2008年甘肃省白银等九市州数学试题(有答案)word版
- 格式:doc
- 大小:485.00 KB
- 文档页数:7
2024~2025学年度第一学期期中试卷九年级数学一、细心选一选:(每题3分,共30分)1.下列方程中是一元二次方程的是 ( ) A .x x =-253 B .0132=-+x xC .02=++c bx axD .014=-x 2. 下列四组线段中,是成比例线段的是( )A. 5cm ,6cm ,7cm ,8cmB. 3cm ,6cm ,2cm ,5cmC. 2cm ,4cm ,6cm ,8cmD. 12cm ,8cm ,15cm ,10cm3.下列图形一定是相似图形的是A.任意两个菱形B.任意两个等边三角形C.任意两个等腰三角形 D .任意两个矩形 4.根据下列表格:判断关于x 的方程ax 2+bx+c=0(a ≠0)的一个解x 的范围是( )A.x <3.24B.3.24<x <3.25C.3.25<x <3.26D.3.25<x <3.28 5.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 处,已知CE =3,AB =8,则BF 的长为( ) A .10 B .12C .13D .66.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,CE//BD,DE//AC ,,,则四边形OCED 的面积( ) A.B.C.D.7.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球( ) A. 32个 B. 36个 C. 40个 D. 42个x 3.24 3.25 3.26 ax 2+bx+c-0.020.010.03第5题第6题第9题 第10题8.电影《长津湖》上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房约2亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达18亿元,将增长率记作x ,则方程可以列为( )A .2+2x +2x 2=18B .2(1+x )2=18C .(1+x )2=18D .2+2(1+x )+2(1+x )2=189.如图,Rt △ACB 中,∠C = 90°,AC =7,BC =5,点P 从点B 出发向终点C 以1个单位长度/s 移动,点Q 从点C 出发向终点A 以2个单位长度/s 移动,P 、Q 两点同时出发,一点先到达终点时P 、Q 两点同时停止,则( )秒后,△PCQ 的面积等于4. A .1 B .2C .4D .1或410.如图,正方形ABCO 和正方形DEFO 的顶点A ,O ,E 在同一直线l 上,且EF,AB =3,给出下列结论:①∠COD =45°;②AE =6;③CF =BD ;④△COF 的面积是.其中正确的结论为( ) A .①③ B .①④ C .②③ D .①③④ 二、仔细填一填:(每题4分,共32分) 11.已知:432x y z ==,则3x y z x-+= . 12.已知线段AB=10m ,点C 是线段AB 的黄金分割点(AC ﹥BC),则AC 的长为 (保留根号)13.已知x 1,x 2是方程x 2-3x -2=0的两个实根,代数式的值x 12-3x 1x 2+x 22为_______14.一个菱形的周长是20cm ,一条对角线的长是8cm ,则它的面积是 .15.已知关于x 的一元二次方程02=+-k x x 的一个根是2,则k 的值是 . 16.顺次连接四边形ABCD 各边中点E 、F 、G 、H ,得到四边形EFGH ,只要添加条件 ,就能保证四边形EFGH 是矩形.17.如图,在△ABC 中,AB=AC,AD 是∠BAC 的平分线,E 是AC 的中点.若DE=5,则AB 的长为 . 18.如图,菱形ABCD 中,∠ABC =120°,AB =4,E 是BC 边的中点,点P 在对角线AC 上,连接BP ,EP ,则△BPE 周长最小值为 . 1三.解答题一:(共88分) 19. (16分) 用适当的方法解下列方程:第17题 第18题;..20.(8分)已知菱形ABCD的两边AB,AD的长为关于x的方程的两个实数根.(1)求m的值;(2)求菱形ABCD的周长.21.(8分)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D、E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)若∠ABD=45°,AC=3时,求BF的长.22.(6分)用配方法求证:代数式4x2-8x+9的值恒为正数23.(8分)有专家指出:人为型空气污染(如汽车尾气排放等)是雾霾天气的重要成因.某校为倡议“每人少开一天车,共建绿色家园”,想了解学生上学的交通方式.九年级(8)班的5名同学联合设计了一份调查问卷.对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)受调查的总人数是人,扇形统计图中“骑自行车”所在扇形的圆心角度数是度,请补全条形统计图;(2)已知这5名学生中有2名女同学,要从这5名学生中任选两名同学汇报调查结果.请用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.24.(10分)如图,已知三角形ABC中,DF//AC,EF//AB,AF平分∠BAC.(1)你能判断四边形ADFE是菱形吗?请说明理由.(2)三角形ABC满足什么条件时,四边形ADFE是正方形.25.(10分)阅读材料,回答问题材料:为解方程x4-x2-6=0,可将方程变形为(x2)2-x2-6=0,然后设x2=y, 则(x2)2=y2,原方程化为y2-y-6=0 ①解得y1= -2, y2= 3.当y1= -2时, x2=-2 ,无意义,舍去。
2008年甘肃省甘南州中考数学试卷一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2015•珠海)的倒数是()A.B.C.2 D.﹣22.(4分)(2008•甘南州)近几年某地区义务教育普及率不断提高,据2006年末统计的数据显示,仅初中在校生就约有13万人.数据13万人用科学记数法表示为()A.13×104人B.1.3×106人C.1.3×105人D.0.13×106人3.(4分)(2008•甘南州)不等式组的解集为()A.x≥1 B.1≤x<2 C.x<2 D.无解4.(4分)(2008•甘南州)如图所示的几何体的右视图(从右边看所得的视图)是()A.B.C.D.5.(4分)(2008•甘南州)一元二次方程x2﹣2x+5=0的根的情况为()A.有两个不相等的实数根B.有两个相等实数根C.只有一个实数根D.没有实数根6.(4分)(2008•甘南州)在正方形网格中,∠α的位置如图所示,则sinα的值为()A.B.C.D.7.(4分)(2008•甘南州)下列图形中对称轴最多的是()A.圆B.菱形C.正三角形D.正方形8.(4分)(2008•甘南州)一服装店新进某种品牌五种尺码的衬衣,经过试卖一周,各尺码衬衣的销售量列表如下:尺码39 40 41 42 43销售量(件) 6 10 15 13 5据上表给出的信息,仅就经营该品牌衬衣而言,你认为最能影响服装店经理决策的统计量是()A .平均数B.中位数C.众数D.极差9.(4分)(2008•甘南州)矩形,菱形,正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直10.(4分)(2008•甘南州)二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A .(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)11.(4分)(2008•甘南州)如图,在梯形ABCD中,AB∥CD,BC⊥CD于点C,点M在AB 上,MN垂直平分AC,垂足为点N,若AB=8,sin∠BMC=,则BM的长为()A .3 B.5 C.4 D.612.(4分)(2008•甘南州)已知直线l:y=﹣x+1,现有下列3个命题:其中,真命题为()①点P(2,﹣1)在直线l上②若直线l与x轴,y轴分别交于A,B两点,则AB=;③若a<﹣1,且点M(﹣1,2),N(a,b)都在直线l上,则b>2.A .①②B.②③C.①②③D.①③二、填空题(共8小题,每小题4分,满分32分)13.(4分)(2008•甘南州)将图中线段AB绕点A按顺时针方向旋转90°后,得到线段AB′,则点B′的坐标是.14.(4分)(2008•甘南州)一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是.15.(4分)(2008•甘南州)已知△ABC∽△A1B1C1,AB:A1B1=2:3,则S△ABC与S△A1B1C1之比为.16.(4分)(2008•甘南州)小华在距离路灯6米的地方,发现自己在地面上的影长是2米,如果小华的身高为1.6米,那么路灯离地面的高度是米.17.(4分)(2009•甘南州)如图,圆锥的底面半径为6cm,高为8cm,那么这个圆锥的侧面积是cm2.18.(4分)(2008•甘南州)化简﹣=.19.(4分)(2008•甘南州)等边△ABC的一个顶点的坐标为B(1,0),顶点C与定点B关于y轴对称,则定点A的坐标为.20.(4分)(2008•甘南州)如图所示是一副“三角形图”,第一行有一个三角形,第二行有2个三角形,第三行有4个三角形,第四行有8个三角形,…,你是否发现三角形的排列规律,请写出第七行有个三角形.三、解答题(共8小题,满分70分)21.(7分)(2008•甘南州)计算:(2﹣cos30°)0﹣(﹣)2+()﹣1+|tan45°|.22.(7分)(2008•甘南州)某中学准备搬迁新校舍,在迁入新校舍之前,同学们就该校学生如何到校问题进行了一次调查,并将调查结果制成了表格,条形图和扇形统计图,请你根据图表信息完成下列各题:(1)此次共调查了多少位学生?(2)请将表格填充完整;步行骑自行车坐公共汽车其他60(3)请将条形统计图补充完整.23.(8分)(2008•甘南州)九年级三班班委主动为班上一位生病住院的同学筹集部分医药费,计划筹集450元,由全体班委分担,有5名同学闻讯后也自愿参加捐助,和班委一起平均分担,因此每个班委比原先少分担45元.问:该班班委有几个人?24.(8分)(2008•甘南州)已知:如图,E,F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△CBE≌△ADF;(2)试判断EB与DF的位置关系,并说明理由.25.(10分)(2008•甘南州)已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.26.(8分)(2008•甘南州)四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;(2)求取到的两张卡片上的数字之积为奇数的概率.27.(10分)(2008•甘南州)如图,AB是半圆O的直径,F是半圆上一点,D是OA上一点,过点D作ED⊥AB,交半圆于点C,交BF的延长线于点E,连接AC,AF,BC.(1)求证:∠E=∠BCF;(2)求证:BC2=BF•BE;(3)若BC=12,CF=6,BF=9,求sin∠AFC.28.(12分)(2008•甘南州)如图,在直角坐标系中,点A的坐标为(﹣2,0),⊙P刚好与x轴相切于点A,⊙P交y的正半轴于点B,点C,且BC=4.(1)求半径PA的长;(2)求证:四边形CAPB为菱形;(3)有一开口向下的抛物线过O,A两点,当它的顶点不在直线AB的上方时,求函数表达式的二次项系数a的取值范围.2008年甘肃省甘南州中考数学试卷参考答案一、选择题(共12小题,每小题4分,满分48分)1.C 2.C 3.B 4.A 5.D 6.B 7.A 8.C 9.B 10.B 11.A 12.C二、填空题(共8小题,每小题4分,满分32分)13.(3,0)14.15.4:9 16.6.4 17.60π18.-2 19.(0,)或(0,-)20.64三、解答题(共8小题,满分70分)21.22.23.24.25.26.27.28.。
2008-2009学年度五合中学第二学期期末试卷八年级数 学题号一 二 三 四 总分 得分一、选择题(每小题3分,共30分)1.△ABC ∽△A ’B ’C ’,且相似比为2:3,则对应边上的高的比等于【 】A.2:3 ;B.3:2;C.4:9;D.9:4。
2.不等式组⎩⎨⎧≥-->+021372x x x 的解集是【 】A. x <8B. x ≥2C. 2≤x<8D. 2<x <8 3.下列各式是分式的是【 】 A.a 21. B.221a b +. C.4y -. D.xy 5421+. 4.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是【 】(A)4x (B)-4x (C)4x 4(D)-4x 45.如图,AB 是斜靠在墙上的长梯,梯脚B 距墙脚,梯上点D 距墙,BD 长,则梯子的长为【 】A. B. C. D.6.甲、乙两组数据,它们都是由n 个数据组成,甲组数据的方差是 0.4,乙组数据的方差是0.2,那么下列说法正确的是【 】A .甲的波动比乙大B .乙的波动比甲大C .甲、乙的波动一样大D .甲、乙的波动的大小无法比较7.如图,OE 是∠AOB 的平分线,CD ∥OB 交OA 于点C ,交OE 于点D, ∠ ACD=50°,则∠CDE的度数是【 】 A. 125 B. 130 C.140 8.下列说法正确的是【 】A.两个等腰三角形相似B.两个直角三角形相似C.两个等腰直角三角形相似D.有一个角相等的两个等腰三角形相似 9.三角形的三边长分别为3,a 21-,8,则a 的取值X 围是【 】 A .-6<a <-3 B .-5<a <-2 C .a <-5或a >2 D .2<a <510.在比例尺为1:5000的地图上,量得甲,乙两地的距离为25cm,则甲,乙两地的实际距离是【 】A.1250kmB.125kmC.D.二、填空题(本大题共10个小题,每小题3分,共30分)11.因式分解:ma 2-4ma+4am=_______________.12.当x =时,分式11x 2+-x 的值为零.13.小颖测得2m 高的标杆在太阳下的影长为,同时又测得一棵树的影长为,则这棵树的高度为m.OCBEAD密封线内不要答题:__________ 班级 学号:_____________ 某某:___________14.如图,A 、B 两点被池塘隔开,在 AB 外选一点 C ,连结 AC 和 BC ,并分别找出它们的中点 M 、N .若测得MN =15m ,则A 、B 两点的距离为15.为了让学生适应体育测试中新的要求某学校抽查了部分初二男生的身高(注:身高取整数).经过整理和分析,估计出该校初二男生中身高在160cm 以上(包括160cm )的约占80%.右边为整理和分析时制成的频率分布表,其中a =。
白银市2024年初中毕业升学暨高中阶段学校招生考试数学试卷考生注意:本试卷满分为150分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1. 下列各数中,比小的数是( )A. B. C. 4 D. 12. 如图所示,该几何体的主视图是( )A. B. C. D.3. 若,则的补角为( )A. B. C. D.4计算:( )A. 2B.C.D.5. 如图,在矩形中,对角线,相交于点O,,,则的长为( )A. 6B. 5C. 4D. 36. 如图,点A,B,C在上,,垂足为D,若,则的度数是( )A. B. C. D.7. 如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x尺,长桌的长为y 尺,则y与x的关系可以表示为( )A. B. C. D.8. 近年来,我国重视农村电子商务的发展.下面的统计图反映了2016—2023年中国农村网络零售额情况.根据统计图提供的信息,下列结论错误的是( )A. 2023年中国农村网络零售额最高B. 2016年中国农村网络零售额最低C. 2016—2023年,中国农村网络零售额持续增加D. 从2020年开始,中国农村网络零售额突破20000亿元9. 敦煌文书是华夏民族引以为傲艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为,那么有序数对记为对应的田地面积为( )A. 一亩八十步B. 一亩二十步C. 半亩七十八步D. 半亩八十四步10. 如图1,动点P从菱形的点A出发,沿边匀速运动,运动到点C时停止.设点P的运动路程为x,的长为y,y与x的函数图象如图2所示,当点P运动到中点时,的长为( )A. 2B. 3C.D.二、填空题:本大题共6小题,每小题4分,共24分.11. 因式分解:________.12. 已知一次函数,当自变量时,函数y的值可以是________(写出一个合理的值即可).13. 定义一种新运算*,规定运算法则为:(m,n均为整数,且).例:,则________.14. 围棋起于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点________的位置,则所得的对弈图是轴对称图形.(填写A,B,C,D中的一处即可,A,B,C,D位于棋盘的格点上)15. 如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y(单位:)与距离停车棚支柱的水平距离x(单位:)近似满足函数关系的图象,点在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长,高的矩形,则可判定货车________完全停到车棚内(填“能”或“不能”).16. 甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形和扇形有相同的圆心O,且圆心角,若,,则阴影部分的面积是______.(结果用π表示)三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17. 计算:.18. 解不等式组:19. 先化简,再求值:,其中,.20. 马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知和圆上一点M.作法如下:①以点M为圆心,长为半径,作弧交于A,B两点;②延长交于点C;即点A,B,C将的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接,,,若的半径为,则的周长为______.21. 在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.(1)请用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲乙双方公平吗?请说明理由.22. 习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒垂直于地面,测角仪,在两侧,,点C与点E相距(点C,H,E在同一条直线上),在D处测得简尖顶点A的仰角为,在F处测得筒尖顶点A的仰角为.求风电塔筒的高度.(参考数据:,,.)四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23. 在阳光中学运动会跳高比赛中,每位选手要进行五轮比赛,张老师对参加比赛的甲、乙、丙三位选手的得分(单位:分,满分10分)进行了数据的收集、整理和分析,信息如下:信息一:甲、丙两位选手的得分折线图:信息二:选手乙五轮比赛部分成绩:其中三个得分分别是;信息三:甲、乙、丙三位选手五轮比赛得分的平均数、中位数数据如下:选手统计量甲乙丙平均数m中位数n根据以上信息,回答下列问题:(1)写出表中m ,n的值:_______,_______;(2)从甲、丙两位选手的得分折线图中可知,选手_______发挥的稳定性更好(填“甲”或“丙”);(3)该校现准备推荐一位选手参加市级比赛,你认为应该推荐哪位选手,请说明理由.24. 如图,在平面直角坐标系中,将函数的图象向上平移3个单位长度,得到一次函数的图象,与反比例函数的图象交于点.过点作x轴的平行线分别交与的图象于C,D两点.(1)求一次函数和反比例函数的表达式;(2)连接,求的面积.25. 如图,是的直径,,点E在的延长线上,且.(1)求证:是的切线;(2)当的半径为2,时,求的值.26. 【模型建立】(1)如图1,已知和,,,,.用等式写出线段,,的数量关系,并说明理由.【模型应用】(2)如图2,在正方形中,点E,F分别在对角线和边上,,.用等式写出线段,,的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形中,点E在对角线上,点F在边的延长线上,,.用等式写出线段,,的数量关系,并说明理由.27. 如图1,抛物线交x轴于O,两点,顶点为.点C为的中点.(1)求抛物线的表达式;(2)过点C作,垂足为H,交抛物线于点E.求线段的长.(3)点D为线段上一动点(O点除外),在右侧作平行四边形.①如图2,当点F落在抛物线上时,求点F的坐标;②如图3,连接,,求的最小值.参考答案一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1. 【答案】B【解析】【分析】本题主要考查了有理数比较大小,根据正数大于0,0大于负数,两个负数比较大小,绝对值越大其值越小进行求解即可.【详解】解;∵,∴,∴四个数中比小的数是,故选:B.2. 【答案】C【解析】【分析】本题考查了简单几何体的三视图,根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看得到的图形是:故选:C.3. 【答案】D【解析】【分析】根据和为的两个角互为补角,计算即可.本题考查了补角,熟练掌握定义是解题的关键.【详解】。
09-04-07 2008年呼和浩特市中考试题及答案09-04-02 广东省肇庆市2007年初中毕业生学业考试数学试题09-03-26 2008年莆田市初中毕业、升学考试试卷(正版)09-03-21 天门市2008年中考数学试卷09-03-20 黔东南州2008年初中毕业升学统一考试数学试卷(word版) 08-12-09 福建省漳州市2008年中考试题及答案08-11-13 昆明市2008年数学中考试题及评分标准答案08-10-10 2008年吉林省长春市中考试题08-10-09 2008年长春市中考试题答案08-09-08 2008年湖南省湘西自治州中考数学试卷及答案08-08-28 2008年云南省高中(中专)招生统一考试数学试题及答案08-08-24 2008年广西省玉林、防城港市初中毕业升学考试数学试卷08-08-23 毕节地区2008年中考数学试题(图片版)08-08-23 黔东南州2008年中考数学试题(图片版)08-08-23 黔南州2008年中考(高中,中专,中师)试题及答案(图片版) 08-08-23 铜仁地区2008年中考数学试题(图片版)08-08-22 2008年甘肃省陇南市中考数学试题(图片版)08-08-13 2008年湖南省衡阳市初中毕业学业考试数学试卷08-08-11 2008年内蒙古锡林郭勒盟通辽市兴安盟呼伦贝尔市中考试卷08-08-05 2008年福建省渭田中学初中毕业、升学模拟考试数学试卷08-08-01 2008年广西省来宾中考数学试卷(扫描版)08-08-01 2008年安顺市初中毕业生学业、升学招生考试试题及答案08-07-29 2008年福建省三明市中考数学试题及答案(word版)08-07-29 2008年山东省莱芜市中等学校招生考试试题及答案08-07-28 2008年浙江省诸暨市提前招生考试试卷及答案08-07-26 2008年四川省绵阳市中考数学试卷及答案(word版)08-07-26 2008年甘肃省甘南州中考数学试卷(图片版)08-07-26 2008年内蒙古省包头市中考数学试卷及答案(图片版)08-07-26 2008年贵州省安顺市中考数学试卷(word)08-07-26 2008年三明市中考数学试题(word版)08-07-25 2008年中考数学试卷汇编(圆)及答案08-07-24 2007年福建省南平市初中毕业、升学考试数学试题08-07-23 2008年山东省淄博市中考数学试卷(word版)08-07-23 2008年广西省南宁中考数学试题(图片版)08-07-23 2008年福建省三明市中考数学试题及答案(图片版)08-07-21 2008年中考数学试卷及答案(课改区)08-07-18 2008年山东省淄博市中考数学试卷(扫描版)08-07-18 2008年福建省泉州市初中毕业、升学考试数学试题(word版) 08-07-18 2008年福建省厦门市中考数学考试题及答案(word版)08-07-18 2008年黑龙江省大庆市中考数学试卷(word版)08-07-18 2008年黑龙江省绥化市中考数学试卷及答案(word版)08-07-18 2008年内蒙古乌兰察布市初中升学试题及答案(word版)08-07-18 2008年湖南省邵阳市中考数学试卷及答案(word版)08-07-18 2008年四川省南充市中考数学试题及答案(word版)08-07-18 2008年四川省眉山市数学中考试卷(word版)08-07-17 2008年贵州省遵义市中考数学试题及答案(word版)08-07-17 2008年河南省高级中等学校招生统一考试卷及答案(word版) 08-07-17 2008年黑龙江省牡丹江市中考数学考试及答案08-07-17 2008年黑龙江双鸭山中考数学试卷及答案(word版)08-07-17 2008年山东省潍坊市数学中考试题及答案08-07-14 2008年内蒙古赤峰市中考数学试卷(word版)08-07-13 2008年内蒙古乌兰察布市中考数学试卷及答案(扫描版)08-07-13 2008年黑龙江大庆中考数学试卷(扫描版)08-07-13 2008年湖南省邵阳市中考数学试卷及答案(扫描版)08-07-13 2008年黑龙江双鸭山中考数学试卷及答案(扫描版)08-07-13 2008年辽宁省沈阳市中考数学试题及答案08-07-13 2008年青海省西宁市中考数学试卷及答案(word版)08-07-13 2008年四川省眉山市中考数学试卷(扫描版)08-07-13 2008年福建省厦门市中考数学试卷及答案(扫描版)08-07-13 2008年广东省佛山市中考数学试卷及参考答案。
