含参变量积分连续性
- 格式:ppt
- 大小:1.26 MB
- 文档页数:25
含参量积分的分析性质及其应用首先,含参量积分具有连续性。
设函数F(x, t)在区域D上连续且对于每个t ∈ [a, b],函数F(x, t)在D上也是连续的,则对于t ∈ [a, b],函数F(x, t)的积分函数∫F(x, t)dx在D上是连续的。
这个性质在函数的极限和连续性分析中起着重要的作用。
其次,含参量积分具有可微性。
设函数F(x, t)在区域D上可微且对于每个t ∈ [a, b],函数的偏导数∂F/∂t也在D上是连续的,则对于t∈ [a, b],积分函数∫F(x, t)dx在D上是可微的,并且有d/dt∫F(x, t)dx = ∫∂F/∂t dx。
这个性质在微分方程的研究中非常重要,可以用来求解一些复杂的变量关系。
此外,含参量积分还具有积分区间可微性。
设函数F(x, t)在区域D上连续且对t ∈ [a, b],积分区间[a, b]上是可微的,则对于任意点x∈ D,积分∫F(x, t)dt的导数存在且有d/dx∫F(x, t)dt = ∫∂F/∂x dt。
这个分析性质对于求解偏微分方程、计算场的变化率等都有重要意义。
1. 曲线长度计算:曲线的参数方程在一定范围内的积分可以得到曲线的长度。
例如,对于曲线x = f(t),y = g(t)在区间[a, b]上的参数表示,可以通过计算∫sqrt(dx/dt)^2 + sqrt(dy/dt)^2 dt来得到曲线的长度。
2. 曲面面积计算:曲面的参数方程在一定范围内的积分可以得到曲面的面积。
例如,对于曲面z = f(x, y)在区域D上的参数表示,可以通过计算∬sqrt(1 + (df/dx)^2 + (df/dy)^2) dA来得到曲面的面积。
3.物理学中的应用:含参量积分广泛应用于物理学中的各种问题。
例如,对于质点在力场中的运动问题,可以通过计算质点在一段时间内的位移和力的乘积的积分来得到质点所受的总力。
4.工程学中的应用:含参量积分在工程学中也有许多应用。
含参变量的积分例题详解一、引言在数学中,含参变量的积分是一个重要的概念,它涉及到函数的整体性质。
理解并掌握含参变量的积分对于解决各种实际问题具有深远的意义。
下面,我们将通过一个具体的例题来详解含参变量的积分。
二、例题详解假设我们要求解这样一个积分:∫(上限a,下限0)e^(-x)*x^2dx。
这是一个典型的含参变量的积分问题,其中参数为x,被积函数含有x^2。
我们需要根据这个问题的特点,灵活运用积分的各种方法,包括换元法、分部积分法等,来解决它。
首先,我们考虑换元法。
将x换元为t,令t=a-x,则原积分可以改写为:∫(上限a,下限0)e^(a-x)*x^2dx。
注意到e^(a-x)是一个常数,因此我们可以将积分区间变为[0,a],这样原积分就变成了一个简单的定积分。
接下来,我们使用分部积分法对被积函数进行化简。
被积函数中的x^2可以分解为x的导数乘以x,即x*(x-1)。
因此,原积分的被积函数可以表示为e^(a-x)*(x-1)*x。
对这部分进行积分,我们可以得到∫(上限a,下限0)e^(a-x)*(x-1)*xdx=e^(a-x)*(x^2-x)|(上限a,下限0)=a^3/3-a^2/2。
最后,我们将两部分相加得到最终结果:∫(上限a,下限0)e^(-x)*x^2dx=a^3/3-a^2/2+C,其中C为常数。
三、总结通过这个例题,我们可以看到含参变量的积分需要我们灵活运用各种积分方法,包括换元法和分部积分法等。
同时,我们需要对被积函数进行适当的化简,以便更好地理解和求解含参变量的积分。
需要注意的是,当参数或者被积函数含有复杂的形式时,我们需要更深入地理解和分析问题,才能找到合适的解决方法。
总的来说,含参变量的积分是数学中的一个重要概念,它涉及到函数的整体性质和变化规律。
通过理解和掌握含参变量的积分,我们可以更好地解决各种实际问题,为我们的学习和工作提供有力的支持。
387第十三讲 含参量积分§13.1 含参量正常积分一、知识结构 1、含参积分 定义含参积分 ⎰=dcdy y x f x I ),()(和⎰=)()(),()(x d x c dy y x f x F .含参积分提供了表达函数的又一手段 .我们称由含参积分表达的函数为含参积分. (1)含参积分的连续性 定理1 若函数),(y x f 在区域] , [ ] , [d c b a D ⨯=上连续, 则函数⎰=dcdy y x f x I ),()(在] , [b a 上连续.定理2 若函数),(y x f 在矩形域{}b x a x d y x c y x D ≤≤≤≤=),()( ),(上连续, 函数)(x c 和)(x d 在] , [b a 上连续,则函数⎰=)()(),()(x d x c dy y x f x F 在] , [b a 上连续.(2)含参积分的可微性定理3 若函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [d c b a D ⨯=上连续, 则函数⎰=dcdy y x f x I ),()(在] , [b a 上可导, 且⎰⎰=dcdcx dy y x f dy y x f dxd ),(),(.即积分和求导次序可换.定理4 设函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [q p b a D ⨯=上连续, 函数)(x c 和)(x d 定义在] , [b a 上其值域含于] , [q p 上的可微函数, 则函数⎰=)()(),()(x d x c dy y x f x F 在] , [b a 上可微, 且 ()())()(,)()(,),()()()(x c x c x f x d x d x f dy y x f x F x d x c x '-'+='⎰.