数学:13. 2立方根同步测试题(人教新课标八年级上)
- 格式:doc
- 大小:97.00 KB
- 文档页数:3
25 4 4 (-2)2 3 - 5 3.6 (-13)2 36 2 a a13.1 平方根一.填空题4 (1) 的平方根是 ; 1211 (2)(- )2 的算术平方根是 ; 4(3)一个正数的平方根是 2a -1 与 - a +2,则 a =,这个正数是 ;(4) 的算术平方根是 ;(5)9-2 的算术平方根是 ;(6) 的值等于 , 的平 方 根为 ;(7)(-4)2 的平方根是 ,算术平方根是 .二.选择题(1) 的化简结果是 ( )A.2B.-2C.2 或-2D.4(2)9 的算术平方根是( )A.±3B.3C.±D.(3)(-11)2 的平方根是A.121B.11C.±11D.没有平方根(4)下列式子中,正确的是( )A. = -B.- =-0.6C. =13D. =±6(5)7-2 的算术平方根是( )A. 1 7B.7C. 1 4D.4(6)16 的平方根是( )A.±4B.24C.±D.±2(7)一个数 的算术平方根为 a ,比这个数大 2 的数是()A .a +2 B. -2 C. +2 D.a 2+2(8)下列说法正确的是( ) 3516 9A.-2 是-4 的平方根B.2 是(-2)2 的算术平方根C.(-2) 2 的平方根是 2D.8 的平方根是 4(9) 的平方根是( )A.4B.-4C.±4D.±2(10)的值是( )A.7B.-1C.1D.-7三、要切一块面积为 36 m 2 的正方形铁板,它的边长应是多少?四、小华和小明在一起做叠纸 游戏,小华需要两张面积分别为 3 平方分米和 9 平方分米的正方形纸片,小明需要两张面积分别为 4 平方分米和 5 平方分米的纸片,他们两人手中都 有一张足够大的纸片,很快他们两人各自做出了其 中的一张,而另一张却一 下子被难住 了.(1)他们各自很快做出了哪一张,是如何做出来的?(2)另两个正方形该如何做,你能帮帮他们吗?(3)这几个正方形的边长是有理数还是无理数?165 2 3 5 3 3 2 5参考答案211一:(1)± (2) (3)-1 9 (4) (5) (6)2 ± (7)±4 411 4 9 二:(1)A (2)B (3)C (4)C (5)A (6)A (7)D (8)B (9)D (10)A三、6 m四、(1)很快做出了面积分别为 9 平方分米和 4 平方分米的 一张.(2)首先确定要做的正方形的边长.3 平方分米的正方形的边长为 .5 平方分米的正方形的边长为 .分别以 1 分米为边长作正方 形,以其 对角线长和 1 分米为边长 作矩形所得矩形的对角 线长为 分米.以 分米和 分米为边长作矩形得对角线长为 .(3)显然,面积为 4 平方分米和 9 平方分米的正方形边长为有理数,面积为 3 平方 分米 和 5 平方分米的正方形边长为无理数.。
2022-2023学年北师大版八年级数学上册《2.3立方根》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列结论正确的是()A.9的平方根是3B.没有立方根C.立方根等于本身的数是0D.2.﹣64的立方根与的平方根之和是()A.﹣7B.5C.﹣13或5D.﹣1或﹣73.的平方根是x,﹣27的立方根是y,则2x﹣y的值为()A.7B.11C.﹣1或7D.11或﹣54.下列各式中,正确的是()A.=±6B.±=4C.D.5.若实数a满足=a,则的值为()A.0B.1C.0或1D.0或±16.一个正方体的体积是5m3,则这个正方体的棱长是()A.m B.m C.25m D.125m7.若a2=36,b3=8,则a+b的值是()A.8或﹣4B.8或﹣8C.﹣8或﹣4D.4或﹣48.若≈0.6694,≈1.442,则下列各式中正确的是()A.≈14.42B.≈6.694C.≈144.2D.≈66.94二.填空题(共8小题,满分40分)9.化简:=.10.已知:,则x的立方根是.11.的平方根是.12.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去1个大小相同的小正方体,截去后余下部分的体积488cm3,则截去的每小正方体的棱长是.13.若,则x=.14.方程的根是.15.49的平方根是,的算术平方根是,﹣8的立方根是.16.已知a+b﹣5的平方根是±3,a﹣b+4的立方根是2.则a+b的值为.三.解答题(共5小题,满分40分)17.解方程:(1)4x2﹣9=0;(2)8(x﹣1)3=.18.已知a+1的算术平方根是3,﹣27的立方根是b﹣12,c﹣3的平方根是±2.求:(1)a,b,c的值;(2)a+4b﹣4c的平方根.19.已知一个正数m的平方根分别为4n+3和2﹣5n.(1)求m的值;(2)若,则a+b+c的立方根是多少?20.(1)填空:=0.01,=,=1,=10,=,…(2)观察上述求算术平方根的规律,并利用这个规律解决下列问题:①已知≈3.16,则≈;②已知≈1.918,≈191.8,则a=.(3)根据上述探究过程类比一个数的立方根:已知≈1.26,≈12.6,则m=.21.如图,这是由8个同样大小的立方体组成的魔方,体积为64cm3.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形,求出阴影部分的面积及其边长.参考答案一.选择题(共8小题,满分40分)1.解:A、9的立方根是,故A不符合题意.B、的立方根是,故B不符合题意.C、立方根等于本身的数是0、±1,故C不符合题意.D、=﹣4,故D符合题意.故选:D.2.解:﹣64的立方根是﹣4,的平方根,即9的平方根为±3,﹣4+3=﹣1,﹣4+(﹣3)=﹣7,所以结果为﹣1或﹣7,故选:D.3.解:=4,4的平方根为±2,即x=±2,y==﹣3,当x=2,y=﹣3时,2x﹣y=4+3=7,当x=﹣2,y=﹣3时,2x﹣y=﹣4+3=﹣1,故选:C.4.解:A.=6,因此选项A不符合题意;B.=±4,因此选项B不符合题意;C.由于(﹣3)3=﹣27,所以=﹣3,因此选项C符合题意;D.=4,因此选项D不符合题意;故选:C.5.解:∵.∴a=0或1.∴的值为0或1.故选:C.6.解:设这个正方体的棱长为am,由题意得,a3=5,∴a=(m),故选:B.7.解:∵a2=36,b3=8,∴a=±6,b=2,当a=6,b=2时,a+b=6+2=8,当a=﹣6,b=2时,a+b=﹣6+2=﹣4,∴a+b的值为8或﹣4,故选:A.8.解:∵被开立方数的小数点向右移动3位,则其立方根的小数点向右移动1位,∴≈0.6694×10=6.694,故选:B.二.填空题(共8小题,满分40分)9.解:∵23=8∴=2.故填2.10.解:∵,∴5x+32=﹣8,解得x=﹣8,∴﹣8的立方根为=﹣2,故答案为:﹣2.11.解:原式===,的平方根为±.故答案为:±.12.解:设截去的每小正方体的棱长是xcm,根据题意得:1000﹣8x3=488,∴8x3=512,∴x3=64,∴x=4.故答案为:4cm.13.解:∵,∴2x﹣1=4x+1,解得x=﹣1.故答案为:﹣1.14.解:,,.故答案为:.15.解:49的平方根是±7,∵=6,6的算术平方根是,∴的算术平方根是,﹣8的立方根是﹣2.故答案为:±7;;﹣2.16.解:∵a+b﹣5的平方根是±3,∴a+b﹣5=(±3)2=9,∴a+b=14,故答案为:14.三.解答题(共5小题,满分40分)17.解:(1)移项得,4x2=9,两边都除以4得,x2=,由平方根的定义得,x=;(2)两边都除以8得,(x﹣1)3=,由立方根的定义得,x﹣1=,即x=.18.解:(1)∵a+1的算术平方根是3,∴a+1=9,∴a=8;∵﹣27的立方根是b﹣12,∴b﹣12=﹣3,∴b=9;∵c﹣3的平方根是±2,∴c﹣3=4,∴c=7;即a,b,c的值分别为8,9,7;(2)由(1)知,a+4b﹣4c=8+4×9﹣4×7=16,∴a+4b﹣4c的平方根是±4.19.解:(1)正数m的平方根互为相反数,∴4n+3+2﹣5n=0,∴n=5,∴4n+3=23,∴m=529;(2)∵,∴a=3,b=0,c=n=5,∴a+b+c=3+0+5=8,∴a+b+c的立方根是2.20.解:(1)=10×0.01=0.1,=10×10=100.故答案为:0.1,100.(2)①∵≈3.16,∴≈≈≈≈10×3.16≈31.6.故答案为:31.6.②∵≈1.918,≈191.8,1.918×100=191.8,∴.∴.∴a=36800.故答案为:36800.(3)∵≈1.26,≈12.6,1.26×10=12.6,∴.∴.∴m=2000.故答案为:2000.21.解:(1)(cm).(2)∵魔方的棱长为4cm,∴小立方体的棱长为2cm,∴阴影部分面积为:×2×2×4=8(cm2),边长为:=(cm).。
