初一数学下学期期末试卷含答案
- 格式:docx
- 大小:132.92 KB
- 文档页数:6
2023—2024学年第二学期期末学业质量监测七年级数学(冀教版)注意事项:1.本试卷共6页,满分100分,考试时长90分钟。
2.答卷前将密封线左侧的项目填写清楚。
3.答案须用黑色字迹的签字笔书写。
一、精心选择(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项只有一项是正确的)1.如图,CF,CE,CD分别是△ABC的中线、角平分线、高,下列线段中,长度最短的是()A.CF B.CE C.CD D.CB2.2−3可以表示为()A.2×2×2B.(−2)×(−2)×(−2)C.2÷2÷2D.12×2×23.如图.∠1与∠2是()A.同位角B.内错角C.同旁内角D.对顶角4.我国陆地上风能储量约为253,000兆瓦,将253,000用科学记数法表示为2.53×10n,则n的值为()A.4B.5C.6D.−55.一款晾衣架的示意图如图所示,支架OP=OQ=30cm(连接处的长度忽略计),则点P,Q之间的距离可以是()A.50cm B.65cm C.70cm D.80cm6.下列运算中,结果正确的是()A.a4⋅a3=a12B.(a3)2=a6C.a6÷a2=a3D.(−3x)2=−9x27.数轴上表示数m,n的点的位置如图所示,则下列结论不正确的是()A.m−n<0B.m+1<n−1C.−3m<−3n D.m2<n28.如图,将长方形纸片按如图方式折叠,已知∠DQP=50∘,则∠CPM=()A.40∘B.50∘C.60∘D.80∘9.等式“☐a2−b2=−(2a−b)(2a+b)”中的“□”表示的数是()A.4B.−4C.16D.−1610.如图,已知直线m平移后得到直线n,∠1=108∘,∠2=35∘.则∠3的度数为()A.98∘B.103∘C.107∘D.143∘11.【问题】已知关于x,y的方程组{3x+5y=4k−2x−3y=2的解满足2x+y=3.求k的值.嘉嘉同学有如下两种解题思路和部分步骤:Ⅰ.将方程组中的两个方程相加并整理,可得到2x+y=2k,再求k的值;Ⅱ.解方程组{2x+y=3,x−3y=2,得到{x=117,y=−17.再代入3x+5y=4k−2中,可求k的值.下列判断正确的是()A.Ⅰ的解题思路不正确B.Ⅱ的解题思路不正确C.Ⅱ的解题思路正确,求解不正确D.Ⅰ与Ⅱ的解题思路与求解都正确12.阅读下面的数学问题:如图,在△ABC中,AE⊥BC于点E,CD⊥AB于点D,AE,CD交于点P,AQ平分∠CAE,CQ平分∠ACD.甲、乙两人经过研究,分别得到如下结论:甲:∠APC+∠ABC=180∘;乙:∠AQC+12∠ABC=180∘.其中判断正确的是()A.甲、乙两人的结论都正确B.甲、乙两人的结论都错误C.甲的结论错误,乙的结论正确D.甲的结论正确,乙的结论错误二、准确填空(本大题共4个小题,每小题3分,共12分.其中16小题第一个空2分,第二个空1分)13.写出一个满足不等式x−6>0的x的整数值为 .14.整式a2−a和(a−1)2的公因式为 .15.命题“若△ABC中的∠A:∠B:∠C=1:2:3,则△ABC是直角三角形”是 .(填“真命题”或“假命题”)16.几何验证:如图1,可验证公式(a+b)2=a2+2ab+b2.(1)公式应用:若m+n=5,mn=6,则m2+n2的值为;,则S1+S2的(2)拓展延伸:如图2,四边形ACDE和四边形BCFG是两个正方形,若DF=6,S△ACF=92值为 .图2三、细心解答(本大题共8个小题,共52分.解答应写出文字说明、说理过程或演算步骤)17.(本小题满分5分)小明在解方程组{x−3y=3,①2x−5y=4②的过程如下:解:由①×2,得2x−6y=6③,…………第一步②−③,得−y=−2,…………第二步得y=2.…………第三步把y=2代入①,得x=9,…………第四步所以原方程组的解为{x=9,y=2.(1)小明的解题过程从第步开始出现错误;(2)请你写出正确的解方程组的过程.18.(本小题满分5分)已知不等式组{2(x−1)≥−3,①4x−2<1+3x.②(1)解该不等式组,并把解集在下面的数轴上表示出来;(2)写出该不等式组的所有正整数解.19.(本小题满分6分)如图,△ABC的顶点都在正方形网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC向左平移7个单位长度得到△A′B′C′.(1)在网格中画出△A′B′C′及A′B′边上的中线C′H和高线C′G;(2)直接写出线段BC所扫过的面积.20.(本小题满分6分)已知A=(a+2b)(a−b)−a5÷a3−(2b)2.(1)先化简A,再求当a=1,b=−3时,A的值;(2)若a=6b,求A的值.21.(本小题满分6分)如图,△ABC中,∠A=70∘,∠ABC=75∘,点D为线段AC上的点(不与点A,C重合),点E在AB的延长线上,连接DE,∠E=40∘,DF平分∠ADE.(1)求∠C的度数;(2)说明BC//DF的理由.22.(本小题满分7分)有三个连续奇数,最小的奇数为2n−1(n为正整数).(1)用含n的代数式表示另外两个奇数;(2)判断这三个奇数的平方和是否是12的倍数.若是,请说明理由;若不是,请写出被12除的余数是多少.23.(本小题满分8分)某校欲租用租赁公司的甲、乙两种型号的大巴车共8辆(两种车型都要租用),将部分师生送去植物园游玩,相关的租车信息如下:信息一:若租用3辆甲型大巴、5辆乙型大巴,共可载客435人;若租用6辆甲型大巴、2辆乙型大巴,共可载客390人。
