【数学】江苏省扬州中学2017-2018学年高一上学期12月阶段测试数学试题+答案
- 格式:pdf
- 大小:718.31 KB
- 文档页数:8
江苏省扬州中学2017学年第一学期月考高三数学试卷一、填空题:1. 已知集合⎭⎬⎫⎩⎨⎧∈==R x y y A x ,21|,{}R x x y y B ∈-==),1(log |2,则=⋂B A ▲ .2.已知ss :p “若b a =,则||||b a =”,则ss p 及其逆ss 、否ss 、逆否ss 中,正确ss 的个数是 ▲ .3.设x 是纯虚数,y 是实数,且y x i y y i x +--=+-则,)3(12等于 ▲ .4. 已知⎩⎨⎧>+-≤=0,1)1(0,cos )(x x f x x x f π,则4()3f 的值为 ▲ .5. 在等差数列{}n a 中,若7893a a a ++=,则该数列的前15项的和为 ▲ .6. 已知直线 ⊥平面α,直线m ⊂平面β,有下面四个ss :①α∥β⇒ ⊥m ;②α⊥β⇒ ∥m ;③ ∥m ⇒α⊥β;④ ⊥m ⇒α∥β 其中正确ss 序号是 ▲ .7. 已知||1a =,||2b =,a 与b 的夹角为120︒,0a c b ++=,则a 与c 的夹角为▲ .8. 设y x ,均为正实数,且33122x y+=++,则xy 的最小值为 ▲ .9.已知方程2x +θtan x -θsin 1=0有两个不等实根a 和b ,那么过点),(),,(22b b B a a A 的直线与圆122=+y x 的位置关系是 ▲ .10.若动直线)(R a a x ∈=与函数())()cos()66f x xg x x ππ=+=+与的图象分别交于N M ,两点,则||MN 的最大值为 ▲ .11. 设12()1f x x ,11()[()]n n f x f f x ,且(0)1(0)2n nn f a f ,则2014a = ▲ .12. 函数32()f x x bx cx d =+++在区间[]1,2-上是减函数,则c b +的最大值为 ▲ .13.已知椭圆与x 轴相切,左、右两个焦点分别为)25(1,1(21,),F F ,则原点O 到其左准线的距离为 ▲ . 14. 设13521A ,,,,2482n nn -⎧⎫=⎨⎬⎩⎭(),2n N n *∈≥,A n 的所有非空子集中的最小元素的和为S ,则S = ▲ . 二、解答题:15.(本小题满分14分)设向量),cos ,(sin x x a =),sin 3,(sin x x b =x ∈R ,函数)2()(b a a x f +⋅=. (1)求函数)(x f 的单调递增区间;(2)求使不等式()2f x '≥成立的x 的取值集合. 16.(本小题满分14分)如图,在四棱锥ABCD P -中,底面为直角梯形,//,90AD BC BAD ︒∠=,PA 垂直于底面ABCD ,N M BC AB AD PA ,,22====分别为PB PC ,的中点.(1)求证:DM PB ⊥;(2)求点B 到平面PAC 的距离.17.(本小题满分14分)某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到.x 元.公司拟投入21(600)6x -万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入...与总投入...之和?并求出此时商品的每件定价.18.(本小题满分16分)已知函数()21f x x =-,设曲线()y f x =在点(),n n x y 处的切线与x 轴的交点为()1,0n x +,其中1x 为正实数. (1)用n x 表示1n x +; (2)12x =,若1lg1n n n x a x +=-,试证明数列{}n a 为等比数列,并求数列{}n a 的通项公式; (3)若数列{}n b 的前n 项和()12n n n S +=,记数列}{n n b a ⋅的前n 项和n T ,求n T ..19. (本小题满分16分)如图所示,已知圆PMM A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 是线段AM 的垂直平分线与直线CM 的交点.(1)求点P 的轨迹曲线E 的方程;(2)设点00(,)P x y 是曲线E 上任意一点,写出曲线E 在点00(,)P x y 处的切线l 的方程;(不要求证明)(3)直线m 过切点00(,)P x y 与直线l 垂直,点C 关于直线m 的对称点为D ,证明:直线PD 恒过一定点,并求定点的坐标.20. (本小题满分16分)设0a >,两个函数()axf x e =,g()ln x b x =的图像关于直线y x =对称. (1)求实数b a ,满足的关系式;(2)当a 取何值时,函数()()()h x f x g x =-有且只有一个零点; (3)当1=a 时,在),21(+∞上解不等式2)()1(x x g x f <+-.高三___________ 姓名_____________ 学号………………密……………封……………线……………内……………不……………要……………答……………题………………数学(附加题)21.B .(本小题满分10分)已知二阶矩阵M 有特征值8λ=及对应的一个特征向量111⎡⎤=⎢⎥⎣⎦e ,并且矩阵M 对应的变换将点(1,2)-变换成(2,4)-, 求矩阵M ..C .(本小题满分10分)在直角坐标系中,参数方程为为参数)t t y t x (21232⎪⎪⎩⎪⎪⎨⎧=+=的直线l ,被以原点为极点, x 轴的正半轴为极轴,极坐标方程为θρcos 2=的曲线C 所截,求截得的弦长.22. (本小题满分10分)设函数()(,n)1nf x x =+,()n N *∈. (1)求(,6)f x 的展开式中系数最大的项;(2)若(,n)32f i i =(i 为虚数单位),求13579n n n n nC C C C C -+-+.23. (本小题满分10分)电子蛙跳游戏是: 青蛙第一步从如图所示的正方体1111D C B A ABCD -顶点A 起跳,每步从一顶点跳到相邻的顶点.(1)求跳三步跳到1C 的概率P ;(2)青蛙跳五步,用X 表示跳到过1C 的次数,求随机变量X 的概率分布及数学期望)(X E .1A12一、填空题1. ()+∞,0 2.2 3. i 251-- 4. 325.156. ①③7. 90︒8.169. 相切 10.2 11. 201512⎛⎫- ⎪⎝⎭ 12.152- 13.5341714.⎪⎩⎪⎨⎧∈≥-=*2,3,212,47N n n n n二、解答题15.解:(1) )2()(b a a x f +⋅=222sin cos 2(sin 3sin cos )x x x x x =+++ 3111cos 23sin 222(sin 2cos 2)22x x x x =+-+=+⋅-⋅ 22(sin 2coscos 2sin )22sin(2)666x x x πππ=+-=+-. …………5′由222262k x k πππππ-≤-≤+,得63k x k ππππ-≤≤+()k ∈Z ,∴()f x 的单调递增区间为[,]63k k ππππ-+()k ∈Z . …………8′(2) 由()22sin(2)6f x x π=+-,得()4cos(2)6f x x π'=-.由()2f x '≥,得1cos(2)62x π-≥,则222363k x k πππππ-≤-≤+,即124k x k ππππ-≤≤+()k ∈Z . ∴使不等式()2f x '≥成立的x 的取值集合为,124x k x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z .……14′16.解:(1)因为N 是PB 的中点,PA=AB ,所以AN ⊥PB,因为AD ⊥面PAB ,所以AD ⊥PB,又因为AD ∩AN=A 从而PB ⊥平面ADMN,因为平面ADMN , 所以PB ⊥DM. …………7′(2) 连接AC ,过B 作BH ⊥AC ,因为PA ⊥底面ABCD , 所以平面PAB ⊥底面ABCD ,所以BH 是点B 到平面PAC 的距离.在直角三角形ABC 中,BH =AB BC 25AC 5⋅= ……………14′17.解:(1)设每件定价为x 元,依题意,有25(80.2)2581x x --⨯≥⨯, 整理得26510000x x -+≤,解得2540x ≤≤.∴ 要使销售的总收入不低于原收入,每件定价最多为40元.………7′高三数学月考试卷参考答案(2)依题意,25>x 时,不等式21125850(600)65ax x x ≥⨯++-+有解, 等价于25>x 时,1501165a x x ≥++有解, ()150110306x x x +≥==当且仅当时,等号成立 , 10.2a ∴≥.∴当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.……14′ 18.解:(1)由题可得()2f x x '=,所以在曲线上点()(),n n x f x 处的切线方程为()()()n n n y f x f x x x '-=-,即()()212n n n y x x x x --=-令0y =,得()()2112n n n n x x x x +--=-,即2112nn n x x x ++= 由题意得0n x ≠,所以2112n n nx x x ++=………………5′(2)因为2112n n n x x x ++=,所以2211221111221lg lg lg 112112n n n n n n n n n n nx x x x x a x x x x x ++++++++===+--+- ()()2211lg 2lg211nn n n n x x a x x ++===--即12n n a a +=, 所以数列{}n a 为等比数列故11111112lg22lg 31n n n n x a a x ---+==⋅=- ………10′ (3)当1n =时,111b S ==,当2n ≥时,()()11122n n n n n n n b S S n -+-=-=-= 所以数列{}n b 的通项公式为n b n =,故数列{}n n a b 的通项公式为12lg 3n n n a b n -=⋅()21122322lg 3n n T n -∴=+⨯+⨯++⋅ ①①2⨯的()2212322lg 3n n T n =⨯+⨯++⋅ ②①-②得()2112222lg 3n nn T n --=++++-⋅故()221lg 3n n n T n =⋅-+ ………………16′19.解:(1)点P 是线段AM 的垂直平分线,∴PA PM =PA PC PM PC AC 2+=+==,∴动点N 的轨迹是以点C (-1,0),A (1,0)为焦点的椭圆. 椭圆长轴长为,222=a 焦距2c=2. .1,1,22===∴b c a∴曲线E 的方程为.1222=+y x ………5′(2)曲线E 在点00(,)P x y 处的切线l 的方程是0012x xy y +=.………8′(3)直线m 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --= .设点C 关于直线m 的对称点的坐标为()D ,m n ,则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩ ∴直线PD 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PD 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++--, 从而直线PD 恒过定点(1,0)A .………16′ 20.解:(1)设P()ax x e ,是函数()ax f x e =图像上任一点,则它关于直线y x =对称的点P ()axe x ,,在函数g()ln x b x =的图像上,ln ax x b e abx ∴==,1ab ∴=.(2)当0a >时,函数()()()h x f x g x =-有且只有一个零点,两个函数的图像有且只有一个交点,两个函数关于直线y x =对称,∴两个函数图像的交点就是函数()axf x e =,的图像与直线y x =的切点.设切点为00A()ax x e,,00=ax x e ()ax f x ae =,,0=1ax ae ∴,0=1ax ∴,00==ax x e e ∴, ∴当011a x e==时,函数()()()h x f x g x =-有且只有一个零点x e =; (3)当a =1时,设 ()2()(1)+g r x f x x x =--1x e -=2ln x x +-,则()r x ,112x e x x -=--+,当1,12x ⎛⎫∈ ⎪⎝⎭时,112211,1x x e x --<-=<--,()0r x ,<,当[)1,+x ∈∞时,112121,0x x e x--≤-=<--,()0r x ,<. ()r x ∴在1,2⎛⎫+∞ ⎪⎝⎭上是减函数.又(1)r =0,∴不等式()2(1)+g f x x x -<解集是()1,+∞.21.B .解:设M=ab cd ⎡⎤⎢⎥⎣⎦,则a b c d ⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥⎣⎦=811⎡⎤⎢⎥⎣⎦=88⎡⎤⎢⎥⎣⎦,故8,8.a b c d +=⎧⎨+=⎩a b c d ⎡⎤⎢⎥⎣⎦12-⎡⎤⎢⎥⎣⎦=24-⎡⎤⎢⎥⎣⎦,故22,2 4.a b c d -+=-⎧⎨-+=⎩联立以上两方程组解得a=6,b=2,c=4,d=4,故M=6244⎡⎤⎢⎥⎣⎦.………10′ C .解:由题意知,直线l 的倾斜角为 30,并过点A (2,0);曲线C 是以(1,0)为圆心、半径为1的圆,且圆C 也过点A (2,0);设直线l 与圆C 的另一个交点为B ,在OAB Rt ∆中,330cos 2== AB .…………10′22.解:(1)展开式中系数最大的项是第4项=()333620C x x =;………5′(2)由已知,n(1)32i i =+,两边取模,得n 32=,所以10n =.所以13579n n n n n C C C C C -+-+=135791010101010C C C C C -+-+ 而1001229910101010101010(1)i C C i C i C i C i =++++++()()024*********1010101010101010101010C C C C C C C C C C C i =++++----+-32i =所以.32910710510310110=+-+-C C C C C …………10′23.解:将A 标示为0,A 1、B 、D 标示为1,B 1、C 、D 1标示为2,C 1标示为3,从A 跳到B 记为01,从B 跳到B 1再跳到A 1记为121,其余类推.从0到1与从3到2的概率为1,从1到0与从2到3的概率为13,从1到2与从2到1的概率为23. (1)P =P (0123)=1⨯23⨯13=29; ………4′(2)X =0,1,2. P (X =1)=P (010123)+P (012123)+P (012321)=1⨯13⨯1⨯23⨯13+1⨯23⨯23⨯23⨯13+1⨯23⨯13⨯1⨯23 =2681,P (X =2)=P (012323)=1⨯23⨯13⨯1⨯13=681, P (X =0)=1-P (X =1)-P (X =2)=4981或P (X =0)=P (010101)+P (010121)+P (012101)+P (012121)=1⨯13⨯1⨯13⨯1+1⨯13⨯1⨯23⨯23+1⨯23⨯23⨯13⨯1+1⨯23⨯23⨯23⨯23=4981, ∴ E (X )=1⨯2681+2⨯681=3881.…………10′。
扬州市2017-2018学年度第一学期期末检测试题高三数学2017-2018学年度第一学期期末检测试题高三数学2018.2第一部分一、 填空题1. 若集合A ={x |1<x <3},B ={0,1,2,3},则A ∩B =___________。