甘肃省白银市中考数学试题含答案Modified by JACK on the afternoon of December 26, 2020白银市2017年普通高中招生考试数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面四个手机应用图标中,属于中心对称图形的是()A. B. C. D.2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法可以表示为()A.4⨯ D.63.9310⨯0.393103.9310⨯ C.639.310⨯ B.53. 4的平方根是()±A. 16 B. 2 C.2± D.24. 某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A. B. C. D.5.下列计算正确的是()A .224x x x +=B .824x x x ÷= C. 236x x x = D .()220x x --=6.将一把直尺与一块三角板如图放置,若0145∠=,则2∠ 为 ( )A . 115°B . 120° C. 135° D .145°7.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得( )A .0,0k b >>B .0,0k b >< C. 0,0k b <> D .0,0k b <<8.已知,,a b c 是ABC ∆的三条边长,化简a b c c a b +----的结果为 ( ) A .222a b c +- B .22a b + C. 2c D .09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为xm ,则下面所列方程正确的是( )A .()()32220570x x --=B .322203232570x x +⨯=⨯-C. ()()32203220570x x --=⨯- D .2322202570x x x +⨯-= 10.如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作//,PQ BD PQ 与边AD (或边CD )交于点,Q PQ 的长度()y cm 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动秒时,PQ 的长是( )A .22cmB . 32cm C. 42cm D .52cm 二、填空题:本大题 共8小题,每小题4分,共32分,将答案填在答题纸上 11.分解因式:221x x -+=____________. 12. 估计512-与的大小关系:512-(填“>”或“=”或“<”) 13.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式201520172016m n c ++的值为 .如图,ABC ∆内接于O ,若032OAB ∠=,则C ∠= .15.若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是 .16.如图,一张三角形纸片ABC ,090,8,6C AC cm BC cm ∠===.现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .17.如图,在ABC ∆中,090,1,2ACB AC AB ∠===,以点A 为圆心、AC 的长为半径画弧,交AB 边于点D ,则CD 的长等于____________.(结果保留π) 18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为_____________,第2017个图形的周长为______________.三、解答题(一):本大题共5小题,共38分.解答应写出文字说明、证明过程或演算步骤.19. 计算:()101123tan 3042π-⎛⎫-+-- ⎪⎝⎭20. 解不等式组()111212x x ⎧-≤⎪⎨⎪-<⎩ ,并写出该不等式组的最大整数解.21. 如图,已知ABC ∆,请用圆规和直尺作出ABC ∆的一条中位线EF (不写作法,保留作图痕迹).22.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的,A B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得0045,65DAC DBC ∠=∠=.若132AB =米,求观景亭D 到南滨河路AC 的距离约为多少米(结果精确到1米,参考数据:000sin 650.91,cos 650.42,tan 65 2.14≈≈≈)23.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域两数和等于12,则为平局;若指针所指区域两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果; (2)分别求出李燕和刘凯获胜的概率.四、解答题(二):本大题共5小题 ,共50分. 解答应写出文字说明、证明过程或演算步骤.24.中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率5060x≤<106070x≤<307080x≤<40 n8090x≤<m90100x≤≤50频数分布直方图根据所给信息,解答下列问题:(1)m=__________,n=______________;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在_______________分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.已知一次函数1y k x b=+与反比例函数2kyx=的图象交于第一象限内的()1,8,4,2P Q m⎛⎫⎪⎝⎭两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求P AO '∠的正弦值.26.如图,矩形ABCD 中,6,4AB BC ==,过对角线BD 中点O 的直线分别交,AB CD 边于点,E F .(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 就菱形时,求EF 的长.27.如图,AN 是M 的直径,//NB x 轴,AB 交M 于点C .(1)若点()()00,6,0,2,30A N ABN ∠=,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是M 的切线.28.如图,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0B -,点()8,0C ,与y 轴交于点A .(1)求二次函数24y ax bx =++的表达式;(2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作//NM AC ,交AB 于点M ,当AMN ∆面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与A C 的数量关系.白银市2017年初中毕业、高中招生考试数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项. 题号 1 2 3 4 5 6 7 8 9 10 答案BBCDDCADAB二、填空题:本大题共8小题,每小题3分,共24分. 11. 2(1)x - 12. > 13. 0 14. 58 15. k ≤5且k ≠116.154 17. 3π18. 8(1分),6053(2分)三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分)19.(4分)解:原式=323312- 2分 =23312- 3分=31-. 4分20.(4分)解:解1(1)2x - ≤1得:x ≤3, 1分解1-x <2得:x >-1. 2分 则不等式组的解集是:-1<x ≤3. 3分 ∴该不等式组的最大整数解为3x =. 4分 21.(6分)解:如图,5分(注:作出一条线段的垂直平分线得2分,作出两条得4分,连接EF 得1分.) ∴线段EF 即为所求作. 6分22.(6分) 解:过点D 作DE ⊥AC ,垂足为E ,设BE =x , 1分在Rt △DEB 中,tan DEDBE BE∠=, ∵∠DBC =65°,∴tan65DE x =. 2分又∵∠DAC =45°,∴AE =DE .∴132tan65x x +=, 3分 ∴解得115.8x ≈, 4分∴248DE ≈(米). 5分∴观景亭D 到南滨河路AC 的距离约为248米. 6分 23.(6分)解:(1)画树状图:BDCAE 3456 7 8 9 6 7 8 9 6 7 8 9 9 10 11 12 10 11 12 13 11 12 13 14开始3分列表6 7 8 93 9 10 11 124 10 11 12 135 11 12 13 143分可见,两数和共有12种等可能性; 4分(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为61122=; 5分刘凯获胜的概率为31124=. 6分四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分)24.(7分) 解:(1)m=70, 1分n=; 2分(2)频数分布直方图如图所示,频数(人)频数分布直方图甲乙3分(3) 80≤x <90; 5分 (4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×=750(人). 7分25.(7分) 解:(1)∵点P 在反比例函数的图象上,∴把点P (12,8)代入k y x =2可得:k 2=4, ∴反比例函数的表达式为4y x=, 1分∴Q (4,1) .把P (12,8),Q (4,1)分别代入1y k x b =+中,得1118214k bk b⎧=+⎪⎨⎪=+⎩, 解得129k b =-⎧⎨=⎩, ∴一次函数的表达式为29y x =-+; 3分(2)P ′(12-,-8) 4分(3)过点P ′作P ′D ⊥x 轴,垂足为D. 5分∵P ′(12-,-8), ∴OD =12,P ′D =8,∵点A 在29y x =-+的图象上,∴点A (92,0),即OA =92, ∴DA =5, ∴P ′A 2289,D DA P +=' 6分 ∴sin ∠P ′AD 88989P P D A ''=== ∴sin ∠P ′AO 889=. 7分 26.(8分) 解:(1)∵四边形ABCD 是平行四边形,O 是BD 的中点,∴A B ∥DC ,OB =OD , 1分 ∴∠OBE =∠ODF ,成绩又∵∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA ), 2分 ∴EO =FO ,∴四边形BEDF 是平行四边形; 4分 (2)当四边形BEDF 是菱形时,设BE =x 则 DE =x ,6AE x =-,在Rt △ADE 中,222DE AD AE =+, ∴2224(6)x x =+-, ∴133x =, 135214332BEDF S BE AD =BD EF,=∴⋅=⨯=⋅菱形 6分152233BD AB EF ,EF ==∴⨯=∴=又27.(8分)解:(1)∵A 的坐标为(0,6),N (0,2)∴AN =4, 1分 ∵∠ABN =30°,∠ANB =90°,∴AB =2AN =8, 2分∴由勾股定理可知:NB =∴B (,2) 3分 (2)连接MC ,NC 4分 ∵AN 是⊙M 的直径, ∴∠ACN =90°,M NBCxA Oy ∴∠NCB =90°, 5分 在Rt △NCB 中,D 为NB 的中点, ∴CD =12NB =ND ,∴∠CND =∠NCD , 6分 ∵MC =MN , ∴∠MCN =∠MNC . ∵∠MNC +∠CND =90°,∴∠MCN +∠NCD =90°, 7分 即MC ⊥CD .∴直线CD 是⊙M 的切线. 8分 28.(10分)解:(1)将点B ,点C 的坐标分别代入24y ax bx =++,得:424064840a b a b -+=⎧⎨++=⎩, 1分解得:14a =-,32b =.∴该二次函数的表达式为213442y x x =-++. 3分 (2)设点N 的坐标为(n ,0)(-2<n <8),则2BN n =+,8CN n =-. ∵B (-2,0), C (8,0), ∴BC =10.令0x =,解得:4y =, ∴点A (0,4),OA =4, ∵MN ∥AC , ∴810AM NC nAB BC -==. 4分 ∵OA =4,BC =10, ∴114102022ABCSBC OA =⋅=⨯⨯=. 5分 xy CDM D O MB AN D AN1122222810ABNAMN ABN S BN OA n+n+S AM CN n,S AB CB =⋅=⨯-===()4=()又∴2811(8)(2)(3)51055AMNABNnSS n n n -==-+=--+. 6分 ∴当n =3时,即N (3,0)时,△AMN 的面积最大. 7分 (3)当N (3,0)时,N 为BC 边中点.∴M 为AB 边中点,∴12OM AB.= 8分∵AB ==AC ==∴12AB AC,= 9分∴14OM AC =. 10分。
2010-2023历年初中毕业升学考试(甘肃白银卷)数学(带解析)第1卷一.参考题库(共12题)1.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A= ▲度.2.分解因式:▲.3.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD= 45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y ,下列中图象中,能表示y与x的函数关系式的图象大致是【】4.计算:5.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是▲.(只需填一个即可)6.已知两圆的半径分别为3cm和4cm,这两圆的圆心距为1cm,则这两个圆的位置关系是▲.7.衬衫系列大都采用国家5.4标准号、型(通过抽样分析取的平均值).“号”指人的身高,“型”指人的净胸围,码数指衬衫的领围(领子大小),单位均为:厘米.下表是男士衬衫的部分号、型和码数的对应关系:号/型…170/84170/88175/92175/96180/100…码数…3839404142…(1)设男士衬衫的码数为y,净胸围为x,试探索y与x之间的函数关系式;(2)若某人的净胸围为108厘米,则该人应买多大码数的衬衫?8.如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,,延长DB到点F,使,连接AF.(1)证明:△BDE∽△FDA;(2)试判断直线AF与⊙O的位置关系,并给出证明.9.方程的解是【】A.x=±1B.x=1C.x=-1D.x=010.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是【】A.m+3B.m+6C.2m+3D.2m+611.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到元购物券,至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.12.在-1,1,2这三个数中任选2个数分别作为P点的横坐标和纵坐标,过P点画双曲线,该双曲线位于第一、三象限的概率是▲.第1卷参考答案一.参考题库1.参考答案:50。
2023年甘肃省白银市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.9的算术平方根是()A.±3B.±9C.3D.﹣32.若=,则ab=()A.6B.C.1D.3.计算:a(a+2)﹣2a=()A.2B.a2C.a2+2a D.a2﹣2a4.若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为()A.﹣2B.﹣1C.﹣D.25.如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交BC的延长于点E,则∠DEC=()A.20°B.25°C.30°D.35°6.方程=的解为()A.x=﹣2B.x=2C.x=﹣4D.x=47.如图,将矩形纸片ABCD对折,使边AB与DC,BC与AD分别重合,展开后得到四边形EFGH.若AB=2,BC=4,则四边形EFGH的面积为()A.2B.4C.5D.68.据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约2200位数学家的《数学家传略辞典》中部分90岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是()年龄范围(岁)人数(人)90﹣912592﹣93■94﹣95■96﹣971198﹣9910100﹣101mA.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在92﹣93岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在96﹣97岁的人数估计有110人9.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线AB与地面CD所成夹角∠ABC=50°时,要使太阳光线经反射后刚好垂直于地面射入深井底部,则需要调整平面镜EF与地面的夹角∠EBC=()A.60°B.70°C.80°D.85°10.如图1,正方形ABCD的边长为4,E为CD边的中点.动点P从点A出发沿AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,线段PE的长为y,y与x的函数图象如图2所示,则点M的坐标为()A.(4,2)B.(4,4)C.(4,2)D.(4,5)二、填空题:本大题共6小题,每小题3分,共18分.11.因式分解:ax2﹣2ax+a=.12.关于x的一元二次方程x2+2x+4c=0有两个不相等的实数根,则c=(写出一个满足条件的值).13.近年来,我国科技工作者践行“科技强国”使命,不断取得世界级的科技成果.如由我国制的中国首台作业型全海深自主遥控潜水器“海斗一号”,最大下潜深度10907米,填补了中国水下万米作业型无人潜水器的空白;由我国自主研发的极目一号Ⅲ型浮空艇“大白鲸”,升空高度至海拔9050米,创造了浮空艇原位大气科学观测海拔最高的世界记录.如果把海平面以上9050米记作“+9050米”,那么海平面以下10907米记作“.14.如图,△ABC内接于⊙O,AB是⊙O的直径,点D是⊙O上一点,∠CDB=55°,则∠ABC=°.15.如图,菱形ABCD中,∠DAB=60°,BE⊥AB,DF⊥CD,垂足分别为B,D,若AB=6cm,则EF=cm.16.如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)OA长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点A处离开水面,逆时针旋转150°上升至轮子上方B处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从A处(舀水)转动到B处(倒水)所经过的路程是米.(结果保留π)三、解答题:本大题共6小题,共32分.17.计算:÷×2﹣6.18.解不等式组:.19.化简:﹣÷.20.1672年,丹麦数学家莫尔在他的著作《欧几里得作图》中指出:只用圆规可以完成一切尺规作图.1797年,意大利数学家马斯凯罗尼又独立发现此结论,并写在他的著作《圆规的几何学》中.请你利用数学家们发现的结论,完成下面的作图题:如图,已知⊙O,A是⊙O上一点,只用圆规将⊙O的圆周四等分.(按如下步骤完成,保留作图痕迹)①以点A为圆心,OA长为半径,自点A起,在⊙O上逆时针方向顺次截取==;②分别以点A,点D为圆心,AC长为半径作弧,两弧交于⊙O上方点E;③以点A为圆心,OE长为半径作弧交⊙O于G,H两点.即点A,G,D,H将⊙O的圆周四等分.21.为传承红色文化,激发革命精神,增强爱国主义情感,某校组织七年级学生开展“讲好红色故事,传承红色基因”为主题的研学之旅,策划了三条红色线路让学生选择:A.南梁精神红色记忆之旅(华池县);B.长征会师胜利之旅(会宁县);C.西路军红色征程之旅(高台县),且每人只能选择一条线路.小亮和小刚两人用抽卡片的方式确定一条自己要去的线路.他们准备了3张不透明的卡片,正面分别写上字母A,B,C,卡片除正面字母不同外其余均相同,将3张卡片正面向下洗匀,小亮先从中随机抽取一张卡片,记下字母后正面向下放回,洗匀后小刚再从中随机抽取一张卡片.(1)求小亮从中随机抽到卡片A的概率;(2)请用画树状图或列表的方法,求两人都抽到卡片C的概率.22.如图1,某人的一器官后面A处长了一个新生物,现需检测其到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离方案如下:课题检测新生物到皮肤的距离工具医疗仪器等示意图说明如图2,新生物在A处,先在皮肤上选择最大限度地避开器官的B处照射新生物,检测射线与皮肤MN的夹角为∠DBN;再在皮肤上选择距离B处9cm的C处照射新生物,检测射线与皮肤MN的夹角为∠ECN.测量数据∠DBN=35°,∠ECN=22°,BC=9cm请你根据上表中的测量数据,计算新生物A处到皮肤的距离.(结果精确到0.1cm)(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)四、解答题:本大题共5小题,共40分.23.某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x表示,分成6个等级:A.x<10;B.10≤x<15;C.15≤x<20;D.20≤x<25;E.25≤x <30;F.30≤x≤35).下面给出了部分信息:a.八年级学生上、下两个学期期末地理成绩的统计图如图:b.八年级学生上学期期末地理成绩在C.15≤x<20这一组的成绩是:15,15,15,15,15,16,16,16,18,18;c.八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期平均数众数中位数八年级上学期17.715m八年级下学期18.21918.5根据以上信息,回答下列问题:(1)填空:m=;(2)若x≥25为优秀,则这200名学生八年级下学期期末地理成绩达到优秀的约有人;(3)你认为该校八年级学生的期末地理成绩下学期比上学期有没有提高?请说明理由.24.如图,一次函数y=mx+n的图象与y轴交于点A,与反比例函数y=(x>0)的图象交于点B(3,a).(1)求点B的坐标;(2)用m的代数式表示n;(3)当△OAB的面积为9时,求一次函数y=mx+n的表达式.25.(8分)如图,△ABC内接于⊙O,AB是⊙O的直径,D是⊙O上的一点,CO平分∠BCD,CE⊥AD,垂足为E,AB与CD相交于点F.(1)求证:CE是⊙O的切线;(2)当⊙O的半径为5,sin B=时,求CE的长.26.【模型建立】(1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.①求证:AE=CD;②用等式写出线段AD,BD,DF的数量关系,并说明理由;【模型应用】(2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由;【模型迁移】(3)在(2)的条件下,若AD=4,BD=3CD,求cos∠AFB的值.27.