北师大版八年级数学上册《2.3立方根》自主达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列说法正确的是()A.0的立方根和平方根都是0B.1的平方根和立方根都是1C.﹣1的平方根和立方根都是﹣1D.0.01是0.1的平方根2.下列说法中,正确的是()A.﹣32=9B.|﹣3|=﹣3C.=﹣4D.=±3 3.若一个正方体的体积是8,则它的棱长是()A.±2B.2C.2D.44.已知一个数x的两个平方根是3a+2和2﹣5a,则数x的立方根是()A.4B.±4C.8D.±85.有个数值转换器,程序原理如图.当输入m=27时,输出n的值等于()A.3B.C.D.6.下列各式:①=±3;②;③=0.6;④±=±5;⑤=﹣2;⑥=﹣3.其中正确的有()A.2个B.3个C.4个D.5个7.﹣64的立方根与的平方根之和是()A.﹣7B.5C.﹣13或5D.﹣1或﹣7 8.已知一列实数:﹣1,,,﹣2,,,⋯⋯则第2021个数是()A.B.C.D.2021二.填空题(共8小题,满分40分)9.﹣的立方根是.10.的算术平方根是;=,3的平方根是;的立方根是.11.若a的算术平方根为4,2b+4的立方根为2,c是平方根等于本身的数,则a+2b+c的值为.12.一个正方体的体积扩大为原来的8倍,则它的棱长扩大为原来的倍.13.已知,则=.14.若,则x与y的数量关系为.15.的平方根是;若,则x=;若,则x=.16.已知5x﹣2的立方根是﹣3,则x+69的算术平方根是.三.解答题(共6小题,满分40分)17.解方程:(1)=﹣4(2)12(2﹣x)2=24318.已知+=0,求的值.19.已知a+3和2a﹣15是某正数的两个平方根,b的立方根是﹣2,c算术平方根是其本身,求2a+b﹣3c的值.20.已知正数x的两个不同的平方根分别是a+3和2a﹣15,且=4.求x﹣2y+2的值.21.一个底面为25cm×16cm的长方体玻璃容器中装满水,现将一部分水倒入一个正方体铁桶中,当铁桶装满时,玻璃容器中的水面下降了20cm,求正方体铁桶的棱长.22.(1)填表:a0.0000010.001110001000000(2)根据你发现的规律填空:①已知,则=,=.②已知=0.07696,则=.参考答案一.选择题(共8小题,满分40分)1.解:A.0的立方根是0,0的平方根也是0,因此选项A符合题意;B.1的平方根是±1,1的立方根是1,因此选项B不符合题意;C.由于负数没有平方根,因此选项C不符合题意;D.0.1是0.01的一个平方根,因此选项D不符合题意;故选:A.2.解:A、﹣32=﹣9,故A错误,不符合题意;B、|﹣3|=3,故B错误,不符合题意;C、=﹣4,故C正确,符合题意;D、=3,故D错误,不符合题意;故选:C.3.解:设正方体的棱长为a,则:a==2.故选:B.4.解:∵一个数x的两个平方根是3a+2和2﹣5a,∴3a+2+2﹣5a=0,解得:a=2,则x=(3×2+2)2=64,∴64的立方根是4.故选:A.5.解:当m=27时,∴=3,由于3是有理数,所以继续取立方根,∴此时是无理数,输出n=,故选:C.6.解:∵=3,,=0.6,±=±5,=2,=﹣3,∴语句①,③,⑤表述不正确,语句②,④,⑥表述正确,故选:B.7.解:﹣64的立方根是﹣4,的平方根,即9的平方根为±3,﹣4+3=﹣1,﹣4+(﹣3)=﹣7,所以结果为﹣1或﹣7,故选:D.8.解:由题意得,该组数据中第3n个数是,第3n+1个数是﹣(3n+1),第3n+2个数是,∵2021÷3=673…2,∴第2021个数是,故选:A.二.填空题(共8小题,满分40分)9.解:因为(﹣)3=﹣,所以﹣的立方根是﹣,故答案为:﹣.10.解:∵=9,9的算术平方根是3,∴的算术平方根是3;=﹣2,3的平方根是±;的立方根是=.故答案为3;﹣2;±;.11.解:因为a的算术平方根为4,所以a=16;因为2b+4的立方根为2,所以2b+4=8,所以b=2,因为c是平方根等于本身的数,所以c=0;所以a=16,b=2,c=0.所以a+2b+c=16+2×2+0=20.故答案为:20.12.解:设正方体的棱长为a,∴正方体的体积为a3,∴正方体的体积扩大为原来的8倍后,体积为8a3,∴此时棱长为2a,即它的棱长扩大为原来的2倍,故答案为:2.13.解:∵a2=81,∴a=±9.∵=﹣2,∴b=﹣8.∵b﹣a≥0,∴a=﹣9,b=﹣8.∴==1.故答案为:1.14.解:∵+=0,∴=﹣∴=,∴x=﹣y,∴x+y=0,故答案为:x+y=0.15.解:∵=3,(±)2=3,∴的平方根是,∵=﹣,∴若,则x=﹣,∵63=216,∴=6,∴|x|=216,∴x=±216,故答案为:,﹣,±216.16.解:∵5x﹣2的立方根是﹣3,∴5x﹣2=﹣27,解得:x=﹣5,∴x+69=﹣5+69=64,∴x+69的算术平方根是8;故答案为:8.三.解答题(共6小题,满分40分)17.解:(1)(x﹣1)3=﹣4,(x﹣1)3=﹣8,x﹣1=﹣2,x=﹣1;(2)12(2﹣x)2=243,(2﹣x)2=,2﹣x=±,x=或x=﹣.18.解:∵+=0,∴1﹣2x=﹣(3y﹣1),∴2x=3y,∴=.19.解:∵某正数的两个平方根分别是a+3和2a﹣15,b的立方根是﹣2.c算术平方根是其本身∴a+3+2a﹣15=0,b=﹣8,c=0或1,解得a=4.当a=4,b=﹣8,c=0,2a+b﹣3c=8﹣8﹣0=0;当a=4,b=﹣8,c=1,2a+b﹣3c=8﹣8﹣3=﹣3.20.解:∵x的两个不同的平方根分别是a+3和2a﹣15,∴a+3+2a﹣15=0,解之,得a=4,∴x=(a+3)2=49,∵=4,∴49+y﹣2=64,解之,得y=17,即x=49,y=17,∴x﹣2y+2=49﹣2×17+2=49﹣34+2=17.21.解:设正方体的棱长为xcm,根据题意得:x3=25×16×20,解得:x=20.则正方体的棱长为20cm.22.解:(1)=0.01;=0.1,=1,=10,=100,(2)①已知,则=14.42,=0.1442;②已知=0.07696,则=0.7696.故答案为:14.42,0.1442,0.7696.。
八年级下册数学《二次根式》单元测试卷一、单选题1.在根式中,最简二次根式是( ) A .①② B .③④C .①③D .①④2.要使式子5x +有意义,则x 的取值范围为( ) A .5x ≠- B .0x >C .5x ≠- 且0x >D .0x ≥3.把 )ABC .D .4.下列各式正确的是( )A a =B a =±C ||a =D 2a =5.若方程2(2)144y -=,则y 的值是 A .10B .-10C .-10或14D .126.若1a =1b = A .3B .±3C .5D .97.如果1x ≥A .(x -B .(x ±-C .(1x -D .(x -83x =-,则x 的取值范围是 A .3x > B .3x ≥C .3x <D .3x ≤9=x 的取值范围是( ) A .x ≠2B .x ≥0C .x ≥2D .x >210.已知xy<0 )A .B .-C .D .-11.化简A .5-B .1C .D .112.如果ab >0,a +b <0,那么下面各式:①√ab =√a√b ; ②√a b⋅√ba=1;③√ab ÷√ab=-b .其中正确的是( ) A .①②B .①③C .①②③D .②③13.化简201520162)2)⋅的结果为 A .32-- B .32+ C .32-D .14++10,则x 的值等于( ) A .2 B .±2C .4D .±4二、解答题15.若,x y 都是实数,且8y =,求 x +3y 的立方根。
16.计算:(1)((÷(2)17.计算:+++⋅⋅⋅+18.如图,数轴上表示l的对应点分别为A、B,点B关于点A的对称点为C,设点C表示的数为x,求2xx+的值.19.阅读下列解题过程,按要求回答问题.)0xy<<解:原式①②= x③④.(1)上面的解答过程是否正确?若不正确,指出是哪一步出现错误;(2)请写出你认为正确的解答过程.20.已知2310x x-+=,.21.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:231+=+(,善于思考的小明进行了以下探索:设(2a m +=+(其中ab m n 、、、均为整数),则有22a m 2n +=++∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a +法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +2;(3)若(2a m +=+,且ab m n 、、、均为正整数,求a 的值.三、填空题22.计算________. 23.比较大小:6√5________5√6.24.已知01a <<____________.25.化简:7()3.2614+⋅⋅⋅+=的解是______.参考答案1.C【解析】【分析】直接根据最简二次根式的定义求解即可.【详解】不能化简,是最简二次根式;,不是最简二次根式;不能化简,是最简二次根式;故选C.【点睛】本题考查了最简二次根式:满足①被开方数不含分母;②被开方数中不含开得尽方的因数或因式的二次根式叫最简二次根式.2.D【解析】【分析】根据分式有意义的条件可得x+5≠0,再根据二次根式有意义的条件可得x≥0,由此即可求得答案.【详解】由题意得:x+5≠0,且x≥0,解得:x≥0,故选D.【点睛】本题考查了分式有意义的条件二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.3.C【解析】解:由x<0,∴=.故选C.