函数概念表示
- 格式:doc
- 大小:473.50 KB
- 文档页数:4
函数的概念及表示知识点1:函数的概念1.函数的定义:一般地,设A,B是两个非空的数集,如果按某种对应法则f,对于集合A 中的每一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做从A到B 的一个函数,通常记为:y=f(x),x∈A.其中,所有的输入值x组成的集合A叫做函数y=f(x)的定义域.2.规律方法:(1)判断一个对应关系是否是函数,要从以下三个方面去判断,即A、B必须是非空数集;A 中任何一个元素在B中必须有元素与其对应;A中任一元素在B中必有唯一元素与其对应.(2)函数的定义中“每一个元素”与“有唯一的元素y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.考点1:函数的判定典型例题例1 判断下列对应f是否为从集合A到集合B的函数.(1)A=N,B=R,对于任意的x∈A,x→±x;(2)A=R,B=N*,对于任意的x∈A,x→|x-2|;(3)A={1,2,3},B=R,f(1)=f(2)=3,f(3)=4;(4)A=[-1,1],B={0},对于任意的x∈A,x→0.例2 下列从集合A到集合B的对应关系中,不能构成从A到B的函数的是________.(只填序号)①集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=x2;②集合A={x|2≤x≤3},B={y|4≤y≤7},f:x→y=3x-2;③集合A={x|1≤x≤4},B={y|0≤y≤3},f:x→y=-x+4;④集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=4-x2;⑤集合A={(x,y)|x∈R,y∈R},B=R,对任意(x,y)∈A,f:(x,y)→x+y.知识点2:函数的图像1.概念:将自变量的一个值x0作为横坐标,相应的函数值f(x0)作为纵坐标,就得到坐标平面上的一个点(x0,f(x0)),当自变量取遍函数定义域A中的每一个值时,就得到一系列这样的点,所有这些点组成的集合(点集)为{(x,f(x))|x∈A},即{(x,y)|y=f(x),x∈A},所有这些点组成的图形就是函数y=f(x)的图象.2.作函数图像的方法:(1)利用描点法作函数图象的基本步骤:求定义域→化简解析式→列表→描点→连线(2)在画定义域为某一区间的函数图象时,要注意端点值的画法,闭区间画实心点,开区间画空心圈.考点1:画函数的图象 典型例题例1 作下列函数的图象(1)y =x 2+x (-1≤x ≤1); (2)y =2x (-2≤x <1,且x ≠0).(3)y =1+x (x ∈Z); (4)y =x 2-2x ,x ∈[0,3).考点2:函数图象的识别例1 设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是________.(填序号)例2 如图所示,函数y =ax 2+bx +c 与y =ax +b (a ≠0)的图象可能是________(填序号).考点3:函数图象的应用例1 画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域;(4)若关于x的方程f(x)=k在[-1,2]内仅有一个实根,求k的取值范围.例2 若方程-x2+3x-m=3-x在x∈(0,3)内有唯一解,求实数m的取值范围.考点4:函数图像在实际问题中的应用例1 某商场销售一批进价是30元/件的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下关系(见表):(1)在所给的坐标系中,根据表中提供的数据描出实数对(x,y)对应的点,并确定y与x的一个函数关系式y=f(x);(2)设销售此商品的日销售利润为P元,根据上述关系写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?知识点3:函数的定义域1.概念:函数的定义域是指自变量x的范围2.函数定义域的求解方法:(1)若()x f为整式,则定义域为R.(2)若()x f是分式,则其定义域是分母不为0的实数集合(3)若()x f 是偶次根式,则其定义域是使根号下式子不小于0的实数的集合; (4)若()x f 是由几部分组成的,其定义域是使各部分都有意义的实数的集合; (5)实际问题中,确定定义域要考虑实际问题. 考点1:具体函数定义域求解 例1 求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-考点2:抽象函数定义域求解例1 设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;例 2 若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 .例3 已知()x f 的定义域为[]1,0,求函数()⎪⎭⎫⎝⎛++=342x f x f y 的定义域.例4 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围.知识点4:函数的值域1.概念:函数的值域指因变量y 的范围2.函数值域的求解方法: (1)观察法 (2)判别式法 (3)配方法 (4)换元法 (5)不等式法 (6)图像法 (7)分离常数法 考点1:用观察法求值域 例1 求下列函数的值域:(1)2415+-=x x y (2)123422--+-=x x x x y考点2:用配方法求值域例1 求函数242y x x =-++([1,1]x ∈-)的值域.考点3:用反解+判别式法求值域例1 求函数3274222++-+=x x x x y 的值域考点4:用换元法求值域 例1 求函数12--=x x y 的值域考点5:用不等式法求值域例1 求函数()22415≥+-=x x x y 的值域考点6:用图像法求值域 例1 求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈例2 画出函数[]5,1,642∈+-=x x x y 的图像,并根据其图像写出该函数的值域。
函数的定义及表示知识讲解一、函数1.函数的概念概念:设集合A 是一个非空数集,对A 中的任意的数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数.记作()yf x ,xA 其中x 叫做自变量.自变量取值的范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作()y f a ,所有函数值构成的集合{()}y yf x xA ,叫做这个函数的值域.2.函数的三要素:定义域,值域,对应法则3.函数的表示法1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;2)列表法:就是列出表格来表示两个变量的函数关系; 3)图象法:就是用函数图象表示两个变量之间的关系.4.求函数定义域注意事项1)分式的分母不应为零; 2)零的零次幂没有意义;3)开偶次方根的被开方数大于或者等于零; 4)对数式的真数大于零; 5)()=tan f x x 的定义域为{|}2x xk kZ ππ,;6)复合函数求定义域要保证复合过程有意义,最后求它们的交集.5.分段函数定义:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数.6.复合函数定义:若()∈,(),x a bu m n∈,那么[()]y f u=,(),=,()u g xy f x称为复合函数,u称为中间变量,它的取值范围是()g x的值域.注意:函数的定义域必须写成集合或区间的形式.二、映射,是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x在B 定义:设A B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射,这时称y是x在映射f的作用下的象,记作()f x,于是()y f xx称为y的原象,映射f也可记为::f A B()x f xf x构成的集合叫做映射f的其中A叫做映射f的定义域(函数定义域的推广).由所有象()f A.值域.通常记作()、以及对应法则,三者缺一不可;:f A B,集合A中每一个元素映射三要素:集合A B在集合B中都有唯一的元素与之对应,从A到B的对应关系为一对一或多对一,绝对不可以一对多,但也许B中有多余元素.三、函数求解析式1.换元法2.方程组法四、函数求值域1.直接法(分析观察法)2.函数单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域.3.配方法:二次函数或可转化为二次函数的函数常用此方法来还求解,但在转化的过程中要注意等价性,特别是不能改变定义域.对于形如2y ax bx c (0)a或2()[()]()F x a f x bf x c (0)a类的函数的值域问题,均可使用配方法.4.分离常数法:当分式中分子分母都函数由参数时.