2. 若复数(a −2ⅈ)(1+3ⅈ)是纯虚数,则实数a 的值为__________。
3. 若数据31,37,33,a ,35的平均数是34,则这组数据的标准差为_________。
4. 为了了解某学校男生的身体发育情况,随机调查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图,根据此图估计该校2000名男生中体重在70-80kg 的人数为________。
5. 运行右边的流程图,输出的结果是_________。
6. 从两名男生2名女生中任选两人,则恰有一男一女的概率为__________。
7. 若圆锥的侧面展开图是面积为3π且圆心角为2π3的扇形,则此圆锥的体积为______。
8. 若实数x ,y 满足{x ≤4y ≤33x +4y ≥12,则x 2+y 2的取值范围是________。
9. 已知各项都是正数的等比数列{a n }的前n 项和为S n ,若4a 4,a 3,6a 5成等差数列,且a 3=3a 22,则S 3=_________。
10. 在平面直角坐标系xOy 中,若双曲线x 2a2−y 2b 2=1(a >0,b >0)的渐近线与圆x 2+y 2−6y +5=0没有焦点,则双曲线离心率的取值范围是__________。
11. 已知函数f (x )=sⅈn x −x +1−4x 2x,则关于x 的不等式f (1−x 2)+f (5x −7)<0的解集为_________。
12. 已知正ΔABC 的边长为2,点P 为线段AB 中垂线上任意一点,Q 为射线AP 上一点,且满足AP ⃗⃗⃗⃗⃗⃗ ⋅AQ ⃗⃗⃗⃗⃗⃗ =1,则|CQ ⃗⃗⃗⃗⃗⃗ |的最大值为_________。
江苏省扬州中学2017-2018学年度第一学期阶段性测试高一数学2017.12 第Ⅰ卷(共60分)一、填空题:(本大题共14个小题,每小题5分,共70分.将答案填在答题纸上.)1.若{}224,x x x ∈++,则x = .2.计算:2331log 98-⎛⎫+= ⎪⎝⎭.3.sin1320︒的值为 . 4.若一个幂函数()f x 的图象过点12,4⎛⎫⎪⎝⎭,则()f x 的解析式为 . 5.方程lg 2x x +=的根()0,1x k k ∈+,其中k Z ∈,则k = . 6.函数()tan 24f x x π⎛⎫=-⎪⎝⎭的定义域为 . 7.函数()2log 23a y x =-+(0a >,且1a ≠)恒过定点的坐标为 . 8.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为 .9.已知点P 在直线AB 上,且4AB AP =uu u r uu u r ,设AP PB λ=u u u r u u r,则实数λ= .10.设函数()sin 0y x ωω=>在区间,64ππ⎡⎤-⎢⎥⎣⎦上是增函数,则ω的取值范围为 .11.若关于x 的方程21220xx a +-+=在[]0,1内有解,则实数a 的取值范围是 .12.点E 是正方形ABCD 的边CD 的中点,若2AE DB ⋅=-uu u r uu u r ,则AE BE ⋅=uu u r uu r.13.已知函数()4f x x a a x=+-+在区间[]1,4上的最大值为32,则实数a = . 14.已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,则函数()()1528y f x f x =+--有 个零点.第Ⅱ卷(共90分)二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.设全集U R =,集合{}121x A x -=≥,{}2450B x x x =--<.(1)求A B I ,()()U U C A C B U ;(2)设集合{}121C x m x m =+<<-,若B C C =I ,求实数m 的取值范围.16.设()2,1OA =-uu r ,()3,0OB =uu u r ,(),3OC m =uuu r.(1)当8m =时,将OC uuu r 用OA uu r 和OB uu u r表示;(2)若A B C 、、三点能构成三角形,求实数m 应满足的条件. 17. 已知函数()()sin 0,03f x A x A πωω⎛⎫=+>> ⎪⎝⎭的部分图象如图所示.(1)求A 和ω的值;(2)求函数()y f x =在[]0,π的单调增区间;(3)若函数()()1g x f x =+在区间(),a b 上恰有10个零点,求b a -得最大值.18. 某批发公司批发某商品,每件商品进价80元,批发价120元,该批发商为鼓励经销商批发,决定当一次批发量超过100个时,每多批发一个,批发的全部商品的单价就降低0.04元,但最低批发价不能低于102元.(1)当一次订购量为多少个时,每件商品的实际批发价位102元?(2)当一次订购量为x 个,每件商品的实际批发价为P 元,写出函数()P f x =的表达式; (3)根据市场调查发现,经销商一次最大订购量为500个,则当经销商一次批发多少个零件时,该批发公司可获得最大利润.19. 已知定义在实数集R 上的偶函数()f x 在区间(],0-∞上是单调递增,且()20f -=. (1)若()12sin 21f f x ⎛⎫<⎪+⎝⎭,求x 的取值范围;(2)若()5cos 216g x x a π⎛⎫=-+- ⎪⎝⎭,7,242x ππ⎡⎤∈⎢⎥⎣⎦,a R ∈.是否存在实数a ,使得()0f g x >⎡⎤⎣⎦恒成立?若存在,求a 的范围;若不存在,说明理由.20. 已知函数()()()log 101a f x x a =+<<,()()2log 33a g x x x =-+.(1)解关于x 的不等式()()g x f x >; (2)若函数()g x 在区间[]3,2m n m ⎛⎫> ⎪⎝⎭上的值域为()()log 3,log 3a a t n t m ++⎡⎤⎣⎦,求实数t 的取值范围; (3)设函数()()()f xg x F x a -=,求满足()F x Z ∈的x 的集合.高一数学参考答案及评分标准一、填空题1.1 2.6 3.4.()2f x x -= 5.1 6.3,28k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭7.()3,3 8.6 9.13,15- 10.(]0,2 11.[]0,1 12. 3 13.18 14. 4 二、解答题15.解:(1)∵{}1A x x =≥,{}15B x x =-<<∴{}15A B x x =≤<I ,()(){}15U U C A C B x x x =<≥或U (2)当C =∅时,211m m -<+ 即2m <当C B ⊆时,12111215m m m m +<-⎧⎪+≥-⎨⎪-≤⎩解之得33m <≤综上所述:m 的取值范围是(],3-∞.16.解:(1)当8m =时,()8,3OC =uuu r,设OC xOA yOB =+u u u r u u r u u u r,则()()()()8,32,13,023,x y x y x =-+=+-∴2383x y x +=⎧⎨-=⎩∴3143x y =-⎧⎪⎨=⎪⎩;(2)∵A B C 、、三点能构成三角形∴,AB AC u u u r u u u r不共线又()1,1AB =uu u r ,()2,4AC m =-uuu r∴()14120m ⨯-⨯-≠,∴6m ≠. 17.解:(1)2A =,243124T πππω=-=,2ω= 所以()2sin 23f x x π⎛⎫=+ ⎪⎝⎭(2)令222232k x k πππππ-+≤+≤+,k Z ∈得51212k x k ππππ-+≤≤+ 又因为[]0,x π∈,所以函数()y f x =在[]0,π的单调增区间为0,12π⎡⎤⎢⎥⎣⎦和7,12ππ⎡⎤⎢⎥⎣⎦. 注:区间端点可开可闭,都不扣分. (3)()2sin 213f x x π⎛⎫=+=- ⎪⎝⎭, 得512x k ππ=+或()34x k k Z ππ=+∈ 函数()f x 在每个周期上有两个零点,所以共有5个周期, 所以b a -最大值为217533T ππ+=. 18.解:(1)设一次订购量为()100n n N +∈, 则批发价为1200.04n -,令1200.04102n -=, ∴1201020.04n -=,∴450n =,所以当一次订购量为550个时,每件商品的实际批发价为102元.(2)由题意知()()1200100,1200.0410*******,x x N f x x x x N⎧≤≤∈⎪=⎨--<≤∈⎪⎩(3)当经销商一次批发个零件x 时,该批发公司可获得利润为y ,根据题意知: ()()400100400.0410*******xx f x x x x ⎧≤≤⎪=⎨--⋅<≤⎡⎤⎪⎣⎦⎩设()140f x x =,在100x =时,取得最大值为4000;设()220.0444f x x x =-+=()220.045500.04550x --+⨯,所以当500x =时,()2f x 取最大值.答:当经销商一次批发500个零件时,该批发公司可获得最大利润. 19.解:(1)∵()f x 为偶函数, ∴()()220f f -==∵偶函数()f x 在(],0-∞上单调递增 ∴()f x 在[)0,+∞上单调递减 ∴12sin 21x >+∴12sin 21x >+或12sin 21x <-+ ∴31sin 2,11,22x ⎛⎫⎛⎫∈---- ⎪ ⎪⎝⎭⎝⎭U ,又[]sin 21,1x ∈-,∴1sin 21,2x ⎛⎫∈--⎪⎝⎭故x 的取值范围为73311,,124412k k k k ππππππππ⎛⎫⎛⎫++++ ⎪⎪⎝⎭⎝⎭U ,()k Z ∈ (2)由题意知,当22t -<<时,()0f t >又()sin 213g x x a π⎛⎫=-+- ⎪⎝⎭,7,242x ππ⎡⎤∈⎢⎥⎣⎦∵7,242x ππ⎡⎤∈⎢⎥⎣⎦,∴22,343x πππ⎡⎤-∈⎢⎥⎣⎦,∴sin 2123x π⎛⎫≤-≤ ⎪⎝⎭要使()0f g x >⎡⎤⎣⎦恒成立,则()22g x -<<恒成立①当0a >时,则()11g x a ≤≤-+12a -+<,01a <<②当0a =时,()1g x =显然成立③当0a <()11a g x -+≤≤12a -+>-,∴30a -<<综上所述,使()0f g x >⎡⎤⎣⎦恒成立时,a的范围为31a -<<. 20.解:(1)原不等式等价于20331x x x <-+<+,解得22x <+故解集为(22.(2)∵23324y x ⎛⎫=-+ ⎪⎝⎭在32x >上是单调递增的,又01a <<,(或设1232x x >>,则120x x ->,123x x +>, ∴()()2211223333x x x x -+--+=()()121230x x x x -+->⎡⎤⎣⎦ ∴()()2211223333x x x x -+>-+,∵01a <<,∴()()221122log 33log 33a a x x x x -+<-+)所以函数()g x 在区间[]3,2m n m ⎛⎫>⎪⎝⎭上为减函数,因此 ()()()2log 33log 3a a g m m m t m =-+=+,()()()2log 33log 3a a g n n n t n =-+=+.即2333m m t m -+=+,2333n n t n -+=+,32m n ⎛⎫<<⎪⎝⎭. 所以m n 、是方程2333x x t x -+=+,3,2x ⎛⎫∈+∞⎪⎝⎭的两个相异的解. 设()263h x x x t =-+-,则()36430393630242332t h t ⎧⎪∆=-->⎪⎪⎛⎫=-⨯+->⎨ ⎪⎝⎭⎪⎪>⎪⎩所以1564t -<<-为所求. (3)()()()()()()2log 1log 332133a a x x x f x g x x F x aax x +--+-+===-+,()1x >-∵()71551x x ++-≥+,当且仅当1x 时等号成立,(可用对勾函数单调性说明,不证不扣分)∴()21150,7333151x x x x x ⎛⎤+=∈ ⎥ -+⎝⎦++-+,∵34<<,∴()F x 有可能取得整数有且只有1,2,3, 当21133x x x +=-+时,解得2x =2x =当21233x x x +=-+时,解得5,12x x ==; 当21333x x x +=-+时,解得2x =,43x =.故集合451,2,,,232M ⎧=+⎨⎩.。
扬州市2017—2018学年度第一学期期末调研测试试题高 一 数 学2018.01(全卷满分160分,考试时间120分钟)注意事项:1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1. 设集合{0,1},{1,3}A B ==,则A B =U ▲ . 2. 7tan3π= ▲ . 3. 设幂函数)(x f 的图象过点()2,2,则)4(f = ▲ .4. 函数3()sin f x x x =的奇偶性为 ▲ 函数.(在“奇”、“偶”、“非奇非偶”、“既奇又偶”中选择)5. 已知扇形的面积为4cm 2,该扇形圆心角的弧度数是12,则扇形的周长为 ▲ cm . 6. 2log 9log 493421⋅+⎪⎭⎫ ⎝⎛-= ▲ .7. 已知单位向量1e r ,2e r的夹角为60°,则12|2|=e e +r r ▲ .8. 已知1s()33co πα+=,则sin()6πα-= ▲ . 9. 如图,在ABC △中,,2==EABE DC AD 若,μλ+= 则μλ-=___▲____.10. 不等式)1(log 22+≤-x x 的解集是 ▲ .11. 已知ABC ∆的面积为16,8=BC ,则AC AB ⋅的取值范围是 ▲ . 12. 已知函数()2sin()(0)6f x x πωω=->与()cos(2)(0)g x x θθπ=+<<的零点完全相同,则()6g π= ▲ .13. 设函数)10()1()(≠>--=-a a ak a x f xx 且是定义域为R 的奇函数.若()312f =,且()x mf a ax g x x2)(22-+=-在[)1,+∞上的最小值为2-,则m 的值为 ▲ .14. 设a 为实数,函数()f x 在R 上不是单调函数,则实数a 的取值范围为 ▲ .二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)已知函数()f x 的定义域为A ,集合}{B=2216xx ≤≤,非空集合}{C=+121x m x m ≤≤-,全集为实数集R .(1)求集合A B I 和R C B ;(2)若A ∪C=A ,求实数m 取值的集合.16.(本小题满分14分)已知向量()()2,1sin(),2cos a b παα==-r r,(1)若3=4πα,求证:a b ⊥r r ;(2)若向量,a b r r共线,求b r .函数()2sin()f x x ωϕ=+(其中0ω>,||<2πϕ),若函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π且过点(0,1), ⑴求()f x 的解析式; ⑵求()f x 的单调增区间; ⑶求()f x 在(,0)2π-的值域.18.(本小题满分15分) 近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元,根据行业规定,每个城市至少要投资80万元,由前期市场调个城市的总收益为)(x f (单位:万元). (1)当投资甲城市128万元时,求此时公司总收益;⑵试问如何安排甲、乙两个城市的投资,才能使公司总收益最大?已知关于x 的函数2()2(1)g x mx m x n =--+为R 上的偶函数,且错误!未找到引用源。