(3) 含参积分的可积性定理5 若函数),(y x f 在区域] , [ ] , [d c b a D ⨯=上连续, 则函数388⎰=dcdy y x f x I ),()(和⎰=badx y x f y J ),()(分别在] , [b a 上和] , [ d c 上可积.定理6 若函数),(y x f 在区域] , [ ] , [d c b a D ⨯=上连续, 则⎰⎰⎰⎰=badcdcbadx y x f dy dy y x f dx ),(),(.即在连续的情况下累次积分可交换求积分的次序. 二、解证题方法例1 求⎰+→++αααα122.1limx dx例2 计算积分 dx xx I ⎰++=121)1ln(.例3 设函数)(x f 在点0=x 的某邻域内连续. 验证当||x 充分小时, 函数⎰---=xn dt t f t x n x 01)()()!1(1)(φ的1-n 阶导数存在, 且 )()()(x f x n =φ.§13.2 含参量反常积分一、知识结构 1、含参无穷积分含参无穷积分: 函数),(y x f 定义在) , [] , [∞+⨯c b a 上 (] , [b a 可以是无穷区间) .以⎰+∞=cdy y x f x I ),()(为例介绍含参无穷积分表示的函数)(x I .2. 含参无穷积分的一致收敛性逐点收敛(或称点态收敛)的定义:∈∀x ] , [b a ,c M >∃>∀ , 0ε,使得ε<⎰+∞Mdy y x f ),(.定义 1 (一致收敛性)设函数),(y x f 在) , [] , [∞+⨯c b a 上有定义.若对389c N >∃>∀ , 0ε, 使得当N M >,∈∀x ] , [b a 都有ε<-⎰Mcx I dy y x f )(),(即ε<⎰+∞Mdy y x f ),( 成立, 则称含参无穷积分⎰+∞cdy y x f ),(在] , [b a 上(关于x )一致收敛.定理1(Cauchy 收敛准则) 积分⎰+∞=cdy y x f x I ),()(在] , [b a 上一致收敛⇔,0>∀εM A A M >∀>∃21, , 0 , ∈∀x ] , [b a⇒ε<⎰21),(A A dy y x f 成立 .3、含参无穷积分与函数项级数的关系 定理2 积分⎰+∞=c dy y x f x I ),()(在] , [b a 上一致收敛⇔对任一数列}{n A )(1c A =,n A ↗∞+, 函数项级数∑⎰∑∞=∞=+=111)(),(n A A n nn nx udy y x f 在] , [b a 上一致收敛.4、含参无穷积分一致收敛判别法定理3(Weierstrass M 判别法)设有函数)(y g ,使得在) , [] , [∞+⨯c b a 上有)(|),(|y g y x f ≤.若积分∞+<⎰+∞)( cdy y g , 则积分⎰+∞cdy y x f ),(在] , [b a 一致收敛.定理4(Dirichlet 判别法) 设⑴对一切实数,c N >含参量积分⎰Ncdy y x f ),(对参量x在] , [b a 上一致有界; ⑵对每个x ∈] , [b a ,函数),(y x g 关于y 是单调递减且当+∞→y 时,对参量x ,),(y x g 一致地收敛于0,则含参量反常积分⎰+∞),(),(dy y x g y x f 在] , [b a 上一致收敛.定理5(Abel 判别法) 设⑴含参量积分⎰+∞cdy y x f ),(在] , [b a 上一致收敛; ⑵对每个x ∈] , [b a ,函数),(y x g 为y 的单调函数且对参量x ,),(y x g 在] , [b a 上一致有界,则含390参量反常积分⎰+∞),(),(dy y x g y x f 在] , [b a 上一致收敛.5、含参无穷积分的解析性质含参无穷积分的解析性质实指由其所表达的函数的解析性质. (1)连续性定理6 设函数),(y x f 在) , [] , [∞+⨯c b a 上连续.若积分⎰+∞=cdy y x f x I ),()(在] , [b a 上一致收敛, 则函数)(x I 在] , [b a 上连续. (化为级数进行证明或直接证明)推论 在定理6的条件下, 对∈∀0x ] , [b a , 有 ⎰⎰⎰∞+∞+∞+→→⎪⎭⎫ ⎝⎛==cccx x x x dy y x f dy y x f dy y x f .),(lim ),(),(lim000 (2)可微性定理7 设函数f 和x f 在) , [] , [∞+⨯c b a 上连续.若积分⎰+∞=cdy y x f x I ),()(在] , [b a 上收敛,积分⎰+∞cx dy y x f ),(在] , [b a 一致收敛.则函数)(x I 在] , [b a 上可微,且⎰+∞='cx dy y x f x I ),()(.(3)可积性定理8 设函数),(y x f 在) , [] , [∞+⨯c b a 上连续.若积分⎰+∞=cdy y x f x I ),()(在] , [b a 上一致收敛, 则函数)(x I 在] , [b a 上可积, 且有⎰⎰⎰⎰+∞+∞=baccbady y x f dy dy y x f dx ),(),(.定理9 设函数),(y x f 在) , []) , [∞+⨯∞+c a 上连续.若⑴⎰+∞adx y x f ),(关于y 在任何闭区间] , [d c 上一致收敛,⎰+∞cdy y x f ),(在任何闭区间] , [b a 上一致收敛;⑵积分⎰⎰+∞+∞acdy y x f dx ),(与⎰⎰+∞+∞cadx y x f dy ),(中有一个收敛,则另一个也收敛,且391⎰⎰⎰⎰+∞+∞+∞+∞=accady y x f dy dy y x f dx ),(),(.6、含参瑕积分简介(略)二、解证题方法例1 证明含参量非正常积分⎰+∞sin dy yxy 在) , [∞+δ上一致收敛,其中0>δ.但在区间) , 0 (∞+内非一致收敛.例2 证明含参无穷积分⎰∞++021cos dx xxy 在+∞<<∞-y 内一致收敛.例3 证明含参量反常积分⎰+∞-0sin dx xx exy在] , 0 [d 上一致收敛.例4 证明:若函数),(y x f 在) , [] , [∞+⨯c b a 上连续,又⎰+∞cdy y x f ),(在) , [b a 上收敛,但在b x =处发散,则⎰+∞cdy y x f ),(在) , [b a 上不一致收敛.例5 计算积分⎰+∞->>-=) , 0 ( , sin sin a b p dx xaxbx eI px例6 计算积分.sin 0dx xax ⎰+∞例7 计算积分⎰+∞-=0.cos )(2rxdx er xϕ例8(北京理工大学2008年)请分别用两种不同方法求()dx xx xI cos 1cos 1lncos 12αααπ-+⋅=⎰,1<α。