可以采用分离常数法.5.换元法(代数/三角):对于解析式中含有根式或者函数解析式较复杂的这类函数,可以考虑运用代数或三角代换,将所给函数化成值域简单的熟悉的容易确定的基本函数,从而求得原函数的值域. 对形如的函数,令;形如的函数,令;形如含的结构的函数,可利用三角代换,令,或令.6.判别式法:在函数定义域为R 时,把函数转化成关于的二次方程()0F x y ,;通过方程有实数根,判别式,从而求得原函数的值域.对形如21112222a xb xc ya xb xc (1a 、2a 不同时为零)的函数的值域,通常转化成关于x 的二次方程,由于方程有实根,即从而求得y 的范围,即值域.值得注意的是,要对方程的二次项系数进行讨论.注意:主要适用于定义在R 上的分式函数,但定义在某区间上时,则需要另行讨论.7.基本不等式法:利用基本不等式求函数值域, 其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值.8.数形结合法:如果所给函数有较明显的几何意义(如两点间距离,直线的斜率)或当一个函数的图象易于作出时,可借助几何图形的直观性来求函数的值域.()1y f x =()f x t=,,,,0)y ax b a b c dac =+±≠均为常数t =[]cos ,0,x a θθπ=∈sin ,,22x a ππθθ⎡⎤=∈-⎢⎥⎣⎦x 0∆≥0≥∆经典例题一.选择题(共12小题)1.(2017秋•潮南区期末)下列图形中,不能表示以x 为自变量的函数图象的是( )A .B .C .D .【解答】解:B 中,当x >0时,y 有两个值和x 对应,不满足函数y 的唯一性, A ,C ,D 满足函数的定义, 故选:B .2.(2017秋•大观区校级期中)已知集合P={x |0≤x ≤4},集合N={y |0≤y ≤2},下列从P 到N 的各对应关系f 不是函数的是( ) A .f :x→y=12xB .f :x→y=13xC .f :x→y=23xD .f :x→y=√x【解答】解:f :x→y=12x ,是函数,f :x→y=13x ,是函数,f :x→y=23x ,不是函数,4→23×4=83∉N ;f :x→y=√x ,是函数, 故选:C .3.(2017秋•定远县期中)下列各式中,表示y 是x 的函数的有( ) ①y=x ﹣(x ﹣3); ②y=√x −2+√1−x ; ③y={x −1(x <0)x +1(x ≥0) ④y={0(x 为有理数)1(x 为实数)..A .4个B .3个C .2个D .1个【解答】解:根据函数的定义,当自变量x 在它的允许取值范围内任意取一个值,y 都有唯一确定的值与之对应,故①③表示y 是x 的函数;在②中由{x −2≥01−x ≥0知x ∈∅,因为函数定义域不能是空集,所以②不表示y 是x的函数;在④中若x=0,则对应的y 的值不唯一,可以等于0,也可以等于1,所以④不表示y 是x 的函数. 故选:C .4.(2017秋•凉州区校级期末)下列四组函数中,表示同一函数的是( )A .y=x 与y=√x 2B .y=2lgx 与y=lgx 2C .y =√x 33与y=xD .y=x ﹣1与y=x 2−1x+1【解答】解:要表示同一个函数,必须有相同的对应法则,相同的定义域和值域, 观察四个选项,得到A 答案中两个函数的对应法则不同,B 选项中两个函数的定义域不同,C 选项中两个函数相同,D 选项中两个函数的定义域不同, 故选:C .5.(2017秋•鹰潭期末)下列四组函数中,表示同一函数的是( ) A .f (x )=|x |,g (x )=√x 2B .f (x )=lg x 2,g (x )=2lg xC .f (x )=x 2−1x−1,g (x )=x +1D .f (x )=√x +1•√x −1,g (x )=√x 2−1【解答】解:对于A ,∵g (x )=√x 2=|x|,f (x )=|x |,∴两函数为同一函数; 对于B ,函数f (x )的定义域为{x |x ≠0},而函数g (x )的定义域为{x |x >0},两函数定义域不同,∴两函数为不同函数;对于C ,函数f (x )的定义域为{x |x ≠1},而函数g (x )的定义域为R ,两函数定义域不同,∴两函数为不同函数;对于D ,函数f (x )的定义域为{x |x >1},而函数g (x )的定义域为{x |x <﹣1或x >1},两函数定义域不同,∴两函数为不同函数. 故选:A .6.(2018春•天心区校级期末)定义运算a*b ,a ∗b ={a(a ≤b)b(a >b),例如1*2=1,则函数y=1*2x的值域为()A.(0,1)B.(﹣∞,1)C.[1,+∞)D.(0,1]【解答】解:当1≤2x时,即x≥0时,函数y=1*2x=1当1>2x时,即x<0时,函数y=1*2x=2x1,x≥0∴f(x)={2x,x<0由图知,函数y=1*2x的值域为:(0,1].故选:D.7.(2018春•海州区校级期末)若函数y=√ax2+2ax+3的值域为[0,+∞),则a的取值范围是()A.(3,+∞)B.[3,+∞)C.(﹣∞,0]∪[3,+∞)D.(﹣∞,0)∪[3,+∞)【解答】解:由题意:函数y=√ax2+2ax+3是一个复合函数,要使值域为[0,+∞),则函数f(x)=ax2+2ax+3的值域要包括0,即最小值要小于等于0.则有:{a>0f(−1)≤0⇒{a>0a−2a+3≤0解得:a≥3所以a的取值范围是[3,+∞).故选:B.8.(2017秋•沂南县期末)若f(lnx)=3x+4,则f(x)的表达式是()A.3e x+4B.3lnx+4C.3lnx D.3e x【解答】解:设lnx=t则x=e t∴f(t)=3e t+4∴f(x)=3e x+4故选:A.9.(2017秋•潮南区期末)若f(x)满足关系式f(x)+2f(1x)=3x,则f(2)的值为()A.1B.﹣1C.﹣32D.32【解答】解:∵f(x)满足关系式f(x)+2f(1x)=3x,∴{f(2)+2f(12)=6,①f(12)+2f(2)=32,②,①﹣②×2得﹣3f(2)=3,∴f(2)=﹣1,故选:B.10.(2017秋•咸阳期末)已知函数f(x+1)=3x+2,则f(x)的解析式是()A.f(x)=3x+2B.f(x)=3x+1C.f(x)=3x﹣1D.f(x)=3x+4【解答】解:设t=x+1,∵函数f(x+1)=3x+2=3(x+1)﹣1∴函数f(t)=3t﹣1,即函数f(x)=3x﹣1故选:C.11.(2017秋•尖山区校级期末)已知f(x﹣2)=x2﹣4x,那么f(x)=()A.x2﹣8x﹣4B.x2﹣x﹣4C.x2+8x D.x2﹣4【解答】解:由于f(x﹣2)=x2﹣4x=(x2﹣4x+4)﹣4=(x﹣2)2﹣4,从而f(x)=x2﹣4.故选:D.12.(2017秋•潮南区期末)已知函数f(x)=√3x−13ax2+ax−3的定义域是R,则实数a的取值范围是()A.a>13B.﹣12<a≤0C .﹣12<a <0D .a ≤13【解答】解:由a=0或{a ≠0△=a 2−4a ×(−3)<0可得﹣12<a ≤0, 故选:B .二.填空题(共7小题)13.(2017春•陆川县校级期末)已知函数y=f (x 2﹣1)的定义域为(﹣2,2),函数g (x )=f (x ﹣1)+f (3﹣2x ).则函数g (x )的定义域为 [0,2) . 【解答】解:由函数y=f (x 2﹣1)的定义域为(﹣2,2), 得:﹣1≤x 2﹣1<3,故函数f (x )的定义域是[﹣1,3), 故﹣1≤x ﹣1<3,﹣1≤3﹣2x <3, 解得:0≤x <2,故函数g (x )的定义域是[0,2), 故答案为:[0,2).14.(2017•重庆模拟)设函数f (x )={log 2(−x2),x ≤−1−13x 2+43x +23,x >−1,若f (x )在区间[m ,4]上的值域为[﹣1,2],则实数m 的取值范围为 [﹣8,﹣1] . 【解答】解:函数f (x )的图象如图所示,结合图象易得 当m ∈[﹣8,﹣1]时, f (x )∈[﹣1,2].故答案为:[﹣8,﹣1].15.(2018•榆林三模)已知二次函数f (x )=ax 2+2x +c (x ∈R )的值域为[0,+∞),则a+1c +c+1a的最小值为 4 . 【解答】解:由题意知,a ,>0,△=4﹣4ac=0,∴ac=1,c >0,则a+1c +c+1a =a c +1c +c a +1a =(a c +c a )+(1a +1c)≥2+2√1ac =2+2=4,当且仅当a=c=1时取等号.∴a+1c +c+1a的最小值为4.16.(2017秋•南阳期中)函数f (x )=x ﹣√1−x 的值域是 (﹣∞,1] .【解答】解:设√1−x =t ,则t ≥0,f (t )=1﹣t 2﹣t ,t ≥0,函数图象的对称轴为t=﹣12,开口向下,在区间[0,+∞)上单调减,∴f (t )max =f (0)=1,∴函数f (x )的值域为(﹣∞,1].故答案为:(﹣∞,1].17.(2017秋•天心区校级期末)已知函数f (x +1)=3x +2,则f (x )的解析式是 f (x )=3x ﹣1 .【解答】解:令x+1=t,则x=t﹣1,∴f(t)=3(t﹣1)+2=3t﹣1,∴f(x)=3x﹣1.