2017-2018学年江苏省扬州市高一(上)期末数学试卷一、填空题(本大题共14小题,共60.0分)1.设集合A={0,1},B={1,3},则A∪B=______.2.tan=______.3.设幂函数f(x)的图象过点(2,),则f(4)=______.4.函数f(x)=x3sin x的奇偶性为______函数.(在“奇”、“偶”、“非奇非偶”、“既奇又偶”中选择)5.已知扇形的面积为4cm2,该扇形圆心角的弧度数是,则扇形的周长为______cm.6.()+log49•log32=______.7.已知单位向量,的夹角为60°,则||______.8.已知cos()=,则sin()=______.9.如图,在△ABC中,==2,若,则λ-μ=______.10.不等式2-x≤log2(x+1)的解集是______.11.已知△ABC的面积为16,BC=8,则的取值范围是______.12.已知函数f(x)=2sin(ωx-)(ω>0)与g(x)=cos(2x+θ)(0<θ<π)的零点完全相同,则g()=______.13.设函数f(x)=a x-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.若f(1)=,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,则m的值为______.14.设a为实数,函数f(x)=(3-x)|x-a|-a,x∈R,若f(x)在R上不是单调函数,则实数a的取值范围为______.二、解答题(本大题共6小题,共90.0分)15.已知函数f(x)=的定义域为A,集合B={x|2≤2x≤16},非空集合C={x|m+1≤x≤2m-1},全集为实数集R.(1)求集合A∩B和∁R B;(2)若A∪C=A,求实数m取值的集合.16.已知向量=(2,1),=(sin(π-α),2cosα)(1)若α=,求证: ⊥;(2)若向量,共线.求||17.函数f(x)=2sin(ωx+φ)(其中ω>0,|φ|<),若函数f(x)的图象与x轴的任意两个相邻交点间的距离为且过点(0,1).(1)求f(x)的解析式;(2)求f(x)的单调增区间:(3)求f(x)在(-,0)的值域.18.近年来,共享单车的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元,根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城市收益p与投入a(单位:万元)满足p=4-6,乙城市收益Q与投入a(单位:万元)满足:Q=,,<,设甲城市的投入为x(单位:万元),两个城市的总收益为f(x)(单位:万元).(1)当投资甲城市128万元时,求此时公司总收益;(2)试问如何安排甲、乙两个城市的投资,才能使公司总收益最大?19.已知关于x的函数g(x)=mx2-2(m-1)x+n为R上的偶函数,且在区间[-1,3]上的最大值为10.设f(x)=.(1)求函数的解析式;(2)若不等式f(2x)-k•2x≤2在x∈[-1,1]上恒成立,求实数k的取值范围;(3)是否存在实数t,使得关于x的方程f(|2x-1|)+-3t-2=0有四个不相等的实数根?如果存在,求出实数t的范围,如果不存在,说明理由.20.已知函数f(x)=lg.(1)求不等式f(f(x))+f(1g2)>0的解集;(2)函数g(x)=2-a x(a>0,a≠1),若存在x1,x2∈[0,1),使得f(x1)=g(x2)成立,求实数a的取值范围;(3)若函数h(x)=或,讨论函数y=h(h(x))-2的零点个数(直接写出答案,不要求写出解题过程).答案和解析1.【答案】{0,1,3}【解析】解:设集合A={0,1},B={1,3},则A∪B={0,1,3},故答案为:{0,1,3}找出两集合的并集即可.此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.【答案】【解析】解:tan=tan(2π+)=tan=.故答案为:.直接利用诱导公式以及特殊角的三角函数求值即可.本题考查诱导公式的应用,特殊角的三角函数求值,考查计算能力.3.【答案】2【解析】解:设f(x)=x a,因为幂函数图象过(2,),则有=2a,∴a=,即f(x)=,∴f(4)==2故答案为:2.设出幂函数的解析式,由图象过(2,),确定出解析式,然后令x=4即可得到f(4)的值.考查学生会利用待定系数法求幂函数的解析式.会根据自变量的值求幂函数的函数值.4.【答案】偶【解析】解:函数f(x)=x3sinx的定义域关于原点对称,函数y=x3,是奇函数,函数y=sinx也是奇函数,由奇×奇=偶,∴函数f(x)=x3sinx是偶函数.故答案为:偶.定义域关于原点对称,奇×奇=偶,可得答案.解决函数的奇偶性时,一定要注意定义域关于原点对称是函数具有奇偶性的必要条件,属于基础题.5.【答案】10【解析】解:设扇形的弧长为l,半径为r,∵扇形圆心角的弧度数是,∴l=r,∵S=lr=4,扇∴•r•r=4,∴r2=16,r=4.∴其周长c=l+2r=2+8=10.故答案为:10.设扇形的弧长为l,半径为r,利用弧长公式,扇形的面积公式可求r,即可得解周长的值.本题考查扇形面积公式,关键在于掌握弧长公式,扇形面积公式及其应用,属于基础题.6.【答案】【解析】解:()+log49•log32=.故答案为:.直接由分数指数幂和对数的运算性质计算得答案.本题考查了对数的运算性质,是基础题.7.【答案】=解:单位向量,的夹角为60°,则=+2•+=1+2×1×1×cos60°+1=3,∴|+2|=.故答案为:.根据平面向量的数量积求模长即可.本题考查了平面向量的数量积与模长公式的应用问题,是基础题.8.【答案】【解析】解:已知cos()=,则sin()=-cos()=-cos()=-.故答案为:-.利用已知条件,对三角函数的关系式进行变换,利用sin进一步求出结果.本题考查的知识要点:三角函数关系式的恒等变变换,角的变换的应用,主要考查学生的运算能力和转化能力,属于与基础题型.9.【答案】-【解析】解:根据题意得:AD=2DC,BE=2EA,∴=;=,∴=-=(+)-=-+∴λ=-,μ=;故答案为-.=-,运用共线向量的知识可得λ和μ的值.本题考查平面向量基本定理的应用.10.【答案】[1,+∞)解:令g(x)=log2(x+1)-(2-x),则不等式2-x≤log2(x+1)⇔g(x)≥0,∵g′(x)=,故g(x)=log2(x+1)-(2-x)在(-1,+∞)上为增函数,又g(1)=log22-(2-1)=0,∴g(x)≥0⇒g(x)≥g(1)⇒x≥1.∴不等式2-x≤log2(x+1)的解集是[1,+∞).故答案为:[1,+∞).构造函数g(x)=log2(x+1)-(2-x),利用导数证明g(x)=log2(x+1)-(2-x)在(-1,+∞)上为增函数,且g(x)≥0,可得g(x)≥g(1),则x≥1,由此可得原不等式的解集.本题考查对数不等式的解法,训练了利用导数研究函数的单调性,是中档题.11.【答案】[0,+∞)【解析】解:建立平面直角坐标系如图所示,设△ABC边BC上的高为h,则面积为×8h=16,解得h=4,又A(0,4),设C(x,0),则B(x-8,0),x∈R;∴=(x-8,-4),=(x,-4);则=x(x-8)+16=x2-8x+16=(x-4)2≥0,∴•的取值范围是[0,+∞).建立平面直角坐标系,利用坐标表示△ABC顶点的坐标,求出的取值范围.本题考查了平面向量的数量积应用问题,是基础题.12.【答案】【解析】解:∵函数f(x)=2sin(ωx-)(ω>0)与g(x)=cos(2x+θ)(0<θ<π)的零点完全相同,∴两函数周期相同,则ω=2,∴f(x)=2sin(2x-),由,可得x=,k∈Z;∴g()=cos()=±cos()=0,则=,k∈Z.∴θ=,k∈Z.取k=0,可得.则g(x)=cos(2x+θ)=cos(2x),∴g()=cos()=cos=.故答案为:.由已知可知两函数周期相等,求得ω,由两函数零点相同求得θ值,则g()可求.本题考查三角函数的化简求值,考查y=Asin(ωx+φ)型函数的图象和性质,是中档题.13.【答案】【解析】解:函数f(x)=a x-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数,可得f(0)=0,即1-(k-1)=0,可得k=2,由f(1)=,可得a-a-1=,解得a=2,则g(x)=a2x+a-2x-2mf(x)=22x+2-2x-2m(2x-2-x),可令t=2x-2-x,由x≥1,可得t≥,可得函数y=t2+t(2-2m),当m-1≥时,g(x)的最小值为-(m-1)2,由-(m-1)2=-2,解得m=1±<,不成立;当m-1<时,g(x)的最小值为+(2-2m),由+(2-2m)=-2,解得m=<成立.故答案为:.由奇函数的性质可得f(0)=0,可得k=2,由条件解方程可得a=2,求得g(x)=22x+2-2x-2m(2x-2-x),可令t=2x-2-x,由x≥1,可得t≥,可得函数y=t2+t(2-2m),讨论对称轴与区间的关系,结合单调性可得最小值,解方程可得m 的值.本题考查函数的奇偶性的定义和指数函数的单调性,考查换元法和二次函数的最值求法,考查运算能力,属于中档题.14.【答案】{a|a≠3}【解析】解:根据题意,f(x)=(3-x)|x-a|-a=,二次函数y=x2-(a+3)x+2a的对称轴为x=<a,二次函数y=-x2+(a+3)x-4a的对称轴也为x=,若<a,即a>3时,二次函数y=x2-(a+3)x+2a在(0,a)上不单调,符合题意;若>a,即a<3时,二次函数y=-x2+(a+3)x-4a在(a,+∞)上不单调,符合若=a,即a=3时,二次函数y=x2-(a+3)x+2a在(0,a)上单调减,二次函数y=-x2+(a+3)x-4a在(a,+∞)上单调减,此时函数f(x)在R上单调递减,不符合题意;则a的取值范围为{a|a≠3};故答案为:{a|a≠3}.根据题意,将函数的解析式写成分段函数的形式即f(x)=,结合二次函数的性质分析其对称轴,综合即可得答案.本题考查分段函数的应用,涉及函数的单调性的性质,注意结合二次函数的性质进行分析.15.【答案】解:(1)由-x2+5x-6≥0得:2≤x≤3,故A=[2,3],集合B={x|2≤2x≤16}=[1,4],则A∩B=[2,3],∁R B=(-∞,1)∪(4,+∞);(2)若A∪C=A,则C⊆A+,解得:1≤m≤2,∴m=2,当m≥2时,C≠∅,则综上可得实数m取值的集合.【解析】本题考查的知识点是集合的交并补混合运算,难度不大,属于基础题.(1)解不等式分别求出AB,进而可得集合A∩B和∁R B;(2)若A∪C=A,则C⊆A,求出满足条件的m,可得答案.16.【答案】证明:(1)∵向量=(2,1),=(sin(π-α),2cosα),α=,∴=(sin,2cos)=(,-),∴=2×+1×(-)=0.∴ ⊥.解:(2)∵向量=(2,1),=(sin(π-α),2cosα)向量,共线.∴sinα=4cosα,∵sin2α+cos2α=17cos2α=1,∴sin2α=,cos2α=,∴||====.【解析】(1)向量=(2,1),α=时,=(sin,2cos)=(,-),由=0.能证明⊥.(2)由向量,共线.得sinα=4cosα,从而sin2α+cos2α=17cos2α=1,进崦sin2α=,cos2α=,由此能求出||.本题考查向量垂直的证明,考查向量模的求法,考查向量垂直、向量共线等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.17.【答案】解:(1)∵函数f(x)=2sin(ωx+φ)(其中ω>0,|φ|<),若函数f(x)的图象与x轴的任意两个相邻交点间的距离为,∴=2×,∴ω=2.再根据图象过点(0,1),可得1=2sinφ,即sinφ=,∴φ=,∴f(x)=2sin(2x+).(2)令2kπ-≤2x+≤2kπ+,求得kπ-≤x≤kπ+,故f(x)的单调增区间为[kπ-,kπ+],k∈Z.(3)在(-,0)上,2x+∈(-,),故当2x+=-时,函数取得最小值为-2,当2x+趋于时,函数趋于最大值1,股函数f(x)的值域为[-2,1).【解析】(1)利用正弦函数的周期性求的ω,根据图象经过定点,求得φ的值,可得函数的解析式.(2)利用正弦函数的单调性求的f(x)的单调增区间.(3)利用正弦函数的定义域以及值域,求的f(x)在(-,0)的值域.本题主要考查正弦函数的周期性、单调性、定义域以及值域,属于基础题.18.【答案】解:(1)当投资甲城市128万元时,投资乙城市112万元,此时公司总收益:f(x)=4-6+=4×16-6+28+2=88(万元).(2)甲城市的投入为x,则乙城市投资240-x万元,当80≤x≤120时,f(x)=4-6+(240-x)+2=4-x+56,∴f′(x)=2•-==>0恒成立,∴f(x)在[80,120]上单调递增,∴f(x)max=f(120)=16+26,当120<x≤160时,f(x)=4-6+32=4+26,∴f(x)在(120,160]上单调递增,∴f(x)max=f(160)=4+26=16+26,∵16+26>16+26,∴该公司在甲城市投资160万元,在乙城市投资80万元,总收益最大.【解析】(1)根据收益公式计算;(2)得出f(x)的解析式,判断f(x)在定义域上的单调性,从而可得f(x)取得最大值时对应的x的值,从而得出最佳投资方案.本题考查了函数模型的应用,函数最值的计算,属于中档题.19.【答案】解:(1)∵函数g(x)=mx2-2(m-1)x+n为R上的偶函数,可得m-1=0,即m=1.则g(x)=x2+n,由g(x)在区间[-1,3]上的最大值为10.即g(3)=10,可得n=1.∴函数的解析式为g(x)=x2+1;(2)由f(x)==不等式f(2x)-k•2x≤2在x∈[-1,1]上恒成立,即在x∈[-1,1]上恒成立,∴k≥设,∵x∈[-1,1]∴s∈[,2].则s2-2s+1=(s-1)2∈[0,1];∴k≥1,即所求实数k的取值范围为[1,+∞).(3)由方程f(|2x-1|)+-3t-2=0,可得|2x-1|+-3t-2=0,可化为:|2x-1|2-(3t+2)|2x-1|+(2t+1)=0(|2x-1|≠0),令r=|2x-1|,则r2-(3t+2)r+(2t+1)=0,r∈(0,+∞),方程f(|2x-1|)+-3t-2=0有四个不相等的实数根;则关于r的方程r2-(3t+2)r+(2t+1)=0必须有两个不相等的实数根r1和r2,并且0<r1<1,0<r2<1,记h(r)=r2-(3t+2)r+(2t+1)=0,r∈(0,+∞),其对称轴<<,可得:<<∴>△>>即>>>解得:<<故得存在实数t的范围为(,).【解析】(1)根据偶函数的图象关于y轴对称,可得m的值.在区间[-1,3]上的最大值为10,即可求解n,可得解析式;(2)利用换元法,分离参数即可求解实数k的取值范围;(3)利用换元法,转化为函数图象交点的问题.根据函数与方程之间的关系,进行转化,利用参数分离法进行求解即可.本题主要考查函数解析式的求解,函数恒成立以及函数与方程的应用,利用参数转化法是解决本题的关键.考查学生的运算能力,综合性较强,难度较大.20.【答案】解:(1)函数f(x)=lg,由>0,可得-1<x<1,f(-x)=lg=-f(x),即f(x)为奇函数,且0<x<1时,f(x)=lg(-1+)递减,可得f(x)在(-1,1)递减,且f(x)的值域为R,不等式f(f(x))+f(1g2)>0,即为f(f(x))>-f(lg2)=f(-lg2),则-1<f(x)<-lg2,即-1<lg<lg,即为0.1<<,解得<x<,则原不等式的解集为(,);(2)函数g(x)=2-a x(a>0,a≠1),若存在x1,x2∈[0,1),使得f(x1)=g(x2)成立,当0≤x<1,f(x)=lg的值域为(-∞,0],当a>1时,g(x)在[0,1)递减,可得g(x)的值域为(2-a,1],由题意可得f(x)和g(x)的值域存在交集,即有2-a<0,即a>2;若0<a<1,则g(x)在[0,1)递增,可得g(x)的值域为[1,2-a),由题意可得f(x)和g(x)的值域不存在交集,综上可得a的范围是(2,+∞);(3)由y=h[h(x)]-2,得h[h(x)]=2,令t=h(x),则h(t)=2,作出图象,当k≤0时,只有一个-1<t<0,对应3个零点,当0<k≤1时,1<k+1≤2,此时t1<-1,-1<t2<0,t3=≥1,由k+1-==(k+)(k-),得在<k≤1,k+1>,三个t分别对应一个零点,共3个,在0<k≤时,k+1≤,三个t分别对应1个,1个,3个零点,共5个,综上所述:当k>1或k=0或k<-时,y=h[h(x)]-2只有1个零点,当-≤k<0或<k≤1时,y=h[h(x)]-2有3个零点,当0<k≤时,y=h[h(x)]-2有5个零点.【解析】(1)求得f(x)的定义域和值域、单调性,由题意可得0.1<<,解不等式即可得到所求范围;(2)求得当0≤x<1时,f(x)的值域;以及讨论a>1,0<a<1时,g(x)的值域,由题意可得f(x)和g(x)的值域存在交集,即可得到所求范围;(3)由y=h[h(x)]-2,得h[h(x)]=2,令t=h(x),则h(t)=2,作出图象,分类讨论,即可求出零点的个数.本题主要考查函数的定义域和奇偶性、单调性,以及不等式的解法,方程根的存在性以及个数判断,体现了转化、数形结合的数学思想,属于难题.。
