折扣导学案
- 格式:doc
- 大小:37.00 KB
- 文档页数:3
襄阳市第四十四中学六年级数学(下)二单元导学案01
课题:折扣课型:新知探究课课时:一课时
学习目标:1、我能在商品打折销售的情境中理解“折扣”的意义。
2、我能掌握折扣和百分数的关系,会解决有关折扣的实际问题。
教学重点:理解“折扣”的意义,会解答有关折扣的实际问题。
当堂测评分层达标
落实基础★
1、判断下列说法对吗?
(1)一本《趣味数学》原价10元,现在打六折,表示便宜了60%。
()
(2)打三七折,表示现价是原价的37%。
()
(3)商品打折扣都是以商品原价格为单位“1”的。
()
2、把折扣数化成百分数。
五折()六折()八八折()
七五折()九五折()六五折()
3、说一说下面每种商品是打几折出售的。
①一辆汽车按原价的90%出售,打了()折。
②一座楼房按原价的96%出售,打了()折。
③一种橡皮买一送一,相当于打了()折。
4、商品现价= ()×()
发展能力★★
5、羽绒服打折促销期间,王阿姨花了520元钱买了一件六五折的羽绒服,这件羽绒服原价是多少钱?
6、海尔冰箱,原价4800元,现价4560元,现在这款冰箱打几折出售?
7、一个书包八折销售,便宜10元,原价多少钱?
提升素养★★★
8、一个电饭煲,原价120元,现在八八折出售。
现在的售价是多少元?便宜了多少元?
9、某商场元旦期间全部商品打八折优惠,小明有会员卡,还可以再打九折优惠,小明现在要买一套价格为300元的运动服,小明要花多少钱?。
人教版数学六年级下册折扣导学案3篇〖人教版数学六年级下册折扣导学案第【1】篇〗教学目标:1、使学生懂得商业打折扣和求农业增产数的应用题的数量关系,与“求一个数的百分之几是多少”应用题的数量关系相同,并能正确解答这些应用题。
2、提高学生能自觉运用学到的数学知识解决生活实际的意识,培养问题解决的能力。
教学重点:在理解“折扣”意义的基础上,懂得求折扣应用题的数量关系与“求一个数的几分之几是多少”的应用题数量关系是相同的',并能正确计算。
教学难点:能应用这个知识解决生活中的相关问题。
教具准备:课件教学过程:一、情景引入,学习新知。
1、师:同学们,国庆这几天玩得高兴吗?大家一定都出去走了一圈吧?那萧山新开的一家书店,有没有去过?那天我也去凑了下热闹。
一到门口,就看到这样一张海报。
(电脑出示)好消息:萧山书城将给爱书之人优惠的折扣:10月1—3日,全场图书一律八折优惠师问:读了这则消息,你有什么想法?你是怎样理解“一律八折优惠”的?(表示现价是原价的80%。
)看了这则好消息你有没有心动呢?我当时就挺心动的,淘宝的时机来了。
我就选了自己喜欢的两本书,《网页制作》(原价49.00元),《细节决定成败》(原价24.80元)师:现在,我想考考你们,这本《网页制作》打了八折以后,只要付多少钱就够了。
请你做一回售货员算一算。
2、学生尝试练习。
3、讨论解题思路:师:好,我们来讨论一下,你是怎样理解的?它是把什么数看作单位“1”?求现在售价是多少元就是求什么?分析:“八折”是现价是原价的80%,也就是求49元的80%是多少,所以用乘法计算,算式是:48×80%=49×0.8=39.2(元)还可以怎样思考?(可能出现)(把49元分成10份,付其中的八份,就是原价的八折,算式是:49÷10×8=39.2(元)4、你认为哪种解题思路容易理解?它们的基本数量关系怎样?得出基本数量关系:现价=原价×折扣5、你能用刚才的解题方法算一下另外的一本书应付多少钱吗?6、你在生活中遇到过这样的事情吗?(学生举例)二、联系实际,巩固新知。
折扣(导学案)青岛版六年级下册数学一、学习目标•了解什么是折扣;•能够计算出商品的折扣价格;•能够解决文化衫五折出售等折扣问题。
二、学习重点•折扣的概念;•如何计算折扣价。
三、基础知识在生活中,我们经常遇到一些商品打折销售的情况。
简单来说,折扣就是商品在原价的基础上,以一定比例降价出售,其中原价也就是商品实际的价格,降价后的价格就是折扣价。
四、学习方法•观察和理解教材上的例题;•认真听取老师课堂上的讲解;•看图认识问题,思索应用。
五、课堂练习实例1假设在超市里,某款牙刷原价为6元,现以八折优惠的价格进行销售,请问现在牙刷的售价是多少?实例2某电影院正在进行一项“魔幻六月”促销活动,该活动规定,6月内每天18:00前,一张电影票的价格为32元,18:00之后及周末票价为原价48元。