故答案为f(x)=3x﹣1.18.(2017秋•清河区校级期中)已知a、b为实数,集合M={ba,1},N={a,0},f:x→x表示把M中的元素x映射到集合N中仍为x,则a+b=1.【解答】解:∵a、b为实数,集合M={ba,1},N={a,0},f:x→x表示把M中的元素x映射到集合N中仍为x,∴1通过映射可得1∈N,解得a=1,b a →ba∈N,可得ba=0,解得b=0,∴a+b=1,故答案为1;19.(2018•开封一模)f(x)={2e x−1,x<2log3(x2−1),x≥2.则f(f(2))的值为2.【解答】解:由题意,自变量为2,故内层函数f(2)=log3(22﹣1)=1<2,故有f(1)=2×e1﹣1=2,即f(f(2))=f(1)=2×e1﹣1=2,故答案为2三.解答题(共1小题)20.(2016春•江阴市期末)已知函数f (x )满足f (x +1)=lg (2+x )﹣lg (﹣x ).(1)求函数f (x )的解析式及定义域;(2)解不等式f (x )<1.【解答】解:(1)由已知令t=x +1,则f (t )=lg (t +1)﹣lg (1﹣t ), 即f (x )=lg (x +1)﹣lg (1﹣x );由{x +1>01−x >0得到﹣1<x <1,所以函数定义域为(﹣1,1); (2)f (x )=lg (x +1)﹣lg (1﹣x )=lg 1+x 1−x <1,即{1+x 1−x <10−1<x <1,解得﹣1<x <911.。
函数的概念及其表示知识梳理1.函数的基本概念(1)函数的定义一般地,设A,B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应;那么就称:f:A→B为从集合A 到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合叫做函数的值域.(3)函数的三要素是:定义域、值域和对应关系.(4)表示函数的常用方法有:解析法、列表法和图象法.(5)分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.2.函数定义域的求法要点一、函数的概念例1、设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M 到集合N的函数关系的有()A.①②③④B.①②③C.②③D.②例2、下列四组函数中,表示同一函数的是()A.f(x)=|x|,g(x)=B.f(x)=lg x2,g(x)=2lg xC.f(x)=,g(x)=x+1D.f(x)=•,g(x)=例3、下列集合A,B及其对应法则,不能构成函数的是()A.A=B=R f(x)=|x|B.A=B=RC.A={1,2,3,4),B={2,3,4,5,6}f(x)=x+1D.A={x|x>0},B={1}f(x)=x0答案:C A B练习1、下列四个图形中不可能是函数y=f(x)图象的是()A.B.C.D.2、已知函数f(x)的定义域A={x|0≤x≤2},值域B={y|1≤y≤2},下列选项中,能表示f (x)的图象的只可能是()A.B.C.D.3、下列四组函数中的f(x)和g(x)相等的是()A.B.C.D.4、下列对应是从集合A到B的函数的是()A.A=N,B=R,对应关系f:“求平方根”B.A=N*,B=N*,对应关系f:x→y=|x﹣3|C.A=R,B={0,1},对应关系f:D.A=Z,B=Q,对应关系5、中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合M={﹣1,1,2,4},N={1,2,4,16},给出下列四个对应法则:①,②y=x+1,③y=|x|,④y=x2,请由函数定义判断,其中能构成从M到N的函数的是()A.①③B.①②C.③④D.②④要点二、函数的定义域例4、函数的定义域是()A.(1,2]B.(1,2)C.(2,+∞)D.(﹣∞,2)例5、已知函数y=f(x+1)的定义域是[﹣1,2],则函数y=f(﹣x)的定义域为()A.[﹣3,0]B.[﹣1,2]C.[0,3]D.[﹣2,1]例6、若函数y=的定义域为R,则a的取值范围为()A.(0,4]B.[4,+∞)C.[0,4] D.(4,+∞)答案: B A C 练习6、函数f (x )=+的定义域为( )A .(﹣3,0]B .(﹣3,1]C .(﹣∞,﹣3)∪(﹣3,0]D .(﹣∞,﹣3)∪(﹣3,1] 7、函数f (x )=(x ﹣5)0+(x ﹣2)的定义域为( )A .{x ∈R |2<x <5或x >5}B .{x ∈R |x >2}C .{x ∈R |x >5}D .{x ∈R |x ≠5且x ≠2}8、若函数f (x )的定义域为[1,2],则函数y=f (x 2)的定义域为( ) A .[1,4]B .[1,] C .[﹣,] D .[﹣,﹣1]∪[1,]9、若函数f (3﹣2x )的定义域为[﹣1,2],则函数f (x )的定义域是( ) A .B .[﹣1,2]C .[﹣1,5]D .10、已知函数的定义域为R ,则实数a 的取值范围是( ) A .(0, B .(﹣∞,C .,+∞)D .[1,+∞)要点三、函数的解析式例7 (1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式.(2) f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试求出f (x )的解析式(3) 定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式. (4)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.练习11、已知函数,则( )A .f (x )=x 2+2x +1B .f (x )=x 2﹣2x +3(x ≥1)C .f (x )=x 2﹣2x +1D .f (x )=x 2+2x +3(x ≥1)12、若函数f (x )满足f ()=x ,则f (x )的解析式为( )A.f(x)=(x≠1)B.f(x)=,(x≠﹣1)C.f(x)=(x≠1)D.f(x)=(x≠﹣1)13、已知函数f(x)=2x+3,若f(g(x))=6x﹣7,则函数g(x)的解析式为()A.g(x)=4x﹣10B.g(x)=3x﹣5C.g(x)=3x﹣10D.g(x)=4x+414、若函数f(x)对于任意实数x恒有3f(x)﹣2f(﹣x)=5x+1,则f(x)=.15、已知f(x)是定义在R上的奇函数,当x>0时,f(x)=+1,则f(x)=.答案:1、C 2、D 3、C 4、C 5、C 6、C 7、A 8、D 9、C 10、C 11、B 12、A 13、B 14、x+1。
一、函数的概念及其表示函数是刻画变量之间对应关系的数学模型和工具。
函数的共同特征:(1)都包含两个非空数集,用A 、B 来表示;(2)都有一个对应关系;(3)尽管对应关系的表示方法不同,但它们都有如下特性:对于数级A 中的任意一个数x ,按照对应关系,在数集B 中都有唯一确定的数y 和它对应。
事实上,除了解析式、图象、表格外,还有其他表示对应关系的方法。
为了表示方便,我们引进符号f 统一表示对应关系。
一般地,设A 、B 是非空的实数集,如果对于集合A 中的任意一个数x,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合b 的一个函数,记作().,A x x f y ∈=其中x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}A x x f ∈|叫做函数的值域。
我们所熟悉的一次函数y=kx+b ,k ≠0的定义域是R ,值域也是R 。
对应关系f 把r 中的任意一个数x ,对应到R 中唯一确定的数kx+b 。
二次函数)0(2≠++=a c bx ax y 的定义域是R ,值域是B 。
当A>0时,B=⎭⎬⎫⎩⎨⎧-≥a b ac y y 44|2;当A<0时,B=⎭⎬⎫⎩⎨⎧-≤a b ac y y 44|2。
对应关系f 把R 中任意一个数x,对应到B 中唯一确定的数)0(2≠++a c bx ax 。
由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
因为值域是由定义域和对应关系决定的,所以如果两个函数的定义域相同,并且对应关系完全一致,即相同的自变量对应的函数值也相同,那么这两个函数是同一个函数。
两个函数如果仅有对应关系相同,但定义域不相同,那么它们不是同一个函数。
函数的三种表示方法:解析法、列表法和图象法。
解析法,就是用数学表达式表示两个变量之间的对应关系;列表法,就是列出表格来表示两个变量之间的对应关系;图象法,的就是用图象表示两个变量之间的对应关系。
函数的概念及公式函数是数学中一个重要的概念,它描述了数值之间的一种关系。
函数可以理解为一种映射,它将一个集合中的每个元素映射到另一个集合中的一些元素上。
函数通常用字母f,g,h等表示,如f(x),g(x),h(x)。
其中x是自变量,它的取值决定了函数的结果。