扬州市2017—2018学年度第一学期期末调研测试试题高 一 数 学2018.01(全卷满分160分,考试时间120分钟)注意事项:1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上) 1. 设集合{0,1},{1,3}A B ==,则A B = ▲ .2. 7tan3π= ▲ . 3. 设幂函数)(x f 的图象过点,则)4(f = ▲ .4. 函数3()sin f x x x =的奇偶性为 ▲ 函数.(在“奇”、“偶”、“非奇非偶”、“既奇又偶”中选择)5. 已知扇形的面积为4cm 2,该扇形圆心角的弧度数是12,则扇形的周长为 ▲ cm . 6. = ▲ .7. 已知单位向量1e ,2e 的夹角为60°,则12|2|=e e + ▲ . 8. 已知1s()33co πα+=,则sin()6πα-= ▲ .9. 如图,在ABC △中,,2==EABE DC AD 若,CB AC DE μλ+= 则μλ-=___▲____. 10. 不等式)1(log 22+≤-x x 的解集是 ▲ .11. 已知ABC ∆的面积为16,8=BC ,则AC AB ⋅的取值范围是 ▲ .12. 已知函数()2sin()(0)6f x x πωω=->与()cos(2)(0)g x x θθπ=+<<的零点完全相同,则()6g π= ▲ .13. 设函数)10()1()(≠>--=-a a ak a x f xx且是定义域为R 的奇函数.若()312f =,且()x mf a a x g x x 2)(22-+=-在[)1,+∞上的最小值为2-,则m 的值为 ▲ .14. 设a 为实数,()f x 在R 上不是单调函数,则实数a的取值范围为 ▲ .二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分14分)已知函数()6f x 的定义域为A ,集合}{B =2216xx ≤≤,非空集合}{C =+121x m x m ≤≤-,全集为实数集R . (1)求集合AB 和RC B ;(2)若A ∪C=A ,求实数m 取值的集合.16.(本小题满分14分)已知向量()()2,1sin(),2cos a b παα==-, (1)若3=4πα,求证:a b ⊥; (2)若向量,a b 共线,求b .17.(本小题满分15分)函数()2sin()f x x ωϕ=+(其中0ω>,||<2πϕ),若函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π且过点(0,1), ⑴求()f x 的解析式; ⑵求()f x 的单调增区间; ⑶求()f x 在(,0)2π-的值域.18.(本小题满分15分)近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、益为)(x f (单位:万元).(1)当投资甲城市128万元时,求此时公司总收益;⑵试问如何安排甲、乙两个城市的投资,才能使公司总收益最大?19.(本小题满分16分)已知关于x 的函数2()2(1)g x mx m x n =--+为R 上的偶函数,且在区间[]1,3-上的最大值为10. 设xx g x f )()(=. ⑴ 求函数错误!未找到引用源。
2017—2018学年度第一学期期末检测试题高三数学第一部分一、填空题(本大题共14个小题,每小题5分,共70分.请将答案填写在答题卷相应的位置上)1.若集合{|13}A x x=<<,{0,1,2,3}B=,则A B=.2.若复数(2)(13)a i i-+(i是虚数单位)是纯虚数,则实数a的值为.3.若数据31,37,33,a,35的平均数是34,则这组数据的标准差是.4.为了了解某学校男生的身体发育情况,随机抽查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图.根据此图估计该校2000名男生中体重在7078()kg的人数为.5.运行下边的流程图,输出的结果是.6.从2名男生2名女生中任选两人,则恰有一男一女的概率为.7.若圆锥的侧面展开图的面积为3π且圆心角为23π的扇形,则此圆锥的体积为 .8.若实数x ,y 满足433412x y x y ≤⎧⎪≤⎨⎪+≥⎩,则22x y +的取值范围是 .9.已知各项都是正数的等比数列{}n a 的前n 项和为n S ,若44a ,3a ,56a 成等差数列,且2323a a =,则3S = .10.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的渐近线与圆22650x y y +-+=没有交点,则双曲线离心率的取值范围是 .11.已知函数14()sin 2xx f x x x -=-+,则关于x 的不等式2(1)(57)0f x f x -+-<的解集为 .12.已知正ABC ∆的边长为2,点P 为线段AB 中垂线上任意一点,Q 为射线AP 上一点,且满足1AP AQ ⋅=,则CQ 的最大值为 .13.已知函数12log (1)1,[1,]()21,(,]x x k f x x x k a -+-∈-⎧⎪=⎨⎪--∈⎩,若存在实数k 使得该函数的值域为[2,0]-,则实数a 的取值范围是 .14.已知正实数x ,y 满足22541x xy y +-=,则22128x xy y +-的最小值为 .二、解答题:(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.如图,在直三棱柱111ABC A B C -中,D ,E 分别为AB ,AC 的中点.(1)证明:11//B C 平面1A DE ;(2)若平面1A DE ⊥平面11ABB A ,证明:AB DE ⊥. 16.已知在ABC ∆中,6AB =,5BC =,且ABC ∆的面积为9. (1)求AC ;(2)当ABC ∆为锐角三角形时,求cos(2)6A π+的值.17.如图,射线OA 和OB 均为笔直的公路,扇形OPQ 区域(含边界)是一蔬菜种植园,其中P 、Q 分别在射线OA 和OB 上.经测量得,扇形OPQ 的圆心角(即POQ ∠)为23π、半径为1千米.为了方便菜农经营,打算在扇形OPQ 区域外修建一条公路MN ,分别与射线OA 、OB 交于M 、N 两点,并要求MN 与扇形弧PQ相切于点S .设POS α∠=(单位:弧度),假设所有公路的宽度均忽略不计.(1)试将公路MN 的长度表示为α的函数,并写出α的取值范围; (2)试确定α的值,使得公路MN 的长度最小,并求出其最小值.18.已知椭圆1E :22221(0)x y a b a b+=>>,若椭圆2E :22221(0,1)x y a b m ma mb+=>>>,则称椭圆2E 与椭圆1E “相似”.(1)求经过点,且与椭圆1E :2212x y += “相似”的椭圆2E 的方程;(2)若4m =,椭圆1E的离心率为2,P 在椭圆2E 上,过P 的直线l 交椭圆1E 于A ,B 两点,且AP AB λ=.①若B 的坐标为(0,2),且2λ=,求直线l 的方程;②若直线OP ,OA 的斜率之积为12-,求实数λ的值.19.已知函数()x f x e =,()g x ax b =+,,a b R ∈.(1)若(1)0g -=,且函数()g x 的图象是函数()f x 图象的一条切线,求实数a 的值;(2)若不等式2()f x x m >+对任意(0,)x ∈+∞恒成立,求实数m 的取值范围; (3)若对任意实数a ,函数()()()F x f x g x =-在(0,)+∞上总有零点,求实数b 的取值范围.20.已知各项都是正数的数列{}n a 的前n 项和为n S ,且22n n n S a a =+,数列{}n b 满足112b =,12n n n nbb b a +=+. (1)求数列{}n a 、{}n b 的通项公式; (2)设数列{}nc 满足2n n nb c S +=,求和12n c c c ++⋅⋅⋅+; (3)是否存在正整数p ,q ,()r p q r <<,使得p b ,q b ,r b 成等差数列?若存在,求出所有满足要求的p ,q ,r ,若不存在,说明理由.第二部分(加试部分)21. B .选修4-2:矩阵与变换已知x ,y R ∈,若点(1,1)M 在矩阵23x y ⎡⎤=⎢⎥⎣⎦A 对应的变换作用下得到点(3,5)N ,求矩阵A 的逆矩阵1A -.21. C .选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程是:2x m y ⎧=⎪⎪⎨⎪=⎪⎩(t 是参数,m 是常数).以O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为6cos ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 与曲线C 相交于P 、Q 两点,且2PQ =,求实数m 的值. 22.扬州大学数学系有6名大学生要去甲、乙两所中学实习,每名大学生都被随机分配到两所中学的其中一所.(1)求6名大学生中至少有1名被分配到甲学校实习的概率;(2)设X ,Y 分别表示分配到甲、乙两所中学的大学生人数,记X Y ξ=-,求随机变量ξ的分布列和数学期望.23.二进制规定:每个二进制数由若干个0、1组成,且最高位数字必须为1.若在二进制中,n S 是所有n 位二进制数构成的集合,对于n a ,n n b S ∈,(,)n n M a b 表示n a 和n b 对应位置上数字不同的位置个数.例如当3100a =,3101b =时33(,)1M a b =,当3100a =,3111b =时33(,)2M a b =.(1)令510000a =,求所有满足55b S ∈,且55(,)2M a b =的5b 的个数; (2)给定(2)n a n ≥,对于集合n S 中的所有n b ,求(,)n n M a b 的和.扬州市2017—2018学年度第一学期期末调研测试试题高三数学参考答案第一部分一、填空题 1.{}2 2.6-3. 24. 2405.946.23 7. 38.144[,25]25 9.1327 10.3(1,)211.(2,3) 12.12 13. 1(,2]214. 73二、解答题15证明:⑴在直三棱柱111ABC A B C -中,四边形11B BCC 是平行四边形,所以11//B C BC ,在ABC ∆中,,D E 分别为,AB AC 的中点,故//BC DE ,所以11//B C DE , 又11B C ⊄平面1A DE ,DE ⊂平面1A DE , 所以11//B C 平面1A DE .⑵在平面11ABB A 内,过A 作1AF A D ⊥于F ,因为平面1A DE ⊥平面11A ABB ,平面1A DE 平面111A ABB A D=,AF ⊂平面11A ABB ,所以AF ⊥平面1A DE ,又DE ⊂平面1A DE ,所以AF DE ⊥,在直三棱柱111ABC A B C -中,1A A ⊥平面ABC ,DE ⊂平面ABC ,所以1A A DE ⊥, 因为1AF A A A= ,AF ⊂平面11A ABB ,1A A ⊂平面11A ABB ,所以DE ⊥平面11A ABB ,因为AB ⊂平面11A ABB ,所以DE AB ⊥.注:作1AF A D ⊥时要交代在平面内作或要交代垂足点,否则扣1分16 解:⑴因为S △ABC =1sin 92AB BC B =创,又AB=6,BC=5,所以3sin 5B =,又B (0,)π∈,所以4cos 5B ==±,当cosB=45时,AC == 当cosB=45-时,AC ===所以AC =注:少一解的扣3分⑵ 由ABC ∆为锐角三角形得B 为锐角,所以AB=6,,BC=5, 所以cosA ==又(0,)A π∈,所以sinA ==, 所以12sin 2213A ==,225cos 213A =-=-,所以cos(2)cos 2cos sin 2sin 666A A A p p p +=-.17. 解:⑴因为MN 与扇形弧PQ 相切于点S ,所以OS ⊥MN. 在RT OSM 中,因为OS=1,∠MOS=α,所以SM=tan α, 在RT OSN 中,∠NOS=23πα-,所以SN=2tan()3πα-,所以2tan tan()3MN παα=+-=,其中62ππα<<.⑵ 因为62ππα<<,所以10α->,令10t α=->,则tan 1)t α=+,所以42)MN t t=++,由基本不等式得2)MN ≥=, 当且仅当4t t=即2t =时取“=”.此时tan α=62ππα<<,故3πα=.答:⑴2tan tan()3MN παα=+-=,其中62ππα<<.⑵当3πα=时,MN 长度的最小值为.注:第⑵问中最小值对但定义域不对的扣2分.18解:⑴设椭圆2E 的方程为2212x y m m +=,代入点得2m =, 所以椭圆2E 的方程为22142x y +=.⑵因为椭圆1E 的离心率为2,故222a b =,所以椭圆2221:22E x y b +=, 又椭圆2E 与椭圆1E “相似”,且4m =,所以椭圆2221:28E x y b +=, 设112200(,),(,),(,)A x y B x y P x y ,①方法一:由题意得2b =,所以椭圆221:28E x y +=,将直线:2l y kx =+, 代入椭圆221:28E x y +=得22(12)80k x kx ++=,解得1228,012kx x k -==+,故212224,212k y y k -==+, 所以222824(,)1212k k A k k--++, 又2AP AB = ,即B 为AP 中点,所以2228212(,)1212k k P k k+++, 代入椭圆222:232E x y +=得222228212()2()321212k k k k ++=++,即4220430k k +-=,即22(103)(21)0k k -+=,所以10k =±,所以直线l 的方程为2y x =+. 方法二:由题意得2b =,所以椭圆221:28E x y +=,222:232E x y +=, 设(,),(0,2)A x y B ,则(,4)P x y --,代入椭圆得2222282(4)32x y x y ⎧+=⎪⎨+-=⎪⎩,解得12y =,故x =所以k =所以直线l 的方程为2y x =+.②方法一: 由题意得22222222200112228,22,22x y b x y b x y b +=+=+=,010112y y x x ⋅=-,即010120x x y y +=, AP AB λ= ,则01012121(,)(,)x x y y x x y y λ--=--,解得012012(1)(1)x x x y y y λλλλ+-⎧=⎪⎪⎨+-⎪=⎪⎩, 所以2220101(1)(1)()2()2x x y y b λλλλ+-+-+=,则22222222001100112(1)(1)24(1)2(1)2x x x x y y y y b λλλλλ+-+-++-+-=, 222222200010111(2)2(1)(2)(1)(2)2x y x x y y x y b λλλ++-++-+=,所以222228(1)22b b b λλ+-⋅=,即224(1)λλ+-=,所以52λ=. 