附1(高程控制测量)
- 格式:doc
- 大小:45.00 KB
- 文档页数:3
工程测量规范GB50026-93第1章 总则第2章 平面控制测量2.1 一般规定2.2 设计、选点、造标与埋石2.3 水平角观测2.4 距离测量2.5 内业计算第3章 高程控制测量3.1 一般规定3.2 水准测量3.3 电磁波测距三角高程第4章 地形测量4.1 一般规定4.2 图根控制测量4.3 一般地区地形测图4.4 城镇居住区地形测图第四节 城镇居住区地形测图 4.5 工矿区现状图测量4.6 水域地形测量4.7 地形图的修测第5章 线路测量5.1 一般规定5.2 铁路、公路测量5.3 架空索道测量5.4 自流和压力管线测量5.5 架空送电线路测量第6章 绘图与复制6.1 一般规定6.2 绘图6.3 编绘6.4 晒蓝图、静电复印与复照6.5 翻版、晒印刷版与修版6.6 打样与胶印第7章 施工测量7.1 一般规定7.2 施工控制测量7.3 工业与民用建筑施工放样7.4 灌注桩、界桩与红线测量7.5 水工建筑物施工测量第8章 竣工总图的编绘与实测8.1 一般规定8.2 竣工总图的编绘8.3 竣工总图的实测第9章 变形测量9.1 一般规定9.2 水平位移监测网9.3 垂直位移监测网9.4 水平位移测量9.5 垂直位移测量9.6 内业计算及成果整理附录一 本规范名词解释附录二 平面控制点标志及标石的埋设规格附录三 方向观测法度盘和测微器附录四 高程控制点标志及标石的埋设规格附录五 建筑物、构筑物主体倾斜率和按差异沉降推算主体倾斜值的计算公式附录六 基础相对倾斜值和基础挠度计算公式附录七 本规范用词说明工程测量规范-总则工程测量规范第1章 总则第1.0.1 条为了统一工程测量的技术要求,及时、准确地为工程建设提供正确的测绘资料,保证其成果、成图的质量符合各个测绘阶段的要求,适应工程建设发展的需要,制订本规范。
第1.0.2 条本规范适用于城镇、工矿企业、交通运输和能源等工程建设的勘察、设计、施工以及生产(运营)阶段的通用性测绘工作。
GPS 控制测量测量工作必须遵循“有整体到局部,先控制后碎部,从高级到低级”的原则。
先建立控制网,然后根据控制网进行碎部测量。
控制网又分为平面控制网和高程控制网。
测定点的平面位置的工作,称为平面控制测量,测定点的高程工作,称为高程控制测量。
目前,数字化成图的外业控制测量普通分为GPS 首级控制测量和全站仪导线测量及水准测量。
(一) GPS 控制测量概述GPS 控制测量,按其工作性质可分为外业和内业两大部份,外业工作主要包括:选点、建立测站标志、埋石、野外观测作业以及成果质量检核等;内业工作主要包括:技术设计、测后数据处理以及技术总结等。
按照GPS 测量实施的工作程序,大体分为几个阶段:GPS 控制网的优化设计,选点与埋石,外业观测,成果检核,数据处理,编制报告。
GPS 测量是一项技术复杂、要求严格的工作,实施的原则是,在满足用户对测量精度和可靠性等要求的情况下,尽可能地减少经费、时间和人力的消耗。
因此,对其各阶段的工作,都要精心设计、组织和实施。
为了满足实际的要求,GPS 测量作业应遵守统一的规范和细则。
GPS 控制测量与GPS 定位技术的发展水平密切相关,GPS 接收机硬件与软件的不断改善,将直接影响测量工作的实施方法、观测时间、作业要求和成果的处理方法。
《全球定位系统 (GPS ) 测量规范》 将 GPS 控制网依其精度划分 为 A 、B 、C 、D 、E 等不同级别,表 6 列出了它们的精度和标准。
本 章主要讨论其中的 C 、D 和 E 级网的布设和观测。