1 - k2 sin 2 t ⎰ b第十六章 含参量积分关于积分理论,我们已经学过一元函数的积分理论:包括常 义积分(积分限有限、被积函数有界)和广义积分,其积分变量和被积函数的变量一样,都是一个。
但在各技术领域,经常会遇到这样的积分:对一个变量的积分还与一个参数有关,如天体力 / 2学中常遇到的椭圆积分: 01 - k2 sin 2 tdt ,从形式可以看出,积分变量为t ,积分过程结果依赖于k ,此时k 称为积分过程中的 参量。
显然,若将k 视为一个变元,记 f (t , k ) = 为一 个二元函数,则上述积分只涉及其中的一个变量,将另一个变量视为参量,像这种积分形式在工程技术领域还有很多。
因此,为解决相应的技术问题,必须先在数学上进行研究,这就是本章的内容:含参变量的积分,包括:常义积分和广义积分两部分,由于这种积分形式的被积函数是多元函数,因此,多元函数理论为参变量积分的研究提供了理论基础。
§1 含参变量的常义积分只考虑一个参量的含参量积分,因此,被积函数是二元函数。
设 f (x , y ) 在 D = [a , b ] ⨯[c , d ],此时 f (x , y 0 ) 是为关于 x 的一元连续函数,因而可积。
考虑其积分 ⎰a f (x , y 0 )dx ,显然其与 y 0 有关,b记为 I ( y 0 ) = ⎰a f (x , y 0 )dx ,更一般,引入bI ( y ) = ⎰a f (x , y )dx ,称其为含参变量 y 的积分。
注:由此可看出:含参量的积分结果是一个关于参变量的函0 0数,由此就决定了含参量积分的研究内容:不仅在于计算,还要研究其分析性质。
更进一步的,将其分析性质应用于含参量的计算,由此带来了积分计算的新方法:通过引入参变量,将一个一般积分转化为含参量的积分,通过含参量积分的性质进行计算含参量的积分,最后取特定的参量值计算出原积分。
为此,先研究含参量积分的分析性质。
含参变量积分法求定积分一、引言在数学中,定积分是求解曲线下面的面积的一种方法。
含参变量积分法是一种特殊的积分方法,它能够解决一类带有参数的定积分问题。
本文将详细介绍含参变量积分法的原理和应用。
二、含参变量积分法的原理含参变量积分法是通过引入一个参数,将原本的定积分问题转化为一个关于参数的函数的积分问题。
通过对这个参数的求导和积分操作,可以得到原问题的解。
三、含参变量积分法的步骤使用含参变量积分法求解定积分问题的一般步骤如下:1. 引入参数将原问题中的变量替换为参数,并引入一个新的变量。
2. 求导对引入的参数进行求导操作,得到关于参数的导函数。
3. 积分对导函数进行积分操作,得到关于参数的积分函数。
4. 求解参数解关于参数的积分函数,得到参数的值。
5. 求解原问题将参数的值代入原问题中,得到原问题的解。
四、含参变量积分法的实例应用现在我们通过一个实例来说明含参变量积分法的应用。
实例:求解定积分 ∫x n 1+x 10dx1. 引入参数我们将指数 n 替换为参数 t ,得到 ∫x t 1+x 10dx 。
2. 求导对参数 t 求导,得到导函数 d dt (∫x t 1+x 10dx)。
3. 积分对导函数进行积分操作,得到积分函数 F (t )=∫d dt (∫x t 1+x 10dx)dt 。
4. 求解参数解关于参数的积分函数 F (t ),得到参数的值。
5. 求解原问题将参数的值代入原问题中,得到原问题的解。
五、含参变量积分法的优点和局限性含参变量积分法具有以下优点: - 可以解决一类带有参数的定积分问题。
- 可以通过引入参数,简化定积分的计算过程。
然而,含参变量积分法也存在一些局限性: - 只适用于特定类型的定积分问题。
- 对于复杂的问题,可能需要进行多次求导和积分操作,增加了计算的复杂性。
六、总结含参变量积分法是一种求解带有参数的定积分问题的方法。
通过引入参数、求导、积分、求解参数和求解原问题的步骤,可以得到定积分的解。
第十讲含参变量的积分10 . 1 含参变量积分的基本概念含参量积分共分两类:一类是含参量的正常积分;一类是含参量的广义积分. 一、含参量的正常积分 1 .定义设()y x f ,定义在平面区域[][]d c b a D ,,⨯=上的二元函数,对任意取定的[]b a x ,∈.()y x f ,关于 y 在[]d c ,上都可积,则称函数()()[]b a x dy y x f x I dc,,,∈=⎰为含参量二的正常积分.一般地,若 ()()(){}b x a x d y x c y x D ≤≤≤≤=,|, ,也称()()()()[]b a x dy y x f x I x d x c ,,,∈=⎰为含参量x 的正常积分.同样可定义含参量 y 的积分为()()[]d c y dx y x f y J ba,,,∈=⎰或()()()()[]d c y dx y x f y J y b y a ,,,∈=⎰2 .性质(以 I ( x )为例叙述)( l )连续性:若 ()y x f ,必在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,连续,即对[]b a x ,0∈∀,()()()()⎰=→000,lim 0x d x c x x dy y x f x I( 2 )可积性:若()y x f ,在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,可积.