方法二:不妨设点P 在第一象限,设直线:(0)O P y k x k =>,代入椭圆2222:28E x y b +=,解得0x =0y =,直线,O P O A的斜率之积为12-,则直线1:2O Ay x k=-,代入椭圆2221:22E x y b+=,解得1x =1y =,AP AB λ= ,则01012121(,)(,)x x y y x x y y λ--=--,解得012012(1)(1)x x x y y y λλλλ+-⎧=⎪⎪⎨+-⎪=⎪⎩,所以2220101(1)(1)()2()2x x y y b λλλλ+-+-+=,则22222222001100112(1)(1)24(1)2(1)2x x x x y y y y b λλλλλ+-+-++-+-=, 222222200010111(2)2(1)(2)(1)(2)2x y x x y y x y b λλλ++-++-+=,所以2222282(((1)22b b b λλλ+-++-⋅=,即222228(1)22b b b λλ+-⋅=,即224(1)λλ+-=,所以52λ=.19解:(1)由(1)0g -=知,()g x 的图象直线过点(1,0)-,设切点坐标为00(,)T x y ,由'()x f x e =得切线方程是000()x x y e e x x -=-, 此直线过点(1,0)-,故000(1)x x e e x -=--,解得00x =,所以'(0)1a f ==.(2)由题意得2,(0,)x m e x x <-∈+∞恒成立, 令2(),(0,)x m x e x x =-∈+∞,则'()2x m x e x =-,再令()'()xn x m x e x ==-,则'()2xn x e =-,故当(0,ln 2)x ∈时,'()0n x <,()n x 单调递减;当(ln 2,)x ∈+∞时,'()0n x >,()n x 单调递增,从而()n x 在(0,)+∞上有最小值(ln 2)22ln 20n =->, 所以()m x 在(0,)+∞上单调递增, 所以(0)m m ≤,即1m ≤. 注:漏掉等号的扣2分.(3)若0a <,()()()x F x f x g x e ax b =-=--在(0,)+∞上单调递增, 故()()()F x f x g x =-在(0,)+∞上总有零点的必要条件是(0)0F <,即1b >, 以下证明当1b >时,()()()F x f x g x =-在(0,)+∞上总有零点. ①若0a <,由于(0)10F b =-<,()()0b baa b b F e a b e a a---=---=>,且()F x 在(0,)+∞上连续,故()F x 在(0,)ba-上必有零点; ②若0a ≥,(0)10F b =-<,由(2)知221x e x x >+>在(0,)x ∈+∞上恒成立, 取0x a b=+,则0()()a b F x F a b e a a b b +=+=-+-22()(1)0a b a ab b ab b b >+---=+->,由于(0)10F b =-<,()0F a b +>,且()F x 在(0,)+∞上连续, 故()F x 在(0,)a b +上必有零点, 综上得:实数b 的取值范围是(1,)+∞.20. 解:(1)22n n n S a a =+①,21112n n n S a a +++=+②,②-①得:221112n n n n n a a a a a +++=-+-,即11()(1)0n n n n a a a a +++--=, 因为{}n a 是正数数列,所以110n n a a +--=,即11n n a a +-=, 所以{}n a 是等差数列,其中公差为1, 在22n n n S a a =+中,令1n =,得11a =, 所以n a n =, 由12nn n nb b b a +=+得1112n n b b n n +=⋅+, 所以数列{}n b n 是等比数列,其中首项为12,公比为12,所以1(),22n n n n b nb n ==即. 注:也可累乘求{}n b 的通项. (2)2212()2n n n n b n c S n n +++==+,裂项得1112(1)2n n n c n n +=-⋅+, 所以121112(1)2n n c c c n ++++=-+ , (3)假设存在正整数,,()p q r p q r <<,使得,,p q r b b b 成等差数列,则2p r q b b b +=,即2222p r q p r q+=, 因为11111222n n n n n n n nb b ++++--=-=,所以数列{}n b 从第二项起单调递减, 当1p =时,12222r q r q+=,若2q =,则122r r =,此时无解; 若3q =,则124r r =,因为{}n b 从第二项起递减,故4r =,所以1,3,4p q r ===符合要求, 若4q ≥,则1142q b b b b ≥≥,即12q b b ≥,不符合要求,此时无解; 当2p ≥时,一定有1q p -=,否则若2q p -≥,则2442221p p qP b b p b b p p+≥==≥++,即2p q b b ≥,矛盾, 所以1q p -=,此时122r pr =,令1r p m -=+,则12m r +=,所以121m p m +=--,12m q m +=-,综上得:存在1,3,4p q r ===或121m p m +=--,12m q m +=-,12m r +=满足要求.第二部分(加试部分)答案21.A .解:因为1315⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A ,即213315x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即2335x y +=⎧⎨+=⎩,解得12x y =⎧⎨=⎩, 所以2132⎡⎤=⎢⎥⎣⎦A , 法1:设1a b c d -⎡⎤=⎢⎥⎣⎦A ,则121103201a b c d -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA ,即2132020321a c a c b d b d +=⎧⎪+=⎪⎨+=⎪⎪+=⎩, 解得2132a b c d =⎧⎪=-⎪⎨=-⎪⎪=⎩,所以12132--⎡⎤=⎢⎥-⎣⎦A . 法2:因为1db a b ad bc ad bc c d c a ad bcad bc --⎡⎤⎢⎥⎡⎤--=⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥--⎣⎦,且21det()2213132==⨯-⨯=A , 所以1121213232---⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦A . 注:法2中没有交待逆矩阵公式而直接写结果的扣2分.B .解:(1)因为直线l 的参数方程是: 2x m y ⎧=+⎪⎪⎨⎪=⎪⎩(t 是参数), 所以直线l 的普通方程为0x y m --=.因为曲线C 的极坐标方程为6cos ρθ=,故26cos ρρθ= ,所以226x y x += 所以曲线C 的直角坐标方程是22(3)9x y -+=.(2)设圆心到直线l 的距离为d,则d ==又d ==所以34m -=,即 1m =-或7m =.22.解:⑴记 “6名大学生中至少有1名被分配到甲学校实习” 为事件A ,则6163()=1264P A =-. 答:6名大学生中至少有1名被分配到甲学校实习的概率为6364. ⑵ξ所有可能取值是0,2,4,6,记“6名学生中恰有i 名被分到甲学校实习”为事件i A (01,6i = ,,),则3363365(0)()216C C P P A ξ====,2442646224246615(2)()()()2232C C C C P P A A P A P A ξ==+=+=+=,155165611515663(4)()()()2216C C C C P P A A P A P A ξ==+=+=+=,066066660606661(6)()()()2232C C C C P P A A P A P A ξ==+=+=+=,所以随机变量ξ的概率分布为:所以随机变量ξ的数学期望()024+6163216328E ξ=⨯+⨯+⨯⨯=.答:随机变量ξ的数学期望15()8E ξ=. 23.解(1)因为55(,)2M a b =,所以5b 为5位数且与5a 有2项不同,又因为首项为1,故5a 与5b 在后四项中有两项不同,所以5b 的个数为246C =.(2)当(,)n n M a b =0时,n b 的个数为01n C -; 当(,)n n M a b =1时,n b 的个数为11n C -, 当(,)n n M a b =2时,n b 的个数为21n C -,………当(,)n 1n n M a b =-时,n b 的个数为11n n C --,设(,)n n M a b 的和为S , 则01211111012(1)n n n n n S C C C n C -----=++++- , 倒序得12101111(1)210n n n n n S n C C C C -----=-++++ ,倒序相加得01111112(1)[](1)2n n n n n S n C C C n -----=-++=-⋅ ,即2(1)2n S n -=-⋅, 所以(,)n n M a b 的和为2(1)2n n --⋅.扬州市2017—2018学年度第一学期期末调研测试试题高三数学参考答案2018.2第一部分1.2.3.4.5.6.7.8.9. 10.11.12.13.14.15证明:⑴在直三棱柱中,四边形是平行四边形,所以,.………2分在中,分别为的中点,故,所以, (4)分又平面,平面,所以平面.………7分⑵在平面内,过作于,因为平面平面,平面平面,平面,所以平面,.………11分又平面,所以,在直三棱柱中,平面,平面,所以,因为,平面,平面,所以平面,因为平面,所以。
江苏省扬州中学2017-2018学年第二学期期中考试 高一数学试卷 2018.4(满分160分,考试时间120分钟)一、填空题:(本大题共14小题,每小题5分,共70分.) 1. 8sin 8cos 22ππ-的值是 ▲ .220y -+=的倾斜角为 ▲ .3.已知1x >,则函数11y x x =+-的最小值为 ▲ . 4.已知直线l 经过点())2,0(,0,1B A ,则直线l 的方程为 ▲ .5.已知{}n a 是等差数列, 471015a a a ++=,则其前13项和13S = ▲ .6.在ABC ∆中,若cos cos a B b A =,则ABC ∆的形状是 ▲ .7.已知数列{}n a 的前n 项和n S 满足:n n S n 22+=,那么=10a ▲ .8.若关于x 的不等式x x x m ->-2)1(的解集为{}21|<<x x ,则实数m 的值为 ▲ .9. 数列{}n a 满足0)1(,211=+-=+n n a n na a ,则数列{}n a 通项公式=n a ▲ .10.在ABC ∆中,点D 是BC 边上的一点,且1=BD ,3=AC ,,772cos =B 32π=∠ADB ,则DC 长等于 ▲ . 11.设等比数列{}n a 的前n 项和为n S ,若693,,S S S 成等差数列,且38=a ,则5a 的值为 ▲ .12.在ABC ∆中,cos 2sin sin A B C =,tan tan 2B C +=-,则tan A 的值为 ▲ .13.设等比数列{}n a 满足:,sin 3cos ,21n n n a a θθ+==其中*,2,0N n n ∈⎪⎭⎫ ⎝⎛∈πθ,则数列{}n θ的前2018项之和是 ▲ .14. 在ABC ∆中,角C B A ,,的对边分别为c b a ,,,已知,0sin sin sin sin =++B A B A λ且c b a 2=+,则实数λ的取值范围是 ▲ .二、解答题:本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分14分) 已知⎪⎭⎫ ⎝⎛∈ππα,2,且31sin =α. (1)求α2sin 的值;(2)若⎪⎭⎫ ⎝⎛∈-=+2,0,53)sin(πββα,求βsin 的值.16.(本小题满分14分)已知0,0>>y x ,且1=+y x ,(1)求xy 的最大值;(2)求yx 41+的最小值.17.(本小题满分14分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知sin sin sin sin c A B b a A C +=-+. (1)求角B 的大小;(2)若sin 2sin C A =,且ABC S ∆=b 的值;。
2017届扬州中学高三数学月考卷 2017.12第I 卷(必做题 共160分)一、填空题:本大题共14小题,每小题5分,共70分.把答案填在题中横线上. 1.已知复数i zz=-+11,则z 的实部为__▲__. 2.如图是一次青年歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为12,a a ,则12,a a 的大小关系是______▲_______(填12a a >,21a a >,12a a =)3.命题2000:,210p x R x x ∃∈++≤是 ▲ 命题(选填“真”或“假”).4,则该长方体的体积是 ▲ . 5.已知圆C :22680x y x +-+=,若直线y kx =与圆C 相切,且切点在第四象限,则k =_▲___.6.已知()f x 为奇函数,当0x <时,()2xf x e x =+,则曲线()y f x =在1x =处的切 线斜率为 ▲ .7.函数sin cos y x x =的图像可由函数sin y x x =的图像至少向右平移___▲______个单位长度得到.8.已知直线,,l m 平面,,βα且α⊥m ,β⊂l ,给出下列命题:①若βα//,则l m ⊥;②若l m ⊥,则βα//;③若βα⊥,则l m //;④若l m //,则βα⊥.其中正确的命题是_____▲_____________. 9.已知点(,)P x y 满足01,0 2.x x y ≤≤⎧⎨≤+≤⎩则点(,)Q x y y +构成的图形的面积为__▲__.10.以抛物线218y x =的焦点为圆心,且与双曲线2213y x -=的渐近线相切的圆的方程是___▲___.11.已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延OFEDCBA长到点F ,使得EF DE 2=,则AF BC的值为 ▲ . 12.对任意x ∈R ,函数()f x 满足1(1()]2f xx ++,设 )()]([2n f n f a n -=,数列}{n a 的前15项的和为3116-,则(15)f =_▲____. 13.若实数x ,y 满足22224444x xy y x y -++=,则当2x y +取得最大值时,32x y的值为 ▲ .14.已知等差数列{}n a 首项为a ,公差为b ,等比数列{}n b 首项为b ,公比为a ,其中,a b都是大于1的正整数,且1123,a b b a <<,对于任意的*n N ∈,总存在*m N ∈,使得3m n a b +=成立,则55a b +=___▲___.二、解答题:(本大题6小题,共90分) 15.(本题满分14分)在锐角ABC ∆中,角A 、B 、C 所对的边长分别为a 、b 、,c 向量()()3,s i n ,c o s ,1-==B B ,且m n ⊥.(1)求角B 的大小; (2)若ABC ∆面积为2,2253b ac -=,求,a c 的值.16.(本题满分14分)在四棱锥E A B C D -中,底面A B C D 是正方形,,A C B D O与交于F A B C D ,底面⊥EC 为BE 的中点. (1)求证:DE ∥平面ACF ; (2)若,AB =在线段EO 上是否存在点G ,使CG BDE ⊥平面?若存在,求出EGEO的值,若不存在,请说明理由.17.(本题满分14分)如图所示,把一些长度均为4米(PA +PB =4米)的铁管折弯后当作骨架制作“人字形”帐蓬,根据人们的生活体验知道:人在帐蓬里“舒适感”k 与三角形的底边长和底边上的高度有关,设AB 为x ,AB 边上的高PH 为y ,则k =k 越大,则“舒适感”越好。