函数的结果通常用y,f(x),g(x),h(x)等表示,它们是因变量,它们的值是自变量的函数。
函数有一般函数和特殊函数两种分类,一般函数指的是各种不同类型的函数,特殊函数是数学中特定形式或特定性质的函数,比如线性函数、幂函数、指数函数、对数函数等。
函数可以用各种不同的公式来表示,具体的公式取决于函数的类型和性质。
以下是一些常见函数的公式:1.线性函数线性函数是形如 y = ax + b 的函数,其中 a 和 b 是常数。
它的图形是一条直线,斜率为 a,截距为 b。
2.幂函数幂函数是形如 y = ax^n 的函数,其中 a 和 n 是常数,n 表示指数。
它的图形可以是直线、曲线、或者抛物线,具体形状取决于指数 n 的值。
3.指数函数指数函数是形如y=a^x的函数,其中a是常数。
它的图像通常是一个递增或递减的曲线,具体形状取决于底数a的值。
4.对数函数对数函数是指满足 y = log_a(x) 形式的函数,其中 a 是常数。
它的图像是指数函数的反函数,通常是一个递增或递减的曲线。
5.三角函数三角函数包括正弦函数、余弦函数、正切函数等,它们是描述角度和三角比之间的关系的函数。
除了以上常见的函数类型和公式,数学中还存在很多其他类型的函数,比如分段函数、复合函数、反函数、隐函数等。
每种函数都有其特点和应用领域,函数在数学中扮演了非常重要的角色。
在实际应用中,函数可以用来描述各种不同的现象和问题。
例如,经济学中可以用函数来描述供求关系、成本收益关系等;物理学中可以用函数来描述物体的运动、能量变化等。
函数的概念函数是数学中非常重要的概念,它描述了变量之间的依赖关系,帮助我们更好地理解数学中的各种关系。
本文将从函数的定义、表示、性质、运算以及实际应用等方面进行介绍。
1.函数的定义函数是一个数学表达式,它表示了一个或多个自变量的输入值与对应因变量的输出值之间的关系。
在数学中,用符号“f”表示函数,其中f后面的括号内是自变量的取值范围,而f右侧的表达式则是因变量的取值范围。
例如,一个简单的函数可以定义为y=x+2,其中x 是自变量,y是因变量。
2.函数的表示函数的表示方法有多种,包括解析法、表格法和图象法等。
解析法是用数学符号和公式来表示函数关系的一种方法,如y=x+2。
表格法是用表格形式表示函数关系的一种方法,它适用于离散变量函数,如阶跃函数等。
图象法则是用函数图象表示函数关系的一种方法,适用于连续变量函数。
3.函数的性质函数的性质包括单调性、奇偶性、周期性等。
单调性是指函数在某一区间内随着自变量的增加,因变量的值也相应增加,反之亦然。
奇偶性是指函数在原点对称或旋转对称时具有的性质。
周期性是指函数按照一定的周期重复出现的现象。
4.函数的运算函数的运算包括函数的加、减、乘、除等基本运算以及复合运算等。
函数的加、减、乘、除等基本运算可以类比于代数中的运算,而复合运算则是将两个或多个基本函数组合成一个新函数的过程。
5.函数的实际应用函数在实际生活中有着广泛的应用,例如在物理学、工程学、经济学等领域中都有函数的身影。
例如,在物理学中,牛顿第二定律F=ma就描述了力与加速度之间的关系;在经济学中,成本函数、收益函数等都是描述经济变量的重要工具;在工程学中,各种系统模型也都是用函数来描述的。
此外,函数还在计算机科学、统计学等领域中有着广泛的应用。
总之,函数是数学中非常重要的概念之一,它描述了变量之间的依赖关系,并为我们提供了分析问题、解决问题的重要工具。
通过深入理解函数的定义、表示、性质、运算以及实际应用等方面,我们可以更好地掌握函数这一重要概念,并为解决实际问题提供有力的支持。
函数及其表示方法1.函数的概念:一般的,设A ,B 是 非空实数集,如果按照某种确定的 对应关系f ,使对于集合A 中的 每一个实数,在集合B 中都有 唯一确定的实数)(x f y =和x 对应,那么就称 f 为从集合A 到集合B 的一个函数,记作 )(x f y = , 其中 x 叫做自变量,x 的取值范围A 叫做 定义域 ,与x 的值相对应的y 值叫做 函数值 ,函数值的集合 叫做函数的 值域,显然,值域是集合B 的子集。
注意: ○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x . 2.构成函数的三要素: 值域 , 定义域 , 对应关系 .3. 函数相等:若两个函数的 定义域 相同,且 对应关系 在本质上也是相同的,则称两个函数相等。
4、函数的三种表示方法(1)解析法:_用解析式把把x 与y 的对应关系表述出来,最常见的一种表示函数关系的方法。
举例:如222321,,2,6y x x S r C r S t ππ=++===等。
优点:⎩⎨⎧函数值;意一个自变量所对应的可以通过解析式求出任量间的关系;简明,全面地概括了变(2)列表法:用表格的方式把x 与y 的对应关系一一列举出来.比较少用.举例: 如:平方表,三角函数表,利息表,列车时刻表,国民生产总值表等。
优点:不需要计算,就可以直接看出与自变量的值相对应的函数值。
(3)图象法:在坐标平面中用曲线的表示出函数关系,比较常用,经常和解析式结合起来理解函数的性质.优点:直观形象地表示自变量的变化。
5、分段函数:在函数的定义域内,对于自变量x 的不同取值区间不同的对应关系,这样的函数通常叫做 分段函数 。
拓展一 判断相同函数例1、下列函数f (x )与g (x )是表示同一个函数的是? ( )A. f ( x ) = (x -1) 0;g ( x ) = 1 ;B. f ( x ) = x ; g ( x ) = 2x C .f ( x ) = x 2;f ( x ) = (x + 1) 2 、D. f ( x ) = | x | ;g ( x ) = 2x 拓展二 函数的判断例2、下列函数图像中不能作为函数y=f(x)的图像的是 ( )拓展三 求函数的定义域函数定义域的一般求法(开偶次方根,分式,零次幂)例3、(1) ()x x f 2=+()01+x (2)1()(12)(1)f x x x =-+;(3)()4f x x =-复合函数求定义域若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简而言之,所谓复合函数就是由一些初等函数复合而成的函数。
函数的概念及其表示一、什么是函数?1、函数的定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function )。
记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域(range ). 注意:1) “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”。
2) 函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,是一个数;而f()表示的是对应关系。
(用集合关系讲解)2、映射与函数函数的特殊的映射二、构成函数的三要素:定义域、对应关系和值域1、函数是一个整体“y=f(x),x ∈A .”表示一个函数。
函数=定义域+对应关系+值域2、比喻理解:定义域f −−→值域 等价于 原材料f −−→产品 一个函数就是一个完整过程,定义域是原材料、对应关系f 是生产设备、值域是生产的产品,而我们是老板,老板刷题就是从三要素出发不断地管理匹配这个生产过程3、举例说明:21,y x x R =+∈问:定义域?值域是?对应关系是?三、求函数定义域主要题型:偶次方被开方数为非负;分式的分母不为零;零次幂的底数不为零;对数真数大于零;指数对数的底数大于零且不等于1例题讲解:1、1()f x x x =-2、1()11f x x=+ 3、()f x =4、2()ln(1)f x x =- 5、()1f x x =- 四、求函数解析式1、函数的三种表达方法解析式法+图像法+列表法 因此我们可以看出解析式是函数的表达方式之一,也是我们学习过程中接触最多的。
2、函数解析式求法1) 配凑法由已知条件(())()f g x F x =,可以将()F x 改写成关于()g x 的表达式,然后以x 替代()g x 例题:已知2222(1))3x f x x ++=-,求()f x 解析式 2) 待定系数法如已知函数类型(如一次函数、二次函数)可用待定系数法例题:已知()f x 是一次函数,且满足3(1)()29f x f x x +-=+,求函数()f x 的解析式3) 换元法若已知(())f g x 的解析式,可用换元法 例题:已知2222(1))3x f x x ++=-,求()f x 解析式 4) 解方程组法已知关于()f x 与1()f x 或者()f x -与()f x 的表达式,可根据条件构造出另外一个等式,组成方程组求解例题:已知()f x +21()f x=3x ,则求()f x 的解析式。
函数的概念及表示方法一、 知识梳理1、函数:设A 、B 是两个非空的数集,如果按照某种对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一的数)(x f 和它对应,那么就称f :B A →为从集合A 到集合B 的一个函数,记作A x x f y ∈=,)(2、对于函数A x x f y ∈=,)(,其中x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}A x x f ∈叫做函数的值域。