请问黎明大厦电影院6月18日下午三点钟购买影票的价格为多少元?实例3某商场举办了“家电五折”活动,你的姐姐决定去买一台原价为2,800元的电视,那么经过打五折后的价格是多少元?实例4同学们学校内有一个“文化衫五折出售”的活动,某款文化衫原价为38元,这次活动打五折出售。
请问这件文化衫现在的售价是多少元?六、作业1.计算:原价为520元,打八折的折扣价是多少?2.计算:原价为68元,打六折的折扣价是多少?3.计算:原价为2,500元,打八五折的折扣价是多少?4.计算:原价为360元,打四折的折扣价是多少?5.计算:原价为189元,打六五折的折扣价是多少?七、总结通过学习,我们掌握了什么是折扣,了解了如何计算折扣价;这些知识在现实中会有很大的应用,我们在以后的生活中,可以购买到更加实惠的商品。
六年级上册数学导学案-5.4 折扣|冀教版一、知识梳理1.折扣的概念折扣是指在定价的基础上商家降低商品价格的行为,通常以百分数形式呈现,如某商品打5折,即商品价格减少了原价的50%。
2.折扣的公式及意义设原价为P,折扣为d%,则折后价格为P × (1-d/100),可以约简为P×0.(100-d)/100,这个式子也被称为打折公式。
打折公式的意义是将原价减去一定百分比的数值作为折扣,得到的差值是折扣金额,最终的折后价格就是原价减去折扣金额。
3.使用打折公式进行计算当我们知道商品原价和折扣数值时,可以直接使用打折公式计算出折后价格,例如:某商品原价为500元,打8折,则折后价格为500 × (1-8/10) = 400元。
当我们知道商品原价和折后价格时,可以通过设x表示折扣数值,利用等式P × (1-x/100) = 折后价格进行解方程求解x,算出实际折扣数值。
4.折扣的特殊计算方式有时商家会采用特殊的折扣方式,例如“满减”、“第二件半价”等,这种情况下需要根据具体情况设计相应的计算方法。
二、典型例题例1:某商场举办“满500元减100元”活动,请计算如果购买了一件原价为680元的商品,实际支付金额为多少。
解:首先需要判断该商品是否达到了满500元的条件,因为只有达到条件才可以享受减免优惠。
因为该商品原价为680元,因此不满足满500元的条件,如果直接购买,实际支付金额为680元。
例2:某广场举行打折活动,某家商店的服装打5折促销。
如果一件衣服的原价为380元,那么打折后的实际支付金额是多少?解:由于该商店的服装打5折,因此折扣数值为50%,使用打折公式可以得到该衣服的折扣金额为380 × 50% = 190元。
实际支付金额为380 - 190 = 190元。
三、拓展思考1.某商品原价为P元,现在商家按照“第二件半价”的方式进行促销,如果买两件该商品,实际支付金额为多少?2.在某超市购买了3件商品,前两件商品原价分别为120元和240元,第三件商品享有6折折扣,实际支付金额为250元,求该第三件商品的售价。
折扣教学设计表学科:数学年级:六年级册次:下学校:教师:课题折扣(P8例1)课型新授课计划学时1教学内容分析例1以爸爸和小雨在商店买打折商品的具体情境,引出求商品的折后价和便宜了多少钱的实际问题,实际上就是解决求一个数的百分之几是多少和求比一个数少百分之几的数是多少的问题。
承前启后分数与百分数的互化、百分数的意义→折扣问题→解决实际问题教学目标1.理解折扣的意义,了解折扣在日常生活中的应用。
2.体会打折问题和百分数问题的内在联系,能正确解答有关折扣的问题。
3.在探究解决问题的方法的过程中进一步提高收集、分析和处理信息的能力以及运用所学知识解决实际问题的能力。
重难点重点:理解折扣的意义,能够解决有关折扣的实际化解措施联系实际,知识迁移我们就从数学的角度深入研究打折的有关知识。
二、合作交流,探究新知。
(20分钟)1.教学折扣的含义及把折扣改写成百分数。
(1)课件出示几组数据,引导学生想一想:这几件商品原价与现价有什么关系?①大衣:原价1000元,现价800元。
②电风扇:原价100元,现价80元。
③钢笔:原价10元,现价8元。
(2) 建立联系:八折表示现价是原价的80%。
(3)组织学生说一1.理解折扣的含义,会把折扣改写成百分数。
(1)观看课件出示的几组数据,理解现价与原价的关系。
①大衣的现价是原价的80%。
②电风扇的现价是原价的80%。
③钢笔的现价是原价的80%。
(2)将折扣与百分数的知识初步建立联系,明确:几折表示现价是原价的十分之几,也就是百分之几十。
2. 填空。
(1)商店有时降价出售商品,叫作(打折扣销售)。