且有()()()⎰⎰⎰⎰⎰==bab ad cbadcdx y x f dy dy y x f dx dx x I ,,(若 D 为矩形区域, ·( 3 )可微性:若 ()y x f ,的偏导数()y x f x ,在 D 上连续,()x c ,()x d 在[]b a ,可导,则()x I 在 []b a ,可导,且()()()()()()()()()()x c x c x f x d x d x f dy y x f x I x d xc x''',,,-+=⎰·以上性质的证明见参考文献[ 1 ] ,这里从略,例10. l 求积分⎰>>-⎪⎭⎫ ⎝⎛10,ln 1ln sin a b dx xxx x ab 解法 1 (用对参量的微分法):设()⎰>>-⎪⎭⎫ ⎝⎛=100,ln 1ln sin a b dx x xx x b I ab ,()()()()()()()b I b b dx x x x x b x d x b dx x x b x b x b x d x dxx x b I b b b b b b b '221010121102101010111'11111ln sin |1ln cos 111ln cos 111ln cos 11|1ln sin 111ln sin 1ln sin +-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎰⎰⎰⎰⎰++++所以()()()()()⎰++=++=⇒++=C b db b b I b b I 1arctan11111122',令a b =,则 ()()()1arctan 1arctan0+-=⇒++==a C C a a I 所以原积分()()()1arctan 1arctan+-+==a b b I I 解法 2 : (交换积分顺序方法)因为xx x dy x ab bayln -=⎰,所以⎰⎰⎰⎰⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=10101ln sin 1ln sin b a y b a y dx x x dy dy x x dx I同解法()⎰++=⎪⎭⎫ ⎝⎛1021111ln sin y dx x x y,所以有 ()()()⎰+-+=++=baa b dy y I 1arctan 1arctan1112注:在以上解题过程中,需要验证对参量积分求导和交换积分顺序的条件,为简洁省略了,但按要求是不能省的. 例10.2 设()()()dz z f yz x y x F xyyx ⎰-=,,其中f 为可微函数,求()y x F xy,·解:()()()()()()()()()()()()()()()()()()()xy f y y x y x f y x xy f xy x xy f y y x xy f y x x y f y x xy xf F xy f y yx dz z f xy f xy x y dz z f y x f x x y xy f xy x y dz z f F xy xyyx xyyx xyy x x '2222'222222213213111-+⎪⎪⎭⎫ ⎝⎛+-=-+-+⎪⎭⎫⎝⎛+=-+=-+=⎪⎪⎭⎫⎝⎛---+=⎰⎰⎰二、含参量的广义积分含参量的广义积分包括两类:含参量的无穷积分和含参量的瑕积分 (一)含参量的无穷积分1 .定义:设 ()y x f ,定义在[][)+∞⨯=,,c b a D 上,对每个取定的[]b a x ,∈,积分 ,()()[]⎰+∞∈=cb a x dy y x f x I ,,,都收敛(也叫逐点收敛),它是一个定义在[]b a ,上的函数,称该积分为含参量x 的无穷积分 同样可以定义 ()()[]⎰+∞∈=ad c y dx y x f y J ,,,2 .一致收敛若对c M >∃>∀,0ε,当 A > M 时,对一切[]b a x ,∈,恒有()()()εε<<-⎰⎰+∞AA cdy y x f dy y x f x I ,,或则称含参量积分在[]b a ,上一致收敛.注:非一致收敛定义:若00>∃ε,使得c M >∀,总存在M A >0,及存在[]b a x ,0∈,,使得()()()000000,,εε<<-⎰⎰+∞A A cdy y x f dy y x f x I 或3 .一致收敛的柯西准则含参量积分( l )在[]b a ,上一致收敛⇔对 c M >∃>∀,0ε,当 M A A >>12时,对一切[]b a x ,∈,都有()ε<⎰21,A A dy y x f注:非一致收敛的柯西准则:含参量积分( 1 )在[]b a ,上非一致收敛c M >∀>∃⇔,00ε存在M A A >>12,及存在[]b a x ,0∈,使得()0021,ε<⎰A A dy y x f4.一致收敛判别法( I ) M 判别法:若()()()D y x y g y x f ∈∀≤,,,而()⎰+∞cdy y g 收敛,则()⎰+∞cdy y x f ,在[]b a ,上一致收敛(同时也绝对收敛) .( 2 )阿贝尔判别法: ①()⎰+∞cdy y x f ,在[]b a ,上一致收敛; ② 对每一个[]b a x ,∈,()y x g ,关于y 单调,月关于x 一致有界,则积分()()⎰+∞cdy y x g y x f ,,在[]b a ,上一致收敛.( 3 )狄利克雷判别法: ①()[]()c A b a x M dyy x f Ac>∀∈∀≤⎰,,,(即一致有一界);② 对每一个[]()y x g b a x ,,,∈必关于 y 单调,且当 +∞→y 时()y x g ,对x 一致趋于零,则积分()()⎰+∞cdy y x g y x f ,,在[]b a ,上一致收敛 ·例 10 . 