2022~2023学年下学期期末考试试卷(Y )七年级数学注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟,闭卷考试,请将答案直接写在试卷或答题卡上.2.答卷前请将密封线内的项目填写清楚;使用答题卡时,请认真阅读答题须知,并按要求去做.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.二元一次方程x +2y =6的一个解是()A .22x y =⎧⎨=⎩B .23x y =⎧⎨=⎩C .24x y =⎧⎨=⎩D .26x y =⎧⎨=⎩2.不等式410x -<的解集是()A .4x >B .4x <C .14x >D .14x <3.为了解我县2023年参加中考的4964名学生的身高情况,抽查了其中300名学生的身高进行统计分析.下列叙述正确的是()A .4964名学生是总体B .从中抽取的300名学生的身高是总体的一个样本C .每名学生是总体的一个个体D .样本容量是300名学生4.下列说法正确的是()A .-9的立方根是-3B .7±是49的平方根C .有理数与数轴上的点一一对应D 95.在某次考试中,某班级的数学成绩统计图如图所示,下列说法中错误的是()A .得分在70~80分之间的人数最多B .该班总人数为40人C .得分在90~100分之间的人数最少D .不低于60分为及格,该班的及格率为80%6.若a >b ,则下列四个选项中一定成立的是()A .22a b +>+B .33a b->-C .44a b <D .11a b -<-7.已知12x y =⎧⎨=⎩和23x y =⎧⎨=-⎩都满足方程y kx b =-,则k b 、的值分别为()A .5,5--B .5,7--C .5,3D .5,78.把不等式组321132x xx x -<⎧⎪+-⎨≥⎪⎩中每个不等式的解集在同一条数轴上表示出来,正确的为()A .B.C.D .9.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四,问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱,问人数,物价各多少?”设人数为x 人,物价为y 钱,根据题意,下面所列方程组正确的是()A .8374x yx y+=⎧⎨-=⎩B .8374x y x y -=⎧⎨+=⎩C .8374x y x y+=⎧⎨+=⎩D .8374x y x y-=⎧⎨-=⎩10.已知关于x 的不等式组0320x a x -≥⎧⎨-≥⎩的整数解共有5个,则a 的取值范围是()A .3a ≤-B .43a -<≤-C . 3.53a -<≤-D .342a -<<二、填空题(每小题3分,共15分)11.随着我国科学技术的不断发展,科学幻想变为现实.图1是我国自主研发的某型号战斗机模型,全动型后掠翼垂尾是这款战斗机的亮点之一.图2是垂尾模型的示意图,现测量垂尾模型的外围得如下数据:①BC =8,②CD =2,③∠C =60°,④∠D =135°,⑤∠ABC =120°,垂尾模型要求的位置标准之一是AB CD ∥,则选择数据**可判断模型位置是否达标(只填序号).12.已知,a b为两个连续的整数,且a b <<,则23a b -=**.13.不等式组24691x x +>⎧⎨->⎩的解集为**.14.若方程组321431x y m x y m +=+⎧⎨+=-⎩的解满足x y >,则m 的取值范围是**.15.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于点D ,若点()(),3,,5B m C n -,()6,0,9A BC =,则AD =**.三、解答题(本大题共8个小题,满分75分)16.(8分)解方程组:(1)3231x y x y -=⎧⎨+=⎩(2)()35362236x y x y x y⎧-=-⎪⎨-+-=-⎪⎩17.(8分)解不等式或不等式组:(1)13132x x --≥+(218.(9分)解不等式组()3223118x x x x -⎧+≥⎪⎨⎪-->-⎩,在数轴上表示出解集,并写出该不等式组的非负整数解.19.(9分)已知关于,x y 的二元一欢方㮻组233741x y m x y m +=+⎧⎨-=+⎩.且0x y +<.(1)试用含m 的式子表示方程组的解;(2)求实数m 的取值范围;(3)化简:m m +-.20.(10分)某校为了解某年级学生一分钟跳绳情况,对该年级全体共360名学生进行一分钟跳绳测试,并把测得的数据分成四组,绘制成未完成的频数表和频数分布直方图(每一组不含前一个边界值,含后一个边界值).某校某年级360名学生一分钟跳绳次数的频数表组别(次)频数100~13048130~16096160~190a 190~22072(1)求a 的值;(2)把频数分布直方图补充完整;(3)求该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比.21.(10分)围棋,起源于中国,古代称为“弈”,是棋类鼻祖,围棋距今已有4000多年的历史.中国象棋也是中华民族的文化瑰宝,它源远流长,趣味浓厚,基本规则简明易懂.某学校为活跃学生课余生活,欲购买一批象棋和围棋.已知购买4副象棋和4副围棋共需220元,购买5副象棋和3副围棋共需215元.(1)求象棋和围棋的单价;(2)学校准备购买象棋和围棋总共120副,围棋的数量不少于40副,且不多于象棋数量,总费用可以是3500元吗?22.(10分)如图,点D 为射线CB 上一点,且不与点B 、C 重合,DE AB ∥交直线AC 于点E ,DF AC ∥交直线AB 于点F .画出符合题意的图形,猜想∠EDF 与∠BAC 的数量关系,并说明理由.23.(11分)如图1,在四边形ABCD 中,AB DC ∥,AD BC ∥,点E 在AB 边上,DE 平分∠ADC .(1)分别延长DE、CB交于点M,∠DAB与∠CMD的平分线AN、MN交于点N,若∠ADE的度数为56°,求∠N的度数;(2)如图2,已知DF⊥BC交BC边于点G,交AB边的延长线于点F,且DB平分∠EDF,若∠BDC<45°,试比较∠F与∠EDF的大小,并说明理由.2022~2023学年下学期期末考试七年级数学参考答案及评分标准一、选择题(每小题3分,共30分)题号12345678910答案ADBBDABCBB二、填空题(每小题3分,共15分)题号1112131415答案③⑤31<x <8m >-6163三、解答题(本大题共8个小题,满分75分)16.(1)3231x y x y -=⎧⎨+=⎩①②3⨯+①②得:510x =,解得:2x =,把2x =代入①得:23y -=,解得:1y =-,则方程组的解为21x y =⎧⎨=-⎩.(2)方程组整理得:3412x y x y -=⎧⎨-=-⎩①②,①-②得:5y =,把5y =代入①得:8x =,则方程组的解为85x y =⎧⎨=⎩.17.(1)13132x x --≥+去分母,得()()21336x x -≥-+,去括号,得22396x x -≥-+,移项,合并同类项得1x -≥-,系数化为1,得1x ≤.(2)解:()365243123x x x x ⎧+≥-⎪⎨--<⎪⎩①②由①得:8x ≤,由②得:3x >-,则不等式组的解集为38x -<≤.18.解不等式322x x -+≥.得x ≤1,解不等式3(x -1)-1>x -8,得x >-2.所以,原不等式组的解集是-2<x ≤1,在数轴上表示如图:故不等式组的非负整数解为0和1.19.