一件商品打八折出售,就是按原价的(80)%出售;打七五折出售,售价是原价的(75)%。
(2)一件商品打七折出售,售价比原价便宜了(30)%。
3. 计算下面各物品打折后的售价。
打七五折打八折说:商品打“八五折”的含义。
(4)引导学生把折扣改写成百分数。
二折=()九折=()七五折=()(5)质疑:打折后的售价比原价便宜还是贵?同样的商品,打二折便宜还是打八折便宜?2.教学求现价的折扣问题。
人教版数学六年级下册第2课折扣导学案(精推3篇)〖人教版数学六年级下册第2课折扣导学案第【1】篇〗教学内容:苏教版义务教育教科书《数学》六年级上册99页例9、练一练,第100页练习十六第7-10题。
教学目标:1.让学生理解商品打折出售的含义,学会列方程解答“已知一个数的百分之几是多少求这个数”的实际问题,理解不同形式的有关打折的简单问题之间的联系,会解答此类问题。
2.让学生在学习过程中进一步体会列方程解答实际问题的价值和意义,进一步培养模型思想,进一步体会数学与现实生活的联系,增强数学应用意识,提高分析问题、解决问题的水平。
教学重点:理解折扣含义,学会列方程解答简单的百分数实际问题教学难点灵活运用数量关系解决关于折扣的不同实际问题教学准备多媒体课件教学过程一、认识打折谈话:最近我们学习了有关纳税、利息等问题,这些问题都是百分数在现实生活中的应用。
这节课我们继续学习百分数在现实生活中的应用,就是关于商品打折问题。
(板书课题)你们遇到过商品打折出售的问题吗?能把你所了解的有关知识介绍给大家吗?问:打“八折”是什么意思?打“八三折”呢?谈话:现在大家了解了打折的意义,下面我们就来研究有关打折的实际问题。
二、教学例题1.审题仔细审题。
下面我们就一起来看例4的场景图。
提问:你知道“所有图书一律打八折销售”是什么意思吗?在学生回答的基础上指出:把商品减价出售,通常称做“打折”。
打八折就是按原价的80%出售,打“八三折”就是按原价的83%出售。
2.探索解法。
提出例4中的问题:《趣味数学》原价多少元?启发:图中的小朋友花几元买了一本《趣味数学》?这里的“12元”是《趣味数学》的现价,还是原价?在这道题中,一本书的现价与原价有是什么关系?追问:“现价是原价的80%”这个条件中的80%是哪两个数量比较的结果?比较时要以哪个数量作单位1?这本书的原价知道吗?你打算怎样解答这个问题?进一步启发:根据刚才的讨论,你能找出题中数量之间的相等关系吗?提出要求:你会根据这个相等关系列出方程吗?学生在小组里互相说一说,再在全班交流。
蓬安县罗家小学六年级上册数学导学案编制人:唐萍时间:2010 . 10课题:《折扣》NO.5-6班级姓名小组小组评价教学目标:1.明确折扣的含义,能熟练地把折扣写成分数、百分数。
2.正确解答有关折扣的实际问题。
3.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。
教学重点:会解答有关折扣的实际问题。
教学难点:合理、灵活地选择方法,解答有关折扣的实际问题。
一、自主学习1、调查节日期间各商家搞了哪些促销活动?说说他们是怎样进行促销?(汇报调查情况。
)二、合作探究1.理解折扣的含义,会把折扣改写成百分数。
(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?还可以举出哪些例子来?(2)老师也搜集到某商场打七折的售价标签如下:①大衣,原价:1000元,现价:700元。
②围巾,原价:100元,现价:70元。
③毛衣:原价300元,现价:210元。
④橡皮,原价:1元,现价:?⑤铅笔盒,原价:10元,现价:?(3)动脑筋想一想:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?(5)讨论,找规律。
学生汇报寻找的方法:利用计算器,原价乘以70%恰好是标签的售价;或现价除以原价大约都是70%;或查书,等等。
(6)归纳,得定义。
打折的含义是什么?“几折”就表示(),也就是()。
(7)练习。
①四折是十分之(),改写成百分数是()。
②六折是十分之(),改写成百分数是()。
③七五折是十分之(),改写成百分数是()。
④八八折是十分之(),改写成百分数是()。
2.运用折扣含义解决实际问题。
例4:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。