江苏省扬州中学高二年级12月质量检测数 学(满分160分,考试时间120分钟)一、填空题:(本大题共14小题,每小题5分,共70分.)1.命题“02,2>+∈∀x R x ”的否定是______命题.(填“真”或“假”之一).2.双曲线191622=-y x 的两条渐近线的方程为 .3.“1m =-”是“直线(21)10mx m y +-+=和直线330x my ++=垂直的” 条件.(填“充要条件”、“ 充分不必要条件”、“必要不充分条件”、“既不充分也不必要条件”之一)4.已知函数)1(2)('2--=xf x x f ,则)1('-f = .5.若抛物线28y x =的焦点F 与双曲线2213x y n-=的一个焦点重合,则的值为 . 6.已知函数x a x x f sin )(+=在),(+∞-∞上单调递增,则实数的取值范围是 . 7. 若函数x a ax x x f )2(ln )(2+-+=在21=x 处取得极大值,则正数的取值范围是 .8. 若中心在原点,以坐标轴为对称轴的圆锥曲线C(2,3),则曲线C 的方程为 .9.在平面直角坐标系xoy 中,记曲线)2,(2-≠∈-=m R x xmx y 在1=x 处的切线为直线.若直线在两坐标轴上的截距之和为12,则m 的值为 .10.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0x f x f x -<,则使得()0f x >成立的的取值范围是 .11.在平面直角坐标系xOy 中,圆C 的方程为(x -1)2+(y -1)2=9,直线l :y =kx +3与圆C 相交于A ,B 两点,M 为弦AB 上一动点,以M 为圆心,2为半径的圆与圆C 总有公共点,则实数k 的取值范围为 .12.双曲线)0,0(12222>>=-b a by a x 的右焦点为F ,直线x y 34=与双曲线相交于B A ,两点.若BF AF ⊥,则双曲线的渐近线方程为 .2016.1213.已知函数2)(1-+=-x e x f x (为自然对数的底数).3)(2+--=a ax x x g .若存在实数21,x x ,使得0)()(21==x g x f .且121≤-x x ,则实数的取值范围是 .14.设函数axee xf 2)(-=,若)(x f 在区间)3,1(a --内的图象上存在两点,在这两点处的切线互相垂直,则实数的取值范围是 .二、解答题(本大题共6小题,共90分解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)已知命题p :函数6)34()(23++++=x a ax x x f 在),(+∞-∞上有极值,命题:双曲线1522=-ax y 的离心率)2,1(∈e .若q p ∨是真命题,q p ∧是假命题,求实数的取值范围.16.(本小题满分14分)设函数()2ln 2x f x k x =-,0k >.(1)求()f x 的单调区间和极值;(2)证明:若()f x 存在零点,则()f x在区间(上仅有一个零点.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知圆22:40C x y x +-=及点(1,0)A -,(1,2)B . (1)若直线平行于AB ,与圆C 相交于M ,N 两点,MN AB =,求直线的方程; (2)在圆C 上是否存在点P ,使得2212PA PB +=?若存在,求点P 的个数;若不存在,说明理由.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆:E 22221(0)x y a b a b+=>>的左顶点为A ,与轴平行的直线与椭圆E 交于B 、C 两点,过B 、C 两点且分别与直线AB 、AC 垂直的直线相交于点D .已知椭圆E的离心率为3,右焦点到右准线的距离为5. (1)求椭圆E 的标准方程;(2)证明点D 在一条定直线上运动,并求出该直线的方程; (3)求BCD ∆面积的最大值.19.(本小题满分16分)如图所示,有一块矩形空地ABCD ,AB =km ,BC =km ,根据周边环境及地形实际,当地政府规划在该空地内建一个筝形商业区AEFG ,筝形的顶点,,,A E F G 为商业区的四个入口,其中入口F 在边BC 上(不包含顶点),入口,E G 分别在边,AB AD 上,且满足点,A F 恰好关于直线EG 对称,矩形内筝形外的区域均为绿化区. (1)请确定入口F 的选址范围;(2)设商业区的面积为1S ,绿化区的面积为2S ,商业区的环境舒适度指数为21S S ,则入口F 如何选址可使得该商业区的环境舒适度指数最大?20.(本小题满分16分)设函数()ln f x x ax =-()a R ∈.(1)若直线31y x =-是函数()f x 图象的一条切线,求实数的值;(2)若函数()f x 在21,e ⎡⎤⎣⎦上的最大值为1ae -(为自然对数的底数),求实数的值; (3)若关于的方程()()22ln 23ln x x t x x t x t --+--=-有且仅有唯一的实数根,求实数的取值范围.参考答案:1.假2.xy 43±= 3. 充分不必要 4. 32- 5. 1 6. [1,1]- 7. (0,2) 8.225x y -= 9. -3或-4 10.(,1)(0,1)-∞- 11.1-34,+∞) 12. 2y x =±13. 12,3].14.解:当x≥2a 时,f (x )=|e x ﹣e 2a |=e x ﹣e 2a ,此时为增函数,当x <2a 时,f (x )=|e x ﹣e 2a |=﹣e x +e 2a,此时为减函数,即当x=2a 时,函数取得最小值0,设两个切点为M (x 1,f (x 1)),N ((x 2,f (x 2)), 由图象知,当两个切线垂直时,必有,x 1<2a <x 2, 即﹣1<2a <3﹣a ,得﹣<a <1,∵k 1k 2=f′(x 1)f′(x 2)=e x1•(﹣e x2)=﹣e x1+x2=﹣1, 则ex1+x2=1,即x 1+x 2=0,∵﹣1<x 1<0,∴0<x 2<1,且x 2>2a , ∴2a <1,解得a <, 综上﹣<a <, 故答案为:(﹣,).15.解:命题p :f′(x )=3x 2+2ax+a+, ∵函数f (x )在(﹣∞,+∞)上有极值, ∴f′(x )=0有两个不等实数根,∴△=4a 2﹣4×3(a+)=4a 2﹣4(3a+4)>0, 解得a >4或a <﹣1;命题q :双曲线的离心率e ∈(1,2),为真命题,则∈(1,2),解得0<a <15.∵命题“p ∧q”为假命题,“p ∨q”为真命题, ∴p 与q 必然一真一假,则或,解得:a≥15或0<a≤4或a <﹣1. 16.所以,()f x 的单调递减区间是,单调递增区间是)+∞;()f x 在x =(1ln )2k k f -=.(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为(1ln )2k k f -=. 因为()f x 存在零点,所以(1ln )02k k -≤,从而k e ≥.当k e =时,()f x 在区间上单调递减,且0f =,所以x =()f x 在区间上的唯一零点.当k e >时,()f x 在区间上单调递减,且1(1)02f =>,02e kf -=<,所以()f x 在区间上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数零点问题. 17..(2)假设圆C 上存在点P ,设(,)P x y ,则22(2)4x y -+=,222222(1)(0)(1)(2)12PA PB x y x y +=++-+-+-=,即22230x y y +--=,即22(1)4x y +-=, ………………………………10分因为|22|22-+,……………………………………12分 所以圆22(2)4x y -+=与圆22(1)4x y +-=相交,所以点P 的个数为.…………………………………………………………14分18. 解:(1)由题意得3c a =,25a c c -=,解得3,a c ==,所以4b ==,所以椭圆E 的标准方程为22194x y +=.………4分(2)设0000(,),(,)B x y C x y -,显然直线,,,AB AC BD CD 的斜率都存在,设为1234,,,k k k k ,则001200,33y y k k x x ==+-+,00340033,x x k k y y +-=-=, 所以直线,BD CD 的方程为:0000000033(),()x x y x x y y x x y y y +-=--+=++,消去y 得0000000033()()x x x x y x x y y y +---+=++,化简得3x =, 故点D 在定直线3x =上运动. ……10分(3)由(2)得点D 的纵坐标为2000000039(3)D x x y x y y y y --=++=+,又2200194x y +=, 所以220994y x -=-,则20000009354(3)4D y x y x y y y y y --=++=+=-,所以点D 到直线BC 的距离为00005944D y y y y y -=--=, 将0y y =代入22194x y +=得x =±, 所以BCD ∆面积0119224ABCS BC h y ∆=⋅=⨯22000112727442224y y y -+=≤⋅=,当且仅当2200144y y -=,即0y =时等号成立,故0y =BCD ∆面积的最大值为274. ……16分 19.解:(1)以A 为原点,AB 所在直线为轴,建立如图所示平面直角坐标系,则()0,0A ,设()2,2F a (024a <<),则AF 的中点为()1,a ,斜率为, 而EG AF ⊥,故EG 的斜率为1a-, 则EG 的方程为()11y a x a-=--, 令0x =,得1G y a a=+; ………2分 令0y =,得21E x a =+; … …4分由04020<<4G E y x BF BF <≤⎧⎪<≤⎨⎪⎩,得220102a a a ⎧-≤≤+⎪<≤⎨⎪<<⎩,21a ∴≤≤,即入口F 的选址需满足BF的长度范围是[42]-(单位:km ).……6分 (2)因为()23111212AEG S S AE AG a a a a a a∆⎛⎫==⋅=++=++ ⎪⎝⎭, 故该商业区的环境舒适度指数121111811ABCD ABCD S S S S S S S S -==-=-, ……9分 所以要使21S S 最大,只需1S 最小. 设()3112,[2S f a a a a a==++∈ ……10分 则()()())()2224222222111311132132a a a a a f a a a a a a -++-++-'=+-===令()0f a '=,得a =a =(舍), ………12分()(),,a f a f a '的情况如下表:22⎛ ⎝⎭3⎫⎪⎪⎝⎭ 1 ()f a '0 +()f a减极小增故当a =F满足BF =km 时,该商业区的环境舒适度指数最大16分 20.解:(1)()ln f x ax x=-+,()1f x ax'∴=-, 设切点横坐标为0x ,则000013,ln 31,a x ax x x ⎧-=⎪⎨⎪-+=-⎩…………2分消去,得0ln 0x =,故01x =,得 2.a =- ………4分(2)()22111,1,1,f x a x e x e x'=-≤≤≤≤①当21a e≤时,()0f x '≥在21,e ⎡⎤⎣⎦上恒成立,()f x 在21,e ⎡⎤⎣⎦上单调递增,则()()22max 21f x f e ae ae ==-=-,得2211a e e e=>-,舍去; ……………5分 ②当1a ≥时,()0f x '≤在21,e ⎡⎤⎣⎦上恒成立,()f x 在21,e ⎡⎤⎣⎦上单调递减,则()()max 11f x f a ae ==-=-,得111a e =<-,舍去; ………6分 ③当211a e <<时,由()201f x x e '⎧>⎪⎨≤≤⎪⎩,得11x a ≤<;由()201f x x e'⎧<⎪⎨≤≤⎪⎩,得21x e a <≤,故()f x 在11,a ⎡⎤⎢⎥⎣⎦上单调递增,在21,e a⎡⎤⎢⎥⎣⎦上单调递减,则()max 11ln 1f x f a ae a ⎛⎫==--=-⎪⎝⎭,得2ln 0ae a --=, ……8分 设()212ln ,,1g a ae a a e ⎛⎫=--∈ ⎪⎝⎭,则()211,,1g a e a a e ⎛⎫'=-∈ ⎪⎝⎭当211,a e e ⎛⎫∈⎪⎝⎭时,()10g a e a '=-<,()g a 单调递减, 当1,1a e ⎛⎫∈ ⎪⎝⎭时()10g a e a'=->,()g a 单调递增, 故()min 10g a g e ⎛⎫== ⎪⎝⎭,2ln 0ae a ∴--=的解为1a e=. 综上①②③,1a e=. ……………10分 (3)方程()()22ln 23ln x x t x x t x t --+--=-可化为()()()()2211ln 2323ln 22x x t x x t x t x t --+--=-+-, 令()1ln 2h x x x =+,故原方程可化为()()223h x x t h x t --=-,………12分 由(2)可知()h x 在()0,+∞上单调递增,故2230x x t x tx t ⎧--=-⎨->⎩有且仅有唯一实数根,即方程20x x t --=(※)在(),t +∞上有且仅有唯一实数根, ……………13分①当410t ∆=+=,即14t =-时,方程(※)的实数根为1124x =>-,满足题意; ②当0∆>,即14t >-时,方程(※)有两个不等实数根,记为12,,x x 不妨设12,,x t x t ≤> Ⅰ)若1,x t =2,x t >代入方程(※)得220t t -=,得0t =或2t =,当0t =时方程(※)的两根为0,1,符合题意;当2t =时方程(※)的两根为2,1-,不合题意,舍去; Ⅱ)若12,,x t x t <>设()2x x x t ϕ=--,则()0t ϕ<,得02t <<; 综合①②,实数的取值范围为02t ≤<或14t =-. …………16分。