表 6 GPS 网的精度标准级别A项目固定误差/mm比例误差系数相邻点最小距离/km相邻点最大距离/km相邻点平均距离/km 表 7 GPS 各等级网的基本技术要求等级平均距离10~15(km )a(mm)b(1×10-6)接收机类型≤(10mm+5标称精度观测量 至少有同步观测≥5接收机数 最简独立环 和附和路线的边数 卫星截至高 度角(°) 有效观测卫 星总数0.2~5双频或者单频≤(10mm+5 ×10-6×d ) L1、L2 载波相位≥2 5~10≤10≤10双频或者单频≤(10mm+5 ×10-6×d ) L1、L2 载波相位≥3 ≤10≤5双频或者单频≤(10mm+5 ×10-6×d ) L1、L2 载波相位≥4≤5≤0.1双频/全波长 ≤(10mm+2 ×10-6×d ) L1、L2 载波相位C≤10≤554015~10 ×10-6×d ) L1、L2 载波相位≥4D≤10≤1021510~5E≤10≤201105~2≤5≤0.11001000300B≤8≤11525070 ≤8≤1双频≥10≥20 ≥15≥6 ≥15≥4 ≥15≥4≥15≥9 ≤10≤5≤6≤6≤8300 70 A D CB E(二) GPS 控制测量技术设计的内容和步骤1、采集和分析测区经济地理等情况以及已有的测绘成果成图资 料通过对已有控制网测设数据及成果资料的了解和分析, 可获知控 制网的质量情况, 所设置的坐标系和高程、 中央子午线位置以及起始 点坐标、起始方位角等基本数据。
控制测量目的:提供控制基础和起算基准实质:测定具有较高精度的平面坐标和高程的点位控制点国家平面控制测量:一、二、三、四等国家高程控制测量:一、二、三、四等一、闭合导线1 、定义:导线从一点开始,经过一系列的导线点,最后又回到原来的起始点,形成一多边形,称闭合导线。
该导线多用于宽阔地区的控制。
2 、内业计算:2.1 闭合差计算和角度调整内角总和的理论值:∑β理= (n-2 )×180 °角度闭合差f β: f β= ∑β测- ∑β理角度调整:角度闭合差按相反符号平均分配到各个角。
2.2 坐标方位角计算α前= α后+180 °- β右α前= α后-180 °+ β左2.3 坐标增量闭合差计算纵横坐标增量代数和,理论上都应该等于零,而在实测边长中都不可避免地存在误差,角度虽然经过调整,但不可能与实际相符,所以其代数和等于某一数值fx 和fy ,这个数值就是纵横坐标的增量闭合差。
即:fx= ∑△x 测fy= ∑△y 测其导线全长闭合差 f 为:f= √(fx2+fy2)导线全长相对闭合差K 为:K=f/ ∑d=1/T2.4 坐标增量的调整由于计算坐标增量是采用经过调整后的导线角度,所以坐标增量闭合差可以认为主要是由导线边长的误差所引起。
因此,坐标增量闭合差可取相反的符号,按边长的比例分配到各边的坐标增量中去。
2.5 坐标计算:将起始坐标逐一加上各点坐标增量而得。
二、附合导线1 、定义:导线起始于一个高级控制点,最后附合到另一高级控制点,称附合导线。
适用于狭长地区的控制。
2 、内业计算:计算步骤和方法与闭合导线基本相同,只是在角度闭合差和坐标增量闭合差的计算上有差异。
2.1 闭合差计算和角度调整终边的坐标方位角:左角α′终= α始+ ∑测-n ×180 °右角α′终= α始- ∑测+n ×180 °角度闭合差f β: f β= α′终- α终角度调整:角度闭合差按相反符号平均分配到各个角。
控制测量作业指导书1.适用范围1.1适用于常规工程项目平面、高程首级控制测量。
1.2精密工程测量、轨道交通、变形监测等有特定用途的平面、高程控制网,按相应规范先进行技术设计,后施测。
1.3委托项目有详细技术要求的,应依据相关规范要求进行技术设计。