点睛:本题主要考查了二次根式的性质与化简,解题的关键是求出x<0.4.C【解析】解:A.当a<0﹣a.故选项错误;BC.正确.D.当a≥0a.故选项错误.故选C.5.C【解析】∵(y-2)2=144,∴y-2=12或y-2=-12,∴y=14或y=-10.故选C.6.A【解析】【分析】【详解】=3.故选A.【点睛】本题考查了二次根式的化简求值,正确对所求的式子进行变形是关键.7.A【解析】【分析】然后再根据绝对值的性质进行化简即可得.【详解】∵x≥1,∴1-x≤0,(x-1,故选A.【点睛】本题考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.8.B【解析】【分析】=|x-3|,根据题意得|x-3|=x-3,然后利用绝对值的意义即可得到x的取值范围.【详解】=|x-3|,∴|x-3|=x-3,∴x-3≥0,∴x≥3,故选B.【点睛】=以及绝对值的性质是解题的关键.a9.D【解析】【分析】根据被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围即可.【详解】由题意可得:20xx≥⎧⎨-⎩>,解得:x>2.故选D.【点睛】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.10.B【解析】y,>∵0xy<,x∴<,∴原式=-故选B.11.C【解析】3,=====故选C.12.D【解析】【分析】先根据ab>0,a+b<0,判断出a、b的符号,再逐个式子分析即可.【详解】∵ab>0,a+b<0,∴a<0,b<0,∴√a√b无意义,故①不正确;√a b ⋅√b a =√a b ×ba =1,故②正确√ab ÷√ab =√ab ×ba =√b 2=−b ,故③正确. 故选D. 【点睛】本题考查了二次根式的性质,熟练掌握性质是解答本题的关键. √a 2=|a |={a(a ≥0)−a(a <0),√ab =√a ⋅√b (a ≥0,b ≥0),√ab =√a√b (a ≥0,b >0). 13.A 【解析】 【分析】逆用积的乘方法则以及二次根式的运算法则进行计算即可得. 【详解】原式=)))201520152?2?2=))2015222⎡⎤⎣⎦=-)2=2 , 故选A. 【点睛】本题考查了二次根式的运算,积的乘方,逆用积的乘方法则将所给式子进行变形是解题的关键. 14.A 【解析】 【分析】方程左边化成最简二次根式,再解方程. 【详解】原方程化为10=,合并,得10=,2=,即24x =,2x =.故选A . 【点睛】本题主要考查二次根式的性质与化简,二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并. 15.3 【解析】 【分析】首先根据二次根式的非负性可以求出x 的值,再将其代入已知等式即可求出y 的值,从而求出x+3y 的值,再对其开立方根即可求解. 【详解】 由题意可知,3030x x -≥⎧⎨-≥⎩解得:x=3, 则y=8,x+3y=27, 故x+3y 的立方根是3. 【点睛】本题考查了二次根式有意义的条件,立方根及平方根的知识,属于基础题,掌握各个知识点是关键. 二次根式有意义的条件:各个二次根式中的被开方数都必须是非负数.16.(1)9ab 2) 2. 【解析】 【分析】(1)按顺序根据二次根式乘除法的运算法则进行计算即可; (2)先分别化简每个二次根式,然后再按运算顺序进行计算即可. 【详解】(1)原式=23··2a=29·a b a=9ab(2)原式=(÷==2.【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.17.9【解析】【分析】先分母有理化,然后再合并同类二次根式即可.【详解】原式=(100++1100+-1=9.【点睛】 本题考查了二次根式的混合运算,分母有理化,正确进行分母有理化是解题的关键. 18.4【解析】【分析】首先根据已知条件可以确定线段AB 的长度,然后根据对称的性质即可确定x 的值,代入所求代数式计算即可解决问题.【详解】根据题意得AB 1,由对称性知AC =AB ,所以AC -1,所以x =1--1)=2,所以x +2x=2=2=4.【点睛】考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.19.(1)②③出现错误;(2【解析】【分析】(1)根据y <x <0,即可作出判断;(2)首先把被开方数中的式子的分母分解因式,即可把能开方的因式开出,然后分子分母同时乘以x ,即可得到能开方的因式,即可化简.【详解】(1)不正确,∵y <x <0,∴y-x<0x =-,∴②③出现错误;(2)原式x -【点睛】a =是解此题的关键.20【解析】 试题分析:在方程x 2-3x+1=0两边同除以x 可得130x x -+=,即可得13x x +=,根据完全平方公式把2212x x +-化为214x x ⎛⎫+- ⎪⎝⎭,代入求值即可. 试题解析:方程2310x x -+=中,当0x =时 ,方程左边为00110-+=≠,故0x ≠;将方程两边同除以x ,则有: 130x x -+=, 即13x x +=;∴原式====21.解:(1)22m 3n +;2mn .(2)4,2,1,1(答案不唯一).(3)由题意,得22a m 3n {42mn =+=.∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2.∴a =22+3×12=7或a =12+3×22=13.【解析】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13.22.1【解析】试题解析:原式.故答案为1.23.>.【解析】试题解析:6√5=√62×5=√180,5√6=√52×6=√150;∵180>150,∴√180>√150,即6√5>5√6.考点:实数大小比较.24.2 a【解析】【分析】根据完全平方公式结合二次根式的性质进行化简即可求得答案. 【详解】∵0<a<1,∴1a>1,=11a a a a-++=2a,故答案为:2 a .【点睛】本题考查了二次根式的性质与化简,熟练掌握完全平方公式的结构特征是解本题的关键.25.73【解析】【分析】利用二次根式的性质进行化简,计算即可求得结果.【详解】原式=100073⎛⎫ ⎪⎝⎭ =100099910009997337⨯ =73, 故答案为:73. 【点睛】本题考查了二次根式的性质与化简,熟练掌握相关的运算法则是解题的关键.26.9【解析】【分析】设,由()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设,则原方程变形为()()()()()1111112894y y y y y y ++=+++++, ∴1111111112894y y y y y y -+-++-=+++++, 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3,,,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用.。
初中数学同步训练必刷题(人教版八年级下册第十六章二次根式全章测试卷)一、单选题(每题3分,共30分)1.(2022八下·中山期末)式子√x+3在实数范围内有意义,则x的取值范围是()A.x≠-3B.x≥−3C.x≥3D.x≥02.(2022八下·番禺期末)下列计算正确的是()A.√22=2B.√(−2)2=﹣2C.√−83=2D.√(−2)2=±2 3.(2022八下·防城港期末)下列各式中,是最简二次根式的为().A.√52B.√2C.√27D.√134.(2022八下·拱墅期末)−√2×√5=()A.√10B.−√10C.√7D.−√75.(2022八下·朝阳期末)若√63n是整数,则正整数n的最小值是()A.3B.7C.9D.636.(2022八下·潢川期中)下列关于2√6的表述错误的是()A.2√6是最简二次根式B.2√6是无理数C.2√6就是2×√6D.2√6大于57.(2022八下·临海期末)下列计算正确的是()A.√2+√3=√5B.2√2−√2=1C.√6×√2=2√3D.√(−2)2=−2 8.(2022八下·滨海期末)化简后,与√2的被开方数相同的二次根式是()A.√10B.√12C.√12D.√169.(2022八下·藁城期末)下列四个算式中,正确的是() A.√(−1)2=−1B.√5−√2=√3 C.√(−4)×(−9)=√−4×√−9D.√12÷√3=210.已知a=√2+1,b=√2−1,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方值相等二、填空题(每题3分,共30分)11.(2022八下·镇海区期末)代数式2√1−x有意义,则x的取值范围是. 12.(2022八下·诸暨期末)当x=-2时,二次根式√2−7x的值是13.(2021八下·澄海期末)计算√3×√15√5的结果是.14.(2021八下·建华期末)若0≤a≤3 ,则√a2+√a2−6a+9=.15.(2021八下·新罗期末)长方形的宽是√3,面积为2√6,则长方形的长为16.(2022八下·诸暨期末)已知x,y均为实数,y=√x−2+√2−x+5,则x+y的值为17.