运动),设点E 的运动时间为t 秒. ①当ΔACE 的面积为12时,求t 的值;②在点E 运动过程中,是否存在t 的值,使ΔACE 为直角三角形?若存在,请求出t 的值;若不存在,请说明理由.【变式训练1】如图1,在菱形ABCD 中,60ABC ∠=︒,对角线AC BD 、交于点,O P 从B 点出发,沿B DC →→方向匀速运动,P 点运动速度为1cm/s .图2是点P 运动时,APC △的面积2()cm y 随P 点运动时间()s x变化的函数图像.(1)AB =_______cm,a =_____;(2)P 点在BD 上运动时,x 为何值时,四边形ADCP ; (3)在P 点运动过程中,是否存在某一时刻使得APB △为直角三角形,若存在,求x 的值;若不存在,请说明理由.【变式训练2】在平面直角坐标系xOy 中,将直线2y x =向下平移2个单位后,与一次函数132y x =-+的图象相交于点A .(1)将直线2y x =向下平移2个单位后对应的解析式为 ; (2)求点A 的坐标;(3)若P 是x 轴上一点,且满足△OAP 是等腰直角三角形,直接写出点P 的坐标.类型五、最值问题例1.如图,将直线34y x=-向上平移后经过点()4,3A,分别交x轴y轴于点B、C.(1)求直线BC的函数表达式;(2)点P为直线BC上一动点,连接OP.问:线段OP的长是否存在最小值?若存在,求出线段OP的最小值,若不存在,请说明理由.【变式训练1】如图,四边形OABC是张放在平面直角坐标系中的正方形纸片,点O与坐标原点重合,点A在x轴正半轴上,点C在y轴正半轴上,5OC=,点E在边BC上.(1)若点N的坐标为(3,0),过点N且平行于y轴的直线MN与EB交于点M,将纸片沿直线OE折叠,顶点C恰好落在MN上,并与MN上的点G重合.①求点G、点E的坐标;②若直线:l y mx n=+平行于直线OE,且与长方形ABMN有公共点,请直接写出n的取值范围.(2)若点E为BC上的一动点,点C关于直线OE的对称点为G,连接BG,请求出线段BG的最小值.专题09 一次函数与几何图形综合问题的五种类型类型一、面积问题例1.在平面直角坐标系xOy 中,已知直线AB 与x 轴交于A 点 (2,0)与y 轴交于点B (0,1). (1)求直线AB 的解析式;(2)点M (-1,y 1),N (3,y 2)在直线AB 上,比较y 1与y 2的大小. (3)若x 轴上有一点C ,且S △ABC =2,求点C 的坐标 【答案】(1)112y x =-+;(2)y 1>y 2;(3)()6,0C 或()2,0-. 【解析】(1)解:设直线AB 的解析式为y kx b =+△A (2,0)B (0,1),△201k b b +=⎧⎨=⎩,解得:k =12-,b =12△直线AB 的解析式为112y x =-+ (2)△y =﹣12x +1中k =﹣12<0,△y 值随x 值的增大而减小, △﹣1<3,△y 1>y 2;(3)△x 轴上有一点C ,设点C (x ,0),△AC =|2﹣x |, △S △ABC =2,△12×|2﹣x |×1=2,△x =﹣2或x =6, △C (﹣2,0)或C (6,0). 故答案为:(1)112y x =-+;(2)y 1>y 2;(3)()6,0C 或()2,0-. 【变式训练1】已知一次函数12y kx =+的图象与x 轴交于点(2,0)B -,与正比例函数2y mx =的图象交于点(1,)A a .(1)分别求k ,m 的值;(2)点C 为x 轴上一动点,如果ABC 的面积是6,请求出点C 的坐标. 【答案】(1)1k =,3m =;(2)点C 的坐标为(2,0)或(6,0)- 【解析】(1)一次函数1=2y kx +的图象与x 轴交于点2,0B -(),220k ∴-+=1k ∴=12y x ∴=+一次函数12y x =+的图象与正比例函数2y mx =的图象交于点(1,)A a ,12a ∴=+,a m =,3m ∴=; (2)设点C 的坐标为(,0)n ,过点A 作AD x ⊥轴,垂足为点D .ABC 的面积是6,162BC AD ∴⋅=,1|(2)|362n ∴--⨯=,2n ∴=或6n =-∴点C 的坐标为(2,0)或(6,0)-,或过点A 作AD x ⊥轴,垂足为点D .ABC 的面积是6,162BC AD ∴⋅=,1362BC ∴⨯=,4BC ∴=,点B 的坐标为(2,0)-,∴点C 的坐标为(2)0,或(60)-,. 【变式训练2】如图,在正方形ABCD 中,4AB =,点P 为线段DC 上的一个动点.设DP x =,由点,,,A B C P 首尾顺次相接形成图形的面积为y .