2.技术引用文件GB/T18214-2009全球定位系统(GPS)测量规范GB20026-2007工程测量规范CH/T2007-2001三、四等导线测量规范GB/T12898-2009国家三、四等水准测量规范CH/T1022-2010平面控制测量成果质量检验技术规程CH/T1021-2010高程控制测量成果质量检验技术规程3.术语与定义3.1卫星定位测量利用两台或两台以上接收机同时接收多颗定位卫星信号,确定地面点相对位置的方法,也被称为GPS静态定位。
3.2卫星定位测量控制网利用卫星定位技术建立的测量控制网。
3.3观测时段测站上开始接收卫星信号到停止接收,连续观测的时间间隔,简称时段。
3.4同步观测两台或两台以上接收机对同一组卫星进行的观测。
3.5同步观测环三台或三台以上接收机同步观测所获得的基线向量构成的闭合环。
3.6异步观测环由非同步观测获得的基线向量构成的闭合环。
3.7水准路线同级水准网中两相邻结点间的水准测线。
3.8区段水准路线中两相邻基本水准点间的水准测线。
3.9测段两相邻水准点间的水准测线。
4.基本规定4.1控制测量分平面控制测量与高程控制测量。
4.2平面控制测量,根据测区条件与精度要求,可采取卫星定位控制测量或导线测量。
4.3测区通视条件差,卫星观测条件满足规范要求的,采用卫星定位控制测量网;测区通视条件满足要求,卫星观测条件不满足规范要求的,可采用导线测量方式施测。
4.4控制网的等级,应根据工程规模、控制网的用途与精度要求合理确定。
4.5精度等级划分采用《工程测量规范》(GB20026-2007)标准。
平面控制网:卫星定位测量控制网依次为二、三、四等与一、二级,导线;导线网依次为三、四等与一、二、三级;高程控制测量依次为二、三、四、五等。
高程测量实施方案一、引言。
高程测量是地理信息系统中的重要组成部分,它对于土地规划、水利工程、道路建设等领域具有重要的作用。
本文档将介绍高程测量的实施方案,包括测量前的准备工作、测量过程中的注意事项以及数据处理和分析方法。
二、测量前的准备工作。
1.确定测量范围,在进行高程测量之前,首先需要确定测量的范围,包括测量的区域范围和高程测量的精度要求。
2.选择测量方法,根据测量范围和精度要求,选择合适的高程测量方法,包括水准测量、GPS测量等。
3.准备测量设备,根据选择的测量方法,准备好相应的测量设备,包括水准仪、GPS接收机、测量杆等。
三、测量过程中的注意事项。
1.测量环境的选择,在进行高程测量时,需要选择适合的测量环境,尽量避免有遮挡物的地方,以保证测量的准确性。
2.测量时间的选择,在进行高程测量时,需要选择适合的测量时间,避免恶劣的天气条件对测量结果造成影响。
3.测量操作的规范,在进行高程测量时,需要按照操作规范进行测量,包括测量设备的校准、测量杆的垂直放置等。
四、数据处理和分析方法。
1.数据的采集和存储,在进行高程测量时,需要对采集到的数据进行及时的存储和备份,以防止数据丢失。
2.数据的处理和分析,对采集到的数据进行处理和分析,包括数据的平差、数据的插值等,得出最终的高程测量结果。
3.结果的呈现和报告,将处理和分析后得到的高程测量结果进行呈现和报告,包括制作高程图、编写高程测量报告等。
五、总结。
高程测量是地理信息系统中的重要内容,它对于土地规划、水利工程、道路建设等领域具有重要的作用。
在进行高程测量时,需要做好测量前的准备工作,注意测量过程中的细节,以及对测量数据的处理和分析。
只有这样,才能得到准确可靠的高程测量结果,为相关工程项目提供可靠的数据支持。