3、函数的三要素:定义域、值域和对应关系。
4、表示函数常用的三种方法是解析法、图像法和列表法5、在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系,这样的函数通常叫做分段函数6、分段函数的定义域是各段定义域的并集,其值域是各段值域的并集二、 典例精析例1、 下列式子是否能确定y 是x 的函数?(1)222=+y x (2)111=-+-y x (3)x x y -+-=12例2、 下列各题中的两个函数相等吗?请说明理由。
(1)()2)()(x x g x x f ==, (2)3)(39)(2+=--=x x g x x x f ,例3、已知集合{}{}54321,,,,==B A ,则从A 到B 的函数)(x f 有 个例3、 求下列函数的定义域(1)21)(-=x x f (2)241)(+-∙-=x x x f (3)()x x x y -+=01 (4)213)(+++=x x x f例4、(1)若函数)(x f 的定义域为[]41,,求)2(+x f 的定义域(2)已知)1(+x f 的定义域为[]30,,求)(x f 的定义域例4、 已知函数32341++-=ax ax ax y 的定义域为R ,求实数a 取值范围变式:已知函数862++-=k kx kx y 的定义域是R ,求实数k 的取值范围例5、 求下列函数的值域:(1){}5432112,,,,,∈+=x x y (2)1+=x y (3)1+=x x y (4)2211xx y +-= (5)245x x y -+= (6)12--=x x y (7)152222++++=x x x x y例6、 函数⎪⎩⎪⎨⎧≥<<--≤+=222112)(2x x x x x x x f ,,, 中,若3)(=x f ,则x 的值为例7、 作出下列函数的图像:(1)112-+=x x y (2)122+-=x x y变式:讨论关于x 的方程)(342R a a x x ∈=+=的实数解的个数例8、 求下列函数的解析式(1) 已知)(x f 是二次函数,且1)()1(2)0(-=-+=x x f x f f ,,求)(x f(2) 已知x x x f 2)1(+=+,求)(x f(3) 已知函数x x x x x f 11)1(22++=+,求)(x f (4) 已知3)(2)(3+=-+x x f x f ,求)(x f三、 过关精炼1、下列说法中,不正确的是( )A 、函数的值域中每一个数在定义域中都有数与之对应B 、函数的定义域和值域一定是不含0的集合C 、定义域和对应法则完全相同的函数表示同一个函数D 、若函数的定义域中只有一个元素,则值域也只含有一个元素2、函数x x y 22-=的定义域为{}3210,,,,那么其值域为( ) A 、{}301-,,B 、{}3210,,,C 、{}31≤≤-y yD 、{}30≤≤y y 3、与x y =为同一个函数的是( )A 、()2x y =B 、2x y =C 、()⎩⎨⎧<->=)0(0x x x x y D 、x y = 4、若)()2(32)(x f x g x x f =++=,,则)(x g 等于( )A 、12+xB 、12-xC 、32-xD 、72+x5、一个面积为2100cm 等腰梯形,上底长为xcm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( )A 、)0(50>=x x yB 、)0(100>=x x yC 、)0(50>=x x yD 、)0(100>=x x y6、已知a a f x x f ,则,16)(13)(=+==7、函数⎪⎩⎪⎨⎧≥<≤<≤=)2(3)21(2)10(2)(2x x x x x f 的值域8、求下列函数的值域(1)x x y 422+--= (2)3222-+=x x y(3){})3210(16322,,,∈-++-=x x x x x y。
函数的基本概念函数是数学中一个非常重要的概念,广泛应用于各个领域的数学问题求解和实际生活中的应用。
在数学中,函数是指两个集合之间的一种特殊关系,它把一个集合的每一个元素都唯一地对应到另一个集合的元素上。
1、函数的定义函数可以简单地理解为一种对应关系,形式上可以表示为:f: A→B,其中A和B是两个集合,称为定义域和值域。
对于A中的每一个元素a,函数f把它映射到B中的一个唯一元素上,我们用f(a)表示这个映射后的结果。
例如,我们可以定义一个简单的函数f: ℝ→ℝ,它把实数集合映射到实数集合上,其中f(x) = x^2。
对于任意实数x,函数f会把它映射到x的平方上。
2、函数的特性函数具有一些重要的特性,例如:(1)定义域和值域:函数的定义域是指所有可以输入的元素组成的集合,值域是指函数的输出结果组成的集合。
在定义函数时,需要明确指定定义域和值域。
(2)单射性:单射性是指不同的输入元素对应不同的输出元素。
即对于函数f中的不同元素a和b,如果f(a) = f(b),则a = b。
(3)满射性:满射性是指每一个值域中的元素都有对应的定义域中的元素,即对于任意b∈B,都存在a∈A,使得f(a) = b。
(4)一一对应:一一对应是指函数同时具有单射性和满射性。
即对于函数f中的不同元素a和b,如果f(a) = f(b),则a = b,并且对于任意b∈B,都存在唯一的a∈A,使得f(a) = b。
3、函数的图像函数的图像是函数的可视化表示方式,它可以帮助我们更直观地理解函数。
函数的图像通常是在笛卡尔坐标系中绘制的,横坐标表示定义域的元素,纵坐标表示对应的函数值。
以函数f(x) = x^2为例,我们可以将其图像绘制为一个抛物线。
当x 取负值时,函数值也是正数,所以抛物线在原点的左侧也有对应的点。
4、函数的表示方法除了使用公式的形式表示函数外,函数还可以使用其他方式进行表示。
常见的函数表示方法有:(1)函数表格:函数表格是一种简洁明了的表示方式,可以把函数的输入和输出结果都列在表格中。
ab abab a b课题 函数的概念及其表示一、函数的概念1 函数:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数。
记作:(),y f x x A =∈。
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{()}f x x A ∈叫做函数的值域。
(1)对函数符号()f x 的理解知道()y f x =与()f x 的含义是一样的,它们都表示y 是x 的函数,其中x 是自变量,()f x 是函数值,连接的纽带是法则f.f 是单值对应; (2)注意定义中的集合 A ,B 都是非空的数集,而不能是其他集合; 2、构成函数的三要素:定义域、对应关系和值域。
二、区间的概念设a 、b 是两个实数,且a b <,规定定义名称 符号数轴表示{|}x a x b ≤≤ 闭区间 [,]a b {}x a x b << 开区间 (,)a b {}x a x b <≤ 左闭右开区间 [,)a b {}x a x b <≤左开右闭区间(,]a b{|}[,)x x a a =+∞≥;{}(,)x x a a >=+∞;{}(,]x x a a =-∞≤;{}(,)x x a a <=-∞;(,)R =-∞+∞。
三、相等函数:○1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2 两个函数相等的条件是当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
四、函数的表示法1解析法:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式。