(1)求y 关于x 的函数表达式及x 的取值范围;(2)设(1)中函数图象的两个端点分别为M N 、,且P 为第一象限内位于直线MN 右侧的一个动点,若MNP △正好构成一个等腰直角三角形,请求出满足条件的P 点坐标;(3)在(2)的条件下,若l 为经过(1,0)-且垂直于x 轴的直线,Q 为l 上的一个动点,使得MNQNMPS S=,请直接写出符合条件的点Q 的坐标.【答案】(1)y =-2x +16,0<x <4;(2)(12,12)或(8,20)或(6,14);(3)(-1,-2)或(-1,8)或(-1,38)或(-1,28)【解析】(1)由线段的和差,得PC =(4-x ),由梯形的面积公式,得y =-2x +16, △四边形ABCD 是正方形,△AB =CD =4,△x 的取值范围是0<x <4; (2)设P 点坐标是(a ,b ),M (0,16),N (4,8),以MN 为边,在MN 右侧做正方形,MNAB ,正方形中心为H ,则易知A ,B ,H 即为所求P 的坐标;示意图如下求得A (12,12),B (8,20),O (6,14),故P 点可能的坐标为(12,12)或(8,20)或(6,14); (3)由S △MNQ =S △NMP ,设Q (-1,m ),QN 所在直线方程为y =kx +b , 把Q 和N 代入方程,求得b =845m +,则可求S △NMP =12|16-b |×[4-(-1)]=|36-2m |当P 为(12,12)时,S △MNQ =40,△|36-2m |=40;解得m =-2或38,当P (8,20),同理解得m =-2或38,当P (8,20),有S △MNQ =20,解得m =8或28, 综上,符合条件的Q 的坐标为(-1,-2)或(-1,8)或(-1,38)或(-1,28).【变式训练3】如图,已知直线1:3l y x =+与过点A (3,0)的直线2l 交于点C (1,m ),且与x 轴交于点B ,与y 轴交于点D . (1)求直线2l 的解析式;(2)若点D 关于x 轴的对称点为P ,求△PBC 的面积.【答案】(1)-26y x =+;(2)12.【解析】(1)把(1,)C m 代入y =x +3,得1+3=m ,△m =4,△(1,4)C设2l 的解析式为:y =kx +b (k ≠0),将点A ,C 的坐标代入,则430k b k b +=⎧⎨+=⎩ 解得26k b =-⎧⎨=⎩,△2l 的解析式为:-26y x =+(2)当y =0时,30x += ,△3x =-,△(3,0)B -, 当x =0时,y =3,△(0,3)D ,△点P 、D 关于x 轴对称,△(0,3)P - ,如图,连接BP ,PC ,设PC 与x 轴的交点为Q ,设直线PC 的解析式为(0)y kx b k =+≠,将点(1,4),(0,3)C P -代入:43k b b +=⎧⎨=-⎩,解得73k b =⎧⎨=-⎩,△直线PC 的解析式为:73y x =-,令y =0,解得37x =, △BPCBQP BQCSSS=+1122c BQ OP BQ y =+1124()712227c BQ OP y =+=⨯⨯=.类型二、一次函数与平行四边形例1.如图,在平面直角坐标系中,直线AB 与x ,y 轴分别交于点(4,0)A ,(0,3)B ,点C 是直线554y x =-+上的一个动点,连接BC .(1)求直线AB 的函数解析式;(2)如图1,若//BC x 轴,求点C 到直线AB 的距离;(3)如图2,点(1,0)E ,点D 是直线AB 上的动点,试探索点C ,D 在运动过程中,是否存在以B ,C ,D ,E 为顶点的四边形是平行四边形,若存在,请直接写出点C ,D 的坐标;若不存在,请说明理由.【答案】(1)334y x =-+;(2)2425;(3)17(2,45)8-、15(2-,69)8或1(2-,45)8、1(2,21)8或17(2,45)8-、15(2,21)8- 【解析】(1)设直线AB 的表达式为y kx b =+,则304b k b =⎧⎨=+⎩,解得343k b ⎧=-⎪⎨⎪=⎩,故AB 的表达式为334y x =-+;(2)//BC x 轴,故点C 的纵坐标为3,当3y =时,即5534y x =-+=,解得85x =,即点C 的坐标为8(5,3),则85BC =;由点A 、B的坐标得,5AB ==,过点C 作CH AB ⊥于点H ,在△ABC 中,S △ABC =1122BC OB AB CH ⨯⨯=⨯⨯,即18135252CH ⨯⨯=⨯⨯,解得:2425CH =,即点C 到直线AB 的距离为2425;(3)设点C 、D 的坐标分别为5(,5)4m m -+、3(,3)4n n -+,当EB 是对角线时,由中点坐标公式得:01m n +=+且53305344m n +=-+-+,解得172152m n ⎧=⎪⎪⎨⎪=-⎪⎩,故点C 、D 的坐标分别为17(2,45)8-、15(2-,69)8;当EC 是对角线时,同理可得:1m n +=且5353344m n -+=-++,解得,1212m n ⎧=-⎪⎪⎨⎪=⎪⎩故点C 、D 的坐标分别为1(2-,45)8、1(2,21)8;当ED 是对角线时,同理可得:1n m +=且35035344n m -+=-++,解得152172m n ⎧=⎪⎪⎨⎪=⎪⎩,故点C 、D 的坐标分别为17(2,45)8-、15(2,21)8-.