工程测量规范GB-(高程控制)作者: 日期:《工程测量规范》GB50026-2007条文说明--高程控制测量4. 1 一般规定4. 1 . 1高程控制测量精度等级的划分,仍然沿用《93规范》的等级系列。
对于电磁波测距三角高程测量适用的精度等级,《93规范》是按四等设计的,但未明确表述它的地位。
本次修订予以确定。
本次修订初步引入GPS拟合高程测量的概念和方法,现说明如下:1从上世纪90年代以来,GPS拟合高程测量的理论、方法和应用均有很大的进展。
2从工程测量的角度看,GPS高程测量应用的方法仍然比较单一,仅局限在拟合的方法上,实质上是GPS平面控制测量的一个副产品。
就其方法本身而言,可归纳为插值和拟合两类,但本次修订不严格区分它的数学含义,统称为“GPS拟合高程测量”。
3从统计资料看(表9),GPS拟合高程测量所达到的精度有高有低,不尽相同,本次修订将其定位在五等精度,比较适中安全。
4. 1 . 2区域高程控制测量首级网等级的确定,一般根据工程规模或控制面积、测图比例尺或用途及高程网的布设层次等因素综合考虑,本规范不作具体规定。
本次修订虽然在4. 1. 1条明确了电磁波测距三角高程测量和GPS拟合高程测量的地位,但在应用上还应注意:1四等电磁波测距三角高程网应由三等水准点起算(见条文4. 3. 2条注释)。
2 GPS拟合高程测量是基于区域水准测量成果,因此,其不能用于首级高程控制。
4. 1 . 3根据国测[1987]365号文规定采用“ 1985国家高程基准”,其高程起算点是位于青岛的“中华人民共和国水准原点”,高程值为72. 2604m。
1956年黄海平均海水面及相应的水准原点高程值为72. 289m,两系统相差-0. 0286m。
对于一般地形测图来说可采用该差值直接换算。
但对于高程控制测量,由于两种系统的差值并不是均匀的,其受施测路线所经过地区的重力、气候、路线长度、仪器及测量误差等不同因素的影响,须进行具体联测确定差值。
工程测量规范GB50026-2007高程控制测量一般规定高程控制测量精度等级的划分,依次为二、三、四、五等。
各等级高程控制宜采用水准测量,四等及以下等级可采用电磁波测距三角高程测量,五等也可采用 GPS 拟合高程测量。
首级高程控制网的等级,应根据工程规模、控制网的用途和精度要求合理选择。
首级网应布设成环形网,加密网宜布设成附合路线或结点网。
测区的高程系统,宜采用 1985 国家高程基准。
在已有高程控制网的地区测量时,可沿用原有的高程系统;当小测区联测有困难时,也可采用假定高程系统。
高程控制点间的距离,一般地区应为 1~3km,了业厂区、城镇建筑区宜小于 lkm。
但一个测区及周围至少应有 3 个高程控制点。
水准测量水准测量的主要技术要求,应符合表 4.2.1 的规定。
水准测量所使用的仪器及水准尺,应符合下列规定:水准仪视准轴与水准管轴的夹角 i,DSl 型不应超过15″;DS3 型不应超过 20"。
补偿式自动安平水准仪的补偿误差△a 对于二等水准不应超过 0.2″,三等不应超过 0.5″。
水准尺上的米间隔平均长与名义长之差,对于因瓦水准尺,不应超过 0.15mm;对于条形码尺,不应超过 0.10mm;对于木质双面水准尺,不应超过 0.5mm。
水准点的布设与埋石,除满足 4.1.4 条外还应符合下列规定:应将点位选在土质坚实、稳固可靠的地方或稳定的建筑物上,且便于寻找、保存和引测;当采用数字水准仪作业时,水准路线还应避开电磁场的干扰。
宜采用水准标石,也可采用墙水准点。
标志及标石的埋设应符合附录 D 的规定。
埋设完成后,二、三等点应绘制点之记,其他控制点可视需要而定。
必要时还应设置指示桩。
水准观测,应在标石埋设稳定后进行。