(2022八下·灌云期末)如果最简二次根式√x+3与最简二次根式√1+2x是同类二次根式,则x=.18.(2021八下·营口期末)计算:√12+|√3−2|=.19.(2021八下·平泉期末)已知:√12+3√13=a√3+√3=b√3,则b a=.20.(2021八下·曲靖期末)如图是一个简单的数值运算程序,当输入x的值为√6时,则输出的值为.三、解答题(共6题,共60分)21.(2022八下·涿州期末)计算(1)2√7−√7(2)(√5+√6)(√6−√5)(3)(√12−√13)×√3(4)√8+√18√222.如图A,B,C三点表示的数分别为a,b,c.利用图形化简:|a−b|−√(c−b)2+√(a−c)2.23.(2019八下·岱岳期末)在一个边长为(2 √3+3 √5)cm的正方形的内部挖去一个长为(2 √3+ √10)cm,宽为(√6﹣√5)cm的矩形,求剩余部分图形的面积.24.(2020八下·潢川期中)(1)当x=54时,求√x+1的值;(2)①x为何值时二次根式√12−x的值是10?②当x=▲时二次根式√12−x有最小值.25.挖掘问题中所隐含的条件,解答下列问题:(1)如果√(x−2)2=2-x,那么()A.x<2B.x≤2C.x>2D.x≥2(2)已知√(x−3)2−(√2−x)2=2x,求x的值.(3)已知a,b是实数,且b>√a−2-2 √2−a+1,请化简:√1−2b+b2−√a2.26.(2020八下·北京期中)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2√2=(1+√2)2,善于思考的小明利用完全平方公式进行了以下探索:3+2√2=12+2×1×√2+(√2)2=(1+√2)2.请你仿照小明的方法解决下列问题:(1)7−4√3=(a−b√3)2,则a=,b=;的算术平方根,求4x2+4x−2020的值;(2)已知x是2−√32(3)当1≤x≤2时,化简√x+2√x−1√x−2√x−1=.答案解析部分1.【答案】B【知识点】二次根式有意义的条件【解析】【解答】解:依题意有x+3≥0,即x≥−3时,二次根式有意义.故答案为:B.【分析】根据题意先求出x+3≥0,再求解即可。
八年级数学上11.1.2立方根同步练习(华师大含答案和解释)新华师大版数学八年级上册第十一1112 立方根同步练习一、选择题1、64的立方根是()A、4B、±4、8D、±82、若a是的平方根,则=()A、﹣3B、、或D、3或﹣33、如果一个有理数的平方根和立方根相同,那么这个数是()A、±1B、0、1D、0和14、用计算器计算某个运算式,若正确的按键顺序是,则此运算式应是()A、43B、34、D、、下列语句正确的是()A、如果一个数的立方根是这个数的本身,那么这个数一定是零B、一个数的立方根不是正数就是负数、负数没有立方根D、一个数的立方根与这个数同号,零的立方根是零6、下列命题中正确的是()①0027的立方根是03;②不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1.A、①③B、②④、①④D、③④7、已知x没有平方根,且|x|=12,则x的立方根为()A、2B、﹣2、±D、﹣8、下列计算或说法:①±3都是27的立方根;②=a;③的立方根是2;④=±3,其中正确的个数是()A、1个B、2个、3个D、4个9、若,则x和的关系是()A、x==0B、x和互为相反数、x和相等D、不能确定10、下列说法中,正确的是()A、一个数的立方根有两个,它们互为相反数B、负数没有立方根、如果一个数有立方根,那么它一定有平方根D、一个数的立方根的符号与被开方数的符号相同11、若a2=36,b3=8,则a+b的值是()A、8或﹣4B、+8或﹣8、﹣8或﹣4D、+4或﹣412、﹣a2的立方根的值一定为()A、非正数B、负数、正数D、非负数13、下列说法正确的是()A、﹣0064的立方根是04B、﹣9的平方根是±3、16的立方根是D、001的立方根是000000114、将一个大的正方体木块锯成n个同样大小的小正方体木块,其中n的取值不可能的是()A、216B、343、2D、641、若是+n+3的算术平方根,是+2n的立方根,则B-A的立方根是()A、1B、-1、0D、无法确定二、填空题16、若一个数的立方根就是它本身,则这个数是________17、已知13=337,则=________.18、若一个偶数的立方根比2大,平方根比4小,则这个数一定是________.19、在数集上定义运算a﹡b ,规则是:当a≥b时,a﹡b=b3;当a <b时,a﹡b=b2 .根据这个规则,方程4﹡x=64的解是________.三、解答题20、求下列各式的值:(1) .(2)(3)21、某居民生活小区需要建一个大型的球形储水罐,需储水13立方米,那么这个球罐的半径r为多少米(球的体积V= ,π取314,结果精确到01米)?22、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.23、我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子判断上述猜测结论是否成立;(2)若与互为相反数,求的值.24、数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求9319的立方根.华罗庚脱口而出:39.众人十分惊奇,忙问计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:(1)103=1000,1003=1000000,你能确定9319的立方根是几位数吗?答:________位数.(2)由9319的个位数是9,你能确定9319的立方根的个位数是几吗?答:________(3)如果划去9319后面的三位319得到数9,而33=27,43=64,由此你能确定9319的立方根的十位数是几吗?答:________.因此9319的立方根是________.(4)现在换一个数18193,你能按这种方法说出它的立方根吗?答:①它的立方根是________位数,②它的立方根的个位数是________,③它的立方根的十位数是________,④18193的立方根是________.答案解析部分一、<h3 >选择题</h3>1、【答案】A【考点】立方根【解析】【解答】∵43=64,∴64的立方根等于4.【分析】如果一个数x的立方等于a ,那么x是a的立方根,根据此定义求解即可.2、【答案】【考点】平方根,立方根【解析】解答:∵,∴a=±3,∴= ,或= .分析:本题考查平方根和立方根的定义,记住一个正数的平方根有两个;一个数的立方根只有一个.3、【答案】B【考点】立方根【解析】【解答】0的平方根和立方根相同.【分析】根据平方根和立方根的概念可知,一个有理数的平方根和立方根相同,那么这个数是0.4、【答案】【考点】立方根,计算器—数的开方【解析】解答:根据符号可知,求的是4的立方根,选分析:此题考查对计算器的使用、【答案】D【考点】立方根【解析】【解答】A:0,-1,1的立方根都是它们本身;B:0的立方根是0;:负数有立方根;D正确【分析】此题考查立方根的定义及性质判定;注意区别立方根与平方根.6、【答案】A【考点】平方根,立方根【解析】解答:①033=0027,故说法正确;②当a<0时,是负数,故说法错误;③如果a是b的立方根,a ,b同号,∴ab≥0,故说法正确;④一个数的平方根与其立方根相同,则这个数是0,故说法错误.所以①③正确分析:根据立方根和平方根的定义7、【答案】D【考点】立方根【解析】【解答】由题意得,x为负数,又∵|x|=12,∴x=﹣12,故可得x的立方根为:﹣【分析】根据x没有平方根可得出x为负数,再由|x|=12,可得出x 的值,继而可求出其立方根.8、【答案】B【考点】立方根【解析】解答:∵33=27,,∴3是27的立方根,①错误;②=a正确,表示a3的立方根是a ,正确;③的立方根是,错误;④=±3,正确;故②④正确分析:根据立方根的定义和性质去判断.9、【答案】B【考点】立方根,等式的性质【解析】解答:∵,∴,等式两同时立方得,x=﹣,即x、互为相反数,故选B.分析:运用等式的性质,先进行移项,再立方即可得到x与之间的关系.10、【答案】D【考点】立方根【解析】解答:A.一个数的立方根只有1个,故选项错误;B.负数有立方根,故选项错误;.一个负数有立方根,负数没有平方根,故选项错误;D.一个数的立方根的符号与被开方数的符号相同是正确的,故选项正确分析:立方根的定义:如果一个数的立方等于a ,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a ,那么x叫做a的立方根.记作:.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.依此即可求解.11、【答案】A【考点】平方根,立方根【解析】【解答】a2=36,得a=6或a=﹣6;b3=8,得b=2;故a+b=8或﹣4.【分析】根据已知可得a=6或﹣6,b=2,所以a+b=8或﹣4..12、【答案】A【考点】立方根【解析】【解答】﹣a2是一个非正数,则它的立方根的值一定为非正数,故选A【分析】利用立方根的性质:一个数的立方根与它本身同号.13、【答案】【考点】立方根【解析】解答:A、﹣0064的立方根是﹣04,故本选项错误;B、﹣9没有平方根,故本选项错误;、16的立方根是,故本选项正确;D、0000000000000000001的立方根是0000001,故本选项错误;故选.