如图1,抛物线y=﹣x2+bx与x轴交于点A,与直线y=﹣x交于点B(4,﹣4),点C(0,﹣4)在y轴上.点P从点B出发,沿线段BO方向匀速运动,运动到点O时停止.(1)求抛物线y=﹣x2+bx的表达式;(2)当BP=2时,请在图1中过点P作PD⊥OA交抛物线于点D,连接PC,OD,判断四边形OCPD 的形状,并说明理由;(3)如图2,点P从点B开始运动时,点Q从点O同时出发,以与点P相同的速度沿x轴正方向匀速运动,点P停止运动时点Q也停止运动.连接BQ,PC,求CP+BQ的最小值.1.C.2.A.3.B.4.D.5.C.6.A.7.B.8.D.9.B.10.C.11.a(x﹣1)2.12.0(答案不唯一).13.﹣10907米.14.35.15.2.16.5π.17.原式=3××2﹣6=12﹣6=6.18.由x>﹣6﹣2x得:x>﹣2,由x≤得:x≤1,则不等式组的解集为﹣2<x≤1.19.原式=﹣•=﹣=.20.如图:点G、D、H即为所求.21.(1)小亮从中随机抽到卡片A的概率为;(2)画树状图如下:共有9种等可能的结果,其中小亮和小刚两人都抽到卡片C的结果有1种,∴两人都抽到卡片C的概率是.22.过点A作AF⊥MN,垂足为F,设BF=xcm,∵BC=9cm,∴CF=BC+BF=(x+9)cm,在Rt△ABF中,∠ABF=∠DBN=35°,∴AF=BF•tan35°≈0.7x(cm),在Rt△ACF中,∠ACF=∠ECN=22°,∴AF=CF•tan22°≈0.4(x+9)cm,∴0.7x=0.4(x+9),解得:x=12,∴AF=0.7x=8.4(cm),∴新生物A处到皮肤的距离约为8.4cm.23.(1)把八年级上学期40名学生的地理成绩从小到大排列,排在中间的两个数分别为16,16,故中位数m==16.故答案为:16;(2)200×=35(人),即这200名学生八年级下学期期末地理成绩达到优秀的约有35人.故答案为:35;(3)该校八年级学生的期末地理成绩下学期比上学期有提高,理由如下:因为该校八年级学生的期末地理成绩下学期的平均数、众数和中位数均比上学期大,所以该校八年级学生的期末地理成绩下学期比上学期有提高.24.(1)∵反比例函数y=(x>0)的图象过点B(3,a),∴a==2,∴点B的坐标为(3,2);(2)∵一次函数y=mx+n的图象过点B,∴2=3m+n,∴n=2﹣3m;(3)∵△OAB的面积为9,∴,∴n=6,∴A(0,﹣6),∴﹣6=2﹣3m,∴m=,∴一次函数的表达式是y=x﹣6.25.(1)证明:∵CE⊥AD,∴∠E=90°,∵CO平分∠BCD,∴∠OCB=∠OCD,∵OB=OC,∴∠B=∠BCO=∠D,∴∠D=∠OCD,∴OC∥DE,∴∠OCE=∠E=90°,∵OC是圆的半径,∴CE是⊙O的切线;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∵sin B==,∴AC=6,∵∠OCE=∠ACO+∠OCB=∠ACO+∠ACE=90°,∴∠ACE=∠OCB=∠B,∴sin∠ACE=sin B==,解得:AE=3.6,∴CE==4.8.26.(1)证明:①∵△ABC和△BDE都是等边三角形,∴AB=CB,EB=DB,∠ABC=∠EBD=60°,∴∠ABE=∠CBD,∴△ABE≌△CBD,∴AE=CD;②解:AD=BD+DF.理由如下:∵△BDE是等边三角形,∴BD=DE,∵点C与点F关于AD对称,∴CD=DF,∵AD=AE+DE,∴AD=BD+DF;(2)BD+DF=AD.理由如下:如图1,过点B作BE⊥AD于E,∵点C与点F关于AD对称,∴∠ADC=∠ADB,又∵CD⊥BD,∴∠ADC=∠ADB=45°,又∵BE⊥AD,∴△BDE是等腰直角三角形,又∵△ABC是等腰直角三角形,∴,∠ABC=∠EBD=45°,∴∠ABE=∠CBD,∴△ABE∽△CBD,∴,CD=DF,∴DF=AE,∵△BDE是等腰直角三角形,∴BD=,∴BD+DF=,即:BD+DF=AD.(3)解:如图2,过点A作AG⊥BD于G,又∵∠ADB=45°,∴△AGD是等腰直角三角形,又∵AD=4,∴AG=DG=4,BD+DF=AD=8,∵BD=3CD,CD=DF,∴DF=2,又∵DG=4,∴FG=DG﹣DF=2,在Rt△AFG中,由勾股定理得:,∴cos∠AFB=.27.(1)∵抛物线y=﹣x2+bx过点B(4,﹣4),∴﹣16﹣4b=﹣4,∴b=3,∴y=﹣x2+3x.答:抛物线的表达式为y=﹣x2+3x.(2)四边形OCPD是平行四边形,理由如下:如图1,作PD⊥OA交x轴于点H,连接PC、OD,∵点P在y=﹣x上,∴OH=PH,∠POH=45°,连接BC,∵OC=BC=4,∴.∴,∴,∴,当xD =2时,DH=yD=﹣4+3×2=2,∴PD=DH+PH=2+2=4,∵C(0,﹣4),∴OC=4,∴PD=OC,∵OC⊥x轴,PD⊥x轴,∴PD∥OC,∴四边形OCPD是平行四边形.(3)如图2,由题意得,BP=OQ,连接BC,在OA上方作△OMQ,使得∠MOQ=45°,OM=BC,∵OC=BC=4,BC⊥OC,∴∠CBP=45°,∴∠CBP=∠MOQ,∵BP=OQ,∠CBP=∠MOQ,BC=OM,∴△CBP≌△MOQ(SAS),∴CP=MQ,∴CP+BQ=MQ+BQ≥MB(当M,Q,B三点共线时最短),∴CP+BQ的最小值为MB,∵∠MOB=∠MOQ+∠BOQ=45°+45°=90°,∴,即CP+BQ的最小值为4.答:CP+BQ的最小值为4.。
2008年全国统一考试数学卷(全国新课标.理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.参考公式:样本数据12,,,n x x x 的标准差s =其中x 为样本平均数 柱体体积公式V Sh = 其中S 为底面面积,h 为高锥体体积公式13V Sh =其中S 为底面面积,h 为高球的表面积,体积公式24R S π=,334R V π=其中R 为球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数2sin()(0)y x ωϕω=+>在区间[]0,2π的图像如下:A .1B .2C .12D .132.已知复数1z i =-,则21zz -=A .2B .2-C .2iD .2i -3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为A .518B .34C .2D .784.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =A .2B .4C .152D .1725.右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的A .c x >B .x c >C .c b >D .b c >6.已知1230a a a >>>,则使得2(1)1(1,2,3)i a x i -<=都成立的x 取值范围是A .11(0,)a B .12(0,)a C .31(0,)a D .32(0,)a7.23sin 702cos 10--=A .12B .2C .2D 28.平面向量,a b共线的充要条件是A .,a b方向相同B .,a b两向量中至少有一个为零向量C .R λ∃∈,b a λ=D .存在不全为零的实数12,λλ,120a b λλ+=9.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有A .20种B .30种C .40种D .60种10.由直线12x =,2x =,曲线1y x=及x 轴所围成图形的面积是A .154B .174C .1ln 22D .2ln 211.已知点P 在抛物线24y x =上,那么点P 到点(2,1)Q -的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为A .1(,1)4-B .1(,1)4C .(1,2)D .(1,2)-12.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为A .B .C .4D .第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.已知向量(0,1,1)a =- ,(4,1,0)b = ,||a b λ+=且0λ>,则λ= .14.双曲线221916xy-=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则△A F B 的面积为 .15.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,那么这个球的体积为 .16.从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下: 甲 品种 271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352 乙 品种284 292 295 304 306 307 312 313 315 315 316 318 318 320322322324327329331333336337343356由以上数据设计了如下茎叶图:根据以上茎叶图,对甲乙两品种棉花的纤维长度比较,写出两个统计结论:① . ② .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 是一个等差数列,且21a =,55a =-. (1)求{}n a 的通项n a ;(2)求{}n a 的前n 项和n S 的最大值.18.(本小题满分12分)如图,已知点P 在正方体1111A B C D A B C D -的对角线1BD 上,60PDA ∠=. (1)求D P 与1C C 所成角的大小; (2)求D P 与平面11AA D D 所成角的大小.27 28 29 30 31 32 33 34 351 37 5 5 05 4 2 8 7 3 39 4 0 8 5 5 37 4 124 2 35 56 8 8 4 6 72 5 0 2 2 4 7 9 13 6 7 3 6甲乙D 1PA 1B 1C 1ABCD19.(本小题满分12分)A 、B 两个投资项目的利润率分别为随机变量1X 和2X .根据市场分析,1X 和2X 的分布列分别为(1)在A 、B 两个项目上各投资100万元,1Y 和2Y 分别表示投资项目A 和B 所获得的利润,求方差1D Y 、2D Y ;(2)将(0100)x x ≤≤万元投资A 项目,100x -万元投资B 项目,()f x 表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求()f x 的最小值,并指出x 为何值时,()f x 取到最小值.(注:2()D aX b a D X +=)20.(本小题满分12分)在直角坐标系xOy 中,椭圆22122:1(0)x y C a b ab+=>>的左、右焦点分别为1F 、2F .2F 也是抛物线22:4C y x =的焦点,点M 为1C 与2C 在第一象限的交点,且25||3M F =.(1)求1C 的方程;(2)平面上的点N 满足12M N M F M F =+,直线l ∥M N ,且与1C 交于A 、B 两点,若0O A O B ⋅=,求直线l 的方程.21.(本小题满分12分)设函数1()(,)f x ax a b Z x b=+∈+,曲线()y f x =在点(2,(2))f 处的切线方程为3y =.(1)求()y f x =的解析式;(2)证明:曲线()y f x =的图像是一个中心对称图形,并求其对称中心;(3)证明:曲线()y f x =上任一点处的切线与直线1x =和直线y x =所围三角形的面积为定值,并求此定值.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.(本小题满分10分)【选修4-1:几何选讲】如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 作直线A P 垂直直线O M ,垂足为P . (1)证明:2OM OP OA ⋅=;(2)N 为线段A P 上一点,直线N B 垂直直线O N ,且交圆O 于B 点.过B 点的切线交直线O N 于K .证明:90OKM ∠= 23.(本小题满分10分)【选修4-4:坐标系与参数方程】已知曲线1cos :sin x C y θθ=⎧⎨=⎩(θ为参数),曲线22:2x C y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).(1)指出1C ,2C 各是什么曲线,并说明1C 与2C 公共点的个数;(2)若把1C ,2C 上各点的纵坐标都压缩为原来的一半,分别得到曲线1C ',2C '.写出1C ',2C '的参数方程.1C '与2C '公共点的个数和1C 与2C 公共点的个数是否相同?说明你的理由. 24.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()|8||4|f x x x =---. (1)作出函数()y f x =的图像; (2)解不等式|8||4|2x x --->.2008年全国统一考试数学卷(全国新课标.理)参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力13. 14.15.16.三、解答题 17.2008年普通高等学校统一考试(海南、宁夏卷)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数2sin()(0)y x ωϕω=+>)在区间[]02π,的图像如下:那么ω=( ) A .1 B .2 C .21 D .31解:由图象知函数的周期T π=,所以22Tπω=2.已知复数1z i =-,则122--z z z =( ) A .2iB .2i -C .2D .2-解:1z i =-∵,222(1)2(1)22111z z i i i z i i-----===-----∴,故选B3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A .185 B .43 C .23 D .87解:设顶角为C ,因为5,2l c a b c ===∴,由余弦定理x222222447cos 22228a b cc c c C abc c+-+-===⨯⨯4.设等比数列{}n a 的公比q =2,前n 项和为S n ,则24a S =( )A .2B .4C .215 D .217解:414421(1)1215122a q S q a a q---===-5.右面的程序框图,如果输入三个实数a ,b ,c ,要求输出这三 个数中最大的数,那么在空白的判断框中,应该填入下面四个选 项中的( )A .c x >B .x c >C .c b >D .b c >解:变量x 的作用是保留3个数中的最大值,所以第二个条件结构的判断框内语句为“c x >”, 满足“是”则交换两个变量的数值后输出x 的值结束程序,满足“否”直接输出x 的值结束程序.6.已知1230a a a >>>,则使得2(1)1(123)i a x i -<=,,都成立的x 取值范围是( ) A .110a ⎛⎫ ⎪⎝⎭,B .120a ⎛⎫ ⎪⎝⎭,C .310a ⎛⎫ ⎪⎝⎭,D .320a ⎛⎫ ⎪⎝⎭,解:22222(1)120()0i i i i ia x a x a x a x x a -<⇒-<⇒-<,所以解集为2(0,)ia ,又123222a a a <<,因此选B .7.23sin 702cos 10-=-( ) A .12B.2C .2 D2解:22223sin 703cos 203(2cos 201)22cos 102cos 102cos 10----===---,选C .8.平面向量a ,b 共线的充要条件是( ) A .a ,b 方向相同B .a ,b 两向量中至少有一个为零向量C .λ∈R ∃,λ=b aD .存在不全为零的实数1λ,2λ,12λλ+=0a b 解:注意零向量和任意向量共线.9.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有( ) A .20种 B .30种 C .40种 D .60种 解:分类计数:甲在星期一有2412A =种安排方法,甲在星期二有236A =种安排方法,甲在星期三有222A =种安排方法,总共有126220++=种 10.由直线12x =,x =2,曲线1y x=及x 轴所围图形的面积为( )A .154B .174C .1ln 22D .2ln 2解:如图,面积22112211ln |ln 2ln2ln 22S x x===-=⎰11.已知点P 在抛物线24y x =上,那么点P 到点(21)Q -,的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .114⎛⎫- ⎪⎝⎭,B .114⎛⎫⎪⎝⎭,C .(12),D .(12)-,解:点P 到抛物线焦点距离等于点P 到抛物线准线距离,如图PF PQ PS PQ +=+,故最小值在,,S P Q 三点共线时取得,此时,P Q 的纵坐标都是1-,所以选A .(点P 坐标为1(,1)4-)12.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( ) A.B.C .4D.解:结合长方体的对角线在三个面的投影来理解计算.如图设长方体的高宽高分别为,,m n k ,由题意得==1n ⇒=a =b =,所以22(1)(1)6a b -+-=228a b ⇒+=,22222()282816a b a ab b ab a b +=++=+≤++=∴ 4a b ⇒+≤当且仅当2a b ==时取等号.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13.已知向量(011)=-,,a ,(410)=,,b,λ+=a b 0λ>,则λ= .解:由题意(4,1,)λ+-λλa b =2216(1)29(0)λλλ⇒+-+=>3λ⇒=14.设双曲线221916xy-=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为 .解:双曲线的右顶点坐标(3,0)A ,右焦点坐标(5,0)F ,设一条渐近线方程为43y x =,建立方程组224(5)31916y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩,得交点纵坐标3215y =-,从而132********A F B S =⨯⨯= 15.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .解:令球的半径为R ,六棱柱的底面边长为a ,高为h ,显然有R =,且219624863a V h h a ⎧⎧==⨯⨯=⎪⎪⇒⎨⎨⎪⎪==⎩⎩1R ⇒=34433V R ππ⇒== 16.从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下:甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论: ① ;② .解:1.乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).2.甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大). 3.甲品种棉花的纤维长度的中位数为307mm ,乙品种棉花的纤维长度的中位数为318mm . 4.乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知{}n a 是一个等差数列,且21a =,55a =-.(Ⅰ)求{}n a 的通项n a ; (Ⅱ)求{}n a 前n 项和S n 的最大值.解:(Ⅰ)设{}n a 的公差为d ,由已知条件,11145a d a d +=⎧⎨+=-⎩,解出13a =,2d =-.所以1(1)25n a a n d n =+-=-+. (Ⅱ)21(1)42n n n S na d n n -=+=-+24(2)n =--.所以2n =时,n S 取到最大值4. 18.(本小题满分12分)如图,已知点P 在正方体A B C D A B C D ''''-的对角线BD '上,60P D A ∠=︒. (Ⅰ)求DP 与C C '所成角的大小;(Ⅱ)求DP 与平面AA D D ''所成角的大小.3 1 277 5 5 0 28 45 4 2 29 2 58 7 3 3 1 30 4 6 79 4 0 31 2 3 5 5 6 8 88 5 5 3 32 0 2 2 4 7 97 4 1 33 1 3 6 734 32 35 6甲乙A 'C 'D '解:如图,以D 为原点,D A 为单位长建立空间直角坐标系D xyz -. 则(100)D A =,,,(001)C C '=,,.连结B D ,B D ''. 在平面BB D D ''中,延长D P 交B D ''于H .设(1)(0)D H m m m => ,,,由已知60DH DA <>=,, 由cos D A D H D A D H D A D H =<> ,可得2m =2m =所以122D H ⎛⎫= ⎪ ⎪⎝⎭,.(Ⅰ)因为0011cos 2DH CC ⨯++⨯'<>==,,所以45DH CC '<>=,.即D P 与C C '所成的角为45.(Ⅱ)平面AA D D ''的一个法向量是(010)D C =,,.因为01101cos 2D H D C ⨯++⨯<>==,, 所以60DH DC <>=,. 可得D P 与平面AA D D ''所成的角为30 .19.(本小题满分12分)A B ,两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为(Ⅰ)在A B ,两个项目上各投资100万元,Y 1和Y 2分别表示投资项目A 和B 所获得的利润,求方差DY 1,DY 2;(Ⅱ)将(0100)x x ≤≤万元投资A 项目,100x -万元投资B 项目,()f x 表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求()f x 的最小值,并指出x 为何值时,()f x 取到最小值.(注:2()D aX b a D X +=)解:(Ⅰ)由题设可知1Y 和2Y 的分布列分别为150.8100.26EY =⨯+⨯=,221(56)0.8(106)0.24D Y =-⨯+-⨯=,220.280.5120.38EY =⨯+⨯+⨯=,2222(28)0.2(88)0.5(128)0.312D Y =-⨯+-⨯+-⨯=.(Ⅱ)12100()100100xx f x D Y D Y -⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭2212100100100x x D Y D Y -⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭22243(100)100x x ⎡⎤=+-⎣⎦ 2224(46003100)100x x =-+⨯, 当6007524x ==⨯时,()3f x =为最小值.20.(本小题满分12分) 在直角坐标系xOy 中,椭圆C 1:2222by ax +=1(a >b >0)的左、右焦点分别为F 1,F 2.F 2也是抛物线C 2:24y x =的焦点,点M 为C 1与C 2在第一象限的交点,且|MF 2|=35.(Ⅰ)求C 1的方程;(Ⅱ)平面上的点N 满足21MF MF MN +=,直线l ∥MN ,且与C 1交于A ,B 两点,若0OA OB = ,求直线l 的方程.20.解:(Ⅰ)由2C :24y x =知2(10)F ,.设11()M x y ,,M 在2C 上,因为253M F =,所以1513x +=,得123x =,13y =.M 在1C 上,且椭圆1C 的半焦距1c =,于是222248193 1.a bb a ⎧+=⎪⎨⎪=-⎩, 消去2b 并整理得 4293740a a -+=, 解得2a =(13a =不合题意,舍去).故椭圆1C 的方程为22143xy+=.(Ⅱ)由12M F M F M N +=知四边形12M F N F 是平行四边形,其中心为坐标原点O ,因为l M N ∥,所以l 与O M 的斜率相同,故l的斜率323k ==.设l的方程为)y x m =-.由223412)x y y x m ⎧+=⎪⎨=-⎪⎩,,消去y 并化简得 22916840x mx m -+-=. 设11()A x y ,,22()B x y ,,12169m x x +=,212849m x x -=.因为OA OB ⊥,所以12120x x y y +=.121212126()()x x y y x x x m x m +=+--2121276()6x x m x x m =-++22841676699m m m m -=-+ 21(1428)09m =-=.所以m =.此时22(16)49(84)0m m ∆=-⨯->,故所求直线l的方程为y =-,或y =+.21.