各等级水准观测的主要技术要求,应符合表 4.2.4 的规定。
两次观测高差较差超限时应重测。
重测后,对于二等水准应选取两次异向观测的合格结果,其他等级则应将重测结果与原测结果分别比较,较差均不超过限值时,取三次结果的平均数。
一、填空题1、控制测量分为(平面控制测量)和(高程控制测量)。
2、确定地面点相对位置关系的基本要素有(水平距离)、(水平角)、高差。
3、由已知点A测量并计算未知点B的高程的方法有两种,一是(高差法);二是(视线高法)。
4、水准路线的布设方式有(闭合水准路线)、(附合水准路线)、支水准路线三种。
5、在施工测量中测设点的平面位置,根据地形条件和施工控制点的布设,可采用极坐标法、直角坐标法、(距离交会)法和(角度交会)法。
6、在实际测量工作中,为防止测量误差的积累,在布局上要,(从整体到局部),在程序上要,(先控制后碎步),在精度上由高级到低级。
7、观测水平角时,观测方向为两个方向时,其观测方法采用(测回法)测角,三个以上方向时采用(方向观测法)测角。
8、距离丈量是用(相对)误差来衡量其精度的,该误差是用分子为1的(分数)形式来表示。
9、衡量测量精度的指标有(中误差)、(相对误差)、极限误差。
10、若知道某地形图上线段AB的长度是3.5cm,而该长度代表实地水平距离为17.5m,则该地形图的比例尺为(1:500),比例尺精度为(0.05m)。
11、高层楼房建筑物轴线竖向投测的方法主要有吊锤法、(经纬仪投测)法和(激光铅垂仪投测)法。
12、在方格网上计算填、挖数量时,用顶点的(地面)高程减(设计)高程求得。
13、小区域平面控制网一般采用(小三角网)和(方格网)。
14、测量工作的基准线是(铅垂线),基准面是(大地水准面)。
15、高层建筑施工中主要测量工作包括(轴线投测)和(高程传递)。
16、根据标准方向的不同,方位角可分为(真方位角) 、(磁方位角)和坐标方位角。
17、当闭合或附合水准测量的闭合差在允许范围以内时,应将闭合差按测站数或距离成(正)比例、(反)符号的原则调整到各测段高差上去。
18、导线测量的外业工作是(踏堪选点及建立标志)、量边、(测角)、连测。
19、一对双面水准尺的红、黑面的零点差应为(4.687)m、(4.787)m。
控制测量简介控制测量是指在整个测区范围内,选定若干个具有控制作用的点(称为控制点),用直线连接相邻的控制点,组成一定的几何图形(称为控制网),使用测量仪器和工具,进行外业测量获得相应的外业资料,对外业资料和已知数据进行内业计算,确定控制点的平面位置和高程的工作,以其统一整个测区的测量工作。
控制测量是整个测量过程中的重要环节,起着控制全局的作用。
对于任何一项控制测量,必须先进行整体性的控制测量,然后以控制点为基础进行局部的碎部测量。
①平面控制测量,是为测定控制点平面坐标而进行的;②高程控制测量,为测定控制点高程而进行的;平面控制网与高程控制网一般分别单独布设。
平面控制网平面控制测量按照控制点之间组成几何图案的不同,又分为三角控制测量(三角测量)和导线控制测量(导线测量)。
平面控制网常规的布设方法有三角网、三边网、边角网、和导线网。
三角测量三角测量是建立平面控制网的基本方法之一。
但三角网(锁)要求每点与较多的邻点相互通视,在隐蔽地区常需建造较高的觇标。
导线测量导线测量布设简单,每点仅需与前后两点通视,选点方便,特别是在隐蔽地区和建筑物多而通视困难的城市,应用起来方便灵活。
随着电磁波测距仪的发展,导线测量的应用日益广泛。
三边测量三边测量要求丈量网中所有的边长。
应用电磁波测距仪测定边长后即可进行解算。
此法检核条件少,推算方位角的精度较低。