综上,点C 、D 的坐标分别为17(2,45)8-、15(2-,69)8或1(2-,45)8、1(2,21)8或17(2,45)8-、15(2,21)8-.【变式训练1】一次函数y = kx+1(k ≠ 0)的图象过点P (-3,2),与x 轴交于点A ,与y 轴交于点B .(1)求k 的值及点A 、B 的坐标;(2)已知点C (-1,0),若以A ,B ,C ,D 为顶点的四边形是平行四边形,请直接写出所有符合条件的点D 的坐标.【答案】(1)13k =-,与x 轴交于点A (3,0),与y 轴交于点B (0,1);(2)D (4,1)或D (2,-1)或D (-4,1).【解析】(1)将P (-3,2)代入()10y kx k =+≠,得:13k =-函数表达式:113y x =-+,令y =0,x =3,令x =0,y =1,△与x 轴交于点A (3,0),与y 轴交于点B (0,1);(2)分三种情况:①BC 为对角线时,点D 的坐标为(-4,1);②AB 为对角线时,点D 的坐标为(4,1),③AC 为对角线时,点D 的坐标为(2,-1).综上所述,点D 的坐标是(4,1)或(-4,1)或(2,-1).【变式训练2】平面直角坐标系xOy 中,直线1l :2y x b =+与直线2l :12y x =交于点()2,P m . (1)求m ,b 的值;(2)直线()0x n n =≠与直线1l ,2l 分别交于M ,N 两点,当MN =3时,若以M ,N ,P ,Q 为顶点的四边形是平行四边形,请直接写出点Q 的坐标.【答案】(1)13m b ==-,;(2)点Q 的坐标为()2,4,()2,2-或()6,6 【解析】(1)△直线1l :2y x b =+与直线2l :12y x =交于点()2,P m ,△4122m b m =+⎧⎪⎨=⨯⎪⎩,△1 3.m b ==-, (2)依题意可得直线1l :23y x =-,△直线1l 与y 轴的交点为(0,-3) △直线()0x n n =≠与直线1l ,2l 分别交于M ,N 两点, MN =3, △M ,N 不是y 轴上的点,设M (x ,2x -3),则N (x ,12x ) 由MN =3,得(2x -3)-12x =3,解得x =4,△M (4,5),则N (4,2) △以M ,N ,P ,Q 为顶点的四边形是平行四边形,①当MN 为四边形MPNQ 的对角线时,MN 的中点坐标为(4,3.5) 故()2,1P 、Q 关于(4,3.5)对称,△点Q 的坐标为()6,6,②当MN 为四边形MNQP 的一边时,MN =PQ =3,且PQ 与y 轴平行,故点Q 的坐标为()2,4或()2,2- 综上,点Q 的坐标为()2,4,()2,2-或()6,6. 类型三、一次函数与等腰三角形例1.一次函数的图像与x 轴、y 轴分别交于点A0),B (0,1),以AB 为边在第一象限内做等边△ABC . (1)线段AB 的长是 ,△BAO = °,点C 的坐标是 ;(2)如果在第二象限内有一点P (a ,1),试用含a 的代数式表示四边形ABPO 的面积. (3)在y 轴上存在点M ,使△MAB 为等腰三角形,请直接写出点M 的坐标.【答案】(1)2,30,C2);(22a-;(3)(0,-1)或(0,3)【解析】(1)(3A ,0),(0,1)B ,在Rt AOB ∆中,2AB =,2OB =AB ,可30BAO ∴∠=︒,以AB 为边在第一象限内做等边ABC ∆,60ACB ∠=︒∴,AB AC =,90OAC ∴∠=︒,C ∴2),故答案为2,30,C 2);(2)四边形ABPO 的面积BAO =∆的面积OBP +∆的面积1111()222a a =+⨯⨯-=;(3)2AB =,30BAO ∠=︒,60OBA ∴∠=︒,①当AB BM =时,2BM =,(0,1)M -或(0,3)M ;②当AB AM =时,ABM ∆是等边三角形,M ∴与B 关于x 轴对称,(0,1)M ∴-; ③当BM AM =时,ABM ∆是等边三角形,M ∴与B 关于x 轴对称,(0,1)M ∴-; 综上所述:MAB ∆为等腰三角形时,M 点坐标为(0,1)-或(0,3).【变式训练1】如图一,已知直线l :6y x =-+与x 轴交于点A ,与y 轴交于点B ,直线m 与v 轴交于点(0,2)C -,与直线l 交于点(,1)D t .