(本小题满分12分) 设函数1()()f x ax a b x b=+∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3.(Ⅰ)求()f x 的解析式:(Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心;(Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值.21.解:(Ⅰ)21()()f x a x b '=-+,于是2121210(2)a b a b ⎧+=⎪+⎪⎨⎪-=+⎪⎩,,解得11a b =⎧⎨=-⎩,,或948.3a b ⎧=⎪⎪⎨⎪=-⎪⎩,因a b ∈Z ,,故1()1f x x x =+-.(Ⅱ)证明:已知函数1y x =,21y x=都是奇函数.所以函数1()g x x x=+也是奇函数,其图像是以原点为中心的中心对称图形.而1()111f x x x =-++-.可知,函数()g x 的图像按向量(11)=,a 平移,即得到函数()f x 的图像,故函数()f x 的图像是以点(11),为中心的中心对称图形. (Ⅲ)证明:在曲线上任取一点00011x x x ⎛⎫+ ⎪-⎝⎭,.由0201()1(1)f x x '=--知,过此点的切线方程为2000200111()1(1)x x y x x x x ⎡⎤-+-=--⎢⎥--⎣⎦. 令1x =得0011x y x +=-,切线与直线1x =交点为00111x x ⎛⎫+ ⎪-⎝⎭,.令y x =得021y x =-,切线与直线y x =交点为00(2121)x x --,. 直线1x =与直线y x =的交点为(11),.从而所围三角形的面积为00000111212112222121x x x x x +---=-=--.所以,所围三角形的面积为定值2.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 点作直线A P 垂直直线O M ,垂足为P .(Ⅰ)证明:2OM OP OA = ;(Ⅱ)N 为线段A P 上一点,直线N B 垂直直线O N ,且交圆O 于B 点.过B 点的切线交直线O N 于K .证明:90OKM = ∠.解:(Ⅰ)证明:因为M A 是圆O 的切线,所以O A A M ⊥.又因为A P O M ⊥.在R t O A M △中,由射影定理知,2OA OM OP = .(Ⅱ)证明:因为B K 是圆O 的切线,B N O K ⊥.同(Ⅰ),有2OB ON OK = ,又O B O A =, 所以O P O M O N O K = ,即O N O M O PO K=.又N O P M O K =∠∠,所以O N P O M K △∽△,故90OKM OPN ==∠∠.23.(本小题满分10分)选修4-4;坐标系与参数方程已知曲线C 1:cos sin x y θθ=⎧⎨=⎩,(θ为参数),曲线C 2:22x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).(Ⅰ)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(Ⅱ)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线12C C '',.写出12C C '',的参数方程.1C '与2C '公共点的个数和C 21C 与公共点的个数是否相同?说明你的理由. 解:(Ⅰ)1C 是圆,2C 是直线.1C 的普通方程为221x y +=,圆心1(00)C ,,半径1r =. 2C 的普通方程为0x y -+=.因为圆心1C 到直线0x y -+=的距离为1,所以2C 与1C 只有一个公共点. (Ⅱ)压缩后的参数方程分别为1C ':cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩,(θ为参数); 2C ':24x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).化为普通方程为:1C ':2241x y +=,2C ':122y x =+,联立消元得2210x ++=, 其判别式24210∆=-⨯⨯=,所以压缩后的直线2C '与椭圆1C '仍然只有一个公共点,和1C 与2C 公共点个数相同.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()84f x x x =---. (Ⅰ)作出函数()y f x =的图像; (Ⅱ)解不等式842x x --->. 解:(Ⅰ)44()2124848.xf x x xx⎧⎪=-+<⎨⎪->⎩,≤,,≤,图像如下:(Ⅱ)不等式842x x--->,即()2f x>,由2122x-+=得5x=.由函数()f x图像可知,原不等式的解集为(5)-∞,.。
2018年甘肃省白银市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣D.2.(3分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2 D.x2•x3.(3分)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°4.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b5.(3分)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.06.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:(环)11.1若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<48.(3分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF 的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B. C.7 D.9.(3分)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°10.(3分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c >0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、填空题:本大题共8小题,每小题4分,共32分11.(4分)计算:2sin30°+(﹣1)2018﹣()﹣1=.12.(4分)使得代数式有意义的x的取值范围是.13.(4分)若正多边形的内角和是1080°,则该正多边形的边数是.14.(4分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.15.(4分)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=.16.(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.17.(4分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.18.(4分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为.三、解答题(一);本大题共5小题,共38分,解答应写出必要的文字说明,证明过程或演算19.(6分)计算:÷(﹣1)20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.21.(8分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.(8分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)23.(10分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共5小题,共50分。
2024-2025学年甘肃省白银市名校九年级数学第一学期开学学业质量监测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列边长相等的正多边形的组合中,不能镶嵌平面的是()A .正三角形和正方形B .正三角形和正六边形C .正方形和正八边形D .正五边形和正方形2、(4分)下列所叙述的图形中,全等的两个三角形是()A .含有45°角的两个直角三角形B .腰相等的两个等腰三角形C .边长相等的两个等边三角形D .一个钝角对应相等的两个等腰三角形3、(4分)下列调查:①了解夏季冷饮市场上冰淇淋的质量;②了解嘉淇同学20道英语选择題的通过率;③了解一批导弹的杀伤范围;④了解全国中学生睡眠情况.不适合普查而适合做抽样调查的是()A .①②④B .①③④C .②③④D .①②③4、(4分)能判定四边形ABCD 为平行四边形的条件是()A .AB ∥CD ,AD=BC;B .∠A=∠B ,∠C=∠D;C .AB=CD ,AD=BC;D .AB=AD ,CB=CD 5、(4分)合并的是()A .B C D .6、(4分)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是()A .4.8B .5C .6D .7.27、(4分)如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连接EB ,EC ,DB ,下列条件中,不能使四边形DBCE 成为菱形的是()A .AB =BE B .BE ⊥DC C .∠ABE =90°D .BE 平分∠DBC 8、(4分)点在平面直角坐标系的()A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)因式分解:3222x x y xy +=﹣__________.10、(4分)已知一直角三角形的两条直角边分别为6cm 、8cm,则此直角三角形斜边上的高为____。
白银市2024年九年级毕业会考综合练习数学试卷注意事项:1.全卷满分150分,答题时间为120分钟.2.请将各题答案填写在答题卡上.一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1. 4的算术平方根是( )A. 2B. 4C.D.【答案】A解析:4的算术平方根是2,故选:A.2. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C解析:解:A.是轴对称图形,不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意.C.既是轴对称图形,又是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.3. 已知是方程组的解,则a﹣b的值是()A. B. C. D.【答案】D解析:∵是方程组的解,∴.两个方程相减,得a﹣b=4.故选:D.4. 若3x=4,3y=6,则3x-2y的值是( )A. B. 9 C. D. 3【答案】A解析:∵3x=4,3y=6,∴3x-2y=3x÷(3y)2=4÷62=.故选A.5. 把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为( )A. B. C. D.【答案】B解析:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选B.6. 若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )A. k<5B. k<5,且k≠1C. k≤5,且k≠1D. k>5【答案】B解析:∵关于x的一元二次方程方程有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选:B.7. 某公司10名职工3月份的工资如下表所示,则这10名职工3月份工资的中位数是()工资/元5000520054005600人数/人1342A. 5200元B. 5300元C. 5400元D. 5500元【答案】C解析:这组数据按照从小到大的顺序排列为:5000,5200,5200,5200,5400,5400,5400,5400,5600,5600,则中位数为:.故选:C.8. 如图,2条宽为1的带子以α角交叉重叠,则重叠部分(阴影部分)的面积为( )A. sinαB.C.D.【答案】B解析:过点A作AE⊥BC于点E,过点D作DF⊥AB于点F,如下图所示:由已知得:AB∥CD,AD∥BC,AE=DF=1,∴∠DAF=∠ABE,四边形ABCD为平行四边形,又∵∠DFA=∠AEB,∴△ABE≌△DAF(AAS),∴AB=AD,即四边形ABCD为菱形.在直角△ABE中,,∴,∴重叠部分的面积即阴影部分的面积.故选:B.9. 如图,为的直径,点C、D在上,且,,则的长为()A. B. C. D.【答案】C解析:解:∵为的直径,,∴∠ACB=90°,,连接OD,∵,∴∠DOB=60°,∵OD=OB,∴△OBD为等边三角形,∴,故选:C.10. 如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点,设PC=x,PE+PB=y,图②是y关于x的函数图象,且图象上最低点Q的坐标为(4,3),则正方形ABCD的边( )A. 6B. 3C. 4D. 4【答案】A解析:解:如图,点D是点B关于直线AC的对称点,连接DE交AC于点P,则此时y取得最小值,根据点对称性,PB=PD,则y=PE+PB=PD+PE=DE为最小,故ED=3,设正方形的边长为x,则AE=x,在Rt△ADE中,由勾股定理得:DE2=AD2+AE2,即x2+(x)2=(3)2,解得:x=6(负值已舍去),故选:A.二、填空题:本大题共6小题,每小题4分,共24分.11. 分解因式:3a2﹣12=___.【答案】3(a+2)(a﹣2)解析:3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).12. 已知一个正多边形的内角为,这个多边形的条数为________.【答案】9解析:∵一个正多边形的内角为,∴每个外角为:,∴这个多边形的条数为,故答案为:.13. 某品牌酸奶外包装上标明“净含量:”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是__________口味的酸奶.种类原味草莓味香草味巧克力味净含量/mL175180190185【答案】香草味解析:由题意可得:合格酸奶净含量的最小值为:,合格酸奶净含量的最大值为:,∴合格酸奶的重量范围为,则净含量不合格的是香草味,故答案为:香草味.14. 某校在劳动周组织学生到校园周边种植甲、乙两种树苗,已知购买3棵甲种树苗、2棵乙种树苗共需12元;购买1棵甲种树苗、3棵乙种树苗共需11元.那么每棵甲种树苗的价格为__________元.【答案】2解析:解:设每棵甲种树苗元,每棵乙种树苗元解得;∴每棵甲种树苗2元,每棵乙种树苗3元,故答案为:2.15. 如图,在中,,分别是,的中点,是延长线上一点,,交于点,且,则__________.【答案】2解析:解:∵D、E分别是AB和AC的中点∴DE∥BC,DE=BC,∴∠EDG=∠F,∵EG=CG, ∠DGE=∠FGC,∴△GED≌△GCF∴DE=CF=1∴CF=BC∴BC=2故答案为2.16. 在某公园内,牡丹按正方形形状种植,芍药种植在它的周围,下图反映了牡丹的列数(n)和芍药的数量规律,那么当时,芍药的数量为__________株.【答案】800解析:解:由图可得,当时,芍药的数量为:,当时,芍药的数量为:,当时,芍药的数量为:,当时,芍药的数量为:,……故芍药的数量为:,当时,芍药的数量为:,故答案为:800.三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17. 计算:.【答案】解析:解:.18. 如图,扇形的圆心角是为,四边形是边长为1的正方形,点,分别在,,在弧上,求图中阴影部分的面积.(结果保留π)【答案】解析:解:四边形是边长为1的正方形,,图中阴影部分的面积.∴图中阴影部分的面积为.19. 先化简,再从中选择一个合适的x的值代入求值【答案】,当时,解析:解:,要使分式有意义,必须,且,即不能为,0,2,取,当时,原式.20. 如图,已知锐角三角形,.(1)尺规作图:①作的垂直平分线l;②作的平分线,且交于点M.(2)若l与交于点P,,求的度数.【答案】(1)①作图见解析,②作图见解析,(2)解析:解:(1)①如图直线l为所求作的图形;②射线为所求作图形.(2)∵BC的垂直平分线为l,∴PB=PC,∴∠PBC=∠PCB=32°,∵BM平分∠ABC,∠ABP=∠CBP=32°,∵∠A=60°,∴.21. 小华利用假期的时间到甘肃旅游,众多的旅游景点让小华难以抉择,于是小华将扑克牌中“A”的四种花色分别记为莫高窟(红桃A),嘉峪关(梅花A),敦煌雅丹国家地质公园(方片A),崆峒山(黑桃A),随后将这四张扑克牌正面朝下,从中随机抽取一张,作为自己的第一站旅游地点.(1)小华抽中敦煌雅丹国家地质公园的概率为________;(2)小华发现他的朋友也正在甘肃旅游,且他的朋友明天将会从莫高窟、嘉峪关、敦煌雅丹国家地质公园这三个景点中任意选择一个游览.若他们按照各自的旅游线路进行游览,请用列表或画树状图的方法,求小华和他的朋友明天去同一个景点的概率.【答案】(1)(2)【小问1解析】P(抽中敦煌雅丹国家地质公园).【小问2解析】列表如下:红桃梅花方片红(红桃,红桃)(红桃,梅花)(红桃,方片)桃梅(梅花,红桃)(梅花,梅花)(梅花,方片)花方(方片,红桃)(方片,梅花)(方片,方片)片黑(黑桃,红桃)(黑桃,梅花)(黑桃,方片)桃由列表可得,共有12种等可能的结果,其中抽到相同景点的结果有3种,∴P(小华和他的朋友明天去同一个景点).22. 如图,某校教学楼的前面有一建筑物,在距离正前方10米的观测点M处,以的仰角测得建筑物的顶端C恰好挡住教学楼顶端A,而在建筑物上距离地面4米高的E处,测得教学楼的顶端A的仰角为,求教学楼的高度.(参考数据:,)【答案】教学楼的高度为18.1米.解析:解:如图,过点E作于点F,,,,,米,四边形是矩形设米,则米,米,米,,,,(米),答:教学楼的高度约为18.1米.23. 学校随机抽取部分学生就“你是否喜欢网课”进行问卷调查,并将调查结果进行统计后,绘制成如下的统计表和扇形统计图.调查结果统计表态度非常喜欢喜欢一般不喜欢频数90b3010频率a0.350.20请你根据统计图、表提供的信息解答下列问题:(1)该校随机抽取了________名同学参加问卷调查;(2)确定统计表中a、b的值,a=________,b=________;(3)在统计图中“喜欢”部分扇形所对应的圆心角是________度;(4)若该校共有1000名学生,估计全校态度为“非常喜欢”的学生有多少人.【答案】(1)200,(2)0.45,70,(3)126,(4)450人解析:解:(1)抽查的学生总数:(30+10)÷0.20=200(名),故答案:200(2)a==0.45,b=200×0.35=70,故答案为:0.45;70;(3)“喜欢”网课所对应扇形的圆心角度数:360°×=126°;故答案为:126.(4)1000×=450(人),答:该校“非常喜欢”网课的学生约有450人.24. 如图,反比例函数的图象与直线相交于点C,过直线上的点作轴于点B,交反比例函数的图象于点D,且.(1)求反比例函数的解析式;(2)求四边形的面积.【答案】(1);(2).【小问1解析】解:点在直线上,∴,,∴轴,,,点D在反比例函数的图象上,.反比例函数的解析式为.【小问2解析】由,解得或(舍去),,.25. 如图,是的直径,与相交于点.过点的圆O的切线,交的延长线于点,.(1)求的度数;(2)若,求的半径.【答案】(1)(2)【小问1解析】如图,连接.为的切线,.,.,.,.小问2解析】如图,连接,,,.,,且,,,即,,,即半径为.26. 【问题情境】在数学活动课上,老师让同学们以“矩形的折叠”为主题开展数学活动,如图,在矩形纸片中,点M,N分别是、的中点,点E,F分别在、上,且.【动手操作】将沿折叠,点A的对应点为点P,将沿折叠,点C的对应点为点Q,点P,Q均落在矩形的内部,连接,.【问题解决】(1)求证:四边形是平行四边形.(2)若,四边形为菱形,求的长.【答案】(1)证明见解析;(2)解析:解:(1)证明:如图1,延长交的延长线于.四边形是矩形,,,点M,N分别是,的中点,,.又,,,,.,,,,四边形是平行四边形(2)如图2,连接,交于点,延长交于,延长交于.图2四边形是菱形,,,,,,,,,,.27. 如图,在平面直角坐标系中,的边在x轴上,,以A为顶点的抛物线经过点,交y轴于点,动点P在对称轴上.(1)求抛物线的解析式.(2)若点P从A点出发,沿方向以1个单位长度/秒的速度匀速运动到点B停止,设运动时间为t 秒,过点P作交于点D,过点D且平行于y轴的直线l交抛物线于点Q,连接,当t为何值时,的面积最大?最大值是多少?(3)抛物线上是否存在点M,使得以点P,M,E,C为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)(2)当时,的面积最大,最大值为1;.【小问1解析】解:∵抛物线经过点,交y轴于点,∴把点,代入,得:,解得,,∴抛物线的解析式为:;小问2解析】∵∴抛物线的顶点A的坐标为,设直线的解析式为:把,代入得:,解得,,∴直线的解析式为:设点,对于当时,,∴,对于,当时,,∴,∴,∴∵∴有最大值,当时,最大值为1;【小问3解析】①若为平行四边形的对角线时,设点,,又,,∴的中点坐标的横坐标为,也是中点坐标的横坐标,∴∴把代入,得∴;②若为边时,将向下平移m个单位,再向左平移2个单位到点P,此时点M的坐标为,若点在抛物线上时,则有:∴;③若为对角线时,点E向下平移n个单位,再向右平移1个单位,则点C也向下平移n个单位,向右平移1个单位,则有,∴∴.综上所述,存在点M,使得以点P,M,E,C为顶点的四边形是平行四边形,点M的坐标为或.。
2008年高考数学试题及答案一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 设集合A={x|0≤x≤3},B={x|x≤1或x≥2},则A∩B=()A.{x|0≤x≤1}B.{x|1≤x≤2}C.{x|0≤x≤3}D.{x|0≤x≤1或2≤x≤3}2. 函数y=(x-1)^2+2的最小值为()A.0B.1C.2D.33. 已知等差数列{an}的前n项和为Sn,若S4=16,S7=28,则该数列的通项公式为()A.an=2n-3B.an=2n-1C.an=3n-4D.an=3n-24. 已知函数f(x)=2x^3-3ax^2+bx+c,其中a、b、c是常数,且f(x)在x=1处取得极大值,则a、b的值分别为()A.2,-6B.2,6C.-2,-6D.-2,65. 若三角形ABC的三边长分别为a、b、c,且a^2+b^2+c^2=ab+bc+ac,则三角形ABC的形状为()A.等边三角形B.等腰三角形C.直角三角形D.钝角三角形6. 已知函数f(x)=x^3-3x+1,求不等式f(x)<0的解集。
A.{x|-1<x<1}B.{x|x<-1或x>1}C.{x|-1<x<2}D.{x|x<-2或x>2}7. 设函数g(x)=x^2+2ax+b(a<0)的图象上存在点P(t,m),使得该图象在点P处的切线斜率为2,则t的取值范围是()A.t<0B.t=0C.t>0D.t≥08. 若函数y=f(x)的定义域为(-∞,2),则函数y=f(x-1)的定义域为()A.(-∞,1)B.(-∞,3)C.(1,+∞)D.(3,+∞)9. 已知函数f(x)=x^3-3x^2+x+1,求证:方程f(x)=0在区间(0,2)内至少有一个实根。
10. 若函数y=(2x-1)/(x-2)在区间(1,3)上是减函数,则实数x的取值范围是()A.1<x<2B.2<x<3C.1<x<3D.x≥3二、填空题(本大题共5小题,每小题5分,共25分。