边角测量法边角测量法既观测控制网的角度,又测量边长。
测角有利于控制方向误差,测边有利于控制长度误差。
边角共测可充分发挥两者的优点,提高点位精度。
高程控制网高程测量控制就是在测区布设高程控制点(即水准点),构成高程控制网,用精确方法测定它们的高程。
高程控制测量的方法有水准测量和三角高程测量。
国家水准网分为一、二、三、四等4个等级。
一等水准网是精度最高的高程控制网,是国家高程控制的骨干,也是地球科学研工作的主要依据。
二等水准网是布设在一等水准环线内,是全面进行高程控制网的广泛基础。
测量学测量学:测量学是研究地球的形状和大小,以及确定地面(包括空中、地下和海底)点位的科学。
绝对高程:地面点到大地水准面的铅锤距离,以H表示相对高程:以其他它任意水准面作基准面的高程为相对高程或假定高程导线闭合差:是导线计算中根据测量值计算的结果与理论值不符合引起的差值,包括角度闭合差、坐标增量闭合差和导线全长闭合差。
水准面:水准面是假想处于静止状态的海水面延伸穿过陆地和岛屿,将地球包围起来的封闭曲面。
大地水准面:通过平均海水面的水准面(或平均海水面向陆地延伸所形成的水准面)平面控制测量:测定控制点的平面位置工作,称为平面控制测量高程控制测量:测定控制点的高程工作,称为高程控制测量。
碎部测量:在地形测图中对地物、地貌特征点(即碎部点)进行实地测量和绘图的工作即碎部测量,也叫地形图测绘控制点:以一定精度测得该点平面位置、高程和(或)重力加速度等数据的固定点。
直线定线:在距离测量时,得到的结果必须是直线距离,若用钢尺丈量距离,丈量的距离一般都比整尺要长,一次不能量完,需要在直线方向上标定一些点,这项工作就叫直线定线。
直线定向:确定一直线与基本方向的角度关系,称直线定向。
在测量中常以真子午线或磁子午线作为基本方向,如果知道一直线与子午线间的角度,可以认为该直线的方向已经确定。
水准路线:水准测量前应根据要求布置并选定水准点的位置,埋设好水准点标石,拟定水准测量进行的路线。
方位角:又称地平经度,是在平面上量度物体之间的角度差的方法之一。
是从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角。
象限角:由标准方向的北端或南端量至某一直线的水平角称为象限角。
象限角的角值在0°至90°之间。
视准轴:十字丝交点与物镜光心的连线,称为视准轴或视线。
水准管分划值:水准管圆弧2mm所对的圆心角τ,称为水准管分划值。
圆水准器轴线:圆水准器玻璃盒上表面的内面为球面,其半径为0.2~2m。
连接水准器中心点与球心的直线叫做圆水准器轴。
贯通测量设计书范文一、工程概况。
咱这儿有个超酷的工程,就像搭建一个超级大的积木城堡一样,不过这个城堡可复杂多啦。
这个工程有两个部分,就像城堡的两座大塔楼,它们得准确无误地连接起来,这就需要咱们进行贯通测量啦。
这两座塔楼之间的距离嘛,大概是[X]米,而且中间的地形有点像小怪兽捣乱后的现场,高低起伏,还有些障碍物挡路呢。
二、贯通测量的目的。
为啥要做这个贯通测量呢?这就好比你要给两座塔楼之间搭一座超级坚固的桥梁,如果测量不准,那桥可能就歪歪扭扭,甚至搭不上。
咱们的目的就是要精确地确定从一个塔楼到另一个塔楼的路线,让两边施工的小伙伴们能像手拉手的好朋友一样,准确无误地对接上,误差要小得像蚂蚁的小脚那么一点点才行。
三、测量方案。
# (一)平面控制测量。
1. 控制网的布设。
咱先得像撒网捕鱼一样,在工程周边布设一个控制网。
这个控制网呢,就用一些超级稳定的点组成,就像在地上钉了一些不会乱跑的钉子。
这些点的位置得精心挑选,要找那些不容易被破坏,而且视野开阔的地方。