(1)求直线m 的解析式;(2)如图二,点P 在直线l 上且在y 轴左侧,过点P 作//PQ y 轴交直线m 于点Q ,交x 轴于点G ,当2PCG QCG S S ∆∆=,求出P ,Q 两点的坐标;(3)将直线l :6y x =-+向左平移12个单位得到直线n 交x 轴于E 点,点F 是点C 关于原点对称点.过点F 作直线//k x 轴.点M 在直线k 上,写出以点C ,E ,M ,为顶点且CE 为腰的等腰三角形,并把求其中一个点M 的坐标的过程写出来. 【答案】(1)直线m 的解析式为325y x =-;(2)P 点的坐标为(-10,16),Q 点坐标为(-10,-8);(3)当CE 为腰时,点M 的坐标为:M (2)或M (-2)或M (0,2).过程见解析. 【解析】(1)△D (t ,1)在直线l :y =-x +6上,△1=-t +6,△t =5,△D (5,1),设直线m 的解析式为y =kx +b ,将点C ,D 代入得,512k b b +=⎧⎨=-⎩,解得,352k b ⎧=⎪⎨⎪=-⎩,所以,直线m 的解析式为325y x =-; (2)设P (a ,6-a ),△点P 在x 轴的左侧,△0a < △PQ △轴,G (a ,0),Q (a ,325a -),如图,点P 、Q 在x 轴两侧,△S △PCG =12PG •(-a ),S △QCG =12GQ •(-a )且S △PCG =2S △QCG , △PG =2QG ,△6-a =2(2-35a ),解得:a =-10, △66(10)16a -=--=,332(10)2855a -=⨯--=-△P 点的坐标为(-10,16),Q 点坐标为(-10,-8);(3)对于直线l :y =-x +6,当x =0时,y =6;当y =0时,x =6.△A (6,0),B (0,6),△将直线l :y =-x +6向左平移12个单位得直线n 交x 轴于点E ,点F 是点C 关于原点的对称点.点C (0,-2), △E (-6,0),F (0,2), 如图,△将直线l :y =-x +6向左平移12个单位得直线n ,△直线n :y =-x -6, 又△F (0,2)△k 的解析式为:y =2,设M (a ,2),则MCME,CE ,当△MCE 为等腰三角形,且CE 为腰,有:①CE =MCa =a =-M (2).M (-2), ②ME =CE解得,a =0或a =-12(此时三点共线,不构成三角形,舍去),即M (0,2),综上,当CE 为腰时,点M 的坐标为:M (2)或M (-2)或M (0,2).【变式训练2】在如图的平面直角坐标系中,直线n 过点A (0,﹣2),且与直线l 交于点B (3,2),直线l 与y 轴交于点C .(1)求直线n 的函数表达式;(2)若△ABC 的面积为9,求点C 的坐标;(3)若△ABC 是等腰三角形,求直线l 的函数表达式.【答案】(1)y =43x ﹣2;(2)C (0,4)或(0,﹣8);(3)直线l 的解析式为:y =﹣13x +3或y =3x ﹣7或y =﹣43x +6或y =724x +98 【解析】(1)设直线n 的解析式为:y =kx +b ,△直线n :y =kx +b 过点A (0,﹣2)、点B (3,2),△232b k b =-⎧⎨+=⎩ ,解得:432k b ⎧=⎪⎨⎪=-⎩ ,△直线n 的函数表达式为:y =43x ﹣2; (2)△△ABC 的面积为9,△9=12•AC •3,△AC =6, △OA =2,△OC =6﹣2=4或OC =6+2=8,△C (0,4)或(0,﹣8); (3)分四种情况:①如图1,当AB =AC 时,△A (0,﹣2),B (3,2),△AB 22(22)=5,△AC =5,△OA =2,△OC =3,△C (0,3),设直线l 的解析式为:y =mx +n ,把B (3,2)和C (0,3)代入得:323m n n +=⎧⎨=⎩ ,解得:133m n ⎧=-⎪⎨⎪=⎩ ,△直线l 的函数表达式为:y =13-x +3; ②如图2,AB =AC =5,△C (0,﹣7),同理可得直线l 的解析式为:y =3x ﹣7; ③如图3,AB =BC ,过点B 作BD △y 轴于点D ,△CD =AD =4,△C (0,6),同理可得直线l 的解析式为:y =43-x +6; ④如图4,AC =BC ,过点B 作BD △y轴于D ,设AC =a ,则BC =a ,CD =4﹣a ,根据勾股定理得:BD 2+CD 2=BC 2,△32+(4﹣a )2=a 2,解得:a =258, △OC =258﹣2=98 ,△C (0,98),同理可得直线l 的解析式为:y =724x +98; 综上,直线l 的解析式为:y =13-x +3或y =3x ﹣7或y =43-x +6或y =724x +98. 【变式训练3】如图,直线1:l y ax a =-,1l 与x 轴交于点B ,直线2l 经过点(4,0)A ,直线1l ,2l 交于点(2,3)C -.