买这辆车用了多少钱?1、(理解打八五折怎么理解?是以谁为单位“1”?)(思考:这个题目如果转化为分数应用题或者是百分数应用题应该如何理解?)2、学生列式计算三、巩固练习:(1)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?(2)、判断题①商品打折扣都是以原商品价格为单位“1”,即标准量。
《折扣》导学案【学习内容】六年级数学上册教材第8页,折扣。
【学习目标】1.我能理解“折扣”的含义,能明白折扣应用题的数量关系与“求一个数的百分之几是多少”的应用题相同。
并能正确地解答这类应用题。
2. 我能正确地解答有关“折扣”的实际问题。
3.我要培养勤于思考、勇于探索的优良品质。
【学习过程】一、自主学习1、认真学习课本8页的第一段话,回答问题。
(1)什么是打折?(2)几折就表示(),也就是()。
(3)九折是十分之(),写成百分数是()。
(4)八五折=()%,八五折表示()是()的()%。
二、合作探究1、爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。
(1)买这辆车应付多少钱?想:八五折表示()是()的()%,把()看作单位“1”,求买这辆车多少钱,就是求()的()%是多少元。
尝试:列式解答:讨论:列式理由。
求现价基本数量关系式:现价=折扣应用题的数量关系与“求一个数的百分之几是多少”的应用题的联系。
(2)买这辆车比原价便宜了多少钱?想:现价比原价便宜()%。
尝试:求“比原价便宜多少钱”你有几种解决的方法?请写下来。
讨论:解题思路三、展示提升1、小组展示探究内容2、争当优秀售货员百草园“迎接新学期图书文具全场六折”。
●亮亮买一本《数学趣味故事》,比原来便宜8元,《数学趣味故事》原价是多少元?3拓展提升争当理财小能手甲商场搞促销,服饰类满300元减120元现金;乙商场服饰类打六五折。
(1)如果妈妈想买一件相同的标价400元的外衣,请你帮助她选择从哪个商场买呢? (2)如果爸爸想买一件相同的标价600元的外衣,请你再帮助爸爸选择从哪个商场买呢?。
五年级下册数学导学案-3.3 折扣问题|青岛版(五四学制)一、知识梳理1. 什么是折扣?折扣,简单地说,就是商品标价和售价之间的差额,也就是所谓的优惠价格。
在商场购物时,我们会发现很多商品的标价上面会加一个“折”字,比如打七折、打五折等等,这就是一些商家为了促销而采取的一种营销方式。
2. 如何计算折扣?一般来说,折扣是作为商品标价的百分比展示的,使用折扣的时候需要将标价乘以相应的折扣数,然后减去这个结果,就可以得到最终的售价。
例如,某件商品原价为100元,打七折后的售价应该是70元,计算方法如下:70 = 100 × 0.7除此之外,有时候商家还会采取其他的促销方式,比如满减,这种情况下计算方法会稍微有些不同。
3. 如何解决折扣问题?对于折扣问题,我们需要从两个角度去思考:一是如何计算折扣后的价格,二是如何求出折扣率或者原价。
在实际的折扣问题中,我们通常会被给定一些限制条件,比如售价、折扣率、折扣后的价格等,需要利用这些条件去解决问题。
具体操作上,可以采用换元法,将折扣率或者原价设为未知数,然后列方程求解即可。
二、探究实践1. 题目描述小明在商场看中了一件衣服,标价为198元,商场正在举行打八折的促销活动,小明决定买下它,请问小明需要付多少钱?2. 分析解决根据题目描述,我们可以知道衣服的标价为198元,折扣率为八折,也就是80%,现在需要求出折扣后的售价。
根据上面的知识梳理,我们可以进行如下操作:•将原价设为x元,则折扣后的售价为0.8x元。
•原价和售价的差额为折扣,也就是x - 0.8x = 0.2x元。
•根据题目描述,原价为198元,则可以列出方程:0.2x = 198。
•求解得,x = 990元,也就是衣服的原价为990元,小明需要支付的价格为792元。
所以,小明需要付792元钱购买这件衣服。
3. 拓展延伸折扣问题主要考察的是解决实际问题的能力,一些高级的折扣问题可能存在多个未知数或者多个方程的情况,需要综合运用各种数学知识才能求解。
人教版数学六年级下册折扣导学案(推荐3篇)人教版数学六年级下册折扣导学案【第1篇】教学内容:教学目标:1、使学生在理解“折扣”含义的基础上,明白有关折扣的应用题的数量关系与“求一个数的百分之几是多少”的应用题的数量关系相同,能正确列式计算。
2、能从生活中获取信息,解决实际问题,增强应用数学的意识。
教学重点:理解“折扣”的含义,懂得求折扣应用题的数量关系与“求一个数的几分之几或百分之几是多少”是相同的。