(1)2337,41,x y m x y m +=+⎧⎨-=+⎩①②由②得41x m y =++,③把③代入①得()241337m y y m +++=+,解得1y m =-+.把1y m =-+代入③得32x m =+.∴方程组的解为32,1.x m y m =+⎧⎨=-+⎩(2)∵0x y +<,∴3210m m +-+<,∴32m <-.(3)∵32m <-.∴)m m m m +-=----=.20.(1)()360489672144a =-++=.(2)补全频数分布直方图如图:(3)该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比为72100%20%360⨯=,21.(1)设象棋单价是x 元.围棋的单价是y 元,根据题意得4422053215x y x y +=⎧⎨+=⎩,解得25,30.x y =⎧⎨=⎩答:象棋的单价是25元,围棋的单价是30元.(2)设购买象棋m 副,则购买围棋(120-m )副,由题意得解得12040,120,m m m -≥⎧⎨-≤⎩60≤m ≤80,令()25301203500m m +-=,解得20m =,不符合6080m ≤≤,所以总费用不能是3500元.22.当点D 在线段CB 上时,如图①,∠EDF =∠BAC .理由:∵DE AB ∥(已知),∴∠1=∠BAC (两直线平行,同位角相等).∵DF AC ∥(已知),∴∠EDF =∠1(两直线平行,内错角相等).∴∠EDF =∠BAC (等量代换).当点D 在线段CB 的延长线上时,如图②,∠EDF +∠BAC =180°.理由:∵DE AB ∥(已知)∴.∠EDF +∠F =180°(两直线平行,同旁内角互补).∵DF AC ∥(已知),∴∠F =∠BAC (两直线平行,内错角相等).∴∠EDF +∠BAC =180°(等量代换).23.(1)过点N 作NF AD ∥,∴AD BC NF ∥∥,∵∠ADE =56°,DE 平分∠ADC ,AD BC ∥,∴∠ADC =112°,∠DMB =∠ADE =56°,∵AB DC ∥,∴∠DAB =180°-∠ADC =68°,∵AN 平分∠DAB ,MN 平分∠CMD ,∴∠DAN =∠NAE =34°,∠DMN =∠CMN =28°,∥∥,∠ANF=∠DAN=34°,∠MNF=∠CMN=28°,∵AD BC NF∴∠ANM=∠ANF+∠MNF=62°;(2)∵DF⊥BC,∴∠BGF=90°,∥.∴∠ADF=∠BGF=90°,∵AD BC∥,∴∠CDF=∠F,∵CD AB设∠EDB=∠BDF=x,∠CDF=∠F=y,∴∠EDF=2x,∴∠ADE=∠EDC=2x+y,∵∠ADF=∠ADE+∠EDF,∴2x+y+2x=90°,∴y=90°-4x,∴∠F-∠EDF=y-2x=90°-4x-2x,∵∠BDC<45°,∴x+y<45°,∴x+90°-4x<45°,解得:x>15°,∴6x>90°,∴∠F-∠EDF=90°-6x<0,∴∠F<∠EDF.。
初一数学下册期末考试试卷及答案213年级下学期数学期末试卷一、选择题(每题3分,共18分)1.下列运算正确的是()。
A。
a+a=aB。
a×a=a^2C。
a÷a-1=aD。
a^4-a^4=a^22.给出下列图形名称:(1)线段(2)直角(3)等腰三角形(4)平行四边形(5)长方形,在这五种图形中是轴对称图形的有()A。
1个B。
2个C。
3个D。
4个3.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A。
4/112B。
1/4C。
1/35D。
15/354.1纳米相当于1根头发丝直径的六万分之一。
则利用科学记数法来表示,头发丝的半径是()A。
6万纳米B。
6×10^4纳米C。
3×10^6米D。
3×10^-6米5.下列条件中,能判定两个直角三角形全等的是()A。
一锐角对应相等B。
两锐角对应相等C。
一条边对应相等D。
两条直角边对应相等6.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了。
A。
1个B。
2个C。
3个D。
4个二、填空题(每空3分,共27分)7.单项式-xy的次数是3.8.一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为60°,90°,120°的三角形。
9.在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到1.3万亿元,这个数据用科学记数法可表示为1.3×10^13元。
10.如图∠AOB=125°,AO⊥OC,BO⊥OD则∠COD=55°。
11.小明同学平时不用功研究,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是1/4.12.若a+2ka+9是一个完全平方式,则k等于2.13.(2m+3)/2=4m-9.14.已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心,AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为3/4.15.观察下列运算并填空:1×2×3×4+1=25=5^2;2×3×4×5+1=121=11^2;3×4×5×6+1=361=19^2;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1=。
人 教 版 数 学 七 年 级 下 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A. 2- B. 0 C. 1 D. 382. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生视力情况,采用抽样调查的方式4. 如图,将△ABC 平移后得到△DEF ,若∠A =44°,∠EGC =70°,则∠ACB 的度数是( )A. 26°B. 44°C. 46°D. 66°5. 若(m –2018)x |m|–2017+(n+4)y |n|–3=2018是关于x ,y 的二元一次方程,则( )A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=46. 对于任意实数m,点P(m-2,9-3m)不可能()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -119. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤010. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.) 13. 3-7的相反数是____;|2-3|=____.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19. (1)2(32)32--(2)25{342x y x y -=+= 20. 解不等式组323(1){12123x x x x x +≥---+->-,并把解集数轴上表示出来. 21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?22. 如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.23. 已知在平面直角坐标系中有A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A, B, C 的位置. (2)画出ABC关于直线x=-1对称的111A B C∆,并写出111A B C∆各点坐标. (3)在y轴上是否存在点P,使以A,B, P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.参考答案本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A.B. 0C. 1D. 【答案】A【解析】【分析】根据各项数字的大小排列顺序,找出最小的数即可.【详解】由题意得:01<<<最小的数为:故选A.【点睛】本题考查了实数大小的比较,解题的关键是理解正数大于0,0大于负数的知识.2. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 【答案】D【解析】【分析】利用不等式的性质判断即可得到结果.【详解】解:若x >y ,则有x-3>y-3;33x y >;-2x <-2y ; 3-x <3-y 故选D .【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解本题的关键.3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生的视力情况,采用抽样调查的方式【详解】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选D.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 如图,将△ABC平移后得到△DEF,若∠A=44°,∠EGC=70°,则∠ACB 的度数是()A. 26° B. 44° C. 46° D. 66°【答案】A【解析】【分析】由平移前后对应角相等及三角形的一个外角等于与它不相邻的两个内角的和得出.【详解】∵△ABC平移后得到△DEF,∴∠EDF=∠A=44°,∴∠ACB=∠EGC−∠EDF=26°.故选:A.【点睛】本题主要考查了平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.同时考查了三角形的外角性质.5. 若(m–2018)x|m|–2017+(n+4)y|n|–3=2018是关于x,y的二元一次方程,则()A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=4【分析】依据二元一次方程的定义求解即可.【详解】解:()()m 2017n 3m 2018x n 4y 2018---++=是关于x ,y 的二元一次方程,20180201714031m m n n -≠⎧⎪-=⎪∴⎨+≠⎪⎪-=⎩, 解得:m 2018=-、n 4=,故选D .【点睛】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.依据二元一次方程的定义求解即可.6. 对于任意实数m ,点P (m -2,9-3m )不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.【详解】A 、当点在第一象限时 20930m m -⎧⎨-⎩>>,解得2<m <3,故选项不符合题意; B 、当点第二象限时20930m m -⎧⎨-⎩<>,解得m <3,故选项不符合题意; C 、当点在第三象限时,20930m m -⎧⎨-⎩<<,不等式组无解,故选项符合题意; D 、当点在第四象限时20930m m -⎧⎨-⎩><,解得m >0,故选项不符合题意. 故选:C .【点睛】本题考查了点的坐标,理解每个象限中点的坐标的符号是关键.7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°【答案】C【解析】【分析】先由对顶角及直角三角形两锐角互余求出∠CFM=40°,再由折叠的性质求出∠EFC′的度数,进而求出∠EFD的度数,然后根据两直线平行内错角相等即可求出结论.【详解】∵∠B′MD=50°,∴∠C′FM=40°,∴∠EFC=∠EFC′=(180°+40°) ÷2=110°,∴∠EFD=110°-40°=70°.∵AB∥CD,∴∠BEF=∠EFD=70°.故选C.【点睛】本题主要考查了矩形性质,折叠的性质,及平行线的性质,熟练掌握相关的性质是解题的关键.8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -11 【答案】A【解析】【分析】由x与y互为相反数,得到y=-x,代入方程组计算即可求出m的值.【详解】解:由题意得:y= -x,代入方程组得:33221x x mx x m-++⎧⎨-⎩=①=②,消去x得:32123m m+-=,即3m+9=4m-2,解得:m=11.故选A.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤0【答案】A【解析】【分析】首先解关于x的不等式,不等式在实数范围内有解,则两个不等式的解集有公共部分,据此即可列出关于a的不等式,从而求得a的范围.【详解】解1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩①②,解①得:x≤3a+1,解②得:x>1.根据题意得:3a+1>1,解得:a>0.故选:A.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.10. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°【答案】B【解析】【详解】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个【答案】D【解析】【分析】根据题意设出未知数,找出不等关系列出相应的不等式即可.【详解】设这批闹钟至少有x个,根据题意得5500×60+5000(x-60)>550000∴5000(x-60)>5500×40x-60>44∴x>104答:这批闹钟最少有105个.故选D.【点睛】本题考查了实际问题与一元一次不等式,解题的关键是理解题意,根据不等关系列出相应的不等式.12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)【答案】B【解析】【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2017的坐标.【详解】通过观察可得数字是4的倍数的点在第三象限,数字是4的倍数余1的点在第四象限,数字是4的倍数余2的点在第一象限,数字是4的倍数的点在第二象限,且各个点分别位于象限的角平分线上(A1和第四象限内的点除外),∵2017÷4=504…1,∴点A2017在第四象限,点A2016在第三象限,∵20164=504,∴A2016是第三象限的第504个点,∴A2016的坐标为(−504,−504),∴点A2017的坐标为(505,-504).故选:B.【点睛】此题主要考查了点的坐标,属于规律型题目,解答此类题目一定要先注意观察,本题第三象限的点的坐标特点比较好判断,我们可以利用这一点达到简化步骤的效果.卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.)13. 3-7的相反数是____;2____.【答案】(1). 37(2). 2【解析】【详解】分析:根据相反数的定义,绝对值的性质和立方根的定义分别计算即可求解. 详解:3-7的相反数是37;因为2 1.4143≈< ,所以|2-3|=-(2-3),故答案为 (1).37 (2). 3-2. 点睛:本题考查了实数的性质,主要利用了绝对值的性质,相反数的定义,属于基础题.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC ∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.【答案】80°【解析】【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD =∠CAD =50︒,进而得出答案.【详解】∵∠BAC 的平分线交直线b 于点D ,∴∠BAD =∠CAD ,∵直线a ∥b ,∠1=50︒,∴∠BAD =∠CAD =50︒,∴∠2=180︒−50︒−50︒=80︒故答案为:80︒.【点睛】此题主要考查了平行线的性质,正确得出∠BAD =∠CAD =50︒是解题关键.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 【答案】126【解析】【分析】两式相加求出+a b =5,两式相减求出-a b =1,代入即可求解.【详解】解32132312a b a b +=⎧⎨+=⎩①②,①+②得5a+5b=25 ∴+a b =5,①-②得-a b =1∴3100()()a b a b ++-=53+1100=126.【点睛】此题主要考查二元一次方程的求解,解题的关键是熟知加减消元法的运用.16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 【答案】≥-1【解析】 【详解】分析:根据题意中的不等关系,列不等式可求解.详解:由题意可得-53x +1≤12x +-1 解不等式可得x≥-1故答案为≥-1.点睛:此题主要考查了一元一次不等式的应用,解不等式即可求出x 的范围,关键是根据题目的不等关系列不等式.17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.【答案】2【解析】【分析】根据第二象限角平分线上的点的横坐标与纵坐标互为相反数,可得答案.【详解】由题意,得-3+m+1=0,解得m =2,故答案为:2.【点睛】本题考查了点的坐标,利用第二象限角平分线上的点的横坐标与纵坐标互为相反数得出方程是解题关键.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.【答案】12【解析】【分析】由条件可得到|x−2|+|y−1|=3,分四种情况:①x−2=±3,y−1=0,②x−2=±2,y−1=±1,③x−2=±1,y−1=±2,④x−2=0,y−1=±3,进行讨论即可求解.【详解】依题意有|x−2|+|y−1|=3,①x−2=±3,y−1=0,解得11xy-⎧⎨⎩==,51xy⎧⎨⎩==;②x−2=±2,y−1=±1,解得xy⎧⎨⎩==,2xy⎧⎨⎩==,4xy⎧⎨⎩==,42xy⎧⎨⎩==;③x−2=±1,y−1=±2,解得11xy⎧⎨-⎩==,13xy⎧⎨⎩==,31xy⎧⎨-⎩==,33xy⎧⎨⎩==;④x−2=0,y−1=±3,解得22xy⎧⎨-⎩==,24xy⎧⎨⎩==.故满足条件的点P有12个.故答案为:12.【点睛】考查了两点间的距离公式,本题为新概念题目,理解题目中所给新定义是解题的关键,注意分类讨论思想的应用.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤)19. (1)2-(2)25 {342 x yx y-=+=【答案】(1)2(2)21 xy=⎧⎨=-⎩【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据加减消元法即可求解.【详解】(1)2-2=2(2)解:25 342 x yx y-=⎧⎨+=⎩①②①×4,得:8x-4y=20③③+②,得11x=22,x=2将x=2代入①,得y=-1所以方程组的解是21 xy=⎧⎨=-⎩.【点睛】此题主要考查实数的运算及二元一次方程的求解,解题的关键是熟知实数的运算及二元一次方程的求解方法.20. 解不等式组323(1) {12 123x xx xx+≥---+->-,并把解集数轴上表示出来.