(1)a =______;点B 的坐标为______. (2)求直线2l 的解析表达式; (3)求ABC 的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ABP △为等腰三角形,请直接写出P 点的横坐标?【答案】(1)3a =-,()10B ,;(2)362y x =-;(3)92;(4)52,2813【解析】(1)△直线1:l y ax a =-经过点(2,3)C -,32a a ∴-=-,解得:3a =-;即直线1:l y ax a =-的解析式为33y x =-+;当y =0时,-3x +3=0,解得1x =,则()10B ,;故答案为:-3,(1,0);(2)设直线2l 的解析式为:y kx b =+, △经过点()4,0A 和点(2,3)C -,△0432k b k b=+⎧⎨-=+⎩,解得:32k ,6b =-.△直线2l 的解析式为:362y x =-; (3)设ABC 的面积的面积为ABC S ;则413AB =-=,ABC 的高为3,则193322ABCS=⨯⨯=; (4)存在,设点P 的坐标为(x ,362x ),分三种情况: ①当AP=BP 时,点P 在线段AB 的垂直平分线上,△A (4,0),B (1,0),△点P 的横坐标为:41522+=; ②当AP=AB =3时,过点P 作PH △x 轴于点H ,△222PH AH AP +=,△2223(6)(4)32x x -+-=,解得x③当AB=BP =3时,作PM △x 轴于点M , △222PM BM BP +=,△2223(6)(1)32x x -+-=,解得x =2813或x =4(舍去);综上,符合条件的P 点的横坐标是52,2813,5213± 类型四、一次函数与直角三角形例1.如图,在平面直角坐标系中,函数y =-x +2的图象与x 轴,y 轴分别交于点A ,B ,与函数y =13x +b 的图象交于点C (-2,m ). (1)求m 和b 的值;(2)函数y =-x +b 的图象与x 轴交于点D ,点E 从点D 出发沿DA 向,以每秒2个单位长度匀速运动到点M (到A 停止运动),设点E 的运动时间为t 秒. ①当ΔACE 的面积为12时,求t 的值;②在点E 运动过程中,是否存在t 的值,使ΔACE 为直角三角形?若存在,请求出t 的值;若不存在,请说明理由.【答案】(1)m =4,b =143;(2)①t =5;②t =4或t =6 【解析】(1)△点C (−2,m )在直线y =−x +2上, △m =−(−2)+2=2+2=4,△点C (−2,4), △函数y =13x +b 的图象过点C (−2,4),△4=13×(−2)+b ,得b =143,即m 的值是4,b 的值是143; (2)①△函数y =−x +2的图象与x 轴,y 轴分别交于点A ,B ,△点A (2,0),点B (0,2), △函数y =13x +143的图象与x 轴交于点D ,△点D 的坐标为(−14,0),△AD =16, △△ACE 的面积为12,△(16−2t )×4÷2=12,解得,t =5.即当△ACE 的面积为12时,t 的值是5; ②当t =4或t =6时,△ACE 是直角三角形,理由:当△ACE =90°时,AC △CE , △点A (2,0),点B (0,2),点C (−2,4),点D (−14,0),△OA =OB ,AC =,△△BAO =45°,△△CAE =45°,△△CEA =45°,△CA =CE =,△AE =8, △AE =16−2t ,△8=16−2t ,解得,t =4;当△CEA =90°时,△AC =,△CAE =45°,△AE =4, △AE =16−2t ,△4=16−2t ,解得,t =6;由上可得,当t =4或t =6时,△ACE 是直角三角形.【变式训练1】如图1,在菱形ABCD 中,60ABC ∠=︒,对角线AC BD 、交于点,O P 从B 点出发,沿B DC →→方向匀速运动,P 点运动速度为1cm/s .图2是点P 运动时,APC △的面积2()cm y 随P 点运动时间()s x变化的函数图像.(1)AB =_______cm,a =_____;(2)P 点在BD 上运动时,x 为何值时,四边形ADCP; (3)在P 点运动过程中,是否存在某一时刻使得APB △为直角三角形,若存在,求x 的值;若不存在,请说明理由.