白银市2024年初中毕业升学暨高中阶段学校招生考试数学试卷考生注意:本试卷满分为150分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.下列各数中,比2-小的数是()A.1-B.4-C.4D.12.如图所示,该几何体的主视图是()A. B. C. D.3.若55A ∠=︒,则A ∠的补角为()A.35︒B.45︒C.115︒D.125︒4.计算:4222a ba b a b -=--()A.2B.2a b -C.22a b - D.2a ba b--5.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,60ABD ∠=︒,2AB =,则AC 的长为()A.6B.5C.4D.36.如图,点A ,B ,C 在O 上,AC OB ⊥,垂足为D ,若35A ∠=︒,则C ∠的度数是()A.20︒B.25︒C.30︒D.35︒7.如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x 尺,长桌的长为y 尺,则y 与x 的关系可以表示为()A.3y x =B.4y x =C.31y x =+D.41y x =+8.近年来,我国重视农村电子商务的发展.下面的统计图反映了2016—2023年中国农村网络零售额情况.根据统计图提供的信息,下列结论错误的是()A.2023年中国农村网络零售额最高B.2016年中国农村网络零售额最低C.2016—2023年,中国农村网络零售额持续增加D.从2020年开始,中国农村网络零售额突破20000亿元9.敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A 区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为()15,16,那么有序数对记为()12,17对应的田地面积为()A.一亩八十步B.一亩二十步C.半亩七十八步D.半亩八十四步10.如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.D.二、填空题:本大题共6小题,每小题4分,共24分.11.因式分解:228x -=________.12.已知一次函数24y x =-+,当自变量2x >时,函数y 的值可以是________(写出一个合理的值即可).13.定义一种新运算*,规定运算法则为:*n m n m mn =-(m ,n 均为整数,且0m ≠).例:32*32232=-⨯=,则(2)*2-=________.14.围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点________的位置,则所得的对弈图是轴对称图形.(填写A ,B ,C ,D 中的一处即可,A ,B ,C ,D 位于棋盘的格点上)15.如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =-++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8mDE =的矩形,则可判定货车________完全停到车棚内(填“能”或“不能”).16.甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形OBC 和扇形OAD 有相同的圆心O ,且圆心角100O ∠=︒,若120OA =cm ,60OB =cm ,则阴影部分的面积是______2cm .(结果用π表示)三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17..18.解不等式组:()223122x x x x ⎧-<+⎪⎨+<⎪⎩19.先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b =-.20.马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:①以点M 为圆心,OM 长为半径,作弧交O 于A ,B 两点;②延长MO 交O 于点C ;即点A ,B ,C 将O的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O 的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB ,AC ,BC ,若O 的半径为2cm ,则ABC 的周长为______cm .21.在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.(1)请用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲乙双方公平吗?请说明理由.22.习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH 垂直于地面,测角仪CD ,EF 在AH 两侧, 1.6m CD EF ==,点C 与点E 相距182m (点C ,H ,E 在同一条直线上),在D 处测得简尖顶点A 的仰角为45︒,在F 处测得筒尖顶点A 的仰角为53︒.求风电塔筒AH 的高度.(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈.)四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.在阳光中学运动会跳高比赛中,每位选手要进行五轮比赛,张老师对参加比赛的甲、乙、丙三位选手的得分(单位:分,满分10分)进行了数据的收集、整理和分析,信息如下:信息一:甲、丙两位选手的得分折线图:信息二:选手乙五轮比赛部分成绩:其中三个得分分别是9.0,8.9,8.3;信息三:甲、乙、丙三位选手五轮比赛得分的平均数、中位数数据如下:选手甲乙丙统计量平均数m9.18.9中位数9.29.0n根据以上信息,回答下列问题:(1)写出表中m ,n 的值:m =_______,n =_______;(2)从甲、丙两位选手的得分折线图中可知,选手_______发挥的稳定性更好(填“甲”或“丙”);(3)该校现准备推荐一位选手参加市级比赛,你认为应该推荐哪位选手,请说明理由.24.如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0k y x x=>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0k y x x =>的图象于C ,D 两点.(1)求一次函数y ax b =+和反比例函数k y x=的表达式;(2)连接AD ,求ACD 的面积.25.如图,AB 是O 的直径, BCBD =,点E 在AD 的延长线上,且ADC AEB ∠=∠.(1)求证:BE 是O 的切线;(2)当O 的半径为2,3BC =时,求tan AEB ∠的值.26.【模型建立】(1)如图1,已知ABE 和BCD △,AB BC ⊥,AB BC =,CD BD ⊥,AE BD ⊥.用等式写出线段AE ,DE ,CD 的数量关系,并说明理由.【模型应用】(2)如图2,在正方形ABCD 中,点E ,F 分别在对角线BD 和边CD 上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形ABCD 中,点E 在对角线BD 上,点F 在边CD 的延长线上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.27.如图1,抛物线()2y a x h k =-+交x 轴于O ,()4,0A 两点,顶点为(2,B .点C 为OB 的中点.(1)求抛物线2()y a x h k =-+的表达式;(2)过点C 作CH OA ⊥,垂足为H ,交抛物线于点E .求线段CE 的长.(3)点D 为线段OA 上一动点(O 点除外),在OC 右侧作平行四边形OCFD .①如图2,当点F落在抛物线上时,求点F的坐标;+的最小值.②如图3,连接BD,BF,求BD BF参考答案一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.【答案】B【解析】【分析】本题主要考查了有理数比较大小,根据正数大于0,0大于负数,两个负数比较大小,绝对值越大其值越小进行求解即可.-=>-=>-=,【详解】解;∵442211∴42114-<-<-<<,∴四个数中比2-小的数是4-,故选:B .2.【答案】C【解析】【分析】本题考查了简单几何体的三视图,根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看得到的图形是:故选:C .3.【答案】D【解析】【分析】根据和为180︒的两个角互为补角,计算即可.本题考查了补角,熟练掌握定义是解题的关键.【详解】55A ∠=︒。
1白银五中2008~2009学年度九年级第二学期第二次月考试题(卷)班级_______ 姓名__________ 考号_____ 得分_______A 卷(100分)1A . b=ccosB B . b=atanB C . a=csinA D .a=ccosB2、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过 A .(-a ,-b ) B . (a ,-b ) C . (-a ,b ) D .(0,0)3、若α为锐角,则下列说法不正确的是A .αsin 随α的增大而增大B .cos α随α的减小而减小C .tan α随α的增大而增大D .0<sin α<1. 4、若sin cos A A +=,则锐角A 等于 A .30︒ B .45︒ C .60︒ D .90︒ 5、函数y =(m 2+m )122--m m x 是二次函数,则m 的值为A .2B .-1或3C .3D .-1±26、二次函数2y ax bx c =++的图象如图,对称轴是1x =,则下列结论中正确的是 A .0ac > B .0b < C .240b ac -< D .20a b +=7、把二次函数122--=x x y 配方成顶点式为( )A .2)1(-=x yB .2)1(2--=x yC .1)1(2++=x yD .2)1(2-+=x y8、在ABC ∆中,90C ∠=︒,两条直角边,a b 满足22430a ab b -+=,则t a n A 等于( ) A .2或4 B .3 C .1或3 D .2或39、已知点(-1,y 1)、(-3,y 2)、(2,y 3)在函数y=3x 2+6x+12的图象上,则y 1、y 2、y 3的大小关系为() A .y 1>y 2>y 3 B .y 2>y 1>y 3 C .y 2>y 3>y 1 D .y 3>y 1>y 2 10、在函数y=x ,y=1x,y=x 2-1,y=(x-1)2中, 其图像是轴对称图形且对称轴是坐标轴的共有( ) A.4个 B.3个 C.2个 D.1个二、填空题:(每小题3分,共24分)11、在ABC Rt ∆中,︒=∠90C ,若2,6==BC AB ,则=A cos 。
A.B.C.D.图1庆阳市试题友情提示:1、抛物线2y ax bx c =++的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,.2、扇形面积公式为:S 扇形=2360n R π;其中,n 为扇形圆心角度数,R 为扇形所在圆半径.3、圆锥侧面积公式:S 侧=r π;其中,r 为圆锥底面圆半径,为母线长.一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内. 1.( )A .8B .-8C .-4D .42. 下面四张扑克牌中,图案属于中心对称的是图1中的( )3. 两圆半径分别为3和4,圆心距为7,则这两个圆( )A.外切B.相交C.相离D.内切4. 下列说法中,正确的是( )A.买一张电影票,座位号一定是偶数B.投掷一枚均匀的一元硬币,有国徽的一面一定朝上 C.三条任意长的线段都可以组成一个三角形D.从1、2、3这三个数字中任取一个数,取得奇数的可能性大 5.正方形网格中,AOB ∠如图2放置,则sin AOB ∠=( )A.5B.5C.12D.26. 在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( )A.12个 B.9个 C.6个 D.3个7. 如图3,身高为1.6米的某学生想测量学校旗杆的高度,当他站在C 处时,他头顶端的 影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( )AB O图2图4CDA OB E 图6A.6.4米 B.7米 C.8米D.9米 8. 某商品经过两次连续降价,每件售价由原来的55元降到了35元.设平均每次降价的百分率为x ,则下列方程中正确的是( ) A .55 (1+x )2=35 B .35(1+x )2=55 C .55 (1-x )2=35 D .35(1-x )2=55 9. 如图4,AB 是O 的直径,CD 为弦,CD AB ⊥于E ,则下列结论中不成立...的是( ) A.COE DOE ∠=∠ B.CE DE = C.=OE BE D.BD BC =10. 若2)A.243y x x =-+ B.234y x x =-+C.233y x x =-+D.248y x x =-+二、填空题:本大题共10小题,每小题4分,共40分.把答案填在题中的横线上. 11. 方程24x x =的解是 .12. x 应满足的条件是 . 13. “明天下雨的概率为0.99”是 事件.14. 二次函数24y x =+的最小值是 .15.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小(填 “相同”、“不一定相同”、“不相同”之一). 16. 两个相似三角形的面积比S 1:S 2与它们对应高之比h 1:h 2之间的关系为 . 17.如图5,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,3cos 4BAC ∠=,则梯子长AB = 米.18. 兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层图3ABC图5图7图8二楼 一楼4mA 4m4m B28°C图9图11数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上(如图6所示),则6楼房子的价格为 元/平方米. 19. 图7中ABC △外接圆的圆心坐标是 .20. 如图8,D 、E 分别是ABC △的边AB 、AC 上的点,则使AED △∽ABC △的条件是 .三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤. 21.(6.22.(7分)如图9,某超市(大型商场)在一楼至二楼之间安装有电梯,天花板(一楼的楼顶墙壁)与地面平行,请你根据图中数据计算回答:小敏身高1.85米,他乘电梯会有碰头危险吗?(sin28o ≈0.47,tan28o ≈0.53)23.(7分)图10是某几何体的展开图.(1)这个几何体的名称是 ; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π取3.14)24.(8分)在如图11的方格纸中,每个小方格都是边长为1个单位的正方形,ABC △的三个顶点都在格点上(每个小方格的顶点叫格点). (1) 画出ABC △绕点O 顺时针旋转90后的111A B C △; (2)求点A 旋转到1A 所经过的路线长.图1025.(10分)如图12,线段AB 与O 相切于点C ,连结OA 、OB ,OB 交O 于点D ,已知6cm OA OB ==,AB =. 求:(1)O 的半径;(2)图中阴影部分的面积.四、解答题(二):本大题共4小题,共42分.解答时,应写出必要的文字说明、证明过程或演算步骤.26. (10分)如图13,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?27.(10分)图14(1)是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC BC ,表示铁夹的两个面,O 点是轴,OD AC ⊥于D .已知15mm AD =,24mm DC =,10mm OD =. 已知文件夹是轴对称图形,试利用图14(2),求图14(1)中A B ,两点的距离26=)28. (10分) 甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).甲超市:OACBD图12图13图14图7(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况; (2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.29. (12分)一条抛物线2y x mx n =++经过点()03,与()43,.(1)求这条抛物线的解析式,并写出它的顶点坐标; (2)现有一半径为1、圆心P 在抛物线上运动的动圆,当P 与坐标轴相切时,求圆心P 的坐标;(3)P 能与两坐标轴都相切吗?如果不能,试通过上下平移抛物线2y x mx n =++使P 与两坐标轴都相切(要说明平移方法).附加题:15分1.(6分)如图16,在Rt ⊿ABC 中,BC 、AC 、AB 三边的长分别为a 、b 、c ,则 sinA=a c , cosA=bc ,tanA=ab. 我们不难发现:sin 260o +cos 260o =1,… 试探求sinA 、cosA 、tanA并说明理由.2.(9分)对于本试卷第19题:“图7中ABC △外接圆的圆心坐标是 .” 请再求:(1) 该圆圆心到弦AC 的距离;(2)以BC 为旋转轴,将ABC △旋转一周所得几何体的全面积(所有表面面积之和).图15图16B 1 A 1C 1庆阳市试题答案一、选择题:本大题共10小题,每小题3分,共30分.1.D 2.B 3.A 4.D 5.B 6. A 7. C 8. C 9.C 10. A 二、填空题:本大题共10小题,每小题4分,共40分.11. 0或4 12. 2x ≥ 13. 不确定, 或随机 14. 4 15. 相同16. 21122S h S h ⎛⎫= ⎪⎝⎭17.4 18. 2080 19. (52),20. AED B =∠∠,或ADE C =∠∠,或AD AEAC AB=三、解答题(一):本大题共5小题,共38分. 21. 本小题满分6分原式=3-2 ····················································································· 5分 =1. ···················································································· 6分 22.本小题满分7分作CD AC ⊥交AB 于D ,则28CAD =∠, ··········································· 3分 在Rt ACD △中,tan CD AC CAD =∠ ············································· 5分40.53 2.12=⨯=(米). ····································· 6分 所以,小敏不会有碰头危险. ······························································· 7分 23.本小题满分7分(1)圆柱; ············································································· 2分 (2)三视图为:······································ 5分(3)体积为:2πr h =23.14520⨯⨯=1570. ·············································· 7分 24.本小题满分8分 (1)如图:··························3分(2) ∵ 点A 旋转到1A 所经过的路线长为以OA 为半径圆的周长的14, ········· 5分 ∴ 点A 旋转到1A 所经过的路线长为14×2r π=12π. ········· 8分 25. 本小题满分10分(1)连结OC . ······················································· 1分 则 OC AB ⊥. ···················································· 2分 又OA OB =,∴)11cm 22AC BC AB ===⨯=. ············································· 3分在Rt AOC △中,()3cm OC ===.∴O 的半径为3cm . ·········································································· 5分 (2) ∵ OC=12OB , ∴ ∠B=30o , ∠COD=60o . ·········································· 7分 ∴ 扇形OCD 的面积为2603360π⋅⋅=32π. ··············································· 8分∴ 阴影部分的面积为12OC CB -32π-32π (cm 2). ······················ 10分 四、解答题(二):本大题共4小题,共42分. 26. 本小题满分10分设这种箱子底部宽为x 米,则长为(2)x +米, ··········································· 2分 依题意,得(2)115x x +⨯=. ·························································· 5分 解得15x =-(舍),23x =. ··························································· 7分 ∴ 这种箱子底部长为5米、宽为3米.由长方体展开图知,要购买矩形铁皮面积为(52)(32)35+⨯+=(米2). ······ 9分 ∴ 做一个这样的箱子要花3520700⨯=元钱. ········································· 10分 27.本小题满分10分解:如图,连结AB 与CO 延长线交于E , ················································· 1分 ∵ 夹子是轴对称图形,对称轴是CE ,A 、B 为一组对称点, ∴ CE ⊥AB ,AE=EB . ································3分 在Rt AEC △、Rt ODC △中, ∵ ∠ACE=∠OCD ,∠OCD 公用,∴ Rt AEC △∽Rt ODC △. ·································································· 5分OA CD∴AE AC ODOC=. 又= ····················································· 8分 ∴ AE=AC OD OC ⋅=391015.26⨯= ∴ AB=2AE=30(mm ). ······························································· 10分 28. 本小题满分10分 (1)树状图为:············· 4分(2)方法1:∵ 去甲超市购物摸一次奖获10元礼金券的概率是P (甲)4263==, ············ 7分 去乙超市购物摸一次奖获10元礼金券的概率是P (乙)2163==, ············ 9分∴ 我选择去甲超市购物. ······························································· 10分方法2:∵ 两红的概率P=61,两白的概率P=61,一红一白的概率P=46=32, ······ 6分 ∴ 在甲商场获礼金券的平均收益是:61×5+32×10+61×5=325; ················ 8分在乙商场获礼金券的平均收益是:61×10+32×5+61×10=320.∴ 我选择到甲商场购物. ····································································· 10分 说明:树状图表示为如下形式且按此求解第(2)问的,也正确.29. 本小题满分12分(1)∵ 抛物线过()()04,3,,3两点,∴ 23443n m n =⎧⎨++=⎩,.········································································· 1分解得43m n =-⎧⎨=⎩,.··············································································· 2分∴ 抛物线的解析式是243y x x =-+,顶点坐标为()21-,. ························· 3分 (2)设点P 的坐标为00()x y ,, 当P 与y 轴相切时,有0||1x =,∴01x =±. ······································· 5分 由01x =,得201430y =-+=;由01x =-,得20(1)4(1)38y =---+=.