函数的概念及其表示方法【知识点一】函数的概念1.函数的定义设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x A}叫做函数的值域.2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.区间表示:{x|a≤x≤b}=[a,b];;;.【知识点二】函数的表示法1.函数的三种表示方法:解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值.图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势.列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值.2.分段函数:分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.【知识点三】映射与函数1.映射定义:设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B.象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a 叫做b的原象.注意:(1)A中的每一个元素都有象,且唯一;(2)B中的元素未必有原象,即使有,也未必唯一;(3)a的象记为f(a).2.函数:设A、B是两个非空数集,若f:A→B是从集合A到集合B的映射,这个映射叫做从集合A到集合B的函数,记为y=f(x).注意:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.规律方法指导1.函数定义域的求法(1)当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件.(2)当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义.(3)求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.2.如何确定象与原象对于给出原象要求象的问题,只需将原象代入对应关系中,即可求出象.对于给出象,要求原象的问题,可先假设原象,再代入对应关系中得已知的象,从而求出原象;也可根据对应关系,由象逆推出原象.3.函数值域的求法实际上求函数的值域是个比较复杂的问题,虽然给定了函数的定义域及其对应法则以后,值域就完全确定了,但求值域还是特别要注意讲究方法,常用的方法有:观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数的图象的"最高点"和"最低点",观察求得函数的值域;配方法:对二次函数型的解析式可先进行配方,在充分注意到自变量取值范围的情况下,利用求二次函数的值域方法求函数的值域;判别式法:将函数视为关于自变量的二次方程,利用判别式求函数值的范围,常用于一些"分式"函数等;此外,使用此方法要特别注意自变量的取值范围;换元法:通过对函数的解析式进行适当换元,将复杂的函数化归为几个简单的函数,从而利用基本函数的取值范围来求函数的值域.求函数的值域没有通用的方法和固定的模式,除了上述常用方法外,还有最值法、数形结合法等.总之,求函数的值域关键是重视对应法则的作用,还要特别注意定义域对值域的制约.经典例题透析类型一、函数概念1.下列各组函数是否表示同一个函数?(1)(2)(3)(4)思路点拨:对于根式、分式、绝对值式,要先化简再判断,在化简时要注意等价变形,否则等号不成立.解:(1),对应关系不同,因此是不同的函数;(2)的定义域不同,因此是不同的函数;(3)的定义域相同,对应关系相同,因此是相同的函数;(4)定义域相同,对应关系相同,自变量用不同字面表示,仍为同一函数.总结升华:函数概念含有三个要素,即定义域,值域和对应法则,其中核心是对应法则,它是函数关系的本质特征.只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一函数,换言之就是:(1)定义域不同,两个函数也就不同;(2)对应法则不同,两个函数也是不同的.(3)即使定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则.举一反三:【变式1】判断下列命题的真假(1)y=x-1与是同一函数;(2)与y=|x|是同一函数;(3)是同一函数;(4)与g(x)=x2-|x|是同一函数.答:从函数的定义及三要素入手判断是否是同一函数,有(1)、(3)是假命题,(2)、(4)是真命题.2.求下列函数的定义域(用区间表示).(1);(2);(3).思路点拨:由定义域概念可知定义域是使函数有意义的自变量的取值范围.解:(1)的定义域为x2-2≠0,;(2);(3).总结升华:使解析式有意义的常见形式有①分式分母不为零;②偶次根式中,被开方数非负.当函数解析式是由多个式子构成时,要使这多个式子对同一个自变量x有意义,必须取使得各式有意义的各个不等式的解集的交集,因此,要列不等式组求解.举一反三:【变式1】求下列函数的定义域:(1);(2);(3).思路点拨:(1)中有分式,只要分母不为0即可;(2)中既有分式又有二次根式,需使分式和根式都有意义;(3)只要使得两个根式都有意义即可.解:(1)当|x-2|-3=0,即x=-1或x=5时,无意义,当|x-2|-3≠0,即x≠-1且x≠5时,分式有意义,所以函数的定义域是(-∞,-1)∪(-1,5)∪(5,+∞);(2)要使函数有意义,须使,所以函数的定义域是;(3)要使函数有意义,须使,所以函数的定义域为{-2}.总结升华:小结几类函数的定义域:(1)如果f(x)是整式,那么函数的定义域是实数集R;(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合;(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合;(即求各集合的交集)(5)满足实际问题有意义.3.已知函数f(x)=3x2+5x-2,求f(3),,f(a),f(a+1).思路点拨:由函数f(x)符号的含义,f(3)表示在x=3时,f(x)表达式的函数值.解:f(3)=3×32+5×3-2=27+15-2=40;;;.举一反三:【变式1】已知函数.(1)求函数的定义域;(2)求f(-3),的值;(3)当a>0时,求f(a)×f(a-1)的值.解:(1)由;(2);;(3)当a>0时,.【变式2】已知f(x)=2x2-3x-25,g(x)=2x-5,求:(1)f(2),g(2);(2)f(g(2)),g(f(2));(3)f(g(x)),g(f(x))思路点拨:根据函数符号的意义,可以知道f(g(2))表示的是函数f(x)在x=g(2)处的函数值,其它同理可得.解:(1)f(2)=2×22-3×2-25=-23;g(2)=2×2-5=-1;(2)f(g(2))=f(-1)=2×(-1)2-3×(-1)-25=-20;g(f(2))=g(-23)=2×(-23)-5=-51;(3)f(g(x))=f(2x-5)=2×(2x-5)2-3×(2x-5)-25=8x2-46x+40;g(f(x))=g(2x2-3x-25)=2×(2x2-3x-25)-5=4x2-6x-55.总结升华:求函数值时,遇到本例题中(2)(3)(这种类型的函数称为复合函数,一般有里层函数与外层函数之分,如f(g(x)),里层函数就是g(x),外层函数就是f(x),其对应关系可以理解为,类似的g(f(x))为,类似的函数,需要先求出最里层的函数值,再求出倒数第二层,直到最后求出最终结果.4. 求值域(用区间表示):(1)y=x2-2x+4;.思路点拨:求函数的值域必须合理利用旧知识,把现有问题进行转化.解:(1)y=x2-2x+4=(x-1)2+3≥3,∴值域为[3,+∞);(2);(3);(4),∴函数的值域为(-∞,1)∪(1,+∞).类型二、映射与函数5. 下列对应关系中,哪些是从A到B的映射,哪些不是?如果不是映射,如何修改可以使其成为映射?(1)A=R,B=R,对应法则f:取倒数;(2)A={平面内的三角形},B={平面内的圆},对应法则f:作三角形的外接圆;(3)A={平面内的圆},B={平面内的三角形},对应法则f:作圆的内接三角形.思路点拨:根据定义分析是否满足“A中任意”和“B中唯一”.解:(1)不是映射,集合A中的元素0在集合B中没有元素与之对应,不满足“A中任意”;若把A改为A={x|x≠0}或者把对应法则改为“加1”等就可成为映射;(2)是映射,集合A中的任意一个元素(三角形),在集合B中都有唯一的元素(该三角形的外接圆)与之对应,这是因为不共线的三点可以确定一个圆;(3)不是映射,集合A中的任意一个元素(圆),在集合B中有无穷多个元素(该圆的内接三角形有无数个)与之对应,不满足“B中唯一”的限制;若将对应法则改为:以该圆上某定点为顶点作正三角形便可成为映射.总结升华:将不是映射的对应改为映射可以从出发集A、终止集B和对应法则f三个角度入手.举一反三:【变式1】判断下列两个对应是否是集合A到集合B的映射?①A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则②A=N*,B={0,1},对应法则f:x→x除以2得的余数;③A=N,B={0,1,2},f:x→x被3除所得的余数;④设X={0,1,2,3,4},思路点拨:判断是否构成映射应注意:①A中元素的剩余;②“多对一”“一对一”构成,而“一对多”不构成映射.解:①构成映射,②构成映射,③构成映射,④不构成映射,0没有象.【变式2】已知映射f:A→B,在f的作用下,判断下列说法是否正确?(1)任取x∈A,都有唯一的y∈B与x对应;(2)A中的某个元素在B中可以没有象;(3)A中的某个元素在B中可以有两个以上的象;(4)A中的不同的元素在B中有不同的象;(5)B中的元素在A中都有原象;(6)B中的元素在A中可以有两个或两个以上的原象.答:(1)、(6)的说法是正确的,(2)、(3)、(4)、(5)说法不正确.【变式3】下列对应哪些是从A到B的映射?是从A到B的一一映射吗?是从A到B的函数吗?(1)A=N,B={1,-1},f:x→y=(-1)x;(2)A=N,B=N+,f:x→y=|x-3|;(3)A=R,B=R,(4)A=Z,B=N,f:x→y=|x|;(5)A=N,B=Z,f:x→y=|x|;(6)A=N,B=N,f:x→y=|x|.