3 讨沦下列积分的一致收敛性: (1)()⎰∞++-122222dx y xx y 在()+∞∞-,;(2)[)⎰+∞-+∞∈0,0,sin y dx xxe xy 解: ( 1 )因为()()()()+∞∞-∈∀≤+=++≤+-,112222222222222y xy x y xy x y xx y ,而积分 ⎰+∞121dx x 收敛,由M 发,()⎰∞++-122222dx yx x y 在()+∞∞-,一致收敛 ·( 2 )因为⎰+∞sin dx xx收敛,且与y 无关,故关于y 一致收敛,而xy e -对固定的y 关于x 在[)+∞,1上单调减,且1≤-xye ,对()()()+∞⨯+∞∈∀,0,0,y x .由阿贝尔判别法知,积分⎰+∞-0sin dx xxe xy在()+∞∈,0y 上一致收敛. 5 .分析性质( l )连续性:若满足:① ()y x f ,在[][)+∞⨯=,,c b a D 上连续; ② ()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛;则()x I 在[]b a ,上连续,即()()()dy y x f x I x I cx x ⎰+∞→==,lim 000·( 2 )可积性:参量 []b a x ,∈若满足: ①()y x f ,在[][)+∞⨯=,,c b a D 上连续; ② ()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛;则()x I 在[]b a ,上可积,即()()()⎰⎰⎰⎰⎰+∞+∞==babaccb adx y x f dy dy y x f dx dx x I ,,参量[)+∞∈,a x ,若满足:① ()y x f ,在 [)[)+∞⨯+∞=,,c a D 上连续; ②()[]()c d d c y dy y x f a>∀∈⎰+∞,,,和()[]()a b b a x dy y x f c>∀∈⎰+∞,,,都一致收敛;③ 积分()⎰⎰+∞+∞acdy y x f dx ,与()⎰⎰+∞+∞cadx y x f dx ,收敛;则()x I 在[]b a ,上收敛,且()()dx y x f dy dy y x f dx acca⎰⎰⎰⎰+∞+∞+∞+∞=,,( 3 )可微性:若满足:①()y x f ,和()y x f x ,在 [][)+∞⨯=,,c b a D 上连续; ② ()()[]b a x dy y x f x I c,,,∈=⎰+∞收敛;③()[]b a x dy y x f cx ,,,∈⎰+∞一致收敛;则()x I 在[]b a ,上可微,且()()[]b a x dy y x f x I cx ,,,'∈=⎰+∞注: ( 1 )在定理的条件下,必可导出 ② 也是一致收敛的. ( 2 )定理的条件都是充分而非必要的. 6 .狄尼( Dini )定理若()y x f ,在 [][)+∞⨯=,,c b a D 连续且非负,则()()dy y x f x I c⎰+∞=,在[]b a ,上连续()x I 在[]b a ,上一致收敛.证明:充分性是显然的,下证必要性. (反证法)假设()()[]b a x dy y x f x I c,,,∈=⎰+∞不一致收敛,由定义,00>∃ε,对cM >∀总存在[]b a x M A ,,00∈∃>,使得()()0000,ε≥-⎰A cdy y x f x I .特别地,取 M 大于c 的自然数n ·则分别存在 []b a x n A n n ,,∈> ,使得()()0,ε≥-⎰nA cn n dy y x f x I · 注意到f 非负,可写作()()0,ε≥-⎰nA cn n dy y x f x I .由于{}[]b a x n ,⊂有界,记为{}(),...2,1=k x n ,则[]b a x x nk k ,lim 0∈=∞→,不妨设......21<<<<nk n n A A A ,再注意到 f 非负,因此有()()()()⎰⎰≥-≥-10,,n nkA cA cnk nk nk nk dy y x f x I dy y x f x I ε (*)由已知条件,对固定的1n A ,函数()()()⎰-=1,n A cdy y x f x I x F 在[]b a ,上连续,对(*)令∞→k 取极限得()()()00001,ε≥-=⎰dy y x f x I x F n A c.此与()x I 的定义(即逐点收敛)矛盾,即()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛 ·(二)含参量的瑕积分 1 .定义设()y x f ,在区域[](]d c b a D ,,⨯=上有定义,对取定的[]c y b a x =∈,,为函数 f 的瑕点, 若积分()()[]⎰∈=dcb a x dy y x f x I ,,,收敛,它是一个定义在[]b a ,上的函数,称其为含参量x 的瑕积分.2 一致收敛对c d -<<∃>∀δδε0:,0,当δη<<0时,恒有()εη<⎰+c cdy y x f ,,对一切[]b a x ,∈成立,称()()dy y x f x I dc⎰=,在[]b a ,上一致收敛.3.M 判别法设 g ( y )为定义在( c , d ]上以 c y =瑕点的非负函数.且()()[]()b a x y g y x f ,,∈∀≤ ,而()dy y g d c⎰收敛,则()()[]b a x dy y x f x I dc,,,∈=⎰必一致收敛其余的可仿照含参量无穷积分的相关内容平行推得,当然也可以将它转化为无穷积分进 行讨论,这里不再赘述.。