【答案】(1)2;(2;(3或1【解析】(1)在菱形ABCD 中,60ABC ∠=︒,则ABC ∆、ACD ∆为全等的两个等边三角形,设ABC ∆的边长为a,则其面积为24a , 由图2知,当点P 在点A 时,y ABC =∆的面积2=,解得2a =(负值已舍去), 即菱形的边长为2,则2()AB cm =,由题意知,点P 与点O 重合时,对于图2的a 所在的位置,则1AO =,故a BO ====2(2)由(1)知点P 在BO 段运动时,对于图2第一段直线,而该直线过点、0),设其对应的函数表达式为y kx t =+,则0t t ⎧=⎪+=,解得1k t =-⎧⎪⎨=⎪⎩,故该段函数的表达式为=-+y x ,当点P 在BD 上运动时,四边形ADCP,则点P 只能在BO 上,则四边形ADCP 的面积ACD S y ∆=+=x x =;(3)存在,理由:由(1)知,菱形的边长为2,则BP =1AO =,过点A 作AP DC ''⊥于点P ''交BD 于点P ',ABC ∆、ACD ∆均为等边三角形,则30PAP DAP ∠'=∠''=︒,①当点P 和点O 重合时,APB ∠为直角,则x BP ==②当BAP ∠'为直角时,则同理可得:PP '=x BP PP =+'=;③当BAP ∠''为直角时,则112x BD DP AD =+''=+=,综上,x 或1. 【变式训练2】在平面直角坐标系xOy 中,将直线2y x =向下平移2个单位后,与一次函数132y x =-+的图象相交于点A .(1)将直线2y x =向下平移2个单位后对应的解析式为 ; (2)求点A 的坐标;(3)若P 是x 轴上一点,且满足△OAP 是等腰直角三角形,直接写出点P 的坐标.【答案】(1)22y x =-;(2)(2,2);(3)(2,0)或(4,0).【解析】(1)根据题意,得22y x =-;故答案为:22y x =-.(2)由题意得:22132y x y x =-⎧⎪⎨=-+⎪⎩,解得:22x y =⎧⎨=⎩,△点A 的坐标为(2,2); (3)如图所示,△P 是x 轴上一点,且满足△OAP 是等腰直角三角形,当OA =OP 时,P 点坐标为(4,0),当OP =AP 时,P 点坐标为(2,0), 综上,P 点的坐标为:(2,0)或(4,0). 类型五、最值问题 例1.如图,将直线34y x =-向上平移后经过点()4,3A ,分别交x 轴y 轴于点B 、C .(1)求直线BC 的函数表达式;(2)点P 为直线BC 上一动点,连接OP .问:线段OP 的长是否存在最小值?若存在,求出线段OP 的最小值,若不存在,请说明理由. 【答案】(1)364y x =-+;(2)存在,线段OP 的最小值为4.8.【解析】(1)设平移后的直线BC 的解析式为34y x b =-+,代入()4,3A 得3344b =-⨯+,解得6b = △直线BC 的解析式为364y x =-+; (2)存在,理由如下:令x =0,得y =6,△C (0,6),故OC =6令y =0,得x =8,△B (8,0)故OB =8△BC 10= △OP △BC 时,线段OP 最小, △S △ABC =12BO CO ⨯=12BC OP ⨯,△OP = 4.8BO COBC⨯=,即线段OP 的最小值为4.8. 【变式训练1】如图,四边形OABC 是张放在平面直角坐标系中的正方形纸片,点O 与坐标原点重合,点A 在x 轴正半轴上,点C 在y 轴正半轴上,5OC =,点E 在边BC 上.(1)若点N 的坐标为(3,0),过点N 且平行于y 轴的直线MN 与EB 交于点M ,将纸片沿直线OE 折叠,顶点C 恰好落在MN 上,并与MN 上的点G 重合. ①求点G 、点E 的坐标;②若直线:l y mx n =+平行于直线OE ,且与长方形ABMN 有公共点,请直接写出n 的取值范围. (2)若点E 为BC 上的一动点,点C 关于直线OE 的对称点为G ,连接BG ,请求出线段BG 的最小值.【答案】(1)①G (3,4),E (53,5);②-15≤n ≤-4;(2)5【解析】(1)由折叠的性质可知,OG =OC =5,由勾股定理得,GN 4=, △点G 的坐标为(3,4);设CE =x ,则EM =3-x ,由折叠的性质可知:EG =CE =x , △GN =4,△GM =5-4=1,在Rt △EMG 中,222EG EM MG =+,即()22231x x =-+,解得:x =53, △点E 的坐标为(53,5);设OE所在直线的解析式为:y=kx,则53k=5,解得,k=3,△OE所在直线的解析式为:y=3x,△直线l:y=mx+n平行于直线OE,△m=3,即直线l的解析式为y=3x+n,当直线l经过点M(3,5)时,5=3×3+n,解得,n=-4,当直线l经过点A(5,0)时,0=3×5+n,解得,n=-15,△直线l与长方形ABMN有公共点时,-15≤n≤-4;(3)连接OB,OG,△OC=BC=5,△OCB=90°,△BC OC=△点C关于直线OE的对称点为点G,△OC=OG=5,△BG≥OB-OG,△当O、B、G三点共线时,BG取得最小值,△BG的最小值为5.。