此时,点P 的坐标为()()121018P P -,,,. ······································· 6分 当P 与x 轴相切时,有0||1y =,∴ 01y =±. ································· 7分 由01y =,得200431x x -+=,解得02x =; 由01y =-,得200431x x -+=-,解得02x =.此时,点P的坐标为34(2(2P P ,,5(21)P ,-. ·················· 9分 综上所述,圆心P 的坐标为:()()121018P P -,,,,34(2(2P P ,,5(21)P ,-.注:不写最后一步不扣分.(3) 由(2)知,不能. ····························································· 10分 设抛物线243y x x =-+上下平移后的解析式为2(2)1y x h =--+, 若P 能与两坐标轴都相切,则0||x =0||1y =,即x 0=y 0=1;或x 0=y 0=-1;或x 0=1,y 0=-1;或x 0=-1,y 0=1. ··················· 11分 取x 0=y 0=1,代入2(2)1y x h =--+,得h=1. ∴ 只需将243y x x =-+向上平移1个单位,就可使P 与两坐标轴都相切.·································································································· 12分 附加题:15分1.存在的一般关系有:(1) sin 2A+cos 2A=1; (2)tanA=sin cos AA. ··············································································· 2分 (1) 证明:∵ sinA=a c , cosA=bc ,a 2+b 2=c 2, ····················································· 3分∴ sin 2A+cos 2A=222222222a b a b c c c c c++===1. ··········· 4分 (2) 证明:∵ sinA=a c , cosA=bc,∴ tanA=ab =ac b c ···················································································· 5分=sin cos A A. ·········································································· 6分 2.(1) 方法1:如图,圆心为P (5,2),作PD ⊥AC 于D ,则AD=CD . ······························ 1分 连结CP ,∵ AC 为是为6、宽为2的矩形的对角线, ∴······························ 2分同理····························· 3分∴······························ 4分 方法2:∵ 圆心为P (5,2),作PD ⊥AC 于D ,则AD=CD . ·································· 1分 由直观,发现点D 的坐标为(2,3). ······················································· 2分 又∵ PD 为是为3、宽为1的矩形的对角线,∴········································································· 4分 (2)∵ 旋转后得到的几何体是一个以2为底面圆半径、6为高的大圆锥,再挖掉一个以2为底面圆半径、2为高的小圆锥, ························································ 5分又 它们的母线之长分别为ι小=ι大, ·········· 7分∴ 所求的全面积为:πr ι大+πr ι小 ···························································· 8分 =πr (ι大+ι小)=4)π. ················································· 9分说明:对于以上各解答题学生试卷中出现的不同解法,请参考本标准给分.DP。
白银市2024年初中毕业升学暨高中阶段学校招生考试数学试卷考生注意:本试卷满分为150分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.下列各数中,比2-小的数是()A.1- B.4- C.4 D.1【答案】B【解析】【分析】本题主要考查了有理数比较大小,根据正数大于0,0大于负数,两个负数比较大小,绝对值越大其值越小进行求解即可.【详解】解;∵442211-=>-=>-=,∴42114-<-<-<<,∴四个数中比2-小的数是4-,故选:B .2.如图所示,该几何体的主视图是()A. B. C. D.【答案】C【解析】【分析】本题考查了简单组合体的三视图,根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看得到是图形是:故选:C .3.若55A ∠=︒,则A ∠的补角为()A.35︒ B.45︒ C.115︒ D.125︒【答案】D【解析】【分析】根据和为180︒的两个角互为补角,计算即可.本题考查了补角,熟练掌握定义是解题的关键.【详解】55A ∠=︒。
则A ∠的补角为18055125︒-︒=︒.故选:D .4.计算:4222a b a b a b -=--()A.2B.2a b -C.22a b -D.2a b a b --【答案】A【解析】【分析】本题主要考查了同分母分式减法计算,熟知相关计算法则是解题的关键.【详解】解:()42422222222a b a b a b a b a a b a bb --===-----,故选:A .5.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,60ABD ∠=︒,2AB =,则AC 的长为()A.6B.5C.4D.3【答案】C【解析】【分析】根据矩形ABCD 的性质,得12OA OB OC OD AC ====,结合60ABD ∠=︒,得到AOB 是等边三角形,结合2AB =,得到12OA OB AB AC ===,解得即可.本题考查了矩形的性质,等边三角形的判定和性质,熟练掌握矩形的性质是解题的关键.【详解】根据矩形ABCD 的性质,得12OA OB OC OD AC ====,∵60ABD ∠=︒,∴AOB 是等边三角形,∵2AB =,∴122OA OB AB AC ====,解得4AC =.故选C .6.如图,点A ,B ,C 在O 上,AC OB ⊥,垂足为D ,若35A ∠=︒,则C ∠的度数是()A.20︒B.25︒C.30︒D.35︒【答案】A【解析】【分析】根据35A ∠=︒得到70O ∠=︒,根据AC OB ⊥得到90CDO ∠=︒,根据直角三角形的两个锐角互余,计算即可.本题考查了圆周角定理,直角三角形的性质,熟练掌握圆周角定理,直角三角形的性质是解题的关键.【详解】∵35A ∠=︒,∴70O ∠=︒,∵AC OB ⊥,∴90CDO ∠=︒,∴9020C O ∠=︒-∠=︒.故选C .7.如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x 尺,长桌的长为y 尺,则y 与x 的关系可以表示为()A.3y x =B.4y x =C.31y x =+D.41y x =+【答案】B【解析】【分析】本题主要考查了列函数关系式,观察可知,小桌的长是小桌宽的两倍,则小桌的长是2x ,再根据长桌的长等于小桌的长加上2倍的小桌的宽列出对应的函数关系式即可.【详解】解:由题意可得,小桌的长是小桌宽的两倍,则小桌的长是2x ,∴24y x x x x =++=,故选:B .8.近年来,我国重视农村电子商务的发展.下面的统计图反映了2016—2023年中国农村网络零售额情况.根据统计图提供的信息,下列结论错误的是()A.2023年中国农村网络零售额最高B.2016年中国农村网络零售额最低C.2016—2023年,中国农村网络零售额持续增加D.从2020年开始,中国农村网络零售额突破20000亿元【答案】D【解析】【分析】根据统计图提供信息解答即可.本题考查了统计图的应用,熟练掌握统计图的意义是解题的关键.【详解】A.根据统计图信息,得到124491367917083107946205945<<<<<<21700<024900,故2023年中国农村网络零售额最高,正确,不符合题意;B.根据题意,得124491367917083107946205945<<<<<<21700<024900,故2016年中国农村网络零售额最低,正确,不符合题意;C.根据题意,得124491367917083107946205945<<<<<<21700<024900,故2016—2023年,中国农村网络零售额持续增加,正确,不符合题意;D.从2021年开始,中国农村网络零售额突破20000亿元,原说法错误,符合题意;故选D .9.敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A 区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为()15,16,那么有序数对记为()12,17对应的田地面积为()A.一亩八十步B.一亩二十步C.半亩七十八步D.半亩八十四步【答案】D【解析】【分析】根据()1516,可得,横从上面从右向左看,纵从右边自下而上看,解答即可.本题考查了坐标与位置的应用,熟练掌握坐标与位置的应用是解题的关键.【详解】根据()1516,可得,横从上面从右向左看,纵从右边自下而上看,故()12,17对应的是半亩八十四步,故选D .10.如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.D.【答案】C【解析】【分析】结合图象,得到当0x =时,4PO AO ==,当点P 运动到点B 时,2PO BO ==,根据菱形的性质,得90AOB BOC ∠=∠=︒,继而得到AB BC ===P 运动到BC 中点时,PO 的长为12BC =本题考查了菱形的性质,图象信息题,勾股定理,直角三角形的性质,熟练掌握菱形的性质,勾股定理,直角三角形的性质是解题的关键.【详解】结合图象,得到当0x =时,4PO AO ==,当点P 运动到点B 时,2PO BO ==,根据菱形的性质,得90AOB BOC ∠=∠=︒,故AB BC ===,当点P 运动到BC 中点时,PO 的长为12BC =故选C .二、填空题:本大题共6小题,每小题4分,共24分.11.因式分解:228x -=________.【答案】()()222x x +-【解析】【分析】先提取公因式,再套用公式分解即可.本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.【详解】()2222822x x -=-()()222x x =+-.故答案为:()()222x x +-.12.已知一次函数24y x =-+,当自变量2x >时,函数y 的值可以是________(写出一个合理的值即可).【答案】2-(答案不唯一)【解析】【分析】根据2x >,选择3x =,此时2342y =-⨯+=-,解得即可.本题考查了函数值的计算,正确选择自变量是解题的关键.【详解】根据2x >,选择3x =,此时2342y =-⨯+=-,故答案为:2-.13.定义一种新运算*,规定运算法则为:*n m n m mn =-(m ,n 均为整数,且0m ≠).例:32*32232=-⨯=,则(2)*2-=________.【答案】8【解析】【分析】根据定义,得()()2(2)*22228-=--⨯-=,解得即可.本题考查了实数新定义计算,正确理解定义是解题的关键.【详解】根据定义,得()()2(2)*22228-=--⨯-=,故答案为:8.14.围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点________的位置,则所得的对弈图是轴对称图形.(填写A ,B ,C ,D 中的一处即可,A ,B ,C ,D 位于棋盘的格点上)【答案】A##C【解析】【分析】根据轴对称图形的定义解答即可.本题考查了轴对称图形,熟练掌握定义是解题的关键.【详解】根据轴对称图形的定义,发现放在B ,D 处不能构成轴对称图形,放在A 或C 处可以,故答案为:A 或C .15.如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =-++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8mDE =的矩形,则可判定货车________完全停到车棚内(填“能”或“不能”).【答案】能【解析】【分析】本题主要考查了二次函数的实际应用,根据题意求出当2x =时,y 的值,若此时y 的值大于1.8,则货车能完全停到车棚内,反之,不能,据此求解即可.【详解】解:∵4m CD =,()62.68B ,,∴642-=,在20.020.3 1.6y x x =-++中,当2x =时,20.0220.32 1.6 2.12y =-⨯+⨯+=,∵2.12 1.8>,∴可判定货车能完全停到车棚内,故答案为:能.16.甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形OBC 和扇形OAD 有相同的圆心O ,且圆心角100O ∠=︒,若120OA =cm ,60OB =cm ,则阴影部分的面积是______2cm .(结果用π表示)【答案】3000π【解析】【分析】根据扇形面积公式计算即可.本题考查了扇形面积公式,熟练掌握公式是解题的关键.【详解】∵圆心角100O ∠=︒,120OA =cm ,60OB =cm ,∴阴影部分的面积是2210012010060360360ππ⨯⨯⨯⨯-3000π=2cm 故答案为:3000π.三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17..【答案】0【解析】【分析】根据二次根式的混合运算计算即可.本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.【详解】-0===.18.解不等式组:()223122x x x x ⎧-<+⎪⎨+<⎪⎩【答案】173x <<【解析】【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:()223122x x x x ⎧-<+⎪⎨+<⎪⎩①②解不等式①得:7x <,解不等式②得:13x >,∴不等式组的解集为173x <<.19.先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b =-.【答案】2a b +,3【解析】【分析】本题主要考查了整式的化简求值,先根据平方差公式和完全平方公式去小括号,然后合并同类项,再根据多项式除以单项式的计算法则化简,最后代值计算即可.【详解】解:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦()()22224442a ab b a b b⎡⎤=++--÷⎣⎦()22224442a ab b a b b=++-+÷()2422ab b b=+÷2a b =+,当2a =,1b =-时,原式()2213=⨯+-=.20.马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:①以点M 为圆心,OM 长为半径,作弧交O 于A ,B 两点;②延长MO 交O 于点C ;即点A ,B ,C 将O 的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O 的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB ,AC ,BC ,若O 的半径为2cm ,则ABC 的周长为______cm .【答案】(1)见解析(2)【解析】【分析】(1)根据尺规作图的基本步骤解答即可;(2)连接AM ,设,AB OM 的交点为D ,根据两圆的圆心线垂直平分公共弦,得到AD OM ⊥,根据O 的半径为2cm ,MC 是直径,ABC 是等边三角形,计算即可.本题考查了尺规作图,圆的性质,等边三角形的性质,熟练掌握作图和圆的性质是解题的关键.【小问1详解】根据基本作图的步骤,作图如下:则点A ,B ,C 是求作的O 的圆周三等分点.【小问2详解】连接AM ,设,AB OM 的交点为D ,根据两圆的圆心线垂直平分公共弦,得到AD OM ⊥,∵O 的半径为2cm ,MC 是直径,ABC 是等边三角形,∴90CAM ∠=︒,60,4cm CMA MC ∠=︒=,∴)sin sin 604cm AC MC CMA =∠=︒⨯=,∴ABC 的周长为)cm AB BC AC ++=,故答案为:21.在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.(1)请用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲乙双方公平吗?请说明理由.【答案】(1)712(2)这个游戏规则对甲乙双方不公平,理由见解析【解析】【分析】本题主要考查了树状图法或列表法求解概率,游戏的公平性:(1)先画出树状图得到所有等可能性的结果数,再找到两球上的数字之和为奇数的结果数,最后利用概率计算公式求解即可;(2)同(1)求出乙获胜的概率即可得到结论.【小问1详解】解:画树状图如下:由树状图可知,一共有12种等可能性的结果数,其中两球上的数字之和为奇数的结果数有7种,∴甲获胜的概率为712;【小问2详解】解:这个游戏规则对甲乙双方不公平,理由如下:由(1)中的树状图可知,两球上的数字之和为偶数的结果数有5种,∴乙获胜的概率为512,∵571212<,∴甲获胜的概率大于乙获胜的概率,∴这个游戏规则对甲乙双方不公平.22.习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH 垂直于地面,测角仪CD ,EF 在AH 两侧, 1.6m CD EF ==,点C 与点E 相距182m (点C ,H ,E 在同一条直线上),在D 处测得简尖顶点A 的仰角为45︒,在F 处测得筒尖顶点A 的仰角为53︒.求风电塔筒AH 的高度.(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈.)【答案】105.6m【解析】【分析】本题主要考查了解直角三角形的实际应用,矩形的性质与判定,过点D 作DG AH ⊥于G ,连接FG ,则四边形CDGH 是矩形,可得 1.6m GH CD ==,DG CH =,再证明四边形EFGH 是矩形,则FG HE =,90HGF ∠=︒,进一步证明D G F 、、三点共线,得到182m DF =;设m AG x =,解Rt ADG 得到m DG x =;解Rt AFG △得到3m 4FG x ≈;则31824x x +=,解得104x =,即104m AG =,则105.6m AH AG GH =+=.【详解】解:如图所示,过点D 作DG AH ⊥于G ,连接FG ,则四边形CDGH 是矩形,∴ 1.6m GH CD ==,DG CH =,∵ 1.6m CD EF ==,∴GH EF =,由题意可得GH CE EF CE ⊥,⊥,∴GH EF ,∴四边形EFGH 是矩形,∴FG HE =,90HGF ∠=︒,∴180DGH FGH +=︒∠∠,∴D G F 、、三点共线,∴182m DF DG FG CH HE CE =+=+==;设m AG x =,在Rt ADG 中,tan AG ADG DG∠=,∴tan 45xDG︒=∴m DG x =;在Rt AFG △中,tan AG AFG FG ∠=,∴tan 53x FG ︒=∴3m 4FG x ≈;∴31824x x +=,解得104x =,∴104m AG =,∴105.6m AH AG GH =+=,∴风电塔筒AH 的高度约为105.6m .四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.在阳光中学运动会跳高比赛中,每位选手要进行五轮比赛,张老师对参加比赛的甲、乙、丙三位选手的得分(单位:分,满分10分)进行了数据的收集、整理和分析,信息如下:信息一:甲、丙两位选手的得分折线图:信息二:选手乙五轮比赛部分成绩:其中三个得分分别是9.0,8.9,8.3;信息三:甲、乙、丙三位选手五轮比赛得分的平均数、中位数数据如下:选手统计量甲乙丙平均数m9.18.9中位数9.29.0n根据以上信息,回答下列问题:(1)写出表中m,n的值:m=_______,n=_______;(2)从甲、丙两位选手的得分折线图中可知,选手_______发挥的稳定性更好(填“甲”或“丙”);(3)该校现准备推荐一位选手参加市级比赛,你认为应该推荐哪位选手,请说明理由.【答案】(1)9.1;9.1(2)甲(3)应该推荐甲选手,理由见解析【解析】【分析】本题主要考查了平均数,众数,方差与稳定性之间的关系:(1)根据平均数与众数的定义求解即可;(2)根据统计图可知,甲的成绩的波动比乙的成绩的波动小,则选手甲发挥的稳定性更好;(3)从平均成绩,中位数和稳定性等角度出发进行描述即可.【小问1详解】解:由题意得,9.28.89.38.79.59.15m++++==;把丙的五次成绩按照从低到高排列为:8.38.49.19.39.4,,,,,∴丙成绩的中位数为9.1分,即9.1n=;故答案为:9.1;9.1;【小问2详解】解:由统计图可知,甲的成绩的波动比乙的成绩的波动小,则选手甲发挥的稳定性更好,故答案为:甲;【小问3详解】解:应该推荐甲选手,理由如下:甲的中位数和平均数都比乙的大,且甲的成绩稳定性比乙好,∴应该推荐甲选手.24.如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0k y x x=>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0k y x x =>的图象于C ,D 两点.(1)求一次函数y ax b =+和反比例函数k y x=的表达式;(2)连接AD ,求ACD 的面积.【答案】(1)一次函数y ax b =+的解析式为132y x =+;反比例函数()0k y x x =>的解析式为()80y x x =>;(2)6【解析】【分析】本题主要考查了一次函数与反比例函数综合:(1)先根据一次函数图象的平移规律3y ax b ax =+=+,再把点A 的坐标分别代入对应的一次函数解析式和反比例函数解析式中,利用待定系数法求解即可;(2)先分别求出C 、D 的坐标,进而求出CD 的长,再根据三角形面积计算公式求解即可.【小问1详解】解:∵将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,∴3y ax b ax =+=+,把()24A ,代入3y ax =+中得:234a +=,解得12a =,∴一次函数y axb =+的解析式为132y x =+;把()24A ,代入()0k y x x =>中得:()402k x =>,解得8k =,∴反比例函数()0k y x x =>的解析式为()80y x x=>;【小问2详解】解:∵BC x ∥轴,()02B ,,∴点C 和点D 的纵坐标都为2,在132y x =+中,当1322y x =+=时,2x =-,即()22-,C ;在()80y x x =>中,当82y x ==时,4x =,即()42D ,;∴()426CD =--=,∵()24A ,,∴()()11642622ACD A C S CD y y =⋅-=⨯⨯-=△.25.如图,AB 是O 的直径, BCBD =,点E 在AD 的延长线上,且ADC AEB ∠=∠.(1)求证:BE 是O 的切线;(2)当O 的半径为2,3BC =时,求tan AEB ∠的值.【答案】(1)见解析(2)tan 3AEB ∠=【解析】【分析】(1)连接BD ,OC OD =,证明OB 垂直平分CD ,得出90AFD ∠=︒,证明CD BE ∥,得出90ABE AFD ∠=∠=︒,说明AB BE ⊥,即可证明结论;(2)根据AB 是O 的直径,得出90ACB ∠=︒,根据勾股定理求出AC ===,根据三角函数定义求出tan 3AC ABC BC ∠==,证明AEB ABC ∠=∠,得出7tan tan 3AEB ABC ∠=∠=即可.