2017-201810月月考数学试卷学年江苏省扬州中学高一(上)14570分.答案写在答题卡上)一、填空题:(本大题共分,共小题,每小题1x0x3xZ <}<的非空子集个数为且.集合{∈|.2y= +.函数的定义域是.0x3Rfx= 时,.定义在,当,则上的奇函数<().2p1x2p x=p2x 4f))(的值为﹣+)是偶函数,则实数+(..若函数﹣(3a= = 5fx﹣图象的对称中心横坐标为.函数.(,则)6A=x2axa3B=5AB=a的取值范围∩,则实数|,≤+≤∞)+,若},.已知?{(.为7A=11B=xmx=1AB=Bm ∩}, {,则实数|.}.已知集合,且{﹣的值为,=xx1gxfxg8fx)())是偶函数且,则(≠±).函数+(()是奇函数,(= f3.)(﹣fx9f1x的取值范围))<,则实数,若(﹣(.已知函数.是10fx0f2=0fx10x,则(﹣)∞)单调递减,.已知偶函数((,若)在[)>,+的取值范围是.11Rfx4y=fx4)是∞)上为增函数,且﹣)在[﹣(.已知定义在,上的函数+(f6f4f0 “”<)的大小关系为偶函数,则(﹣),((﹣),(从小到大用连接)2xxag12fx=x2x使.已知函数,总存在(+)和函数,对任意+21x=fxa )成立,则实数.()的取值范围是(21bm1M=aab13=fxN=yy=f|,,((集合)<](其中|{|>),区间).[设函数xxMM=Nab 成立的实对数(,(对.),∈)有)},则使14fxfx1=fx1x01fx=3x1|时,)满足((+|)(+)),当∈[﹣,].已知函数(fxafx1xa 成立,<都有+)﹣),若对任意实数,((则实数的取值范围是.690分.解答应写出文字说明,证明过程或二、解答题:(本大题共小题,共演算步骤.答案写在答题卡上)24x5x0xxa4B=x15A=}.|<﹣},>{.已知集合﹣{|||﹣1a=1AB;(,求)若∩2AB=Ra的取值范围.(∪)若,求实数22xxx=xx0f16Rf+),当)>(时,.已知定义在﹣上的奇函数(fxR上的解析式;(Ⅰ)求函数)在(fx1a2a的取值范围.,(Ⅱ)若函数](﹣)在区间[﹣上单调递增,求实数22kx1=xxx17f.||+()+.已知函数﹣1k=2fx=0的解;时,求方程())当(2xfx=002xxk的在(,(,)若关于,求实数的方程()上有两个实数解)21取值范围.182000元,甲.学校欲在甲、乙两店采购某款投影仪,该款投影仪原价为每台19501900元,每多买台,店用如下方法促销:买一台价格为元,买两台价格为501200元;乙店一律元,但最低不能低于每多买一台,则所买各台单价均再减80%xfx)按原售价的台投影仪,若在甲店购买费用记为促销.学校需要购买(gx)元.元,若在乙店购买费用记为(1fxgx)的解析式;)分别求出)和(((2x台时,在哪家店买更省钱?)当购买(a19R)∈.设函数(其中.1fx)的奇偶性,并证明你的结论;(()讨论函数2fx1a的取值范围.∞)上为增函数,求[)若函数,(+)在区间(2bxca0320fx=ax个条件:+.已知二次函数+(≠)(其中)满足下列fx)的图象过坐标原点;①(Rx都有②对于任意成立;∈fx=xgx=fxλx1λ0)>﹣③方程(,)有两个相等的实数根,令|()(其中()﹣|1fx)的表达式;(()求函数2gx)的单调区间(直接写出结果即可)((;)求函数3gx01)上的零点个数.()研究函数()在区间(,2017-201810月月考数学年江苏省扬州中学高一(上)学试卷参考答案与试题解析14570分.答案写在答题卡上)(本大题共分,共小题,每小题一、填空题:1x0x3xZ3.<}且{.集合的非空子集个数为|∈<16:子集与真子集.【考点】AA中元素的个数,进而由集【分析】根据题意,用列举法表示集合,可得集合合的元素数目与非空子集数目的关系,计算可得答案.A=x0x3xZ=122个元素,|}<,有<{,}【解答】解:集合∈{,21=32个;﹣则其非空子集有3.故答案为:xx3y=x22} ≠且+的定义域是 {.函数|.≥﹣33:函数的定义域及其求法.【考点】由题意可得,解不等式可求函数的定义域【分析】解:由题意可得【解答】23xx≠且∴≥﹣2xxx3}≥﹣故答案为:{≠|且=xR3fx0.时,<.定义在,则上的奇函数(),当3T3L:函数的值.【考点】:函数奇偶性的性质;ff)即可.【分析】利用函数奇偶性的定义和性质,先求,然后求(﹣)(0xxf,<时,解:∵【解答】()是奇函数,且当=f,∴(﹣)ff=()(﹣)又,﹣=ff==.)()﹣)﹣((﹣∴.故答案为:212xxp12px4f=p.)是偶函数,则实数+((﹣﹣)的值为.若函数(+)3L:函数奇偶性的性质.【考点】2 p=2fxp时,函数是二次函数,(【分析】当≠时,函数)显然不是偶函数.当p=0x=的值.,由对称轴为,求得p=2fx=x2,显然不是偶函数.【解答】解:当)时,函数+(x=2 p,要使函数为偶函数,必须满足≠当时,函数是二次函数,对称轴为p=1=0,,即1 .故答案为4a=35fx=..函数﹣(,则)﹣图象的对称中心横坐标为3O:函数的图象.【考点】【分析】分离变量,将解析式变为反比例函数式的形式,利用反比例函数的对称a.中心求1=f=1fx=x,﹣)【解答】解:+(+),变形为﹣(y=00)的对称中心为(∵,,1=a11fx),的对称中心坐标为(﹣∴,﹣(﹣)+a1=3a=4;﹣﹣,解得∴﹣4.故答案为:﹣6A=x2axa3B=5AB=a的取值范围为?,,若(,+∞),则实数∩.已知{|≤≤+}23,+∞).∪((﹣∞,]1C:集合关系中的参数取值问题.【考点】A=2aa3aA 2aa3,且+的取值范围.当【分析】当≤?时,≠>?+时,有,解得a35aa的取值范围取并集,即得所求.,解得+的取值范围.再把这两个≤A=x2axa3B=5AB=?,若,{(|∩≤,≤++∞)}【解答】解:∵,A=2aa3a3.时,,解得>>当+?A 2aa3a35 a2.≠?时,有+≤≤≤+,解得当,且a a2 a3,≤综上可得,实数>的取值范围为或23,+∞)(﹣∞,.]∪(故答案为7A=11B=xmx=1AB=Bm10, {,则实数|,}.已知集合,且{﹣的值为,,}∩1﹣.1C:集合关系中的参数取值问题.【考点】A=1AB=BB=1B=1B=xmx=1={或﹣∩}|,}知,{},【分析】由集合﹣{{,},{且m1B=的值.,或},或,或?不存在,由此能求出实数,故AB=Bxmx=1=A=11B=,|解:∵集合}{﹣},,且},∩{{【解答】B=1B=1B=?,,或}}{∴﹣{,或,或不存在,,或∴m=1m=1m=0.解得﹣,或,或101.,故答案为:,﹣=x1xgxf8fxgx))+.函数((()是奇函数,,则()是偶函数且)(≠±=f3.﹣)(﹣3L:函数奇偶性的性质.【考点】=xxf=xggfxx))①得(﹣(﹣)+【分析】先由(+),再利用(()=xfxgxg ②;①②相结合求出函数())+是奇函数,(()是偶函数得到﹣3xf代入即可求出结果.)的解析式,把﹣(=g=xffxxxg,【解答】①,所以(﹣)()解:因为(+)(﹣+)fxgx)是偶函数,又因为)是奇函数,((=xxgf②)+故可转化为﹣)((=fx)(①﹣②整理得:)(.= f3=.((﹣所以))﹣.故答案为﹣x9fx1f的取值范围,则实数)(﹣.已知函数)<(,若1x.>﹣是3B75:分段函数的解析式求法及其图象的作:一元二次不等式的应用;【考点】法.=11f1,根据分段函数的意义,逐段求解,最(﹣)【分析】由已知,先计算出后合并即可.=111f,)【解答】解:(﹣22x15111x54x0x60xx4x<,得出,所以﹣<﹣﹣﹣+<<当≤<时,由,解得﹣0①≤0x11x560xx②,得出>>>﹣时,由﹣+,所以<当1xx>﹣的取值范围是①②两部分合并得出数1x.>﹣故答案为:xf0x1=0f0x10f2,则(﹣(),若.已知偶函数()>)在[,+∞)单调递减,31.的取值范围是,)(﹣3F3L:函数单调性的性质.【考点】:函数奇偶性的性质;1fx)【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为(﹣||2f,即可得到结论.>()=00xff2,+[,∞)单调递减,()解:∵偶函数【解答】()在201xf1xff,)>)>∴不等式(﹣等价为(﹣()2x1ff,﹣|(即|()>)x12,﹣<∴||1x3,<<解得﹣13)故答案为:(﹣,11Rfx4y=fx4)是(﹣﹣.已知定义在,上的函数+(∞)上为增函数,且)在[f6f4f0f4f6f0))<),((﹣)的大小关系为偶函数,则((﹣,)(﹣(﹣)<“”连接)(从小到大用<3N:奇偶性与单调性的综合.【考点】y=fx4y=fxx=4﹣)为偶函数,可得函数【分析】根据)的图象关于直线((﹣f0f4f6f8f4f,)),,(﹣对称,故)大小关系可转化为判断()),(﹣(﹣(﹣6y=fx4y=fx)(,)大小关系,由函数+(∞)上为增函数,可得函数)在[﹣(﹣4]在(﹣∞,﹣上是减函数,进而得到答案.y=fx4fx4=fx4))为偶函数,即有﹣(﹣(【解答】解:∵﹣(,﹣)y=fxx=4对称,(﹣∴函数)的图象关于直线f0=f8))∴,((﹣y=fx4,+[又由函数﹣(∞)上为增函数,)在y=fx4](上是减函数,故函数)在(﹣∞,﹣f8f6f4))>,(﹣故(﹣(﹣)>f0f6f4),(﹣即(﹣()>)>f4f6f0)(﹣故答案为:((﹣)<)<.2xxg2xa12fx=x使+和函数+.已知函数,对任意(,总存在)21x=fxa1] .((﹣∞,﹣)成立,则实数的取值范围是()213W3R:函数恒成立问题.【考点】:二次函数的性质;xxgx=fxy=g)成立成立,只需函数对于任意的【分析】),总存在(使(2211xy=fx)的值域的子集即可.)的值域为函数((xxgx=fx)成立,(()【解答】解:若对任意的,总存在使2112y=gxy=fx)的值域的子集.只需函数(()的值域为函数1,+[∵在﹣∞)上单调递增gx2)≥﹣∴(22a1a=xfx=x12x﹣(())∵++++fxa1﹣(∴)≥a12≤﹣﹣∴a1≤﹣∴1](﹣∞,﹣故答案为:bm1M=aabN=y13=fxy=f|{,区间).[设函数,(,)((其中]|集合|><)xxMM=Nab13或)有∈)},则使成立的实对数((对.),,19:集合的相等.【考点】fxN为【分析】先判断函数)是奇函数,进而从认知集合切入.这里的集合(fxxMfxxfx)的()的值域.注意到|(,为求函数)的表达式中含有(),(|∈fx)化为分段函数的形式,以便于化整为零,逐段分析.最后综合(值域,先将讨论结果,可得答案.=xRfx)解:由函数((),∈【解答】=fxfxf==x)是奇函数.))﹣,故函数(可得﹣(﹣(x=0f0=0,当(时,)=x0fx,时,≠)当(1m时,当<﹣=x0ffx0xx=为减函数,<(若,>为减函数,若,())fxab],)在区间故函数[(上为减函数,M=Nfa=bfb=a,(())若,且,则abbay=xa0b,)关于由点(<,对称,则)与点(<,fa=fa=b,∴((﹣﹣)﹣)bafbfaabab矛盾,>﹣若<﹣<,则(,﹣)>(﹣,)bafbfaabab矛盾,若>﹣,则()<(﹣),<﹣,﹣>b=a,故﹣=xx=1m0fx=x0x,时,﹣(﹣),解得﹣>,即﹣>=xx=1m00fx=xx,时,,即(﹣)+﹣,解得<<mmM=11,[+﹣,﹣故]1m时,>当=x=0fxx0fx为增函数,,)(为增函数,若)若>(,<fxab]上为增函数,(,)在区间故函数[M=Nfa=afb=b,,且若,则)(()=xx=1fx=xmx0,(,解得)+﹣,即>时,=xx=1mfx=xx0,(,即时,)﹣<,解得=0f0x=0,(时,)M=1m0M=1mm1M=0m1],,]],或,或[.﹣[,故﹣[﹣﹣m1M=Nab1对,<﹣时,使,成立的实对数(综上所述,当)有m1M=Nab3对.时,使,成立的实对数(当)有>13.故答案为:或14fxfx1=fx1x01fx=3x1|,)(+])时,(+)|,当(∈[.已知函数﹣()满足1xfxafxa 的取值范围是则实数(若对任意实数,(﹣,都有)(成立,+)<﹣,﹣)∞,﹣)∪(﹣.3P:抽象函数及其应用.【考点】fx)的图(【分析】先把绝对值函数化为分段函数,再根据图象的平移得到函数a 的范围.象,观察函数的图象,即可求出x01fx=3x11,﹣[,时,]﹣()||解:∵【解答】∈fx=x03x,[∴当∈],时,()﹣1fxx=3x2,(﹣∈(,)]时,fx1=fx1fx)大致图形为,如图所示++)((由,可得到()x=D点.由图可以看出,当时,即a0fafa0.+))≥若,不满足题意.所以≥<,则((DCA点.小的为左边的区域,且不能为由图中知,比a=Cf﹣)点为,此时.(﹣a,﹣所以))∪(﹣的范围是(﹣∞,﹣,﹣)故答案为:)∪(﹣(﹣∞,﹣690分.解答应写出文字说明,证明过程或(本大题共小题,共二、解答题:演算步骤.答案写在答题卡上)24x504B=xx15A=xxa},{>.已知集合|{﹣||﹣.|<﹣}1a=1AB;,求∩()若2AB=Ra的取值范围.∪(,求实数)若18:集合的包含关系判断及应用.【考点】1a=1A=x3x5B=x1x5},由此能求,}或{(【分析】>)时,集合|{|﹣<﹣<<AB.出∩2A=xa4xa4B=x1x5AB=R,列出不等式∪,,()由集合{|﹣<<+}{|<﹣或>}a的取值范围.组,能求出实数1a=1A=xx14=x3x5}<{{||,﹣||<﹣【解答】解:(})∵时,集合<24x50=xxx1x5B=}.﹣|﹣<﹣>>}或{{|AB=x3x1}.|﹣∴<﹣∩<{2A=xxa4=xa4xa4}<,}<({)∵集合+{|||<﹣﹣|24x50=x1xB=xx5}<﹣>>}{或|{.﹣|﹣AB=R,∪1a3.,解得<<∴a13),的取值范围是(.∴实数22xxfx=016Rfxx+(.已知定义在﹣上的奇函数时,()),当>fxR上的解析式;()在(Ⅰ)求函数fx1a2a的取值范围.上单调递增,求实数[﹣](Ⅱ)若函数,(﹣)在区间3N:奇偶性与单调性的综合.【考点】fxR上的解析式;(【分析】(Ⅰ)根据函数奇偶性的对称性,即可求函数)在a的取值范围.(Ⅱ)根据函数奇偶性和单调性的关系,利用数形结合即可求出22xx=x=20x0xfx﹣﹣(﹣)【解答】解:(Ⅰ)设)<),则﹣>(﹣,+(﹣﹣2x.fxfx=fxf0=0.﹣(又(())为奇函数,所以)且(﹣)22x=xfxx0.(时+于是<)=xf.所以()=fx的图象如图:((Ⅱ)作出函数)11][﹣,则由图象可知函数的单调递增区间为fx1a22分)上单调递增,﹣(画出图象得要使]()在[﹣,xf)的图象知(,结合1a3a13]所以<≤,故实数的取值范围是(,.22kxx117fx=x..已知函数﹣(+)|+|1k=2fx=0的解;)当(时,求方程()2xfx=002xxk的的方程)上有两个实数解(,求实数)在((,)若关于,21取值范围.54:根的存在性及根的个数判断.【考点】222x=01x=xx1k=2f,下面分两种情况讨论:①当)|+(【分析】(|)当+时,﹣2210fxxx=010的解即可;,分别解出方程﹣,②当)﹣≤>(1xx2002x,∈],()不妨设,<可得<(<1122k==01=0k=fxkx1x2 f﹣,得;由﹣,得(),∈(,.)﹣由(≤﹣)2121k2即可.<﹣,﹣<×22k=2x=x12x=01xf∴|)﹣|+时,当+,)解:【解答】((x=x=﹣,或解得20xx2,(<)不妨设<<21因为fx01fx=001…上至多一个解,,在(]上是单调函数,故](,所以())在(0=xx1xx2,故不符合题意,﹣)若,,则∈(,<2211x01x12 ….∈(,,∈(因此],)21.k1x=0k=f;)﹣,得由,所以(≤﹣1k1=0fxk=22<﹣×,得﹣,所以﹣由﹣()<2k1fx=002)上有两个解.(在(故当﹣<)<﹣,时,方程182000元,甲.学校欲在甲、乙两店采购某款投影仪,该款投影仪原价为每台19501900元,每多买台,店用如下方法促销:买一台价格为元,买两台价格为501200元;乙店一律元,每多买一台,则所买各台单价均再减但最低不能低于80%xfx)按原售价的(促销.学校需要购买台投影仪,若在甲店购买费用记为gx)元.(元,若在乙店购买费用记为1fxgx)的解析式;((()和)分别求出2x台时,在哪家店买更省钱?)当购买(5D36:函数解析式的求解及常用方法.:函数模型的选择与应用;【考点】1200050x=1200x=16fx)和【分析】(,可得)由(﹣,再分类讨论,即可求出gx)的解析式;(21x16fx=gxx=8,再分类讨论,即可得出结论.(时,由((,可得))≤)≤1200050x=1200x=16,﹣【解答】解:(,可得)由1x16fx=x;≤(≤)时,x16fx=1200x,>(时,)=gx=2000fx80%x=1600x;∴,())(×21x16fx=gxx=8,可得≤)≤)时,由((()1x8fxgx=x0fxgx)>≤≤)>时,,(;)﹣(()(∴x=8fx=gx)时,;(()8x16fxgx=x0fxgx)))<<;≤≤,时,(()﹣((x16fxgx=400x0fxgx)<(,(;)<≥时,()﹣()﹣88台时,在乙店买省综上所述,当购买大于台时,在甲店买省钱;当购买小于8台时,在甲、乙店买一样.钱;当购买等于aR19).∈.设函数(其中1fx)的奇偶性,并证明你的结论;)讨论函数((2fx1a的取值范围.