【答案】x≥0;作图见解析【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:323(1)12123x xx xx+≥--⎧⎪⎨-+->-⎪⎩①②解不等式①,得:x≥0解不等式②,得x>-5把不等式组的解集在数轴上表示如下:∴不等式组的解集为x≥0.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?【答案】(1)30;(2)①补图见解析;②120;③70人.【解析】【详解】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×1030=120°, 故答案为120; ③估计大约6月1日这天行走的步数超过10000步的好友人数为150×12230 =70人. 点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22. 如图,已知BC∥GE ,AF∥DE ,∠1=50°.(1)求∠AFG 的度数;(2)若AQ 平分∠FAC ,交BC 于点Q,且∠Q=15°,求∠ACB 的度数.【答案】(1)50°;(2)80°.【解析】【分析】(1)先根据BC ∥EG 得出∠E=∠1=50°,再由AF ∥DE 可知∠AFG=∠E=50°;(2)作AM ∥BC ,由平行线的传递性可知AM ∥EG ,故∠FAM=∠AFG ,再根据AM ∥BC 可知∠QAM=∠Q ,故∠FAQ=∠AFM+∠FAQ ,再根据AQ 平分∠FAC 可知∠MAC=∠QAC+∠QAM=80°,根据AM ∥BC 即可得出结论.【详解】(1)∵BC ∥EG ,∴∠E=∠1=50°.∵AF ∥DE ,∴∠AFG=∠E=50°;(2)作AM ∥BC ,∵BC ∥EG ,∴AM ∥EG ,∴∠FAM=∠AFG=50°.∵AM ∥BC ,∴∠QAM=∠Q=15°,∴∠FAQ=∠AFM+∠MAQ=65°.∵AQ 平分∠FAC ,∴∠QAC=∠FAQ=65°,∴∠M AC=∠QAC+∠QAM=80°.∵AM ∥BC ,∴∠ACB=∠MAC=80°.考点:平行线的性质.23. 已知在平面直角坐标系中有 A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A , B , C 的位置.(2)画出ABC 关于直线x=-1对称的111A B C ∆,并写出111A B C ∆各点坐标.(3)在y 轴上是否存在点P ,使以A ,B , P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标:若不存在,请说明理由.【答案】(1)画图见解析;(2)画图见解析;(3)存在,P 点为(0,5)或(0,-3);【解析】【分析】(1)首先在坐标系中确定A 、B 、C 三点位置,然后再连接即可;(2)首先确定A 、B 、C 三点关于x=-1的对称点位置,然后再连接即可;(3)详细见解析;【详解】解:(1)如图:△ABC 即为所求;(2)如图:111A B C ∆即为所求;各点坐标分别为:1A (0,1),1B (-51),,1C (43)-,; (3)解:设P (0,y ),∵A(-2,1),B(3,1),∴AB=5, ∴151=122ABP S AB y y ∆=⨯--, ∵ABP S ∆=10, ∴51=102y -, ∴1=4y -,∴y=5或y=-3;∴P(0,5)或(0,-3);【点睛】本题主要考查了作图-轴对称变换,掌握作图-轴对称变换是解题的关键.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【答案】(1)清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元(2)方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【解析】【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40−m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【详解】解:(1)设清理养鱼网箱和捕鱼网箱的人均支出费用分别为x元、y元.根据题意,得15957000 101668000x yx y+=⎧⎨+=⎩解得20003000 xy=⎧⎨=⎩答:清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元.(2)设分配a人清理养鱼网箱,则分配(40-a)人清理捕鱼网箱.根据题意,得20003000(40)102000 40a aa a+-⎧⎨<-⎩解得18≤a<20.∵a为正整数,∴a=18或19∴一共有2种分配方案,分别为:方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【点睛】本题主要考查二元一次方程组和一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程或不等式组.25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)见解析;(3)105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行解答即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α, ∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,在△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】此题考查平行线的判定与性质,余角和补角,解题关键在于作出辅助线,灵活运用所学知识进行求解.。