【小问1详解】证明:连接BD ,OC OD =,如图所示:∵ BC BD =,∴BC BD =,∵OC OD =,∴点O 、B 在CD 的垂直平分线上,∴OB 垂直平分CD ,∴90AFD ∠=︒,∵ADC AEB ∠=∠,∴CD BE ∥,∴90ABE AFD ∠=∠=︒,∴AB BE ⊥,∵AB 是O 的直径,∴BE 是O 的切线;【小问2详解】解:∵O 的半径为2,∴224AB =⨯=,∵AB 是O 的直径,∴90ACB ∠=︒,∵3BC =,∴AC ===∴tan 3AC ABC BC ∠==,∵ AC AC=,∴ADC ABC ∠=∠,∵AEB ADC ∠=∠,∴AEB ABC ∠=∠,∴7tan tan 3AEB ABC ∠=∠=.【点睛】本题主要考查了切线的判定,勾股定理,求一个角的正切值,圆周角定理,垂直平分线的判定,平行线的判定和性质,解题的关键是作出辅助线,熟练掌握相关的判定和性质.26.【模型建立】(1)如图1,已知ABE 和BCD △,AB BC ⊥,AB BC =,CD BD ⊥,AE BD ⊥.用等式写出线段AE ,DE ,CD 的数量关系,并说明理由.【模型应用】(2)如图2,在正方形ABCD 中,点E ,F 分别在对角线BD 和边CD 上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形ABCD 中,点E 在对角线BD 上,点F 在边CD 的延长线上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.【答案】(1)DE CD AE +=,理由见详解,(2)AD DF =+,理由见详解,(3)AD DF =-,理由见详解【解析】【分析】(1)直接证明ABE BCD △≌△,即可证明;(2)过E 点作EM AD ⊥于点M ,过E 点作EN CD ⊥于点N ,先证明Rt Rt AEM FEN ≌,可得AM NF =,结合等腰直角三角形的性质可得:2MD DN DE ==,NF ND DF MD DF =-=-,即有2NF AM AD MD AD DE ==-=-,2NF DE DF =-,进而可得22AD DE DE DF -=-,即可证;(3)过A 点作AH BD ⊥于点H ,过F 点作FG BD ⊥,交BD 的延长线于点G ,先证明HAE GEF ≌,再结合等腰直角三角形的性质,即可证明.【详解】(1)DE CD AE +=,理由如下:∵CD BD ⊥,AE BD ⊥,AB BC ⊥,∴90ABC D AEB ∠=∠=∠=︒,∴90ABE CBD C CBD ∠+∠=∠+∠=︒,∴ABE C ∠=∠,∵AB BC =,∴ABE BCD △≌△,∴BE CD =,AE BD =,∴DE BD BE AE CD =-=-,∴DE CD AE +=;(2)AD DF =+,理由如下:过E 点作EM AD ⊥于点M ,过E 点作EN CD ⊥于点N ,如图,∵四边形ABCD 是正方形,BD 是正方形的对角线,∴45ADB CDB ∠=∠=︒,BD 平分ADC ∠,90ADC ∠=︒,BD ==,即DE BD BE BE =-=-,∵EN CD ⊥,EM AD ⊥,∴EM EN =,∵AE EF =,∴Rt Rt AEM FEN ≌,∴AM NF =,∵EM EN =,EN CD ⊥,EM AD ⊥,90ADC ∠=︒,∴四边形EMDN 是正方形,∴ED 是正方形EMDN 对角线,MD ND =,∴2MD DN DE ==,NF ND DF MD DF =-=-,∴2NF AM AD MD AD DE ==-=-,2NF DE DF =-,∴22AD DE DE DF -=-,即AD DF =-,∵DE BE =-,∴)AD BE DF =--,即有AD DF =+;(3)AD DF =-,理由见详解,过A 点作AH BD ⊥于点H ,过F 点作FG BD ⊥,交BD 的延长线于点G ,如图,∵AH BD ⊥,FG BD ⊥,AE EF ⊥,∴90AHE G AEF ∠=∠=∠=︒,∴90AEH HAE AEH FEG ∠+∠=∠+∠=︒,∴HAE FEG ∠=∠,又∵AE AF =,∴HAE GEF ≌,∴HE FG =,∵在正方形ABCD 中,45BDC ∠=︒,∴45FDG BDC ∠=∠=︒,∴45DFG ∠=︒,∴DFG 是等腰直角三角形,∴2FG DF =,∴2HE FG DF ==,∵45ADB ∠=︒,AH HD ⊥,∴ADH 是等腰直角三角形,∴2HD AD =,∴22DE HD HE AD DF =-=-,∴22BD BE DE AD -==-,∵BD D =,22BE AD DF -=-,∴AD DF =-.【点睛】本题主要考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,角平分线的性质等知识,题目难度中等,作出合理的辅助线,灵活证明三角形的全等,并准确表示出各个边之间的数量关系,是解答本题的关键.27.如图1,抛物线()2y a x h k =-+交x 轴于O ,()4,0A 两点,顶点为(2,B .点C 为OB 的中点.(1)求抛物线2()y a x h k =-+的表达式;(2)过点C 作CH OA ⊥,垂足为H ,交抛物线于点E .求线段CE 的长.(3)点D 为线段OA 上一动点(O 点除外),在OC 右侧作平行四边形OCFD .①如图2,当点F 落在抛物线上时,求点F 的坐标;②如图3,连接BD ,BF ,求BD BF +的最小值.【答案】(1)22y x =-+(2)2(3)①(2F ②【解析】【分析】(1)根据顶点为(2,B .设抛物线2(2)y a x =-+()4,0A 代入解析式,计算求解即可;(2)根据顶点为(2,B .点C 为OB 的中点,得到(C ,当1x =时,22y =-+=,得到331,2E ⎛ ⎝⎭.结合CH OA ⊥,垂足为H ,得到33322CE =-=的长.(3)①根据题意,得(C ,结合四边形OCFD 是平行四边形,设(F m ,结合点F 落在抛物线232m =-+,解得即可;②过点B 作BN y ⊥轴于点N ,作点D 关于直线BN 的对称点G ,过点G 作GH y ⊥轴于点H ,连接DG ,CH ,FG ,利用平行四边形的判定和性质,三角形不等式,勾股定理,矩形判定和性质,计算解答即可.【小问1详解】∵抛物线的顶点坐标为(2,B .设抛物线2(2)y a x =-+把()4,0A 代入解析式,得()2420a -+=,解得32a =-,∴()2233222y x x =--+=-+.【小问2详解】∵顶点为(2,B .点C 为OB 的中点,∴(C ,∵CH OA ⊥,∴CH y ∥轴,∴E 的横坐标为1,设()1,E m ,当1x =时,33322m =-+=,∴331,2E ⎛⎫ ⎪ ⎪⎝⎭.∴33322CE ==.【小问3详解】①根据题意,得(C ,∵四边形OCFD 是平行四边形,∴点C ,点F 的纵坐标相同,设(F m ,∵点F 落在抛物线上,22m =-+,解得12m =22m =(舍去);故(2F +.②过点B 作BN y ⊥轴于点N ,作点D 关于直线BN 的对称点G ,过点G 作GH y ⊥轴于点H ,连接DG ,CH ,FG ,则四边形ODGH 是矩形,∴,OD HG OD HG = ,∵四边形OCFD 是平行四边形,∴,OD CF OD CF = ,∴,GH CF GH CF = ,∴四边形CFGH 是平行四边形,∴FG CH =,∵BG F BF G +≥,故当B G F 、、三点共线时,BG BF +取得最小值,∵BG BD =,∴BG BF +的最小值,就是BD BF +的最小值,且最小值就是CH ,延长FC 交y 轴于点M ,∵OD CF ∥,∴90HMC HOD ∠=∠=︒,∵(C ,∴1,CM OM ==∵(2,B ,∴ON NH ==,∴HM ON NH OM =+-=∴HC ===,故BD BF +的最小值是.【点睛】本题考查了二次函数待定系数法,中点坐标公式,平行四边形的判定和性质,矩形的判定和性质,勾股定理,轴对称,三角形不等式求线段和的最小值,熟练掌握平行四边形的性质,轴对称,三角形不等式求线段和的最小值是解题的关键.。
2008年中考数学综合测试(三)(100分钟完卷, 满分150分)一、填空题(本题共12小题,每小题3分,满分36分) 1.计算:a 3÷a 2=______________. 2.计算:24-=____________.3.分解因式:.____________________92=-x4.不等式组⎩⎨⎧<-<-62,02x x 的解集是__________________.5.一元二次方程0452=--x x 的两根的和是____________. 6.方程x x =+2的根是______________.7.函数y =21-x 的定义域是_____________. 8.正比例函数x y 32-=中,y 随着x 的增大而______________.9.已知两个相似三角形相似比是3 : 4,那么它们的面积比是______________.10.如果一个正多边形绕着它的中心至少旋转45º后能与它本身重合,那么这个多边形的边数为________.11.在四边形ABCD 中, AB//CD , 要使四边形ABCD 是平行四边形, 只须添加一个条件, 这个条件可以是______________(只要填写一种情况).12.已知△ABC 的周长为20,△ABC 的内切圆与边AB 相切于点D ,AD =4,那么BC =__________.二、选择题(本大题共4题,每题4分,满分16分)[本题每小题所列出的四个选项中,只有一个是正确的,把正确答案的代号填入括号内]13.理数64的值在( )A .8和9之间;B .9和10之间;C .10和11之间;D .11和12之间.14.用换元法解方程0111222=+---x x x x 时,如果设y x x=-12,那么原方程可化为( )A .0122=+-y y ;B .0122=-+y y ;C .022=+-y y ;D .022=-+y y .15.二次函数c bx ax y ++=2的图象全部在x 轴的下方,那么下列结论正确的是 ( )A .0402<-<ac b a 且;B .0402>-<ac b a 且;C .0402<->ac b a 且;D .0402>->ac b a 且.16.如果两圆的半径分别为3和4,圆心距为5,那么这两个圆的位置关系是 ( )A .外离;B .相交;C .外切;D .内切.三、(本大题共5题,第17、18题每题9分,第19~21题每题10分,满分48分) 17.化简:)1(1xx x x -÷-,并求出当23-=x 时的值.18.已知一次函数的图象经过点(–3,0)和(1,4),求这个一次函数的解析式.19.如图1,在Rt △ABC 中,∠ACB =90º,sin A =32, 点D 、E 分别在AB 、AC 边上,DE ⊥AC ,DE=2,DB=9, 求DC的长.图120.某区为了了解全区初三学生数学学业水平状况, 对全区3000名学生进行测试,并从中随机抽取了150名学生的测试成绩,其分数段分布表如Array左(分数为整数,满分150分):(1)补全分数段分布表所缺的数据;(2)如果测试成绩不低于120分的为优良,那么这150名学生中测试成绩的优良有__________人;(3)由此可估计全区3000名学生中测试成绩为优良的约有_______人.21.如图2,在□ABCD中,BD=2AB, AC与BD相交于点O,点E、F、G分别是OC、OB、AD的中点.求证:(1)DE⊥OC;(2)EG=EF.B C四、(本大题共4题,第22、23、24题每题12分,第25题14分,满分50分)22.如图3,在梯形ABCD中,AD//BC,AB=AD=CD,点E、F分别在AD、CD边上,且DE=CF, BE与AF相交于点G. 找出图中相似的三角形, 并证明你所得到结论.B C图323.沪杭磁悬浮新型交通建设项目将于今年年内开工,2010年某某世博会开幕前正式投入使用. 现假设某某到某某的铁路与磁悬浮的路程均为168千米,磁悬浮列车行驶的平均速度比现在的铁路列车行驶的平均速度每分钟快5.5千米,乘坐磁悬浮列车比现在的铁路列车要少用88分钟,问磁悬浮列车平均每分钟行驶几千米?24.如图4,二次函数m x mx y +++=)14(412(m <4)的图象与x 轴相交于点A 、B 两点.(1)求点A 、B 的坐标(可用含字母m 的代数式表示); (2)如果这个二次函数的图象与反比例函数xy 9=的图象相交于点C ,且 ∠BAC 的余弦值为54,求这个二次函数的解析式.25.如图5,在以O 为圆心的两个同心圆中,小圆的半径为1,AB 与小圆相切于点A ,与大圆相交于B ,大圆的弦BC ⊥AB ,过点C 作大圆的切线交AB 的延长线于D ,OC 交小圆于E .(1)求证:△AOB ∽△BDC ;(2)设大圆的半径为x ,CD 的长为y ,求y 与x 之间的函数解析式,并写出定义域. (3)△BCE 能否成为等腰三角形?如果可能,求出大圆半径;如果不可能,请说明理由.图4参考答案一、填空题(本题共12小题,每小题3分,满分36分)1.a ;2. 161; 3.)3)(3(-+x x ; 4. -3<x <2 ; 5. 5; 6. 2=x ; 7. 2≠x ;8.减小; 9. 9:16; 10. 8; 11. AD//BC 、AB=CD 、∠B =∠D ,等 ; 12. 6. 二、选择题(本题共4小题, 每小题4分, 满分16分) 13.B ; 14. B; 15. A; 16. B .三、(本大题共5题,第17、18题每题9分,第19~21题每题10分,满分48分)17.解:原式21111(1)(1)1x x x x x x x x x x ---=÷=⨯=+-+.……(每步2分,共6分) 当23-=x 时, 原式=.2131311231+=-=+-……(每步1分,共3分) 18.解:设一次函数解析式为b kx y +=,…………………………………………(2分)⎩⎨⎧+=+-=分)(分)2.42(,30 b k b k 解得⎩⎨⎧==)1(.31(,1分分) b k∴一次函数解析式为3+=x y .…………………………………………(1分) 19.解:在Rt △ADE 中,∵DE =2,,32sin ==AD DE A ∴AD =3. …………………(2分) ∴5232222=-=-=DE AD AE . ………………………………(2分)∵∠BCD =∠DEA =90º,∴DE //BC . ………………………………………(1分)∴ADAEBD CE =,………………………………………………………………(2分) ∵BD =9,∴53359=⨯=⋅=AD AE BD CE .………………………………(1分)∴CD =7)53(22222=+=+CE DE . ………………………………(2分)20.(1)39,(2分) 0.14,(2分) 9,(1分)0.06; (1分)(2) 96; (2分)(3) 1920. (2分)21.证明:(1)∵四边形ABCD 是平行四边形,AC 与BD 相交于点O ,∴BD =2OD ,AB =CD ,AD =BC . ………………………………………(2分) ∵BD =2AB ,∴OD =AB =CD . ……………………………………………(1分) ∴点E 是OC 的中点,∴DE ⊥OC . ……………………………………(2分)(2)∵DE ⊥OC ,点G 是AD 的中点,∴EG =.21AD ……………………(2分) ∵点E 、F 分别是OC 、OB 的中点.∴EF =BC 21. ……………………(2分)∵AD =BC,∴EG =EF . ……………………………………………………(1分) 四、(本大题共4题,第22、23、24题每题12分,第25题14分,满分50分) 22.解: △ABE ≌(或∽)△DAF ,△DAF ∽△GAE,△ABE ∽△GAE. ……………(各1分)证明如下:∵在梯形ABCD 中,AD//BC ,AB=AD=CD ,∴∠BAD =∠ADC . …………………………………………………………(2分) ∵DE =CF ,∴AE =DF . ………………………………………………………(2分) ∴△ABE ≌△DAF .…………………………………………………………(1分) ∴∠ABE =∠DAF . …………………………………………………………(2分) ∵∠AEB =∠GEA ,∴△ABE ∽△GAE.…………………………………(1分) ∴△ADF ∽△GAE. ………………………………………………………(1分) 23.解:设磁悬浮列车平均每分钟行驶x 千米,…………………………………(2分)881685.5168=--xx . …………………………………………………………(4分)0211122=--x x , …………………………………………………………(2分)23,721-==x x .……………………………………………………………(2分)经检验23,721-==x x 都是原方程的根,但23-=x 不符合题意,舍去.……… (1分) 答:磁悬浮列车平均每分钟行驶7千米. ……………………………………(1分)24.解:(1)当时0=y ,0)14(412=+++m x mx ,………………………………(1分) 04)4(2=+++m x m x ,m x x -=-=21,4.……………………………(2分)∵4<m ,∴A (–4,0),B (m -,0)………………………………(1分) (2) 过点C 作CD ⊥x 轴,垂足为D , cos ∠BAC 54==AC AD ,设AD =4k ,AC =5k , 则CD =3k . ……………………(1分) ∵OA =4,∴OD =4k –4, 点C (4k –4,3k ) . …………………………………(1分) ∵点C 在反比例函数x y 9=的图象上,∴4493-=k k . ………………(1分) ,03442=--k k 23),(2121=-=k k 舍去. ……………………………(1分) ∴C (2,29).……………………(1分) ∵点C 在二次函数的图象上, ∴m m+++⨯=)14(2241292,………(1分) ∴,1=m ………………(1分) ∴二次函数的解析式为145412++=x x y . ……………………………(1分) 25.解:(1)∵大⊙O 与CD 相切于点C ,∴∠DCO =90°.∴∠BCD +∠OBC =90º,……………………………………………………(1分) ∵CB ⊥AD ,∴∠ABO +∠OCB =90º,∵OC =OB ,∴∠OBC =∠OCB ,………………………………………………(1分) ∴∠BCD =∠ABO .…………………………………………………………(1分) ∵小⊙O 与AB 相切于点A ,∴∠BAO =90°.∴∠CBD =∠BAO .………(1分) ∴△AOB ∽△BDC .………………………………………………………(1分) (2)过点O 作OH ⊥BC ,垂足为H .∵∠OAB =∠ABC =∠BHO =90º,∴四边形OABH 是矩形.…………………(1分) ∵BC 是大⊙O 的弦,∴BC =2BH =2OA =2,……………………………………(1分) 在Rt △OAB 中,AB =1222-=-x OA OB .………………………………(1分)∵△AOB ∽△BDC ,∴ABCBOB CD =,……………………………………………(1分) ∴122-=x xy ,∴函数解析式为122-=x x y , ……………………………(1分)定义域为1>x .…………………………………………………………………(1分) (3)当EB =EC 时,∠ECB =∠EBC ,而∠ECB =∠OBC ,∴EB ≠EC .当CE =CB 时,OC =CE +OE =CB+OE=2+1=3.………………………………(1分) 当BC =BE 时,∠BEC =∠ECB =∠OBC ,则△BCE ∽△OCB .………………(1分)则,OCBCBC CE =设OC = x ,则CE =1-x ,x x 221=-,2171±=x (负值舍去). ∴OC =2171+.…………………………………………………………………(1分) 综上所述,△BCE 能成为等腰三角形,这时大圆半径为3或2171+.。
2009年定西市中考数学试卷友情提示:1.抛物线2y ax bx c =++的顶点坐标是2424b ac b a a ⎛⎞−−⎜⎟⎝⎠,.2.弧长公式:π180n R l =弧长;其中,n 为弧所对圆心角的度数,R 为圆的半径.本试卷满分为150分,考试时间为120分钟.一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内.1.4的相反数是()A .4B .4−C .14D .14−2.图1所示的物体的左视图(从左面看得到的视图)是()图1A .B .C .D .3.计算:a b a b b a a −⎛⎞−÷=⎜⎟⎝⎠()A .a bb +B .a b b −C .a ba −D .a ba+4.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A .4个B .6个C .34个D .36个5.下列图形中,既是轴对称图形,又是中心对称图形的是()A .等腰梯形B .平行四边形C .正三角形D .矩形6.有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的()A .平均数B .中位数C .众数D .方差7.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为()A .8米B .C .D 8.如图2,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为()A .5B .4C .3D .29.如图3,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m、与旗杆相距22m,则旗杆的高为()A.12m B.10m C.8m D.7m图2图3图410.如图4,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()A.2B.3C.D.二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中的横线上.11.当31x y==、时,代数式2()()x y x y y+−+的值是.12.方程组25211x yx y−=−⎧⎨+=⎩,的解是.13.如图5,Rt△ACB中,∠ACB=90°,DE∥AB,若∠BCE=30°,则∠A=.14.反比例函数的图象经过点P(2−,1),则这个函数的图象位于第象限.15.不等式组103xx+>⎧⎨>−⎩,的解集是.16.如图6,四边形ABCD是平行四边形,使它为矩形的条件可以是.图6图7图817.如图7,在△ABC中,5cmAB AC==,cos B35=.如果⊙Ocm,且经过点B、C,那么线段AO=cm.18.抛物线2y x bx c=−++的部分图象如图8所示,请写出与其关系式、图象相关的2个正确结论:,.(对称轴方程,图象与x正半轴、y轴交点坐标例外)三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(6分)若20072008a=,20082009b=,试不用..将分数化小数的方法比较a、b的大小.20.(6分)在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=−,求方程(4⊕3)⊕24x =的解.21.(8分)如图9,随机闭合开关S 1、S 2、S 3中的两个,求能让灯泡⊗发光的概率.22.(8分)图10(1)是一扇半开着的办公室门的照片,门框镶嵌在墙体中间,门是向室内开的.图10(2)画的是它的一个横断面.虚线表示门完全关好和开到最大限度(由于受到墙角的阻碍,再也开不动了)时的两种情形,这时二者的夹角为120°,从室内看门框露在外面部分的宽为4cm ,求室内露出的墙的厚度a 的值.(假设该门无论开到什么角度,门和门框之间基本都是无缝的.精确到0.1cm1.73≈)23.(10分)鞋子的“鞋码”和鞋长(cm )存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:[注:“鞋码”是表示鞋子大小的一种号码]鞋长(cm )16192124鞋码(号)22283238(1)设鞋长为x ,“鞋码”为y ,试判断点(x ,y )在你学过的哪种函数的图象上?(2)求x 、y 之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?图9图10(1)图10(2)四、解答题(二):本大题共5小题,共50分(不含附加4分).解答时,应写出必要的文字说明、证明过程或演算步骤.24.(8分)为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的体育运动活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图11(1)和图11(2).(1)请在图11(1)中将表示“乒乓球”项目的图形补充完整;(2)求扇形统计图11(2)中表示“足球”项目扇形圆心角的度数.25.(10分)去年5月12日,四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元?26.