∞)上为增函数,求(,)在区间([)若函数+3E3K:函数奇偶性的判断.【考点】:函数单调性的判断与证明;1a=0a0两种情况讨论,利用奇偶性的定义可判断;(,)分≠【分析】2fx1f′x01,+)≥∞))在区间[在,+(∞)上为增函数,等价于)函数(([上恒成立,分离出参数化为函数的最值即可.1a=0fxa0fx)为非奇非偶函数.)当≠时((时(【解答】解:)为奇函数;当证明如下:2=axxf+)∵,(2=axxf﹣)∴,(﹣fxfx==a=0fx)为奇函数;(﹣当)时,,(﹣()﹣a0fxfxfxfx),当≠)时,,且(﹣()≠(﹣()≠﹣fx)为非奇非偶函数.此时(=2axx2f′﹣))(,(fx1,+[(∞)上为增函数,)在区间∵112af′x0,+[≥在[在,+∴∞)上恒成立,即()≥∞)上恒成立,11,∞)上单调递减,∴≤而在[+,a12a≥,解得∴.≥2bxca020fx=ax3个条件:.已知二次函数+())满足下列(其中+≠fx)的图象过坐标原点;(①Rx都有②对于任意成立;∈fx=xgx=fxλx1λ0)(其中),()﹣|>﹣|③方程()有两个相等的实数根,令(1fx)的表达式;(()求函数2gx)的单调区间(直接写出结果即可)()求函数(;3gx01)上的零点个数.)研究函数)在区间((,(57&23E:函数单调性:函数与方程的综合运用;【考点】:带绝对值的函数;3W54:根的存在性及根的个数判断.的判断与证明;:二次函数的性质;1f0=0ca=bf,通过方程)【分析】(.通过函数的对称轴,得到)利用求出(x=xfx)的表达式;)(有两个相等的实数根,即可求函数(2=xg2gxx+(())的表达式为分段函数,时,通过(化简函数)结合函数11λx时类似求解函数单调区间.(的对称轴为求出单调求解,当﹣+)32gx01)上的零(()结合(,)的函数的单调性,即可研究函数)在区间(点个数.1f0=0c=0….解:()由题意得)(,即【解答】Rx都有∈,∵对于任意a=b.∴对称轴为,即,即2ax=axfx,∴)(+2a1axx=0fx=x仅有一根,﹣∵方程+(())仅有一根,即方程2=0a=1a1=0.﹣,即∴△),即(2x …fx=x.∴)(+=λx1x=fx2g|)|(((﹣))﹣21x1xg=xλ的对称轴为﹣时,函数①当+()),+(xgλ20上单调递增;≤(,函数,即<)在若xgλ2在即若,在>,函数上单调递增,()上递减.21x=x1λxg的对称轴为+②当(﹣+),时,函数()xg)在上单调递增,在上单调递减.(则函数综上所述,xgλ02,减区间为(当<)增区间为≤;时,函数x2gλ,减区间为时,函数、当(>)增区间为….、30λ22gx01)上单调递增,时,由()在区间(()知函数)①当,<(≤g0=10g1=2λ10,>﹣﹣<|,|(﹣又)()gx01 …)上只有一个零点.)在区间((故函数,g1=10gλ20)﹣,<,而②当,>((时,则)1=2λ,|﹣﹣|32λ,<≤(ⅰ)若,由于=,且gx01)上只有一个零点;此时,函数)在区间((,g1=2λ10gxλ30,)在区间((,此时<(ⅱ)若|>﹣,由于|﹣)(且1)上有两个不同的零点.综上所述,10xg3λ0)上只有一个零点;,(≤时,函数)在区间(当<…01xg 3λ)上有两个不同的零点.,)在区间(时,函数>当(。
2017-2018学年度第一学期期末检测试题高三数学2018.2第一部分一、填空题1. 若集合A ={x |1<x <3},B ={0,1,2,3},则A ∩B =___________。
2. 若复数(a −2ⅈ)(1+3ⅈ)是纯虚数,则实数a 的值为__________。
3. 若数据31,37,33,a ,35的平均数是34,则这组数据的标准差为_________。
4. 为了了解某学校男生的身体发育情况,随机调查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图,根据此图估计该校2000名男生中体重在70-80kg 的人数为________。
5. 运行右边的流程图,输出的结果是_________。
6. 从两名男生2名女生中任选两人,则恰有一男一女的概率为__________。
7. 若圆锥的侧面展开图是面积为3π且圆心角为2π3的扇形,则此圆锥的体积为______。
8. 若实数x ,y 满足{x ≤4y ≤33x +4y ≥12,则x 2+y 2的取值范围是________。
9. 已知各项都是正数的等比数列{a n }的前n 项和为S n ,若4a 4,a 3,6a 5成等差数列,且a 3=3a 22,则S 3=_________。
10. 在平面直角坐标系xOy 中,若双曲线x 2a2−y 2b 2=1(a >0,b >0)的渐近线与圆x 2+y 2−6y +5=0没有焦点,则双曲线离心率的取值范围是__________。
11. 已知函数f (x )=sⅈn x −x +1−4x 2x,则关于x 的不等式f (1−x 2)+f (5x −7)<0的解集为_________。
12. 已知正ΔABC 的边长为2,点P 为线段AB 中垂线上任意一点,Q 为射线AP 上一点,且满足AP ⃗⃗⃗⃗⃗ ⋅AQ ⃗⃗⃗⃗⃗ =1,则|CQ ⃗⃗⃗⃗⃗ |的最大值为_________。
江苏省扬州中学2017-2018学年度第一学期阶段性测试高一数学2017.12 第Ⅰ卷(共60分)一、填空题:(本大题共14个小题,每小题5分,共70分.将答案填在答题纸上.) 1.若{}224,x x x ∈++,则x = .2.计算:2331log 98-⎛⎫+= ⎪⎝⎭.3.sin1320︒的值为 . 4.若一个幂函数()f x 的图象过点12,4⎛⎫⎪⎝⎭,则()f x 的解析式为 . 5.方程lg 2x x +=的根()0,1x k k ∈+,其中k Z ∈,则k = . 6.函数()tan 24f x x π⎛⎫=-⎪⎝⎭的定义域为 .7.函数()2log 23a y x =-+(0a >,且1a ≠)恒过定点的坐标为 . 8.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为 .9.已知点P 在直线AB 上,且4AB AP =uu u r uu u r ,设AP PB λ=uu u r uu r,则实数λ= .10.设函数()sin 0y x ωω=>在区间,64ππ⎡⎤-⎢⎥⎣⎦上是增函数,则ω的取值范围为 .11.若关于x 的方程21220xx a +-+=在[]0,1内有解,则实数a 的取值范围是 .12.点E 是正方形ABCD 的边CD 的中点,若2AE DB ⋅=-uu u r uu u r ,则AE BE ⋅=uu u r uur.13.已知函数()4f x x a a x=+-+在区间[]1,4上的最大值为32,则实数a = . 14.已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,则函数()()1528y f x f x =+--有 个零点.第Ⅱ卷(共90分)二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.设全集U R =,集合{}121x A x -=≥,{}2450B x x x =--<. (1)求A B I ,()()U U C A C B U ;(2)设集合{}121C x m x m =+<<-,若B C C =I ,求实数m 的取值范围.16.设()2,1OA =-uu r ,()3,0OB =uu u r ,(),3OC m =uu u r.(1)当8m =时,将OC uuu r 用OA uu r 和OB uu u r表示;(2)若A B C 、、三点能构成三角形,求实数m 应满足的条件. 17. 已知函数()()sin 0,03f x A x A πωω⎛⎫=+>> ⎪⎝⎭的部分图象如图所示.(1)求A 和ω的值;(2)求函数()y f x =在[]0,π的单调增区间;(3)若函数()()1g x f x =+在区间(),a b 上恰有10个零点,求b a -得最大值.18. 某批发公司批发某商品,每件商品进价80元,批发价120元,该批发商为鼓励经销商批发,决定当一次批发量超过100个时,每多批发一个,批发的全部商品的单价就降低0.04元,但最低批发价不能低于102元.(1)当一次订购量为多少个时,每件商品的实际批发价位102元?(2)当一次订购量为x 个,每件商品的实际批发价为P 元,写出函数()P f x =的表达式; (3)根据市场调查发现,经销商一次最大订购量为500个,则当经销商一次批发多少个零件时,该批发公司可获得最大利润.19. 已知定义在实数集R 上的偶函数()f x 在区间(],0-∞上是单调递增,且()20f -=. (1)若()12sin 21f f x ⎛⎫<⎪+⎝⎭,求x 的取值范围;(2)若()5cos 216g x x a π⎛⎫=-+- ⎪⎝⎭,7,242x ππ⎡⎤∈⎢⎥⎣⎦,a R ∈.是否存在实数a ,使得()0f g x >⎡⎤⎣⎦恒成立?若存在,求a 的范围;若不存在,说明理由.20. 已知函数()()()log 101a f x x a =+<<,()()2log 33a g x x x =-+. (1)解关于x 的不等式()()g x f x >; (2)若函数()g x 在区间[]3,2m n m ⎛⎫> ⎪⎝⎭上的值域为()()log 3,log 3a a t n t m ++⎡⎤⎣⎦,求实数t 的取值范围; (3)设函数()()()f xg x F x a -=,求满足()F x Z ∈的x 的集合.高一数学参考答案及评分标准一、填空题1.1 2.6 3.2-4.()2f x x -= 5.1 6.3,28k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭7.()3,3 8.6 9.13,15- 10.(]0,2 11.[]0,1 12. 3 13.18 14. 4 二、解答题15.解:(1)∵{}1A x x =≥,{}15B x x =-<<∴{}15A B x x =≤<I ,()(){}15U U C A C B x x x =<≥或U (2)当C =∅时,211m m -<+ 即2m <当C B ⊆时,12111215m m m m +<-⎧⎪+≥-⎨⎪-≤⎩解之得33m <≤综上所述:m 的取值范围是(],3-∞.16.解:(1)当8m =时,()8,3OC =uu u r,设OC xOA yOB =+uu u r uu r uu u r,则()()()()8,32,13,023,x y x y x =-+=+-∴2383x y x +=⎧⎨-=⎩∴3143x y =-⎧⎪⎨=⎪⎩;(2)∵A B C 、、三点能构成三角形∴,AB AC uu u r uuu r不共线又()1,1AB =uu u r ,()2,4AC m =-uu u r∴()14120m ⨯-⨯-≠,∴6m ≠. 17.解:(1)2A =,243124T πππω=-=,2ω= 所以()2sin 23f x x π⎛⎫=+ ⎪⎝⎭(2)令222232k x k πππππ-+≤+≤+,k Z ∈得51212k x k ππππ-+≤≤+ 又因为[]0,x π∈,所以函数()y f x =在[]0,π的单调增区间为0,12π⎡⎤⎢⎥⎣⎦和7,12ππ⎡⎤⎢⎥⎣⎦. 注:区间端点可开可闭,都不扣分. (3)()2sin 213f x x π⎛⎫=+=- ⎪⎝⎭, 得512x k ππ=+或()34x k k Z ππ=+∈ 函数()f x 在每个周期上有两个零点,所以共有5个周期, 所以b a -最大值为217533T ππ+=. 18.解:(1)设一次订购量为()100n n N +∈, 则批发价为1200.04n -,令1200.04102n -=, ∴1201020.04n -=,∴450n =,所以当一次订购量为550个时,每件商品的实际批发价为102元.(2)由题意知()()1200100,1200.0410*******,x x N f x x x x N⎧≤≤∈⎪=⎨--<≤∈⎪⎩(3)当经销商一次批发个零件x 时,该批发公司可获得利润为y ,根据题意知:()()400100400.0410*******xx f x x x x ⎧≤≤⎪=⎨--⋅<≤⎡⎤⎪⎣⎦⎩ 设()140f x x =,在100x =时,取得最大值为4000;设()220.0444f x x x =-+=()220.045500.04550x --+⨯,所以当500x =时,()2f x 取最大值.答:当经销商一次批发500个零件时,该批发公司可获得最大利润. 19.解:(1)∵()f x 为偶函数, ∴()()220f f -==∵偶函数()f x 在(],0-∞上单调递增 ∴()f x 在[)0,+∞上单调递减 ∴12sin 21x >+∴12sin 21x >+或12sin 21x <-+ ∴31sin 2,11,22x ⎛⎫⎛⎫∈---- ⎪ ⎪⎝⎭⎝⎭U ,又[]sin 21,1x ∈-,∴1sin 21,2x ⎛⎫∈--⎪⎝⎭故x 的取值范围为73311,,124412k k k k ππππππππ⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭U ,()k Z ∈(2)由题意知,当22t -<<时,()0f t > 又()sin 213g x x a π⎛⎫=-+- ⎪⎝⎭,7,242x ππ⎡⎤∈⎢⎥⎣⎦∵7,242x ππ⎡⎤∈⎢⎥⎣⎦,∴22,343x πππ⎡⎤-∈⎢⎥⎣⎦,∴sin 2123x π⎛⎫≤-≤ ⎪⎝⎭ 要使()0f g x >⎡⎤⎣⎦恒成立,则()22g x -<<恒成立 ①当0a >时,则()11g x a ≤≤-+12a -+<,01a <<②当0a =时,()1g x =显然成立 ③当0a <时,则()11a g x -+≤≤12a -+>-,∴30a -<<综上所述,使()0f g x >⎡⎤⎣⎦恒成立时,a的范围为31a -<<.20.解:(1)原不等式等价于20331x x x <-+<+,解得22x <故解集为(22.(2)∵23324y x ⎛⎫=-+ ⎪⎝⎭在32x >上是单调递增的,又01a <<,(或设1232x x >>,则120x x ->,123x x +>, ∴()()2211223333x x x x -+--+=()()121230x x x x -+->⎡⎤⎣⎦ ∴()()2211223333x x x x -+>-+,∵01a <<,∴()()221122log 33log 33a a x x x x -+<-+)所以函数()g x 在区间[]3,2m n m ⎛⎫>⎪⎝⎭上为减函数,因此 ()()()2log 33log 3a a g m m m t m =-+=+,()()()2log 33log 3a a g n n n t n =-+=+.即2333m m t m -+=+,2333n n t n -+=+,32m n ⎛⎫<<⎪⎝⎭. 所以m n 、是方程2333x x t x -+=+,3,2x ⎛⎫∈+∞⎪⎝⎭的两个相异的解. 设()263h x x x t =-+-,则()36430393630242332t h t ⎧⎪∆=-->⎪⎪⎛⎫=-⨯+->⎨ ⎪⎝⎭⎪⎪>⎪⎩所以1564t -<<-为所求. (3)()()()()()()2log 1log 332133a a x x x f x g x x F x a ax x +--+-+===-+,()1x >-∵()71551x x ++-≥+,当且仅当1x =时等号成立,(可用对勾函数单调性说明,不证不扣分)∴()211733151x x x x x ⎛+=∈ -+⎝⎦++-+,∵5343<<,∴()F x 有可能取得整数有且只有1,2,3, 当21133x x x +=-+时,解得2x =,2x =当21233x x x +=-+时,解得5,12x x ==; 当21333x x x +=-+时,解得2x =,43x =.故集合451,2,,,2232M ⎧=-⎨⎩.。