116第十二章 反常积分与含参变量的积分一、 反常积分:内容提要:1、 反常积分收敛的定义:● 无穷积分: ():lim ()AaaA f x dx f x dx +∞→+∞=⎰⎰● 瑕积分: 0():lim ()b b a af x dx f x dx δδ+-→=⎰⎰b 为瑕点若极限存在,则称反常积分收敛,否则称其发散. ● 绝对收敛与条件收敛: 若|()|a f x dx +∞⎰收敛,则称()af x dx +∞⎰绝对收敛.若()af x dx +∞⎰收敛,但不绝对收敛则称其为条件收敛.2、 反常积分的敛散性判别:● 比较判别法:若0()()[,)f x c x x a ϕ≤≤∀∈+∞()a x dx ϕ+∞⎰收敛⇒()a f x dx +∞⎰收敛()af x dx +∞⎰发散⇒()ax dx ϕ+∞⎰发散若0()()[,]f x c x x a b ϕ≤≤∀∈()bax dx ϕ⎰收敛⇒()ba f x dx ⎰收敛()baf x dx ⎰发散⇒()bax dx ϕ⎰发散若()()()ax f x g x f x dx +∞→+∞⎰收敛()ag x dx +∞⇔⎰收敛● Dirichlet 判别发: ·若()f x 满足()().[,),0Aaaf x f x dx M A a dx x λλ+∞≤∀∈+∞⇒>⎰⎰收敛. ·若()f x 满足().[,)()(),0xbaaf x dx M x a b x b f x dx λλ≤∀∈⇒->⎰⎰收敛.● ·()f x 满足:().[,)Aaf x dx M A a x ≤∀∈+∞→+∞⎰时()g x 单调趋于0 ()()af xg x dx +∞⇒⎰收敛.117·()f x 满足:().[,)xaf x dx M x a b x b -≤∀∈→⎰时()g x 单调趋于0()()baf xg x dx ⇒⎰收敛.3、学习提示:注意在方法、思路、结果方面比较无穷级数、无穷积分、瑕积分的敛散性判别法.4、 重要结果: 11:1p ap dx x p ∞>⎧⎨<⎩⎰收敛发散b a 11:(x-a)1dx λλλ≥⎧⎨<⎩⎰发散收敛典型例题:例1:讨论下列反常积分的敛散性: 1)1+∞⎰2)2π⎰ 3)21x m ()dx x m x 1∞-++⎰4)10⎰ 解:1)521()f x x=512p =>. 故1∞⎰收敛 2)此积分瑕点为0.0x +→时121x, 故2π⎰收敛. 3) 2222(1)()1()(1)x m m x x m f x x m x x m x -+-=-=+++-. 1m = 时 21()f x x , 所以积分收敛. 1m ≠ 时 1()f x x, 所以积分发散.4) 此积分瑕点为0. 0x +→ 时141()o x = ∴原积分收敛. 例 2. 讨论积分2sin x dx x∞⎰的敛散性:若收敛,它是条件收敛还是绝对收敛?118解:作变量代换 2x t =则x =20sin sin 2x t dx dt x t∞∞=⎰⎰此积分有两个瑕点:0,∞.0x →时sin 1tt10sin tdt t∴⎰绝对收敛. 又:1sin 2[1,)A tdt A ≤∀∈+∞⎰ 1t单调1lim 0t t →∞=由Dirichlet 判别法,10sin tdt t⎰收敛.2sin sin cos 212t t t t t t+≥= 再由Drichilet 判别法1cos 22tdt t∞⎰收敛.但112dt t ∞⎰发散,20sin t dt t ∞∴⎰发散. 从而原级数条件收敛.例3 讨论如下反常积分的收敛性:0ln(1)p x dx x ∞+⎰ 解:此积分有两个瑕点:0,+∞0x →时1ln(1)1p p x x x -+112p p ∴-<<即时 10ln(1)p x dx x +⎰收敛,2p ≥发散. 1p ≤ 时 1ln(1)ln(1)lim .p p px x x x dx x x ∞→∞++=∞∴⎰发散. 1p > 时121ln(1)1ln(1)p p px x o dx x x x +∞⎛⎫++=∴ ⎪⎝⎭⎰ 收敛. 综上所述:仅当 12p << 时原级数收敛.练习题:研究下列积分的敛散性1) 10ln dx x ⎰ 2) 2201x dx x x +∞++⎰ 3) 10ln p x xdx ⎰ 4) 0+∞⎰ 5) 2sin cos p q dx x xπ⎰ 6) 0p q dx x x ∞+⎰ 7) 1ln p q dxx x ∞⎰ 8) 0()()m n p x dx P x +∞⎰. ()()m n P x P x 分别为m 及 n 次互质的多项式.1199) 0sin 1p q x x dx x +∞+⎰10) 10n⎰二、 含参变量的积分:内容提要:1、 含参变量的有限积分:● 定义: ():(,)ba u f x u dx ϕ=⎰(,)f x u 在[,][,]R a b αβ=⨯上定义 .0[,]u αβ∀∈,0(,)f x u 在[,]a b 上可积.● 性质:1) 连续性: (,)f x u 在R 上连续()u ϕ⇒在[,]αβ上连续 . 2) 可微性: (,)f x u 与fu∂∂在R 上连续⇒()u ϕ在[,]αβ上可导且: ()(,)(,)bb a a d d u f x u dx f x u dx du du uϕ∂==∂⎰⎰ 3) 可积性: (,)f x u 在R 连续⇒()u ϕ在[,]αβ上可积且:()(,)(,)bb aau du du f x u dx dx f x u du βββαααϕ==⎰⎰⎰⎰⎰2 . 含参变量的无穷积分● 收敛与一致收敛 称0():(,)u f x u dx ϕ+∞=⎰收敛若(,)f x u 在[,)[,]D a αβ=+∞⨯上定义,0[,]u αβ∀∈0(,)af x u dx +∞⎰收敛.称():(,)au f x u dx ϕ+∞=⎰在[,]αβ上一致收敛.如果:000,0,[,]A A A u εαβ∀>∃>∀>∀∈有:(,).Af x u dx ε+∞<⎰● 一致收敛的无穷积分的性质:1) 连续性: (,)f x u 在[,)[,]D a αβ=+∞⨯上连续 ()(,)au f x u dx ϕ+∞=⎰在[,]αβ上一致收敛,则()u ϕ在[,]αβ上连续 .