答:(1)、(4)、(5)、(6)是从A到B的映射也是从A到B的函数,但只有(6)是从A到B的一一映射;(2)、(3)不是从A到B的映射也不是从A到B的函数.6. 已知A=R,B={(x,y)|x,y R},f:A→B是从集合A到集合B的映射,f:x→(x+1,x2+1),求A中的元素的象,B中元素的原象.解:∴A中元素的象为故.举一反三:【变式1】设f:A→B是集合A到集合B的映射,其中(1)A={x|x>0},B=R,f:x→x2-2x-1,则A中元素的象及B中元素-1的原象分别为什么?(2)A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x-y,x+y),则A中元素(1,3)的象及B中元素(1,3)的原象分别为什么?解:(1)由已知f:x→x2-2x-1,所以A中元素的象为;又因为x2-2x-1=-1有x=0或x=2,因为A={x|x>0},所以B中元素-1的原象为2;(2)由已知f:(x,y)→(x-y,x+y),所以A中元素(1,3)的象为(1-3,1+3),即(-2,4);又因为由有x=2,y=1,所以B中元素(1,3)的原象为(2,1).类型三、函数的表示方法7. 求函数的解析式(1)若f(2x-1)=x2,求f(x);(2)若f(x+1)=2x2+1,求f(x).思路点拨:求函数的表达式可由两种途径.解:(1)∵f(2x-1)=x2,∴令t=2x-1,则;(2)f(x+1)=2x2+1,由对应法则特征可得:f(x)=2(x-1)2+1即:f(x)=2x2-4x+3.举一反三:【变式1】(1) 已知f(x+1)=x2+4x+2,求f(x);(2)已知:,求f[f(-1)].解:(1)(法1)f(x+1)=x2+4x+2=(x+1)2+2(x+1)-1∴f(x)=x2+2x-1;(法2)令x+1=t,∴x=t-1,∴f(t)=(t-1)2+4(t-1)+2=t2+2t-1∴f(x)=x2+2x-1;(法3)设f(x)=ax2+bx+c则f(x+1)=a(x+1)2+b(x+1)+c∴a(x+1)2+b(x+1)+c=x2+4x+2;(2)∵-1<0,∴f(-1)=2·(-1)+6=4f[f(-1)]=f(4)=16.总结升华:求函数解析式常用方法:(1)换元法;(2)配凑法;(3)定义法;(4)待定系数法等.注意:用换元法解求对应法则问题时,要关注新变元的范围.8.作出下列函数的图象.(1);(2);(3);(4).思路点拨:(1)直接画出图象上孤立的点;(2)(3)先去掉绝对值符号化为分段函数.解:(1),∴图象为一条直线上5个孤立的点;(2)为分段函数,图象是两条射线;(3)为分段函数,图象是去掉端点的两条射线;(4)图象是抛物线.所作函数图象分别如图所示:类型四、分段函数9. 已知,求f(0),f[f(-1)]的值.思路点拨:分段函数求值,必须注意自变量在不同范围内取值时的不同对应关系.解:f(0)=2×02+1=1f[f(-1)]=f[2×(-1)+3]=f(1)=2×12+1=3.举一反三:【变式1】已知,作出f(x)的图象,求f(1),f(-1),f(0),f{f[f(-1)+1]}的值.解:由分段函数特点,作出f(x)图象如下:∴如图,可得:f(1)=2;f(-1)=-1;f(0)=;f{f[f(-1)+1]}=f{f[-1+1]}=f{f(0)}=f()=+1.10. 某市郊空调公共汽车的票价按下列规则制定:(1)乘坐汽车5公里以内,票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相并画出函数的图象.解:设票价为y元,里程为x公里,由空调汽车票价制定的规定,可得到以下函数解析式:根据这个函数解析式,可画出函数图象,如下图所示:举一反三:【变式1】移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费0.4元;“神州行”不缴月租,每通话1分钟,付费0.6元,若一个月内通话x分钟,两种通讯方式的费用分别为y1,y2(元),Ⅰ. 写出y1,y2与x之间的函数关系式?Ⅱ. 一个月内通话多少分钟,两种通讯方式的费用相同?Ⅲ. 若某人预计一个月内使用话费200元,应选择哪种通讯方式?解:Ⅰ:y1=50+0.4x,y2=0.6x;Ⅱ:当y1=y2时,50+0.4x=0.6x,∴0.2x=50,x=250∴当一个月内通话250分钟时,两种通讯方式费用相同;Ⅲ:若某人预计月付资费200元,采用第一种方式:200=50+0.4x,0.4x=150 ∴x=375(分钟)采用第二种方式:200=0.6x,∴应采用第一种(全球通)方式.一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴,;⑵,;⑶,;⑷,;⑸,.A.⑴、⑵B.⑵、⑶C.⑷D.⑶、⑸2.函数y=的定义域是()A.-1≤x≤1B.x≤-1或x≥1 C.0≤x≤1 D.{-1,1}3.函数的值域是( )A.(-∞,)∪(,+∞)B.(-∞,)∪(,+∞)C.R D.(-∞,)∪(,+∞)4.下列从集合A到集合B的对应中:①A=R,B=(0,+∞),f:x→y=x2;②③④A=[-2,1],B=[2,5],f:x→y=x2+1;⑤A=[-3,3],B=[1,3],f:x→y=|x|其中,不是从集合A到集合B的映射的个数是( )A.1 B. 2 C. 3 D.45.已知映射f:A→B,在f的作用下,下列说法中不正确的是( )A.A中每个元素必有象,但B中元素不一定有原象B.B中元素可以有两个原象6.点(x,y)在映射f下的象是(2x-y,2x+y),求点(4,6)在f下的原象( )A.(,1)B.(1,3) C.(2,6)D.(-1,-3)7.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列各表达式中不表示从P到Q的映射的是( )A.y=B.y=C.y=x D.y=x28.下列图象能够成为某个函数图象的是( )9.函数的图象与直线的公共点数目是( )A.B.C.或D.或10.已知集合,且,使中元素和中的元素对应,则的值分别为( )A.B.C.D.11.已知,若,则的值是( )A.B.或C.,或D.12.为了得到函数的图象,可以把函数的图象适当平移,这个平移是( )A.沿轴向右平移个单位B.沿轴向右平移个单位C.沿轴向左平移个单位D.沿轴向左平移个单位二、填空题1.设函数则实数的取值范围是_______________.2.函数的定义域_______________.3.函数f(x)=3x-5在区间上的值域是_________.4.若二次函数的图象与x轴交于,且函数的最大值为,则这个二次函数的表达式是_______________.5.函数的定义域是_____________________.6.函数的最小值是_________________.三、解答题1.求函数的定义域.2.求函数的值域.3.根据下列条件,求函数的解析式:(1)已知f(x)是二次函数,且f(2)=-3,f(-2)=-7,f(0)=-3,求f(x);(2)已知f(x-3)=x2+2x+1,求f(x+3);(3)已知;一、选择题1.设函数,则的表达式是( )A.B.C.D.2.函数满足则常数等于( )A.3 B.-3 C.D.3.已知,那么等于( )A.15 B.1 C.3 D.304.已知函数定义域是,则的定义域是( )A.B.C.D.5.函数的值域是( )A.B.C.D.6.已知,则的解析式为( )A.B.C.D.二、填空题1.若函数,则=_______________.2.若函数,则=_______________.3.函数的值域是_______________.4.已知,则不等式的解集是_______________.5.设函数,当时,的值有正有负,则实数的范围_______________.三、解答题1.设是方程的两实根,当为何值时,有最小值?求出这个最小值.2.求下列函数的定义域(1);(2).3.求下列函数的值域(1);(2).综合探究1.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.在下图中,纵轴表示离学校的距离,横轴表示出发后的时间,如图四个图象中较符合该学生走法的是( )2.如图所表示的函数解析式是( )A. B.C. D. 3.函数的图象是( )。
【考点精讲】1. 函数的概念:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数。
如果当x =a 时y =b ,那么b 叫做自变量的值为a 时的函数值。
2.对函数概念的理解应注意以下几点:①变化过程中; ②两个变量;③一个变量随另一个变量的变化而变化; ④对于自变量x 的每一个确定的值,函数y 都有唯一的值与它对应(但有可能有多个不同的自变量数值对应一个函数值)。
3. 函数的表示方法:函数是从数量角度反映变化规律的数学模型。
解析式法、图象法和列表法是函数的三种常用表示方法。
①解析式法:用来表示函数关系的数学式子叫做函数解析式。
用解析式来表示函数关系的方法叫做解析式法。
②列表法:用表格来表示函数关系的方法叫做列表法。