教学难点:独立分析,找准分析方法。
教学过程:一、导入师:每当过年过节或者换季、店庆的时候,商店都会搞些促销活动。
现在请你汇报一下你在商店调查的情况。
二、新课1、教学折扣的含义,会把折扣数改写成百分数。
(1)揭示课题。
师:刚才大家调查到的打折是商家常用的手段,是一个商业用语。
那么,你调查的打折是什么意思?比如说打“七折”,你怎么理解?学生回答。
师:你们举的例子都很好,老师也收集到商场打七折的部分商品信息。
出示:大衣,原价:1000元,现价:700元围巾,原价:100元,现价:70元铅笔盒,原价:10元,现价:?元橡皮,原价:1元,现价:?元师:动脑筋想一想,如果原价是10元的铅笔盒打七折,现价是多少?如果原价是1元的橡皮打七折,现价是多少?学生回答。
师:仔细观察,商品打七折时,现价与原价有一个什么样的关系?可以同桌相互讨论下。
(2)找规律。
学生汇报讨论结果。
现价是原价的70%。
师:70%你是怎么得来的?(700÷1000=70%,70÷100=70%……)(3)归纳概括。
师:谁能说说打七折是什么意思?打八折是什么意思?打九折呢?打八五折呢?师:概括地讲,打折是什么意思?分母是10的分数,该怎样表示?小结:商店有时降价出售商品,叫做打折扣销售,通称“打折”。
几折就表示十分之几,也就是百分之几十。
(4)练习。
①四折是十分之(),改写成百分数是();八二折改写成百分数是()。
②商品打八折出售,就是按原价的()%出售,也就是降价()%;打七五折出售,就是按原价的()%出售,也就是降价()%。
铁山中心小学何逸春1.本单元内容是在学生理解百分数的意义,掌握分数四则混合运算,能用分数四则运算解决实际问题,会解决一般性的实际问题的基础上进行教学的。
本单元主要涉及折扣、成数、税率、利率等百分数的特殊应用,使学生进一步了解百分数在生活中的具体应用,提升灵活应用数学知识的能力。
2.通过本单元的学习,学生能够进一步体会百分数与分数间的内在联系,学习中,学生利用迁移、比较、推理,进一步巩固涉及到分数的相关数量关系。
1.使学生理解折扣、成数、税率、利率的含义,知道它们在生活中的应用,会进行相关计算。
2.使学生联系已有的知识和经验进行分析、比较、抽象、概括、归纳、推理等活动,提高解决有关百分数的实际问题的能力。
3.使学生感受数学知识和方法的应用价值,获得成功的体验,增强学习数学的兴趣和信心。
(1)折扣 1课时(2)成数 1课时(3)税率 1课时(4)利率 1课时(5)解决问题 1课时(6)单元核心知识归纳与易错警示 1课时(7)综合与实践生活与百分数 1课时本单元的教学内容与生活息息相关。
教学中,可以尝试开放式的教学过程。
课前,可让学生进行相关知识的调查,课堂中,通过小组交流,总结利息、税款的求法,培养学生综合应用数学的能力。
第1课时折扣教学内容教材第8页例1。
玉壶存冰心,朱笔写师魂。
——冰心《冰心》◆教学目标知识与技能1.能正确理解折扣的意义,了解折扣在日常生活中的应用。
2.理解原价、现价和扣之间的关系,能解决生活中和折扣有关的问题。
过程与方法在探究解决实际问题的过程中,培养学生观察、分析、推理、概括的能力以及能灵活运用所学知识解决实际问题的能力。
情感态度与价值观在合作交流的过程中进一步提高独立思考、自觉检验的习惯,体会数学与实际生活的联系,感受数学的魅力,增强学好数学的信心。
重点、难点重点理解折扣的含义,并运用百分数的知识解决有关折扣的实际问题。
难点理解折扣和百分数的内在联系。
教法与学法教法通过生活情境引出折扣问题,再通过一系列有关折扣的习题巩固学对折扣的理解及应用。
人教版数学六年级下册折扣导学案推荐3篇〖人教版数学六年级下册折扣导学案第【1】篇〗一、教学目标【知识与技能】理解折扣的含义(数感),了解折扣在生活中的应用(应用意识),能将折扣转化成百分数从而正确计算商品打折后的价格及折扣优惠(运算能力)。
【过程与方法】在利用折扣与百分数的关系分析并解决生活中的实际问题的过程中(应用意识),不断提升数学思维和解决问题的能力。
【情感态度价值观】感受数学与生活的联系,体会可以利用数学知识解决实际问题(应用意识),激发学习数学的兴趣。
二、教学重难点【重点】用数学语言描述生活中的折扣,利用折扣与百分数的关系解决实际问题。
【难点】理解折扣与百分数的关系及如何选择合适的方式解决实际问题。