即:00lim (,)lim (,)aau u u u f x u dx f x u dx +∞+∞→→=⎰⎰.2)可微性:(,)f x u 与(,)u f x u '在D 上连续且(,)af x u dx +∞⎰在[,]αβ120收敛, (,)u af x u dx +∞'⎰在[,]αβ一致连续,则()(,)au f x u dx ϕ+∞=⎰在[,]αβ可导,且()(,)u a d u f x u dx duϕ+∞'=⎰. 3) 可积性在:(,)f x u 在D 上连续 0()(,)u f x u dx ϕ+∞=⎰在[,]αβ一致收敛 .则()u ϕ在[,]αβ可积且0()(,)u du dx f x u du ββααϕ+∞=⎰⎰⎰.● 一致收敛的判别法:1) Cauchy 准则: (,)af x u dx +∞⎰在区间I 一致收敛⇔01200,A A A A u ε∀>∃∀>∀有21(,)A A f x u dx ε<⎰2)Weierstrass 判别法: (,)(,)().x y f x y g x ∀<且()ag x dx +∞⎰收敛(,)af x u dx +∞⇒⎰一致收敛 .3)Dirichlet 判别法: ,(,)AaA a u If x u dx M ∀>∀∈≤⎰.,(,)u I g x u ∀∈关于u 单调,且0(,)g x u x u I →∞∈且则(,)(,)af x ug x u dx +∞⎰在I 上一致收敛 .典型例题: 例1、研究122()()yf x F y dx x y =+⎰的连续性. 其中()f x 在[0,1] 上是正的连续函数: 解:0y ∀∈.00y ≠时,取0y δ<,则000[,]y y δδ∉-+.显然函数22()yf x x y+在00[0,1][,]y y δδ⨯-+上连续 .根据含参变量积分的连续性,()F y 在00[,]y y δδ-+上连续 .00y =时 0()0F y =.因()f x 在[0,1]是正的连续函数 .[0,1]:min ()0x m f x ∈=>(0,1)y ∈时 12201()4ym F y dx marctg m x y y π≥=>+⎰121(1,0)y ∈-时 1221()4ym F y dx marctg m x y y π≤=<-+⎰lim ()0y F y ±→∴≠ ()F y ∴在(,0)(0,)-∞∞上连续 .例2、求()F y '1) sin ()b y a yxy F y dx x++=⎰2) 22()y x yy F y e dx -=⎰解:1) sin ()sin ()()cos b y a y y b y y a y F y xydx b y a y++++'=-+++⎰ 1111sin ()sin ()y b y a a y y b y y a y ⎛⎫⎛⎫=++-++ ⎪ ⎪++⎝⎭⎝⎭2) 222222()()y x yxy x yyx y x yF y y ey ee dx y---==∂'''=--∂⎰253222y y y x y yyeex e dx ---=--⎰例3、设2sin()()sin xy xy F x dy y yπ=-⎰ 求 10()F x dx ⎰解:因函数sin()sin y xy y y-在[0,1][,2]ππ⨯上连续,由含参变量积分的积分性质:11200sin()()sin y xy F x dx dx dy y yππ=-⎰⎰⎰21sin()sin y xy dy dx y yππ=-⎰⎰21cos sin ydy y yππ-=-⎰2l n sin ln 2y yππ=-=例4、应用对参数的微分法计算积分:222220ln(sin cos )a x b x dx π+⎰解: 视b 为常数 . a 为参变量 .若00a b >>222220()ln(sin cos )I a a x b x dx π=+⎰1222222202sin ()sin cos a xI a dx a x b xπ'=+⎰若a b = 2202()sin 2I b xdx b b ππ'==⎰若a b ≠作变量代换 t tgx =2222202()(1)()b a t dtI a a t t +∞'=++⎰ 2222222a b a at arctg t arctg a a b a b b b +∞⎛⎫=- ⎪--⎝⎭ a bπ=+()(0,)I a a a bπ'∴=∀∈+∞+积分得:()ln()(0,)I a a b c a π=++∈+∞ 令a b =,()ln(2)I b b c π=+而 22120()ln ln ln I b b dx b c πππ==∴=⎰ ()ln2a bI a π+∴= 若0a <或0b < 同理可得:||||()ln 2a b I a π+=例5、证明下列积分在指定区域一致收敛: 1) 00sin 0x e xdx ααα+∞-<≤<∞⎰2) 1cos xp xe dx xα+∞-⎰ 00p α≤<+∞> 解: 1) 0sin x x e x e αα--≤ 且 00x e dx α+∞-⎰收敛 故积分0sin x e xdx α+∞-⎰ 收敛 .2)由于1cos 2Axdx ≤⎰0α≥时 xp e xα-在1x ≥关于x 递减且10x p p e x x α-<<,故x →+∞ 时 x p e x α-一致趋于0 .由Dirichlet 判别法:1cos x p xe dx xα+∞-⎰在1230α≤<+∞一致收敛 . 练习题:1、求下列极限:1) 1220lim 1y yy dxx y+→++⎰2)10lim y -→⎰ 2、 求()F y ' 1) 0ln(1)()y xy F y dx x+=⎰2) 12()(,)(,)()yF y f x y x y dx f u v c =+-∈⎰3、 设()f x 是以2π为周期的连续函数,令1()()2x hx h F x f t dt h+-=⎰. 试求()F x 的Fourier 系数 . 