分析:根据立方根、平方根的定义逐个进行判断即可.14、【答案】【考点】立方根【解析】解答:,,不是整数,,不可能是.分析:求出每个数字的立方根是解题的关键.1、【答案】B【考点】算术平方根,立方根,二元一次方程组【解析】解答:∵是+n+3的算术平方根,∴-n=2,∵是+2n的立方根,∴-2n+3=3∴解得∴,,∴B-A=-1分析:根据算术平方根和立方根的定义,可知-n=2和-2n+3=3,从而解出,n .二、<h3 >填空题</h3>16、【答案】±1,0【考点】立方根【解析】【解答】∵立方根是它本身有3个,分别是±1,0.【分析】如果一个数x的立方等于a ,那么x是a的立方根,所以根据立方根的对应即可求解.18、【答案】﹣10【考点】立方根【解析】【解答】∵13=337,∴(10)3=337000,∴=-10.【分析】根据立方根的定义,被开方数小数点移动三位,立方根的小数点移动一位解答.19、【答案】10,12,14【考点】平方根,立方根【解析】【解答】∵2的立方是8,4的平方是16,所以符合题意的偶数是10,12,14.【分析】首先根据立方根平方根的定义分别求出2的立方,4的平方,然后就可以解决问题.20、【答案】4或8【考点】平方根,立方根【解析】【解答】∵当a≥b时,a﹡b=b3;当a<b时,a﹡b=b2 .∴4﹡x=64,当4≥x ,∴x3=64,∴x=4,当4<x ,∴x2=64,∴x=8.故答案为:4或8.【分析】根据已知当a≥b时,a﹡b=b3;当a<b时,a﹡b=b2 .运用规律求出4﹡x=64即可.三、<h3 >解答题</h3>21、【答案】(1)解:;(2)解:;(3)解:【考点】立方根【解析】【分析】根据立方根的定义求解即可.22、【答案】解:根据球的体积公式,得=13,解得r≈1.故这个球罐的半径r为1米.【考点】立方根【解析】【分析】利用球体的体积公式和立方根的定义计算即可23、【答案】解:由已知得,2a﹣1=9解得:a=,又3a+b+9=27,b=3,2(a+b)=2×(3+)=16,∴2(a+b)的平方根是:± =±4.【考点】平方根,立方根【解析】【分析】根据平方根的定义求出a的值,再根据立方根的定义求出b的值,最后计算2(a+b)的值,即可解答24、【答案】(1)解:∵3+(﹣3)=0,而且33=27,(﹣3)3=﹣27,有27﹣27=0,∴结论成立;∴“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)解:由(1)验证的结果知,1﹣2x+3x﹣=0,∴x=4,∴=1﹣2=﹣1.【考点】平方根,立方根,解一元一次方程【解析】【分析】(1)题是一个开放题,举一个符合题意的即可;(2)运用(1)的结论可得1﹣2x与3x﹣互为相反数,即而算出x的值即可.2、【答案】(1)2(2)9(3)3;39(4)2;7;;7【考点】立方根【解析】【解答】(1)103=1000,1003=1000000,则9319的立方根是2位数;(2)由9319的个位数是9,因为93=729,则9319的立方根的个位数是9.(3)如果划去9319后面的三位319得到数9,而33=27,43=64,由此你能确定9319的立方根的十位数是几3.因此9319的立方根是39.(4)∵103=1000,1003=1000000,1000<18193<1000000,∴18193的立方根是一个两位数,∵18193的最后一位是3,∴它的立方根的个位数是7,18193去掉后3位,得到18,∵3<18<63 ,∴立方根的十位数是,则立方根一定是:7.【分析】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.。
2022-2023学年北师大版八年级数学上册《2.3立方根》同步练习题(附答案)一.选择题1.立方根与它本身相同的数是()A.0或±1B.0或1C.0或﹣1D.02.下列计算正确的是()A.=﹣3B.C.=±6D.﹣3.若,则的值为()A.5B.15C.25D.﹣54.的立方根为()A.B.C.D.5.下列等式成立的是()A.B.C.D.6.下列说法中:①3的平方根是;②﹣3是9的一个平方根;③的平方根是±;④0.01的算术平方根是0.1;⑤=±2;⑥﹣8的立方根是2;其中正确的有()A.1个B.2个C.3个D.4个7.下列说法中,不正确的是()A.的立方根是±2B.的立方根是2C.的立方根是2D.的立方根是﹣2二.填空题8.若a3=8,则a等于.9.计算﹣的结果是.10.的立方根是.11.+(b﹣1)2=0,则3a+2b的立方根为.12.计算的结果是,4的平方根是,8的立方根是.13.如果和互为相反数,那么x2﹣y立方根是.三.解答题14.求下列各式中x的值:(1)3(5x+1)2﹣48=0;(2).15.已知2a+1的平方根是±3,3a+2b+4的立方根是﹣2,求4a﹣5b+5的算术平方根.16.求下列各式中的x:(1)4x2﹣49=0;(2);(3)25x2﹣64=0;(4)343(x+3)3+27=0.17.已知x的平方根是±3,y的立方根是2,求x+2y的算术平方根.18.已知a﹣1的立方根是2,3a+b﹣1的平方根是±4.(1)求a、b的值.(2)求a﹣3b﹣3的平方根.19.求下列各式中的x:(1)4x2﹣49=0;(2)8(x﹣1)3=﹣.20.已知2a﹣1的算术平方根是5,3a+b﹣1的立方根是4,求a+2b+35的平方根.参考答案一.选择题1.解:立方根与它本身相同的数是0或±1,故选:A.2.解:A、=3,故A不符合题意;B、=﹣,故B符合题意;C、=6,故C不符合题意;D、﹣≠,无意义,故D不符合题意;故选:B.3.解:由题意可知:x﹣5=0,y+25=0,∴x=5,y=﹣25,∴==﹣5,故选:D.4.解:∵(﹣)3=,∴的立方根是.故选:A.5.解:A、=9,故此选项不合题意;B、=﹣3,故此选项符合题意;C、=±5,故此选项不合题意;D、=2,故此选项不合题意;故选:B.6.解:①3的平方根是±;②﹣3是9的一个平方根;③的平方根是±;④0.01的算术平方根是0.1;⑤=2;⑥﹣8的立方根是﹣2;综上:说法正确的有②③④,故选:C.7.解:A.的平方根是±2,此选项错误,符合题意;B.的立方根是2,此选项正确,不符合题意;C.的立方根是2,此选项正确,不符合题意;D.﹣的立方根是﹣2,此选项正确,不符合题意;故选:A.二.填空题8.解:∵a3=8,∴a===2,故答案为:2.9.解:原式=﹣3.故答案为:﹣3.10.解:∵,∴的立方根,就是的立方根,即.故答案为:.11.解:∵+(b﹣1)2=0,≥0,(b﹣1)2≥0,∴a+1=0,b﹣1=0,∴a=﹣1,b=1.∴3a+2b=3×(﹣1)+2×1=﹣1.∵﹣1的立方根为﹣1,∴3a+2b的立方根为﹣1.故答案为:﹣1.12.解:,,.故答案为:2,±2,2.13.解:∵和互为相反数,∴+=0,∴3+x=0,2y﹣2=0,解得:x=﹣3,y=1,∴x2﹣y=9﹣1=8,则8的立方根是2.故答案为:2.三.解答题14.解:(1)3(5x+1)2﹣48=0,(5x+1)2=16,5x+1=±4,5x=3或5x=﹣5,x=或x=﹣1.(2),(x﹣1)3=﹣,x﹣1=,x=﹣.15.解:∵2a+1的平方根是±3,∴2a+1=9,解得a=4,∵3a+2b+4的立方根是﹣2,∴3a+2b+4=﹣8,∴12+2b﹣4=﹣8,解得b=﹣12,当a=4,b=﹣12时,4a﹣5b+5=16+60+5=81,∴4a﹣5b+5的算术平方根为9.16.解:(1)4x2﹣49=0,∴4x2=49,即:,∴;(2),∴,∴,解得:;(3)25x2﹣64=0,∴25x2=64,即:,解得:;(4)343(x+3)3+27=0,∴343(x+3)3=﹣27,即:,∴,解得:.17.解:∵(±3)2=x,23=y,∴x=9,y=8,∴x+2y=9+2×8=25.18.解:(1)∵a﹣1的立方根是2,3a+b﹣1的平方根是±4,∴,解得:a=9,b=﹣10;(2)当a=9,b=﹣10时,a﹣3b﹣3=9+30﹣3=36,则36的平方根是±6.19.解:(1)4x2﹣49=0,4x2=49,x2=,x=;(2)8(x﹣1)3=﹣,(x﹣1)3=﹣,x﹣1=﹣,x=﹣.20.解:∵2a﹣1的算术平方根是5,3a+b﹣1的立方根是4,∴2a﹣1=25,3a+b﹣1=64.解得:a=13,b=26.∴a+2b+35=13+52+35=100.∴a+2b+35的平方根为±10.。
八年级数学(上)第二章《实数》复习题1、3的平方根是 ;16的算术平方根是 ;8的立方根是 ;327-= 。
2、9的算术平方根是 ;–1的立方根是 ,271的立方根是 , 9的立方根是 。
3、2的相反数是 ,倒数是 , -36的绝对值是 。
4、37-的相反数是 ;绝对值等于3的数是 ;3的倒数是 。
5、比较大小:;310。
-2; 215- 21;112 53。
6、=-2)4( ;=-33)6( ; 2)196(= 。
7、估计60的大小约等于 或 (误差小于1)。