三、教学过程(一)导入新课提出问题:节假日或者周年庆时,商家会促销商品,大家都见过哪些促销手段?(降价、打折、买一送一、满减活动等)教师引导:刚刚有同学提到了打折,打折有什么含义?折后商品的价格如何计算?这节课我们就一起学习一下跟打折有关的数学问题——《折扣》(板书课题)。
(二)讲解新知1.折扣与百分数的联系出示主题图:百货商城店庆五周年,电器九折,其他商品八五折。
提出问题:①根据生活经验,谁能说说图片中的九折是什么含义?此时学生会有两种答案:有同学认为九折就是按原价的十分之九出售,也有同学认为九折就是按原价的十分之一出售。
教师明确:九折就是按原价的十分之九出售,也就是按原价的90% 出售。
教师引导:九折就是十分之九,也就是百分之九十,那么,几折是十分之多少?百之多少呢?(几折就是十分之几,也就是百分之几十)教师总结:商店有时候会降价出售商品,叫做打折扣销售,俗称“打折”。
比如:电器九折,指的是电器的折扣是九折,也就是按原价的 90%销售。
继续提问:其他商品八五折是什么含义?此时学生可以会有些疑惑,教师顺势引导八五折就相当于 8.5 折。
教师提出新的问题:①能否根据九折的含义,说出 8.5 折是原价的百分之几吗?( 85% )。
人教版数学六年级下册第2课折扣导学案(优选3篇)〖人教版数学六年级下册第2课折扣导学案第【1】篇〗【教材分析】《折扣》选自人教版教科书数学六年级上册第二五单元《百分数》,是教材新增加的一个内容。
折扣是商品经济中经常使用的一个概念,与日常生活密切相关,是百分数在生活中的具体应用。
教材通过设置商场店庆,商品打折销售情景引入“折扣”,说明打折的含义,指出:几折就是十分之几,也就是百分之几十。
然后通过例1教学与折扣有关的实际问题,让学生在理解“折扣”的基础上自主解决问题。
【教学目标】1、感知“打折”在生活中的应用,学生理解打折的意义,计算方法与“求一个数的百分之几是多少”应用题的数量关系相同,培养学生初步的问题意识。
2、培养学生根据实际情况选择最佳方案与策略的能力,提高运用所学知识解决实际问题的能力。
3、提高学生能自觉运用学到的数学知识解决生活实际的意识,学会用数学的眼光来看待周围的事物,感受数学的魅力。
【教学重点】在理解“折扣”意义的基础上,懂得求折扣应用题的数量关系与“求一个数的几分之几是多少”的应用题数量关系是相同的,并能正确计算。
【教学难点】学会合理、灵活地选择方法来解决相关的实际问题。
【教学过程】一、创设情境,激发兴趣师:同学们,问一个问题,会花钱吗?花钱容易吗?花钱时遇到过各种促销活动。
你看到了哪些促销方式?看图片是哪种促销活动,打折。
打折是商家常用的一种促销手段,今天我们就一起来学习关于打折的知识。
板书课题:折扣问题二、联系实际,理解新知1、认识“打折”。
师:看图上打六折的足球,你们想知道些什么呢?六折表示多少?2、教师出示实例。
引导学生总结出“六折”的含义“六折表示十分之六,也就是现价是原价的百分之六十,现价比原价便宜了百分之四十。
”填空,七折表示___是___的___%三折表示___是___的___%3、小结。
几折就表示十分之几,也就是百分之几十。
理解百分之几十的数量关系4、看图上打七五折足球,七五折就是现价是原价的百分之七十五,现价比原价便宜了百分之二十五。
《购物中的折扣问题》导学案一、教学目标1. 让学生了解折扣的概念,掌握折扣的计算方法。
2. 培养学生运用折扣知识解决实际购物问题的能力。
3. 培养学生的数学思维和逻辑推理能力。
二、教学内容1. 折扣的概念及计算方法。
2. 折扣在购物中的应用。
三、教学重点与难点1. 教学重点:折扣的计算方法。
2. 教学难点:运用折扣知识解决实际购物问题。
四、教学过程1. 导入新课通过提问方式引导学生回顾以前学过的购物知识,为新课的学习做好铺垫。
2. 讲解折扣的概念(1)介绍折扣的定义,让学生明确折扣的含义。
(2)通过实例讲解折扣的计算方法。
3. 案例分析(1)呈现购物场景,让学生分析折扣在购物中的应用。
(2)引导学生运用折扣知识解决实际问题。
4. 小组讨论(1)分组讨论,让学生在小组内分享折扣知识的应用。
(2)小组代表发言,总结讨论成果。
5. 巩固练习(1)设计购物场景,让学生运用折扣知识进行计算。
(2)针对学生的错误,进行讲解和指导。
6. 课堂小结对本节课所学内容进行总结,强调折扣的计算方法和应用。
7. 作业布置(1)完成教材中的练习题。
(2)预习下一节课的内容。
五、教学反思通过本节课的教学,让学生掌握折扣的概念和计算方法,并能将其应用于实际购物问题。
在教学过程中,要注意关注学生的学习情况,针对学生的错误进行讲解和指导,确保学生对折扣知识的理解和运用。