4、 应用对参数的微分法求积分:20ln(12cos )a x a dx π-+⎰5、设()f x 连续、10()()()xn F x f t x t dt -=-⎰,求()()n F x .6、设2cos 0()cos(sin )xx F x e x d θθθ=⎰,求证:()2F x π≡.7、求下列积分的收敛域:1)201ax e dx x -+∞+⎰2) 20ln p dxx⎰ 8、研究下列积分在指定区间内的一致收敛性:1) 1x x e dx a b αα∞-≤≤⎰2) 0sin 0xx e dx xαα+∞-≤<∞⎰ 3)200x dx αα-≤<∞⎰4) 22(1)sin x e dx ααα+∞-+-∞<<+∞⎰9、 求函数20sin(1)()xF dx xαα+∞-=⎰的不连续点. 10、 设()f x 连续且()A f x A dx x +∞∀>⎰收敛 .试证:0()()(0)ln 00f ax f bx bdx f a b x a+∞-=>>⎰ 11、 利用第10题结果计算:0cos cos00 ax bxdx a bx+∞->>⎰12、利用对参量的微分法计算:2200 ax bxe edx a bx--+∞->>⎰124。
525第十六章 含参量积分关于积分理论,我们已经学过一元函数的积分理论:包括常义积分(积分限有限、被积函数有界)和广义积分,其积分变量和被积函数的变量一样,都是一个。
但在各技术领域,经常会遇到这样的积分:对一个变量的积分还与一个参数有关,如天体力学中常遇到的椭圆积分:dt t k ⎰-2/022sin 1π,从形式可以看出,积分变量为t ,积分过程结果依赖于k ,此时k 称为积分过程中的参量。
显然,若将k 视为一个变元,记t k k t f 22sin 1),(-=为一个二元函数,则上述积分只涉及其中的一个变量,将另一个变量视为参量,像这种积分形式在工程技术领域还有很多。
因此,为解决相应的技术问题,必须先在数学上进行研究,这就是本章的内容:含参变量的积分,包括:常义积分和广义积分两部分,由于这种积分形式的被积函数是多元函数,因此,多元函数理论为参变量积分的研究提供了理论基础。
§1含参变量的常义积分只考虑一个参量的含参量积分,因此,被积函数是二元函数。
设),(y x f 在],[],[d c b a D ⨯=,此时),(0y x f 是为关于x 的一元连续函数,因而可积。
考虑其积分dx y x f ba ⎰),(0,显然其与0y 有关,记为dx y x f y I ba⎰=),()(00,更一般,引入dx y x f y I ba⎰=),()(,称其为含参变量y 的积分。
注:由此可看出:含参量的积分结果是一个关于参变量的函数,由此就决定了含参量积分的研究内容:不仅在于计算,还要研究其分析性质。
更进一步的,将其分析性质应用于含参量的计算,由此带来了积分计算的新方法:通过引入参变量,将一个一般积分转化为含参量的积分,通过含参量积分的性质进行计算含参量的积分,最后取特定的参量值计算出原积分。
为此,先研究含参量积分的分析性质。
526定理1:(连续性)设)(),(D C y x f ∈,则],[)(d c C y I ∈。
欧阳光中《数学分析》笔记和考研真题详解第25章含参变量的积分25.1复习笔记一、含参变量的常义积分1.含参变量积分的概念(1)称如下形式的积分为含参变量x的积分.(2)当为常值时,称为固定限参变量积分,否则称为可变限参变量积分.2.含参变量积分的分析性质(1)不变限情形①连续性定理设f(x,y)于矩形[a,b]×[c,d]上二元连续,c,d有限,则函数于[a,b]上也连续.②可导性定理设f(x,y)和于矩形[a,b]×[c,d]上连续,则F(x)于[a,b]上也可导且.(2)可变限情形①连续性定理设f(x,y)于上二元连续,,且于[a,b]上连续,则于[a,b]上也连续.②可导性定理设f(x,y)于上二元连续,,且于[a,b]上连续,若导数存在且连续,则也存在,且二、含参变量的广义积分1.含参变量广义积分的一致收敛(1)定义设已给含参变量的广义积分(I是任意区间),假定对每个x∈I,上述积分已收敛.设为“余积分”,它是x,d的二元函数,于矩形I×[C,+∞)上有定义.①含参变量广义积分在奇点+∞处一致收敛的定义若数,使得“余积分”绝对值|r(x,d)|在矩形上点点小于ε(图25-1),即则称于奇点+∞处,积分在x∈I时一致收敛.图25-1②含参变量广义积分在有限奇点处一致收敛的定义若,使得在矩形上点点小于,即则称在奇点c处积分在x∈I时一致收敛.③当一个含参变量积分有限多个奇点时,只有积分在每个奇点处都一致收敛时才称该积分一致收敛.(2)Abe1不等式(u(x)单调,v'(x)可积)也常用来估计“余积分”.2.一致收敛的判别法(1)Cauchy收敛原理如果一致收敛存在,使得,有(2)Weierstrass判别法设①收敛;②收敛,则,一致收敛.(3)A.D.判别法已给若u(x,y)关于y单调,且u,v有一个是有界函数,另一个在y→+∞时在区间x∈I上一致收敛于零,则上述积分一致收敛(假定偏导数存在且关于y连续).3.含参变量广义积分的性质(1)定理1设f(x,y)于矩形I×[c,+∞)上连续且积分,x∈I内闭一致收敛,则于I上连续(连续性).(2)定理2设f(x,y)于矩形I×[c,+∞)上连续且积分,x∈I内闭一致收敛,若区间I=[a,b]有界,则(3)定理3设于上连续,积分,内闭一致收敛,又存在一点,积分收敛,则内闭一致收敛,且(4)定理4设上连续,公式在下列条件之一满足时成立:①②③(5)定理5设f(x,y)于[a,+∞)×[c,+∞)上连续且两个“里层”积分都存在.若存在充分大的及函数满足:其中函数一个可积,另一个局部有界(即在任一个内闭区间上有界),则成立三、B函数和Γ函数1.B函数和Γ函数的定义B函数和Γ函数是指2.B函数和Γ函数的性质(1)连续性B(p,q),Γ'(s)都是连续的.(2)对称性B(p,q)=B(q,P);(3)Γ函数是阶乘的拓广Γ(s+1)=sΓ(s),s>0.特别Γ(n+1)=n!;(4)B函数与Γ函数的关系;(5)余元公式;(6)Legendre公式.3.当s→+∞时Γ(s)的性态公式特别,当s=n(自然数)时,得。