8、若03)2(12=-+-+-z y x ,则z y x ++= 。
9、化简:=-2)3(π 。
若1<x <4,则化简()()2214---x x = ; 10、如图,在网格图中的小正方形边长为1,则图中的ABC ∆的面积等于 。
11、如图,图中的线段AE 的长度为 。
12、如上图,小正方形边长为1,线段=AB ,=CD ,EF = 。
13、 已知a 、b 为两个连续的整数,且a b <,则a b += .14、一个正数的平方根为m -2与63+m ,则=m ,这个正数是 .15、要使式子2-x 有意义,则x 的取值范围是。
16、已知:若1.9106.042≈,±≈ .17、有一个数值转换器,原理如图所示:当输入的x =64时,输出的y 等于( )A .2B .8C .D .18、下列无理数中,在-2与1之间的是( )A .-B .-C .D .19、满足53<<-x 的整数x 是( )A 、3,2,1,0,1,2--B 、3,2,1,0,1-C 、3,2,1,0,1,2--D 、2,1,0,1-215-20、下列计算结果正确的是( )A 、066.043.0≈ B 、30895≈ C 、4.602536≈ D 、969003≈21、下列各式中,正确的是( )A 、2)2(2-=- B 、9)3(2=- C 、 393-=- D 、39±=± 22、求下列各式的值:①44.1; ②3027.0-; ③610-; ④25241+; ⑤327102---.23、化简: ①12 ②3221 ③81 ④23 ⑤346 ⑥5.424、计算:①5312-⨯ ②2)352(- ③2)75)(75(++-⑤8145032-- ⑥)31)(21(-+ ⑦0)31(33122-++⑧862⨯-82734⨯+ ⑨21418122-+- ⑩284)23()21(01--+-⨯-25、解方程:①2542=x ②27)1(32=-x ; ③01258133=+x26、已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值。
XXX版八年级数学上册第二章测试题(附答案)13.用一组a。
b的值说明式ac1且6<3.14.写出一个满足无理数2的立方根的二次根式。
√2√2√2或2^(1/2)2^(1/6)。
15.计算:√32 + √2 = √(16×2) + √2 = 4√2 + √2 = 5√2.16.化简:√72 = √(36×2) = 6√2.17.大于-2且小于4的整数的个数。
4-(-2)-1=5,即有5个整数。
18.如图,数轴上的点表示的数是-2.5.垂足为-3,且AB=0.5,以点B为圆心,以AB为半径画弧,交数轴于点C,则点C表示的数为-3.5.19.x+2的取值范围为(-∞。
1],(1.∞)。
20.化简二次根式√(18/3) = √6.三、计算题21.计算:√(16+9) + √(16-9) = √25 + √7 = 5 + √7.22.计算:(1) (√3+1)(√3-1) = 3-1 = 2;(2) (√6+√2)(√6-√2) =6-2 = 4.23.计算:(1) √(3+2√2) + √(3-2√2) = √2 + √6;(2)(√3+√2)(√3-√2) = 1.24.已知4x^2=81,求x的值。
x=±9/4.25.计算:√(5+2√6) + √(5-2√6) = √2 + √3.26.求下列各式中的x:(1) 2x^2-1=9,x=±2;(2)(x+1)^3+27=64,x=2.四、综合题27.(1) 化简:√(5+2√6) - √(5-2√6) = (√2 + √3) - (√3 - √2) =2√2.2) 如图,AC=2AB,BC=8,且点A和点B表示的数分别是a和b。
根据题意,可以列出以下两个方程式:a+b=8(1)a+2b=16(2)将(1)式代入(2)式,得到a+2(8-a)=16,解得a=4.将a=4代入(1)式,得到b=4.因此,点C表示的数为8-4=4.1) 求a的值:将b+8代入原式,得到√(a+(b+8)) + √(a-(b+8)) = 2√2.化简得到√(a+b+8) + √(a-b-8) = 2√2.将a+b=4代入,得到√(12) + √(-4) = 2√2,无解。
人教版八年级数学上册第十三章达标测试卷一、选择题(每题3分,共30分)1.下列图形中,是轴对称图形的是()2.点M(1,-2)关于x轴对称的点的坐标为()A.(1,2) B.(-1,-2) C.(-1,2) D.(-2,1) 3.一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为() A.18 B.24 C.30 D.24或30 4.等腰三角形的一个角为70°,则这个等腰三角形的顶角为() A.70°B.55°C.40°D.40°或70°5.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线对称D.周长相等的两个三角形一定关于某条直线对称6.如图,等腰三角形ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.14 C.15 D.16(第6题)(第7题)(第8题)(第9题)(第10题) 7.如图,在等边三角形ABC中,AB=10 cm,D是AB的中点,过点D作DE ⊥AC于点E,则EC的长是()A.2.5 cm B.5 cm C.7 cm D.7.5 cm 8.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以40 n mile/h的速度向正北方向航行,2 h后到达灯塔P的北偏东40°方向的N处,则N处与灯塔P的距离为()A.40 n mile B.60 n mile C.70 n mile D.80 n mile 9.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC与∠ACB 的平分线,BD,CE相交于点F,则图中的等腰三角形有()A.6个B.7个C.8个D.9个10.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点是BC的中点,两边PE,PF分别交AB,AC于点E,F.给出以下四个结论:①AE=CF;②△PEF是等腰直角三角形;③S四边形AEPF =12S△ABC;④EF=AP.当∠EPF在△ABC内绕顶点P旋转时(点E不与点A,B重合),上述结论中始终成立的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=________.(第11题)(第12题)(第13题)(第14题) 12.小明上午在理发店时,从镜子内看到背后的时钟的时针与分针的位置如图所示,此时的时间是________.13.如图,在正方形方格中,阴影部分是涂灰7个小正方形所形成的图案,再将方格内空白的1个小正方形涂灰,使得到的新图案(阴影部分)成为一个轴对称图形的涂法有________种.14.如图,在△ABC中,∠C=90°,∠B=30°,AB边的垂直平分线ED交AB 于点E,交BC于点D,若CD=3,则BD的长为________.15.如图,点D,E分别在等边三角形ABC的边AB,BC上,将△BDE沿直线DE翻折,使点B落在B1处.若∠ADB1=70°,则∠CEB1=________.(第15题)(第17题)(第18题)16.若等腰三角形的顶角为150°,则它一腰上的高与另一腰的夹角的度数为________.17.如图,在等腰三角形ABC中,AB=AC,P,Q分别是边AC,AB上的点,且AP=PQ=QC=BC,则∠PCQ的度数为________.18.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB于点E,F.若点D为BC的中点,点M为线段EF上一动点,则△CDM周长的最小值为________.三、解答题(19题14分,20题8分,21,22题每题10分,其余每题12分,共66分)19.如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求△ABC的面积;(2)在图中作出△ABC关于y轴对称的△A1B1C1;(3)写出点A1,B1,C1的坐标.20.如图,P为∠MON的平分线上的一点,P A⊥OM于A,PB⊥ON于B.求证:OP垂直平分AB.21.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.22.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D为△ABC的一个外角∠ABF的平分线上一点,且∠ADC=45°,CD交AB于点E.(1)求证AD=CD;(2)求AE的长.23.如图,△ABC是边长为3 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,它们的速度都是1 cm/s,当点P到达点B时,P,Q两点停止运动.设点P的运动时间为t s,则当t为何值时,△PBQ是直角三角形?24.