六、板书设计1. 折扣的概念及计算方法2. 折扣在购物中的应用七、课后拓展1. 让学生在家中与家长一起讨论折扣知识的应用。
2. 鼓励学生收集生活中的折扣信息,进行分享和交流。
八、教学评价1. 课堂表现:观察学生在课堂上的参与程度、发言情况等。
2. 练习完成情况:检查学生练习题的完成情况,了解学生对折扣知识的掌握程度。
3. 课后反馈:了解学生对本节课的收获和困惑,为下一节课的教学提供参考。
九、教学资源1. 教材:六年级下册数学人教版2. 练习题:教材配套练习题3. 教学课件:根据教学内容制作课件,辅助教学。
六年级下册数学导学案第二单元折扣人教新课标①大衣:原价1000元,现价800元。
②电风扇:原价100元,现价80元。
③钢笔:原价10元,现价8元。
(2) 树立联络:八折表示现价是原价的80%。
(3)组织先生说一说:商品打〝八五折〞的含义。
〔4〕引导先生把折扣改写成百分数。
二折=〔〕九折=〔〕七五折=〔〕〔5〕质疑:打折后的售价比原价廉价还是贵?异样的商品,打二折廉价还是打八折廉价?2.教学求现价的折扣效果。
(1)课件出示教材第8页例1第1小题。
〔2〕指点先生剖析题意:怎样了解打〝八五折〞?谁是单位〝1〞?〔3〕引导先生尝试处置,全班交流。
3.教学打折后节省多少钱的效果。
〔1〕课件出示教材第8页例1第2小题。
〔2〕组织先生尝试自行处置效果。
〔3〕展现、交流做法。
80%。
②电风扇的现价是原价的80%。
③钢笔的现价是原价的80%。
〔2〕将折扣与百分数的知识初步树立联络,明白:几折表示现价是原价的十分之几,也就是百分之几十。
〔3〕小组交流,汇报:八五折表示现价是原价的85%。
〔4〕小组内讨论如何把折扣改写成百分数,并完成练习题。
〔5〕小组讨论,明白:打折后的售价比原价廉价;异样的商品,打二折比打八折廉价。
2.(1)观看课件出示的标题,读题。
〔2〕剖析题意,了解打八五折的含义,找到题中的单位〝1〞。
〔3〕小组讨论例1第1小题的解法,然后尝试独立解答,并在全班交流。
3.〔1〕观看课件出示的标题,读题,了解题意。
〔2〕尝试处置效果。
〔能够会出现两种不同的做法:先算现价,再求差;思索降价是原价的1-90%=10%〕〔3〕展现不同的做法,并说一说解题思绪。
方法一:160-160×90%=16〔元〕方法二:160×〔1-90%〕=16〔元〕售价是原价的(75)%。
(2)一件商品打七折出售,售价比原价廉价了(30)%。
3. 计算下面各物品打折后的售价。
打七五折打八折售价:45元售价:68元4.书店打七五折售书,小丽买书花了15元,她少花了多少元?15÷75%=20(元) 20-15=5(元)。
折扣、纳税、利率导学案
学习目标:通过练习,能正确熟练地解答有关折扣、纳税和利率等实际应用问题。
重点:巩固折扣、纳税和利率的知识在现实生活中的应用。
难点:熟练掌握相关的计算。
纳税问题:
1.纳税的意义:是根据国家税法的有关规定,按照一定比率把集体或个人收入的一部分缴纳给国家。
2.收入额、税率、应纳税额三者之间的数量关系
(1)应纳税额=收入额×税率
(2)收入额=应纳税额÷税率
(3)税率= 收入额
应纳税额×100% 你来判断:
(1)个人存款所得的利息不用纳税。
( )
(2)应纳税额与各种收入的比值叫做税率( )
( 3 )王叔叔说:“我付出劳动,得到工资,不需要纳税”。
( )
例1、某大型超市2008年第四季度营业额,按5%纳税。
税后余额为57万元,超市第四季度纳税多少万元?
例2、我们国家规定,公民月收入在1600元以上的要缴纳个人所得税,超出500元以内的部分纳税5%,超出500至2000元的部分纳税10%;超出2000元至5000元的部分纳税15%,小红的爸爸每月收入3500元,他每月应缴纳个人所得税多少钱?
练:祖厉大酒店平均每月营业额40万元,按规定除了按营业额的5%交纳营业税以外,还要按营业税的7%缴纳城市维护建设税。
祖厉大酒店一年应缴纳这两种税多少万元?
练: 李工程师月薪2500元,按规定超过1600元的部分必须按5%缴纳个人所得税。
李工程师每月应缴纳个人所得税多少元?
练:国家规定个人出版图书获得的稿费的纳税计算办法是(1)稿费不高于800元不纳税;(2)稿费高于800元又不高于4000元的应缴超过800元那一部分的14%的税;(3)稿费高于4000元的应缴全部稿费的11%的税。
若张老师获得一笔稿费3500元,应缴税多少元?