课题二次函数的综合压轴题型归类1、 要学会利用特殊图形的性质去分析二次函数与特殊图形的关系 教学目标2、 掌握特殊图形面积的各种求法1、 利用图形的性质找点 重点、难点2、 分解图形求面积教学内容知识点睛:一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总1、两点间的距离公式22: ABy A y Bx A x Bx A x B y A y B2、中点坐标 :线段 AB 的中点 C 的坐标为:2 ,2直线 yk 1 x b 1 ( k 1 0 )与 y k 2 x b 2 ( k 2 0 )的位置关系:( 1)两直线平行k 1 k 2 且 b 1 b 2 ( 2)两直线相交k 1 k 2( 3)两直线重合k 1 k 2 且 b 1 b 2( 4)两直线垂直k 1k 213、一元二次方程有整数根问题,解题步骤如下:① 用 和参数的其他要求确定参数的取值范围;② 解方程,求出方程的根; (两种形式:分式、二次根式)③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。
例:关于 x 的一元二次方程x 2-2 m 1 x m 2=0 有两个整数根, m <5 且 m 为整数,求 m 的值。
4、二次函数与x 轴的交点为整数点问题。
(方法同上)例:若抛物线213 与y mxmx x轴交于两个不同的整数点,且m为正整数,试确定3此抛物线的解析式。
5、方程总有固定根问题 ,可以通过解方程的方法求出该固定根。
举例如下:已知关于 x 的方程 mx 23(m 1)x 2m 3 0 ( m 为实数),求证:无论 m 为何值,方程总有一个固定的根。
解:当 m0 时, x1;当 m0 时,m 3203 m 1, x1 231 ;, x、 x22m m综上所述:无论m 为何值,方程总有一个固定的根是1。
6、函数过固定点问题,举例如下:已知抛物线 y x2mx m 2 ( m 是常数),求证:不论 m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。
图1图2图3平面直角坐标系中如何求几何图形的面积一、 求三角形的面积1、 有一边在坐标轴上或平行于坐标轴例1:如图1,平面直角坐标系中,△ABC 求出三角形ABC 的面积吗2、无边在坐标轴上或平行于坐标轴例2:如图2,平面直角坐标系中,已知点A (-3,-1)、B (1,3)、C (2,-3),你能求出三角形ABC 的面积吗归纳:求三角形面积的关键是确定某条边及这条边上的高,如果在坐标系中,某个三角形中有一条边在坐标轴上或平行于坐标轴,则根据这条边的两个顶点的坐标易求出这边的长,根据这条边的相对的顶点可求出他的高。
二、求四边形的面积例3:如图3,你能求出四边形ABCD 的面积吗分析:四边形ABCD 是不规则的四边形,面积不能直接求出,我们可以利用分割或补形来求。
归纳:会将图形转化为有边与坐标轴平行的图形进行计算。
怎样确定点的坐标一、 象限点解决有关象限点问题的关键是熟记各象限的符号特征,由第一到底四象限点的符号特征分别为(+,+)、 (-,+)、(-,-)、(+,-)。
例1:已知点M (a 3-9,1-a )在第三象限,且它的坐标都是整数,则a =( ) A 、1 B 、2 C 、3 D 、0二、轴上的点解决有关轴上点问题的关键是把握“0”的特征,x 轴上点的纵坐标为0,可记为(x ,0);y 轴上点的横坐标为0,可记为(0,y );原点可记为(0,0)。
例2:点P (m+3,m+1)在直角坐标系的x 轴上,则P 点的坐标为( ) A 、(0,-2) B 、(2,0) C 、(4,0) D 、(0,-4)三、象限角平分线上的点所谓象限角平分线上的点,就是各象限坐标轴夹角平分线上的点。
解决这类问题的关键是掌握“y x =”的特征,一、三象限角平分线上点的横、纵坐标相等,可记为(x ,x );二、四象限角平分线上的点横、纵坐标互为相反数,可记为(x ,-x )。
例3:已知点Q (8,4m 222++++m m m )在第一象限的角平分线上,则m=_________.四、对称点对称点的横、纵坐标之间有很密切的关系,点P (a ,b )关于x 轴对称的点的坐标上(a ,-b );关于y 轴对称的点的坐标是(-a ,b );关于原点对称的点的坐标是(-a ,-b );关于一、三象限角平分线对称的点的坐标是(b ,a );关于二、四象限角平分线对称的点的坐标是(-b,-a ). 例4:点(-1,4)关于原点对称的点的坐标是( )A、(-1,-4)B、(1,-4)C、(1,4)D、(4,-1)五、平行于坐标轴的直线上的点平行于x轴的直线上点的纵坐标相同,平行于y轴的直线上点的横坐标相同。
平面直角坐标系面积问题介绍平面直角坐标系是数学中常见的一种坐标系,由两条相互垂直的数轴组成。