咱们初步打算用三角形的形状来布设这个控制网,为啥呢?因为三角形可是超级稳定的结构,就像金字塔一样,不容易变形。
在两座塔楼附近,咱们要多设几个控制点,这就像给塔楼的对接专门安排几个小向导一样。
这些控制点之间的距离大概保持在[X]米到[X]米之间,既能保证互相看得清楚,又不会离得太远变得孤单无助。
2. 测量方法。
测量这些控制点之间的距离和角度的时候,咱们就用全站仪这个厉害的家伙。
全站仪就像一个超级侦探,能精确地测量出距离和角度。
测量的时候呢,要多测几次,就像你检查作业一样,多检查几遍,这样才能保证数据准确无误。
每次测量的时候,要把全站仪架得稳稳当当的,就像它坐在舒服的椅子上一样,避免晃动。
对于角度的测量,要按照顺时针的方向,从起始方向开始,一个一个地测量。
这就像排队数数一样,要按照顺序来,不能乱。
每个角度要测量[X]个测回,这样可以把误差平均掉,让数据更靠谱。
附一:
高程控制测量
1、一般规定
1.1 高程控制测量的精度等级的划分,依次为二、三、四、五等,各等级高程控制宜采用水准测量,四等及以下等级可采用电磁波测距三角高程测量,五等也可采用GPS拟合高程测量。
1.2 首级高程控制网的等级,应根据工程规模、控制网的用途和精度要求合理选择。
首级网应布设成环形网,加密网宜布设成附合路线或结点网。
1.3 测区的高程系统,宜采用1985国家高程基准。
在已有高程控制网的地区测量时,可沿用原有的高程系统;当小测区联测有困难时,也可采用假定高程系统。
1.4 高程控制点间的距离,一般地区应为1~3km,工业厂区、城镇建筑区宜小于1km。
但一个测区及周围至少应有3个高程控制点。
2 水准测量
2.1 水准测量的主要技术要求,应符合表2.1的规定。
注:1)结点之间或结点与高级点之间,其路线的长度,不应大于表中规定的0.7倍。
2)L为往返测段、附合或环线的水准路线长度(km);n为测站数。
3)数字水准仪测量的技术要求和同等级的光学水准仪相同。
2.2 水准测量所使用的仪器及水准尺,应符合下列规定:
1)水准仪视准轴与水准管轴的夹角i,DS1型不应超过15秒,DS3型不应超过20秒。
2)补偿式自动安平水准仪的补偿误差∆α对于二等水准不应超过0.2秒,三等不应超过0.5秒。
3)水准尺上的米间隔平均长与名义长之差,对于因瓦水准尺,不应超过0.15mm;对于条形码尺,不应超过0.10mm;对于木质双面水准尺,,不应超过0.5mm。
2.3 水准点的布设与埋石,除满足4.1.4条外还应符合下列规定:1)应将点位选在土质坚实、稳固可靠的地方或稳定的建筑物上,且便于寻找、保存和引测;当采用数字水准仪作业时,水准路线还应避开电磁场的干扰。
2)宜采用水准标石,也可采用墙水准点、标志及标石的埋设应符合附录D的规定。
3)埋设完成后,二、三等点应绘制点之记,其他控制点可视需要而定,必要时还应设置指示桩。
2.4 水准观测,应在标石埋设稳定后进行,各等级水准点观测的主要技术要求,应符合表2.4的规定。
表2.4 水准观测的主要技术要求
注1)二等水准视线长度小于20m时,其视线高度不应低于0.3m。
2) 三、四等水准采用变动仪器高度观测单面水准尺时,所测两次高差较差,应与黑面、红面所测高差之差的要求相同。
3) 数字水准仪观测,不受基、辅分划或黑、红面读数较差指标的限制,但测站两次观测的高差较差,应满足表中相应等级基、辅分划或黑、红面所测高差较差的限值。
2.5 两次观测高差较差超限时应重测。
重测后,对于二等水准应选取两次异向观测的合格结果,其他等级则应将重测结果与原测结果分别比较,较差均不超过限值时,取三次经果的平均数。