若陈老师获得一笔稿费并缴纳税款420元,求陈老师的这笔稿费有多少元?
若李老师获得一笔稿费,缴纳税款550元,他的稿费是多少元?
利率问题:
利息=本金×利率×时间 税后利息=利息-利息的应纳税额 国债和教育储蓄的利息不纳税 计算存入银行的钱多少利息,可以用“本金×利率×时间”这一计算利息的公式。
利息=本金×利率×时间利率=利息÷时间÷本金×100%
税款=应纳税所得额×税率税率=税款÷应纳税所得额×100%
例1.笑笑有300元钱存入银行。
整存整取一年,如果年利率按2.25% 计算,到期时可得利息多少元?练:小红的爸爸将2000元钱存入银行,存两年期整存整取,如果利息按4.68%计算,到期可得利息多少元?
例2、小明2010年1月1日把积攒的2000元钱存入银行,整存整取一年,准备到期后把税后利息捐赠给“希望工程”,支援贫困地区的失学儿童,如果年利率按2.25%计算,到期时,小明可以捐赠给“希望工程”多少元钱?
练:2010年1月爸爸将1000元存入银行,定期一年,年利率是2.25%,到期时银行扣回5%的利息税,一年到期后,爸爸可以取回本金和税后利息共多少元?
例1.
(1)一年定期的存款,月利率是0.18%,存入100元,一年到期到期后的税后利息是多少元?
(2)存300元的活期储蓄,月利率是0.16%,3个月后一共可以取回多少元?
已知利息、本金、时间,求利率,可以根据利息的计算公式,利用乘法各部分间的关系进行推导,
得出利率=利息×本金×时间,也可以把利率用x表示,以利息的公式为“等量关系”,列方程解答。
例3.2 010年1月王老师把3000元人民币存入银行,存定期5年,到期时可以获得540元的利息,
求年利率。
变一变:2010年1月小丽的妈妈把5000元钱存入银行,定期2年,到期时获得279元的利息,求年利率。
利润问题:利润= 售价- 成本利率=利润 成本
1.某商品买入价(成本)是50元,以70元售出,获得利润的百分数是多少?
2.某商品成本是50元,按40%利润出售,这件商品的售价是多少元?
3.某商品按40%利润出售,售价是70元,这件商品的成本是多少元?
打折、成数问题:
(1)几折是指现价是原价的百分之几十;几成就是十分之几。
如:“六折”的含义是指现价是原价的60%,“四成”就是“十分之四”,也就是40%(农业常用语)
(2)解决打折的问题,关键是先将打的折数转化为百分数,然后按照求比一个数多(或少)百分之几的数的解题方法进行解答
我先来:
商店促销,买四赠一,这是打()折销售。
一件毛衣打六折销售,比原价便宜了( ) %
一种商品八折出售,售价是原价的(),售价是原价的()%
例1.商店出售一种DVD,原价是400元,现在八折出售,现价比原价便宜多少元?
仿练:一台电视机原价1200元,现在商场打九折出售,这台电视机比原价便宜多少元?
例:某商品按定价的80%(八折)出售,仍能获得20%的利润,定价时期望的利润百分数是多少?
练:百货商场进了一批皮箱,按成本的20%利润定价。
由于销售不畅,商场决定按定价的八折出售,结果每只亏损9元。
问这种皮箱每只定价多少元?
练:李大爷的一块农田去年种水稻,产量是1000千克,今年该种新品种后,产量比去年增产三成,今年的产量是多少千克?
练:一个果园,去年共收苹果95吨,今年产量比去年增产二成,今年的产量是多少吨?
练:华联超市迎“五一”进行促销,百事可乐买10赠3,文峰超市也进行促销,百事可乐打七折销售,六(二)班要买40听百事可乐,在哪家超市买比较合算?
练:和平家电商场周年店庆,全场九折,友谊商场购物满1000元送100元现金。
如果买一台标价5800元的电脑,在哪家商场购买合算?
我能不能会:
1、一件商品,原价比现价少20%,现价是1028元,原价是多少元?
2.教育储蓄所得的利息不用纳税。
爸爸为笑笑存了三年期的教育储蓄基金,年利率为5.40%,到期后共领到了本金和利息22646元。
爸爸为笑笑存的教育储蓄基金的本金是多少?
3.服装店同时买出了两件衣服,每件衣服各得120元,但其中一件赚20%,另一件陪了20%,问服装店卖出的两件衣服是赚钱了还是亏本了?
4. 张平有500元钱,打算存入银行两年.可以有两种储蓄办法,一种是存两年期的,年利率是2.43%;一种是先存一年期的,年利率是2.25%,第一年到期时再把本金和税后利息取出来合在一起,再存入一年.选择哪种办法得到的税后利息多一些?。