苏教版数学初一下学期期末模拟综合试卷含解析(-)学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.若a 不为0,则()2na a a ⋅⋅⋅⋅⋅⋅⋅=( )A .2n a +B .2n aC .2n aD .2n a2.如图,下列说法不正确的是( )A .1∠和A ∠是同旁内角B .2∠和B 是内错角C .3∠和A ∠是同位角D .4∠和C ∠是同旁内角3.不等式x ﹣2≤0的解集在以下数轴表示中正确的是( ) A . B . C .D .4.若x >y ,则下列不等式中成立的是( ) A .x -1<y -1B .2x <2yC .22x y< D .-3x <-3y5.关于x 的不等式x -m >6-3m 的解集为x >2,则m 的值为( ) A .4B .2C .32D .126.给出下列4个命题:①垂线段最短;②互补的两个角中一定是一个为锐角,另一个为钝角;③同旁内角相等,两直线平行;④同旁内角的两个角的平分线互相垂直.其中真命题的个数为( ) A .1B .2C .3D .47.设一列数1232021,,,,,a a a a 中任意三个相邻的数之和都是20,已知218644,92,6a x a x a x ==+=-,那么2021a 的值是( )A .4B .5C .8D .118.如图,将三角形纸片ABC 折叠,DE 为折痕,点C 落ABC 外的点F 处,65A ∠=︒,75B ∠=︒,35AEF ∠=︒,则BDF ∠=( )A .95°B .105°C .115°D .125°二、填空题9.计算:32223x y x ⋅的结果是________.10.命题:“如果|a |=|b |,那么a =b ”的逆命题是:____(填“真命题”或“假命题”). 11.若一个多边形的内角和是外角和的2倍,则这个多边形是______边形. 12.已知120182019a =+,120192019b =+,120202019c =+,则代数式()2222a b c ab ac bc ++---的值是_______.13.若方程组4143x y k x y +=+⎧⎨+=⎩的解满足条件0<x+y <2,则k 的取值范围是_____.14.如图,OP 平分∠AOB ,PC ⊥OA ,点D 是OB 上的动点,若PC =1cm ,则PD 的长的最小值为 ___.15.如图,六边形ABCDEF 的各角都相等,若//m n ,则12∠+∠=__________︒.16.如图,若AD 是△ABC 的BC 边上的高,AE 是∠BAC 的角平分线,∠C =42°,∠BAE =15°,则∠DAB =_______°三、解答题17.计算(1)()02022312 3.14π--++-(2)2123125121-⨯(用乘法公式计算) (3)()()()25251x x x x +--- 18.因式分解: ①324x xy - ②22(21)x y y --+ 19.解方程组(1)31x y x y +=⎧⎨-=-⎩ ; (2)()113216x y x y ⎧+=⎪⎨⎪+-=⎩.20.解不等式组3(2)41213x x x x --≥-⎧⎪+⎨-<⎪⎩,并把它的解集在下面的数轴上表示出来.21.如图,已知1BDC ∠=∠,23180∠+∠=(1)求证://AD CE(2)若DA 平分BDC ∠,CE AE ⊥于点E ,164∠=,试求FAB ∠的度数22.某超市从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如下表:蔬菜品种 西红柿 西兰花 批发价格(元/千克) 3.6 8 零售价格(元/千克) 5.414请解答下列问题:(1)第一天,该超市批发西红柿和西兰花两种蔬菜共300千克,用了1520元钱,这两种蔬菜当天全部销售后一共赚多少元钱?(2)第二天,该超市用了1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚的钱不少于1050元,该超市最多能批发西红柿多少千克?23.某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下: 购票张数 1~50张51~100张 100张以上 每张票的价格12元10元8元原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题: (1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱? 24.阅读材料:如图1,点A 是直线MN 上一点,MN 上方的四边形ABCD 中,140ABC ∠=︒,延长BC ,2DCE MAD ADC ∠=∠+∠,探究DCE ∠与MAB ∠的数量关系,并证明.小白的想法是:“作ECF ECD ∠=∠(如图2),通过推理可以得到CF MN ,从而得出结论”.请按照小白的想法.....完成解答:拓展延伸:保留原题条件不变,CG 平分ECD ∠,反向延长CG ,交MAB ∠的平分线于点H (如图3),设MAB α∠=,请直接写出H ∠的度数(用含α的式子表示).25.如图1,将一副三角板ABC 与三角板ADE 摆放在一起;如图2,固定三角板ABC ,将三角板ADE 绕点A 按顺时针方向旋转,记旋转角CAE α∠=(0180α︒︒<<).(1)当α=________度时,AD BC ⊥;当α=________度时//AD BC ;(2)当ADE 的一边与ABC 的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;(3)当045α︒<<︒,连接BD ,利用图4探究BDE CAE DBC ∠+∠+∠的度数是否发生变化,并给出你的证明.【参考答案】一、选择题 1.D 解析:D 【分析】同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘,据此解答即可. 【详解】解:若a 不为0,则()222()n n na a a a a ⋅⋅⋅⋅⋅⋅⋅==,故选:D . 【点睛】本题考查了同底数幂的乘法以及幂的乘方,掌握幂的运算法则是解答本题的关键.2.B解析:B 【分析】根据同旁内角、内错角、同位角的概念判断即可.解:如图,A.∠1和∠A是MN与AN被AM所截成的同旁内角,说法正确,故此选项不符合题意;B.∠2和∠B不是内错角,说法错误,故此选项符合题意;C.∠3和∠A是MN与AC被AM所截成的同位角,说法正确,故此选项不符合题意;D.∠4和∠C是MN与BC被AC所截成的同旁内角,说法正确,故此选项不符合题意;故选:B.【点睛】此题考查了同旁内角、内错角、同位角,熟记同旁内角、内错角、同位角的概念是解题的关键.3.B解析:B【分析】根据解不等式,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.【详解】解:由x﹣2≤0,得x≤2,把不等式的解集在数轴上表示出来为:,故选:B.【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.D解析:D【分析】根据不等式的性质逐一进行判断即可.解:A .∵x >y ,∴x -1>y -1,故不合题意; B .∵x >y ,∴2x >2y ,故不合题意; C .∵x >y ,∴22x y>,故不合题意; D .