如图,在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)若BF⊥CE于点F,交CD于点G(如图①),求证AE=CG;(2)若AH⊥CE,垂足为H,AH的延长线交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明.答案一、1.C 2.A 3.C 4.D 5.A 6.A 7.D 8.D 9.C 10.C二、11.40° 12.10:45 13.3 14.6 15.50° 16.60° 17.⎝ ⎛⎭⎪⎫3607°18.10 【点拨】如图,连接AD ,交EF 于点M ′,连接CM ′.∵直线EF 垂直平分AC , ∴AM ′=CM ′.∴当点M 与点M ′重合时,CM +MD 最短,即△CDM 的周长最小. ∵AB =AC ,D 为BC 的中点, ∴AD ⊥BC ,CD =BD .∴AD 是△ABC 的边BC 上的高.又∵△ABC 的底边BC 长为4,面积是16, ∴AD =16×2÷4=8.∴△CDM 周长的最小值为8+4÷2=10. 三、19.解:(1)S △ABC =12×5×3=152.(2)△A 1B 1C 1如图所示.(3)A 1(1,5),B 1(1,0),C 1(4,3).20.证明:∵OP 平分∠MON ,P A ⊥OM ,PB ⊥ON ,∴P A =PB .又∵OP =OP ,∴Rt △POA ≌Rt △POB (HL). ∴OA =OB . ∴OP 垂直平分AB . 21.(1)证明:∵AB =AC ,∴∠B =∠C .在△DBE 和△ECF 中,⎩⎨⎧BE =CF ,∠B =∠C ,BD =CE ,∴△DBE ≌△ECF (SAS). ∴DE =EF .∴△DEF 是等腰三角形.(2)解:由(1)可知△DBE ≌△ECF ,∴∠BDE =∠CEF . ∵∠A +∠B +∠C =180°,∠A =40°,∠B =∠C , ∴∠B =12×(180°-40°)=70°. ∴∠BDE +∠BED =110°. ∴∠CEF +∠BED =110°. ∴∠DEF =70°.22.(1)证明:如图,过点D 作DM ⊥AB ,DN ⊥BF ,垂足分别为M ,N .∵BD 平分∠ABF , ∴DM =DN .∵△ABC 为等腰直角三角形, ∴∠ABC =∠BAC =45°.∵∠ADC =45°,∴∠ADC =∠ABC ,又∵∠AED=∠CEB,∴∠BAD=∠BCD.又∵∠DMA=∠DNC=90°,∴△ADM≌△CDN(AAS).∴AD=CD.(2)解:∵AD=CD,∠ADC=45°,∴∠CAD=∠ACE=67.5°.又∵∠CAB=45°,∴∠AEC=67.5°.∴∠ACE=∠AEC.∴AE=AC=4.23.解:根据题意,得AP=t cm,BQ=t cm.在△ABC中,AB=BC=3 cm,∠B=60°,∴BP=(3-t)cm.在△PBQ中,BP=(3-t)cm,BQ=t cm,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°.当∠BQP=90°时,∠BPQ=30°,∴BQ=12BP,即t=12(3-t),解得t=1;当∠BPQ=90°时,∠BQP=30°,∴BP=12BQ,即3-t=12t,解得t=2.综上,当t=1或t=2时,△PBQ是直角三角形.24.(1)证明:∵点D是AB的中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∠CAD=∠CBD=45°.∴∠CAE=∠BCG.∵BF⊥CE,∴∠CBG+∠BCF=90°.又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.又∵AC=CB,∴△AEC≌△CGB(ASA).∴AE=CG.(2)解:BE=CM.证明如下:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°.∴∠CMA=∠BEC.又∵AC=CB,∠ACM=∠CBE=45°,∴△BCE≌△CAM(AAS).∴BE=CM.八年级数学上册期中达标测试卷一、选择题(1~10小题各3分,11~16小题各2分,共42分)1.4的算术平方根是()A.±2 B. 2 C.±2 D.2 2.下列分式的值不可能为0的是()A.4x-2B.x-2x+1C.4x-9x-2D.2x+1x3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.∠3=∠4C.∠B=∠D D.BC=DC(第3题)(第5题)4.小亮用天平称得一个鸡蛋的质量为50.47 g,用四舍五入法将50.47精确到0.1为()A.50 B.50.0C.50.4 D.50.55.如图,已知∠1=∠2,AC=AE,添加下列一个条件后仍无法确定△ABC≌△ADE的是()A.∠C=∠E B.BC=DEC.AB=AD D.∠B=∠D6.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE =10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3(第6题)(第8题)7.化简x2x-1+11-x的结果是()A.x+1 B.1x+1C.x-1 D.xx-18.如图,数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与5-11最接近的点是()A.A B.B C.C D.D9.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,则可列方程为()A.300x=200x+30B.300x-30=200xC.300x+30=200x D.300x=200x-3010.如图,这是一个数值转换器,当输入的x为-512时,输出的y是()(第10题)A .-32 B.32C .-2D .211.如图,从①BC =EC ;②AC =DC ;③AB =DE ;④∠ACD =∠BCE 中任取三个为条件,余下一个为结论,则可以构成的正确说法的个数是( ) A .1B .2C .3D .4(第11题) (第12题)12.如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( ) A .3B .4C .5D .613.若△÷a 2-1a =1a -1,则“△”是( )A.a +1aB.a a -1C.a a +1D.a -1a14.以下命题的逆命题为真命题的是( )A .对顶角相等B .同位角相等,两直线平行C .若a =b ,则a 2=b 2D .若a >0,b >0,则a 2+b 2>015.x 2+x x 2-1÷x 2x 2-2x +1的值可以是下列选项中的( ) A .2B .1C .0D .-116.定义:对任意实数x ,[x ]表示不超过x 的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对65进行如下运算:①[65]=8;②[8]=2;③[2]=1,这样对65运算3次后的结果就为1.像这样,一个正整数总可以经过若干次运算后使结果为1.要使255经过运算后的结果为1,则需要运算的次数是( ) A .3B .4C .5D .6二、填空题(17小题3分,18,19小题每空2分,共11分)17.如图,要测量河两岸相对的两点A,B间的距离,先在AB的垂线BF上取两点C,D,使BC=CD,再作出BF的垂线DE,使点A,C,E在同一条直线上,可以证明△ABC≌△EDC,从而得到AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是____________.(第17题)18.已知:7.2≈2.683,则720≈______,0.000 72≈__________.19.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km所用的时间与以最大航速逆流航行60 km所用的时间相同,如果设江水的流速为x km/h,根据题意可列方程为________________,江水的流速为________km/h.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题12分,共67分)20.解分式方程.(1)3x-2=2-xx-2;(2)21+2x-31-2x=64x2-1.21.已知(3x+2y-14)2+2x+3y-6=0.求:(1)x+y的平方根;(2)y-x的立方根.22.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x的值,其中x=2 020.”甲同学把“x=2 020”错抄成“x=2 021”,但他的计算结果也是正确的.你说说这是怎么回事?23.如图,AB∥CD,AB=CD,AD,BC相交于点O,BE∥CF,BE,CF分别交AD于点E,F.求证:(1)△ABO≌△DCO;(2)BE=CF.(第23题) 24.观察下列算式:①2×4×6×8+16=(2×8)2+16=16+4=20;②4×6×8×10+16=(4×10)2+16=40+4=44;③6×8×10×12+16=(6×12)2+16=72+4=76;④8×10×12×14+16=(8×14)2+16=112+4=116;….