③图象法:用图象来表示函数关系的方法叫做图象法。
【典例精析】例题1 下列关于x ,y 的关系式:① 5x -2y =1;② y =3|x|;③ x·y 2=2,其中表示y 是x 的函数的是( )A. ②B. ②③C. ①②D. ①②③思路导航:在x·y 2=2中,即22y x,当x =1时,y y x 对应着两个y 值,和函数的概念不相符,所以它不是函数。
答案:C点评:y 是x 的函数用函数关系式表示时,应用含有x 的式子表示y 。
因此,本题应首先对式子进行变形,用含有x 的式子表示y 。
例题2 下列曲线中不能表示y 是x 的函数的是( )思路导航:从图象可以看出每个图象中y 都随着x 的变化而变化,并且都存在两个变量,所以当x 是一个确定的值时,y 有唯一确定的值与之对应,就是函数,当不是唯一确定的值与之对应时,就不是函数。
答案:C点评:解决本类题的技巧是:过x 轴上的一点,作x 轴的垂线,这条直线与图象的交点为一个时,就是函数关系,当出现多个交点时,就不是函数关系。
函数的概念与表示
(一)函数的概念:在一个变化的过程中有两个变量x和y,如果给定了一个x值,
相应的就确定唯一的一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
说明:1.符号y=f(x)的意义:x是自变量,f表示对应法则,y是x的函数;遂于定义域
内的每一个x的值,在对应法则f的作用下,都有唯一确定的y的值和它对应,和x值对应的y的值用f(x)表示
2.f(x)与f(a)的区别:f(x)表示自变量x的函数,f(a)表示当x=a是对应的函数值。
(二)函数的三要素:1)定义域 2)值域 3)对应法则
其中值域被定义域与对应法则唯一确定,因此我们常说函数有两要素,即定义域和对应法则,对应法则是函数的核心,定义域是函数的灵魂。
(三)两个函数相等的条件:1)定义域想同 2)对应法则相同;即对应定义域内的每一个x,他们都有相同的函数值。
(四)区间的概念
设a,b属于R,且a<b
(五)函数的表示方法。
函数概念与表示一.【课标要求】1.了解映射,函数的概念,会求一些简单函数的定义域和值域;2. 了解简单的分段函数,并能简单应用;3.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义;4.学会运用函数图象理解和研究函数的性质二.【要点精讲】1.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
记作“f:A→B”。
2.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
3.构成函数的三要素:定义域、对应关系和值域求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。
4.两个函数的相等:定义域和对应法则都分别相同5.区间6.常用的函数表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;(2)列表法:就是列出表格来表示两个变量的函数关系;(3)图象法:就是用函数图象表示两个变量之间的关系7.分段函数若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;8.复合函数若y=f(u),u=g(x),x∈(a,b),u∈(m,n),那么y=f[g(x)]称为复合函数,u称为中间变量,它的取值范围是g(x)的值域例1.设{}{}|02,|12,A x xB y y=≤≤=≤≤在下图中,能表示从集合A到集合B例2、下列函数中哪个与函数y=x相等?(1)y = (x)2 ; (2)y= (33x); (3)y =2x; (4)y=xx2例3.求定义域:②1()11f xx=+③f(x) = 1+x+x-21④f(x) =24++xx例4. 求函数的解析式(1)若2)12(xxf=-,求)(xf.A.B.D.C12(2).若12)1(2+=+x x f ,求)(x f(3).若一次函数)(x f 满足x x f f 21)]([+=,求)(x f例4.求下列函数的值域:(1)232y x x =-+; (2)y = (3)312x y x +=-;例5. 设32)(+=x x f ,54)(-=x x g ,若)()]([x g x h f =则=)(x h _____.1.已知函数()f x ,()g x 分别由下表给出:则[(1)]f g 的值为;满足[()][()]f g x g f x >的x 的值是2.已知函数=-+=)1(|,2|)(2f x x x f 则3. 定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),4(log 2x x f x f x x ,则f (3)的( )A.-1B. -2C.1D. 2 4. 已知函数3,1,(),1,x x f x x x ⎧≤=⎨->⎩若()2f x =,则x = . 5.列函数中,与函数y =有相同定义域的是A .()ln f x x = B.1()f x x= C. ()||f x x = D.()xf x e =6.数y x=的定义域为A .[4,1]-B .[4,0)-C .(0,1]D .[4,0)(0,1]-7. 画出下列函数图象并有图象观察起定义域和值域。
(1)3+=x y (2)32-=x y3函数基本性质一.【课标要求】1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;2.函数的单调性,奇偶性,周期性以及最值。
二.【要点精讲】1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数 (3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,偶+偶=偶,③若奇函数的定义域包含0,则f (0)=0 2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);(2)利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤:○1 任取x 1,x 2∈D ,且x 1<x 2; ○2 作差f (x 1)-f (x 2); ○3 变形(通常是因式分解和配方);○4 定号(即判断差f (x 1)-f (x 2)的正负);○5 下结论(即指出函数f (x )在给定的区间D 上的单调性)。
(3)简单性质①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; (4)复合函数的单调性结论:“同增异减” 3.最值 (1)定义: 最大值:最小值:(2)利用函数单调性的判断函数的最大(小)值4.周期性定义:如果存在一个非零常数T ,使得对于函数定义域内的任意x ,都有f (x+T )= f (x ),则称f (x )为周期函数;例1. 判断奇偶(1)2()[1,2]f x xx =∈- (2)32()1x x f x x -=-例2. 奇函数()f x 的定义域为[]5,5-若当[]0,5x ∈时, ()f x 的图象如右图,则不等式()0f x <的解是例3. 函数y ==x 2-6x +10在区间(2,4)上是( ) A .递减函数 B .递增函数 C .先递减再递增D .选递增再递减.4例4.函数y =11+x 的单调区间为___________.例5. 已知奇函数()f x 在()0,+∞单调递增,且(3)0f =,则不等式()0xf x <的解集是例 6. 已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(6)f 的值为.A 1-.B 0.C 1.D 21. 已知()y f x =为奇函数,若(3)(2)1f f -=,则(2)(3)f f ---=2. 已知函数()1,21xf x a =-+,若()fx 为奇函数,则a =3. 已知函数2()f x ax bx c =++,[]23,1x a ∈--是偶函数,则a b +=4. 若函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减函数,则实数a 的取值范围是( ).A [)3,-+∞.B (],3-∞- .C (],3-∞ .D [)3,+∞5. 设()f x 是定义在R 上以6为周期的函数,()f x 在(0,3)内单调递减,且()y f x =的图像关于直线3x =对称,则下面正确的结论是 ( ).A (1.5)(3.5)(6.5)f f f << .B (3.5)(1.5)(6.5)f f f <<.C (6.5)(3.5)(1.5)f f f << .D (3.5)(6.5)(1.5)f f f << 6. 已知5)(357++++=dx cx bx ax x f ,其中d c b a ,,,为常数,若7)7(-=-f ,则=)7(f _______7. 设()f x 的最小正周期2T =且()f x 为偶函数,它在区间[]0,1上的图象如右图所示的线段A B ,则在区间[]1,2上, ()f x =。