在平面直角坐标系中,我们可以通过坐标点的位置来描述平面上的几何图形。
而面积问题则是研究平面上各种几何图形的大小。
本文将介绍平面直角坐标系中常见的几何图形,并讨论如何计算这些图形的面积。
我们将重点关注矩形、正方形、三角形和圆形这四种常见几何图形。
矩形矩形是平面上最简单的几何图形之一,由四条边和四个顶点组成。
在平面直角坐标系中,我们可以用两个对角顶点的坐标表示一个矩形。
矩形的面积计算公式为:A=l⋅w,其中A表示矩形的面积,l表示矩形的长度,w表示矩形的宽度。
对于一个顶点坐标为(x1,y1)和(x2,y2)的矩形,其长度l=|x2−x1|,宽度w=|y2−y1|。
根据上述公式可以计算出矩形的面积。
正方形正方形是一种特殊的矩形,其四条边长度相等且四个角均为直角。
在平面直角坐标系中,我们可以用一个顶点和边长表示一个正方形。
正方形的面积计算公式为:A=s2,其中A表示正方形的面积,s表示正方形的边长。
对于一个顶点坐标为(x,y)的正方形,其边长s可以通过计算两个对角顶点之间的距离得到。
然后根据上述公式可以计算出正方形的面积。
三角形三角形是平面上最基本的几何图形之一,由三条边和三个顶点组成。
在平面直角坐标系中,我们可以用三个顶点的坐标表示一个三角形。
三角形的面积计算公式有多种,下面介绍两种常用方法。
海伦公式海伦公式适用于已知三边长度的情况。
假设三边长度分别为a、b和c,则三角形的半周长s=a+b+c。
三角形的面积A可以通过以下公式计算:2A=√s⋅(s−a)⋅(s−b)⋅(s−c)矢量叉积法矢量叉积法适用于已知三个顶点坐标的情况。
假设三个顶点的坐标分别为(x1,y1)、(x2,y2)和(x3,y3),则三角形的面积A可以通过以下公式计算:A=12|(x1y2+x2y3+x3y1)−(y1x2+y2x3+y3x1)|圆形圆形是平面上最常见的几何图形之一,由一个圆心和半径组成。
图1
图2
图3
平面直角坐标系中如何求几何图形的面积
一、 求三角形的面积
1、有一边在坐标轴上或平行于坐标轴
例1:如图1,平面直角坐标系中,△ABC 的顶点坐标分别为(-3,0)、(0,3)、(0,-1),你
能求出三角形ABC 的面积吗
2、无边在坐标轴上或平行于坐标轴
例2:如图2,平面直角坐标系中,已知点A (-3,-1)、B (1,3)、C (2,-3),你能求出三角形ABC 的面积吗
归纳:求三角形面积的关键是确定某条边及这条边上的高,如果在坐标系中,某个三角形中有一条边在坐标轴上或平行于坐标轴,则根据这条边的两个顶点的坐标易求出这边的长,根据这条边的相对的顶点可求出他的高。
二、求四边形的面积
例3:如图3,你能求出四边形ABCD 的面积吗
分析:四边形ABCD 是不规则的四边形,面积不能直接求出,我们可以利用分割或补形来求。
归纳:会将图形转化为有边与坐标轴平行的图形进行计算。
怎样确定点的坐标
一、 象限点
解决有关象限点问题的关键是熟记各象限的符号特征,由第一到底四象限点的符号特征分别为(+,+)、 (-,+)、(-,-)、(+,-)。
例1:已知点M (a 3-9,1-a )在第三象限,且它的坐标都是整数,则a =( )
A 、1
B 、2
C 、3
D 、0
二、轴上的点
解决有关轴上点问题的关键是把握“0”的特征,x 轴上点的纵坐标为0,可记为(x ,0);y 轴上点的横坐标为0,可记为(0,y );原点可记为(0,0)。
例2:点P (m+3,m+1)在直角坐标系的x 轴上,则P 点的坐标为( )
A 、(0,-2)
B 、(2,0)
C 、(4,0)
D 、(0,-4)
三、象限角平分线上的点 所谓象限角平分线上的点,就是各象限坐标轴夹角平分线上的点。
解决这类问题的关键是掌握“y x =”的特征,一、三象限角平分线上点的横、纵坐标相等,可记为(x ,x );二、四象限角平分线上的点横、纵坐标互为相反数,可记为(x ,-x )。
例3:已知点Q (8,4m 22
2++++m m m )在第一象限的角平分线上,则m=_________.
四、对称点
对称点的横、纵坐标之间有很密切的关系,点P (a ,b )关于x 轴对称的点的坐标上(a ,-b );关于y 轴对称的点的坐标是(-a ,b );关于原点对称的点的坐标是(-a ,-b );关于一、三象限角平分线对称的点的坐标是(b ,a );关于二、四象限角平分线对称的点的坐标是(-b,-a ).
例4:点(-1,4)关于原点对称的点的坐标是( )
A 、(-1,-4)
B 、(1,-4)
C 、(1,4)
D 、(4,-1)
五、平行于坐标轴的直线上的点
平行于x 轴的直线上点的纵坐标相同,平行于y 轴的直线上点的横坐标相同。
例5:点A(4,y)和点B (x ,-3),过A 、B 的直线平
行于x 轴,且AB=5,则x=____,y=_____.。