(1)根据以上规律计算: 2 016×2 018×2 020×2 022+16;(2)请你猜想2n(2n+2)(2n+4)(2n+6)+16(n为正整数)的结果(用含n的式子表示).25.下面是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示______________________________________,庆庆同学所列方程中的y表示_____________________________________;(2)从两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.26.如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P在线段AB上以2 cm/s的速度由点A向点B运动,同时,点Q在射线BD 上运动.它们运动的时间为t s(当点P运动至点B时停止运动,同时点Q停止运动).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(2)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为x cm/s,其他条件不变,当点P,Q运动到某处时,有△ACP与△BPQ 全等,求出相应的x,t的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.B 6.D 【点拨】∵AB ∥EF ,∴∠A =∠E .又AB =EF ,∠B =∠F , ∴△ABC ≌△EFD (ASA). ∴AC =DE =7.∴AD =AE -DE =10-7=3. 7.A 8.D 9.C 10.A 11.B 12.B 13.A 【点拨】∵△÷a 2-1a =1a -1,∴△=1a -1·a 2-1a =a +1a .14.B 15.D 16.A二、17.ASA 18.26.83;0.026 83 19.12030+x =6030-x;10 【点拨】根据题意可得 12030+x =6030-x,解得x =10, 经检验,x =10是原方程的解, 所以江水的流速为10 km/h.三、20.解:(1)去分母,得3=2(x -2)-x .去括号,得3=2x -4-x . 移项、合并同类项,得x =7. 经检验,x =7是原方程的解.(2)去分母,得2(1-2x )-3(1+2x )=-6. 去括号,得2-4x -3-6x =-6, 移项、合并同类项,得-10x =-5. 解得x =12.经检验,x =12是原方程的增根, ∴原分式方程无解.21.解:∵(3x +2y -14)2+2x +3y -6=0,(3x +2y -14)2≥0,2x +3y -6≥0,∴3x +2y -14=0,2x +3y -6=0. 解⎩⎨⎧3x +2y -14=0,2x +3y -6=0,得⎩⎨⎧x =6,y =-2. (1)x +y =6+(-2)=4, ∴x +y 的平方根为±4=±2.(2)y -x =-8,∴y -x 的立方根为3-8=-2.22.解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0,∴该式的结果与x 的值无关,∴把x 的值抄错,计算的结果也是正确的. 23.证明:(1)∵AB ∥CD ,∴∠A =∠D ,∠ABO =∠DCO . 在△ABO 和△DCO 中,⎩⎨⎧∠A =∠D ,AB =CD ,∠ABO =∠DCO ,∴△ABO ≌△DCO (ASA). (2)∵△ABO ≌△DCO , ∴BO =CO . ∵BE ∥CF ,∴∠OBE =∠OCF ,∠OEB =∠OFC . 在△OBE 和△OCF 中,⎩⎨⎧∠OBE =∠OCF ,∠OEB =∠OFC ,OB =OC ,∴△OBE ≌△OCF (AAS),∴BE =CF .24.解:(1) 2 016×2 018×2 020×2 022+16 =(2 016×2 022)2+16=4 076 352+4=4 076 356. (2)2n (2n +2)(2n +4)(2n +6)+16=2n (2n +6)+4=4n 2+12n +4.25.解:(1)小红步行的速度;小红步行的时间(2)冰冰用的等量关系:小红乘公共汽车的时间+小红步行的时间=小红上学路上的时间.庆庆用的等量关系:公共汽车的速度=9×小红步行的速度.(上述等量关系,任选一个就可以)(3)选冰冰的方程:38-29x +2x =1,去分母,得36+18=9x ,解得x =6,经检验,x =6是原分式方程的解.答:小红步行的速度是6 km/h ;选庆庆的方程:38-21-y=9×2y , 去分母,得36y =18(1-y ),解得y =13,经检验,y =13是原分式方程的解, ∴小红步行的速度是2÷13=6(km/h).答:小红步行的速度是6 km/h.(对应(2)中所选方程解答问题即可)26.解:(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°.由题意知AP =BQ =2 cm ,∵AB =7 cm ,∴BP =5 cm ,∴BP =AC .在△ACP 和△BPQ 中,∵⎩⎨⎧AP =BQ ,∠A =∠B ,AC =BP ,∴△ACP ≌△BPQ .∴∠C =∠BPQ .易知∠C +∠APC =90°,∴∠APC +∠BPQ =90°,∴∠CPQ =90°,∴PC ⊥PQ .(2)由题意可知AP =2t cm ,BP =(7-2t )cm ,BQ =xt cm. ①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,∴5=7-2t ,2t =xt ,解得x =2,t =1;②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,∴5=xt ,2t =7-2t ,解得x =207,t =74.综上,当△ACP 与△BPQ 全等时,x =2,t =1或x =207,t =74.。
本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网
数学:13. 2立方根同步测试题(人教新课标八年级上)
一、选择题
1.一个数的算术平方根与它的立方根的值相同,则这个数是( )
A.1 B.0或1 C.0 D.非负数
2.一个数的立方根等于它本身,则这个数是( )
A.0 B.1 C.-1 D.±1,0
3.一个正数的算术平方根是8,则这个数的相反数的立方根是( )
A.4 B.-4 C.4 D.8
4.-8的立方根与4的算术平方根的和是( )
A..0 B.4 C.-4 D.0或4
5.下列命题中正确的是( )
(1)0.027的立方根是0.3;(2)3a不可能是负数;(3)如果a是b的立方根,那么ab0;(4)
一个数的平方根与其立方根相同,则这个数是1.
A.(1)(3) B.(2)(4) C.(1)(4) D.(3)(4)
二、填空题
1.若642x,则3x=____.
2.立方根是-8的数是___, 64的立方根是____。
3.若1253x,则x=___;336x,则x=___,若33)4(x,则x=____.
4.当x<7时,33)7(x=____.
5. -27的立方根与81的平方根之和是____.
三、解答题
1.求下列各式的值或x.
(1)327102;(2)327174;(3)43623x;(4)027)3(3x
2.若2x+19的立方根是3,求3x+4的平方根.
3.已知一个正方体的体积是10002cm,现在要在它的8个角上分别截去8个大小相同的小
正方体,截去后余下的体积是4882cm,问截去的每个小正方体的棱长是多少?
4.已知A=nmmn3是n-m+3的算术平方根,B=322nmnm是m+2n的立方根,
求B-A的立方根.
5.先判断下列等式是否成立:
(1)33722722( ) (2)3326332633( )
本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网
(3)3363446344( ) (4)331245512455( )
……….
经判断:
(1)请你写出用含的自然数)2(nn的等式表示上述各式规律的一般公式。
(2)证明你的结论。
答案:
一、选择题
1.B 2.D 3.B 4.A 5.A
二、填空题
1.2 2.-512,2 3.-5,6,-4 4.7x 5.0或-6
三、解答题
1.解:(1)34)34(27642710233
(2)35271252717433
(3)23827,827,4272,43623333xxxx
(4)6,33,273,27)3(,027)3(333xxxxx
2.解:443,4,31923xxx
3.解:设截去的每个小正方体的棱长是x㎝,则由题意得488810003x,解得x=4.
答:截去的每个小正方体的棱长是4厘米.
4.解:由题意,得2224,1342,24,33223BAnmnmnm解得,
11,11233ABAB
5.解:(1)经判断四个结论均成立。333311nnnnnn
(2)33334334331111nnnnnnnnnnnn
本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网