(10分)图12中的粗线CD 表示某条公路的一段,其中AmB 是一段圆弧,AC 、BD 是线段,且AC 、BD 分别与圆弧 AmB 相切于点A 、B ,线段AB =180m ,∠ABD =150°.(1)画出圆弧 AmB 的圆心O ;(2)求A 到B 这段弧形公路的长.图11(1)图11(2)图1227.(10分)如图13,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,求证:(1)ACE BCD △≌△;(2)222AD DB DE +=.28.[12分+附加4分]如图14(1),抛物线22y x x k =−+与x 轴交于A 、B 两点,与y 轴交于点C (0,3−).[图14(2)、图14(3)为解答备用图](1)k =,点A 的坐标为,点B 的坐标为;(2)设抛物线22y x x k =−+的顶点为M ,求四边形ABMC 的面积;(3)在x 轴下方的抛物线上是否存在一点D ,使四边形ABDC 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由;(4)在抛物线22y x x k =−+上求点Q ,使△BCQ 是以BC 为直角边的直角三角形.附加题:如果你的全卷得分不足150分,则本题与28题附加的4分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算.29.(7分)本试卷第19题为:若20072008a =,20082009b =,试不用..将分数化小数的方法比较a 、b 的大小.观察本题中数a 、b 的特征,以及你比较大小的过程,直接写出你发现的一个一般结论.图13图14(1)图14(2)图14(3)武威、金昌、定西、白银、酒泉、嘉峪关武威市2009年初中毕业、高中招生考试数学试卷参考答案与评分标准一、选择题:本大题共10小题,每小题3分,共30分.题号12345678910答案B D A B D BC A A C 二、填空题:本大题共8小题,每小题4分,共32分.11.912.34x y =⎧⎨=⎩,13.60o 14.二、四15.1−>x 16.答案不唯一,如AC =BD ,∠BAD =90o ,等17.518.答案不唯一.如:①c =3;②b +c =1;③c -3b =9;④b =-2;⑤抛物线的顶点为(-1,4),或二次函数的最大值为4;⑥方程-x 2+bx +c =0的两个根为-3,1;⑦y >0时,-3<x <1;或y <0时,x <-3或x >1;⑧当x >-1时,y 随x 的增大而减小;或当x <-1时,y 随x 的增大而增大.等等三、解答题(一):本大题共5小题,共38分.19.本小题满分6分解:∵a =2007200920082009××(20081)(20081)20082009−×+=×222008120082009−=×,·······························3分b 2200820082009=×,····························································································4分222200812008−<,·······················································································5分∴a <b .·················································································································6分说明:求差通分作,参考此标准给分.若只写结论a <b ,给1分.20.本小题满分6分解:∵22a b a b ⊕=−,∴2222(43)(43)77x x x x ⊕⊕=−⊕=⊕=−.············3分∴22724x −=.∴225x =.··········································································4分∴5x =±.··········································································································6分21.本小题满分8分解:∵随机闭合开关1S 、2S 、3S 中的两个,共有3种情况:12SS ,13S S ,23S S .能让灯泡发光的有13S S 、23S S 两种情况.·····································································4分∴能让灯泡发光的概率为23.···············································································8分22.本小题满分8分解:从图中可以看出,在室内厚为a cm 的墙面、宽为4cm 的门框及开成120°的门之间构成了一个直角三角形,且其中有一个角为60°.··········3分从而a =4×tan60°··············································6分.···································8分即室内露出的墙的厚度约为6.9cm .23.本小题满分10分解:(1)一次函数.······································································································2分(2)设y kx b =+.································································································3分由题意,得22162819k b k b =+⎧⎨=+⎩,.······················································································5分解得210k b =⎧⎨=−⎩,.·····································································································7分∴210y x =−.(x 是一些不连续的值.一般情况下,x 取16、16.5、17、17.5、…、26、26.5、27等)······································································································8分说明:只要求对k 、b 的值,不写最后一步不扣分.(3)44y =时,27x =.答:此人的鞋长为27cm .····················································································10分说明:只要求对x =27cm ,不答不扣分.四、解答题(二):本大题共5小题,共50分(不含附加4分).24.本小题满分8分解:(1)如图:·······················4分(2)∵参加足球运动项目的学生占所有运动项目学生的比例为15=1050,·············6分∴扇形统计图中表示“足球”项目扇形圆心角的度数为1360725×=o o .··················8分25.本小题满分10分解法1:设第一天捐款x 人,则第二天捐款(x +50)人,···············································1分由题意列方程x 4800=506000+x .·········································································5分解得x =200.········································································································7分检验:当x =200时,x (x +50)≠0,∴x =200是原方程的解.·······················································································8分两天捐款人数x +(x +50)=450,人均捐款x4800=24(元).答:两天共参加捐款的有450人,人均捐款24元.··············································10分说明:只要求对两天捐款人数为450,人均捐款为24元,不答不扣分.解法2:设人均捐款x 元,····························································································1分由题意列方程6000x -4800x=50.··································································5分解得x =24.···········································································································7分以下略.26.本小题满分10分解:(1)如图,过A 作AO ⊥AC ,过B 作BO ⊥BD ,AO 与BO 相交于O ,O 即圆心.····························································3分说明:若不写作法,必须保留作图痕迹.其它作法略.(2)∵AO 、BO 都是圆弧 AmB 的半径,O 是其圆心,∴∠OBA =∠OAB =150°-90°=60°.·····································5分∴△AOB 为等边三角形.∴AO =BO =AB =180.··················7分O∴ π6018060π180AB ××==(m).∴A 到B 这段弧形公路的长为60πm .···································································10分27.本小题满分10分证明:(1)∵ACB ECD ∠=∠,∴ACE ACD BCD ACD ∠+∠=∠+∠.即ACE BCD ∠=∠.··············································2分∵EC DC AC BC ==,,∴△ACE ≌△BCD .··················································4分(2)∵ACB ∆是等腰直角三角形,∴°=∠=∠45BAC B .············································5分∵△ACE ≌△BCD ,∴°=∠=∠45CAE B .········6分∴°=°+°=∠+∠=∠904545BAC CAE DAE .············································7分∴222DE AE AD =+.··················································································9分由(1)知AE =DB ,∴222AD DB DE +=.·················································································10分28.本小题满分16分(含附加4分)解:(1)3k =−,··································································1分A (-1,0),·····························································2分B (3,0).·······························································3分(2)如图14(1),抛物线的顶点为M (1,-4),连结OM .······································································4分则△AOC 的面积=23,△MOC 的面积=23,△MOB 的面积=6,·····················································5分∴四边形ABMC 的面积=△AOC 的面积+△MOC 的面积+△MOB 的面积=9.·········································6分说明:也可过点M 作抛物线的对称轴,将四边形ABMC 的面积转化为求1个梯形与2个直角三角形面积的和.(3)如图14(2),设D (m ,322−−m m ),连结OD .则0<m <3,322−−m m <0.且△AOC 的面积=23,△DOC 的面积=m 23,△DOB 的面积=-23(322−−m m ),·····························································8分∴四边形ABDC 的面积=△AOC 的面积+△DOC 的面积+△DOB 的面积=629232++−m m =87523(232+−−m .····················································································9分∴存在点D 315(24−,,使四边形ABDC 的面积最大为875.······························10分(4)有两种情况:图14(1)图14(2)A D B E如图14(3),过点B 作BQ 1⊥BC ,交抛物线于点Q 1、交y 轴于点E ,连接Q 1C .∵∠CBO =45°,∴∠EBO =45°,BO =OE =3.∴点E 的坐标为(0,3).∴直线BE 的解析式为3y x =−+.····································································12分由2323y x y x x =−+⎧⎨=−−⎩,解得1125x y ,;ì=-ïïíï=ïî2230.x y ,ì=ïïíï=ïî∴点Q 1的坐标为(-2,5).···············································································13分如图14(4),过点C 作CF ⊥CB ,交抛物线于点Q 2、交x 轴于点F ,连接BQ 2.∵∠CBO =45°,∴∠CFB =45°,OF =OC =3.∴点F 的坐标为(-3,0).∴直线CF 的解析式为3y x =−−.····································································14分由2323y x y x x =−−⎧⎨=−−⎩,解得1103x y ,;ì=ïïíï=-ïî2214x y ,.ì=ïïíï=-ïî∴点Q 2的坐标为(1,-4).·················································································15分综上,在抛物线上存在点Q 1(-2,5)、Q 2(1,-4),使△BCQ 1、△BCQ 2是以BC 为直角边的直角三角形.·····························································································16分说明:如图14(4),点Q 2即抛物线顶点M ,直接证明△BCM 为直角三角形同样得2分.附加题:如果你的全卷得分不足150分,则本题与28题附加的4分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算.29.本小题满分7分解:学生可能写出不同程度的一般的结论,由一般化程度不同得不同分.若m 、n 是任意正整数,且m >n ,则11n n mm +<+.·················································4分若m 、n 是任意正实数,且m >n ,则11n n m m +<+.·················································5分若m 、n 、r 是任意正整数,且m >n ;或m 、n 是任意正整数,r 是任意正实数,且m >n ,则n n r m m r+<+.······································································································6分若m 、n 是任意正实数,r 是任意正整数,且m >n ;或m 、n 、r 是任意正实数,且m >n ,则n n r m m r +<+.·······························································································7分。
九年级数学第一次阶段考试 第1页 共4页 图8 图6 渭河初中2009-2010学年度第二学期九年级第一次月考 数学试题
友情提示:抛物线2yaxbxc的顶点坐标是2424bacbaa,.
一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内. 1.化简:4=( ) A.-2 B.2 C.4 D.-4 2.2008年在北京举办的第29届奥运会的火炬传递在各方面都是创记录的:火炬境外传递城市19个,境内传递城市和地区116个,传递距离为137万公里,火炬手的总数达到21780人.用科学记数法表示21780为( ) A.2.178×105 B.2.178×104 C.21.78×103 D.217.8×102 3. 如图1,一个碗摆放在桌面上,则它的俯视图是( )
4. 如图2,小红和小丽在操场上做游戏,她们先在地上画出一个圆圈,然后蒙上眼在一定距离外向圆圈内投小石子,则投一次就正好投到圆圈内是( ) A.必然事件(必然发生的事件) B.不确定事件(随机事件). C.确定事件(必然发生或不可能发生的事件) D 不可能事件(不可能发生的事件) 5. 张颖同学把自己一周的支出情况,用如图4所示的统计图来 表示.则从图中可以看出( ) A.一周支出的总金额 B.一周各项支出的金额
C.一周内各项支出金额占总支出的百分比 D.各项支出金额在一周中的变化情况 .
6. 把不等式组110xx≤>0,的解集表示在数轴上,正确的为图3中的( )
A. B. C. D. 图3
7. 如图5①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为( ) A. ②③ B. ①④ C.①③ D.②④
图5 8.中央电视台2套“开心辞典”栏目中,有一期的题目如图6所示,两个天平都平衡,则与2个球体相等质量的正方体的个数为( ) A.3 B.4 C.5 D.2
9. 高速公路的隧道和桥梁最多.图7是一个隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=10米,净高CD=7米,则此圆的半径OA=( ) A.5 B.7
C.377
D.375 10.如图8,把矩形ABCD沿EF对折后使两部分重合,若150,则AEF=( ) A.110° B .130° C.120° D.115°
题 号 一 二 三 四 附加题 总 分 得 分
图2 图4
① ② ③
④
图7 O D A B
C
学校 班级
姓名______________学号
……………………………………………………密封线内不要答题………………
…
…………………………………………………
图1 A B C D 九年级数学第一次阶段考试 第2页 共4页 图13
二、填空题:本大题共8小题,每小题4分,共32分.把答案填在题中的横线上. 11.点P(-2,3)关于x轴的对称点的坐标是________. 12. 若向南走2m记作2m,则向北走3m记作 m. 13. 已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为 . 14. 抛物线 y=x2+x-4与y轴的交点坐标为 . 15. 如图9,将左边的矩形绕点B旋转一定角度后,位置如右边的矩形,则∠ABC=___ ___ . 16. 某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x 元,则x满足的方程是 . 17. 一个函数具有下列性质: ①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y随自变量x的增大而增大.则这个函数的解析式可以为 . 18. 如图10(1)是一个等腰梯形,由6个这样的等腰梯形恰好可以拼出如图10(2)所示的一个菱形.对于图10(1)中的等腰梯形,请写出它的内角的度数或腰与底边长度之间关系的一个正确结论: . 三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤. 19. (6分) 化简:24()22aaaaaa. 20.(6分)请你类比一条直线和一个圆的三种位置关系,在图11①、②、③中,分别各画出一条直线,使它与两个圆都相离、都相切、都相交,并在图11④中也画上一条直线,使它与两个圆具有不同于前面3种情况的位置关系.
21.(8分)图12是某种蜡烛在燃烧过程中高度与时间之间关系的图像,由图像解答下列问题: (1)此蜡烛燃烧1小时后,高度为 cm;经过 小时燃烧完毕; (2)求这个蜡烛在燃烧过程中高度与时间之间关系的解析式.
22.(8分)如图13,在ABCD中,点E是CD的中点,AE的延长线与BC的延长线相交于点F. (1)求证:△ADE≌△FCE; (2)连结AC、DF,则四边形ACFD是下列选项中的( ). A.梯形 B.菱形 C.正方形 D.平行四边形
23.(10分) 某校八年级320名学生在电脑培训前后各参加了一次水平相同的考试,考试成绩都以同一标准划分成“不及格”、“及格”和“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生培训前后两次考试成绩的等级,并绘制成如图14的统计图,试结合图形信息回答下列问题:
(1) (2) 图10
图11 7 1 O
y(cm)
x(小时) 15
图12
图9
学校 班级 姓名______________ 学号
……………………………………………………密封线内不要答题………………………
…………………………………………… 九年级数学第一次阶段考试 第3页 共4页 (1) 这32名学生培训前后考试成绩的中位数所在的等级分别是 、 ; (2)估计该校整个八年级学生中,培训后考试成绩的等级为“及格”与“优秀”的学生共有多少名?
四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤. 24.(8分))图1是一盒刚打开的“兰州”牌香烟,图16(1)是它的横截面(矩形ABCD),已知每支香烟底面圆的直径是8mm. (1) 矩形ABCD的长AB= mm; (2)利用图15(2)求矩形ABCD的宽AD.
(3≈1.73,结果精确到0.1mm) 25.(10分)如图17①,在一幅矩形地毯的四周镶有宽度相同的花边. 如图17②,地毯中央的矩形图案长6米、宽3米,整个地毯的面积是40平方分米.求花边的宽. 26.(10分)如图18,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,tanC=4/3. (1)求点D到BC边的距离; (2)求点B到CD边的距离.
27.(10分)小明和小慧玩纸牌游戏. 图19是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明先从中抽出一张,小慧从剩余的3张牌中也抽出一张.
小慧说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜.
优秀及格不及格
1
16788
24
等级
人数
培训后培训前
图14
图19 ① ② 图17
(1) O1
O2 O3
图16 (2)
图18
学校 班级
姓名______________ 学号
……………………………………………………密封线内不要答题……………
…
…………………………………