∵x >y ,∴-3x <-3y ,故符合题意; 故选:D . 【点睛】本题考查了不等式的性质,解决本题的关键是掌握不等式的性质.不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.5.B解析:B 【分析】先解不等式x -m >6-3m ,再利用不等式的解集为x >2,再列方程解方程即可得到答案. 【详解】 解: x -m >6-3m62,x m ∴>-关于x 的不等式x -m >6-3m 的解集为x >2,622,m ∴-=2.m ∴=故选:B 【点睛】本题考查的是由一元一次不等式的解集确定参数的值,掌握一元一次不等式的解法是解题的关键.6.A解析:A 【分析】①根据垂线段的性质即可判断,②如果两个都是直角则可判断,③根据平行线的判定定理可判断,④因为没说明两直线平行,所以不能得出. 【详解】①应该是连接直线为一点与直线上的所有线段,垂线段最短,所以错误;②如果两个都是直角则可判断“互补的两个角中一定是一个为锐角,另一个为钝角”错误; ③根据平行线的判定定理可判断同旁内角相等,两直线平行正确;④因为没说明两直线平行,所以不能得出,故错误.故选A【点睛】本题考查垂线段的性质、平行线的判定,解题的关键是掌握垂线段的性质、平行线的判定. 7.A解析:A【分析】由题可知,a1,a2,a3每三个循环一次,可得a18=a3,a64=a1,所以6-x=-6x+11,即可求a2=4,a3=11,a1=5,再由2021除以3的余数可得结果.【详解】解:由题可知,a1+a2+a3=a2+a3+a4,∴a1=a4,∵a2+a3+a4=a3+a4+a5,∴a2=a5,∵a4+a5+a6=a3+a4+a5,∴a3=a6,…∴a1,a2,a3每三个循环一次,∵18÷3=6,∴a18=a3,∵64÷3=21…1,∴a64=a1,∴a1=20-4x-(9+2x)=-6x+11,∴6-x=-6x+11,解得:x=1,∴a2=4,a3=11,a1=5,∵2021÷3=673…2,∴a2021=a2=4,故选A.【点睛】本题主要考查规律型:数字的变化类,能够通过所给例子,找到式子的规律,利用有理数的运算解题是关键.8.C解析:C【分析】先根据三角形的内角和定理可出∠C =180°-∠A -∠B =180°-65°-75°=40°;再根据折叠的性质得到∠F =∠C =40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠F =180°,∠5=∠4+∠C =∠4+40°,即可得到∠3+∠4=65°,然后利用平角的定义即可求出∠1,即BDF ∠. 【详解】 解:如图,∵∠A =65°,∠B =75°,∴∠C =180°-∠A -∠B =180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C 落在△ABC 外, ∴∠F =∠C =40°,而∠3+∠2+∠5+∠F =180°,∠5=∠4+∠C =∠4+40°, ∵35AEF ∠=︒,即∠2=35°, ∴∠3+35°+∠4+40°+40°=180°, ∴∠3+∠4=65°, ∴∠1=180°-65°=115°. 即115BDF ∠=︒ 故选:C . 【点睛】本题考查了折叠问题中的角度计算问题,注意折叠前后,对应角相等,熟练掌握三角形的内角和定理以及外角性质是解题的关键.二、填空题 9.526x y【分析】根据单项式乘单项式的运算法则进行计算求解. 【详解】解:32223x y x ⋅=6x 5y 2,故答案为:6x5y2.【点睛】本题考查单项式乘单项式,掌握相关运算法则准确计算是解题关键.10.真命题【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,可得答案【详解】“如果|a|=|b|,那么a=b”的逆命题是“如果a=b,那么|a|=|b|.”“如果a=b,那么|a|=|b|”是真命题,故答案为:真命题.【点睛】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.11.六【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【详解】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形的边数为6.故答案为:六.【点睛】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.12.6【分析】根据完全平方公式分解因式后整体代入即可求解.【详解】a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,2(a2+b2+c2﹣ab﹣ac﹣bc)=2a2+2b2+2c2﹣2ab﹣2ac﹣2bc=(a﹣b)2+(a﹣c)2+(b﹣c)2=(﹣1)2+(﹣2)2+(﹣1)2=1+4+1=6.故答案为:6.【点睛】本题考查了分解因式的应用,解题的关键是整体思想的运用.13.﹣4<k <6【分析】将方程组中两个方程相加可得5x+5y=k+4,整理可得45k x y ++=,根据0<x+y <2知4025k +<<,解之可得. 【详解】 将方程组中两个方程相加可得5x+5y =k+4,整理可得45k x y ++=, ∵0<x+y <2, ∴4025k +<<, 解得:﹣4<k <6;故答案为:﹣4<k <6【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.1cm【分析】根据垂线段最短可知,当PD OB ⊥时最短,再根据角平分线上的点到角的两边的距离相等可得PD PC =,从而得解.【详解】 解:垂线段最短,∴当PD OB ⊥时PD 最短, OP 是AOB ∠的平分线,PC OA ⊥,PD PC ∴=,1PC =,1PD ∴=,即PD 长度最小为1.故答案为:1cm .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质,解题的关键是:确定出PD最小时的位置是解题的关键.15.【分析】根据六边形ABCDEF的各角都相等,可得六边形ABCDEF的对边平行;延长DC,交直线n于点G,再根据平行线的性质解答即可.【详解】解:连接DF,延长DC,交直线n于点G,∵六边解析:180【分析】根据六边形ABCDEF的各角都相等,可得六边形ABCDEF的对边平行;延长DC,交直线n于点G,再根据平行线的性质解答即可.【详解】解:连接DF,延长DC,交直线n于点G,∵六边形ABCDEF是正六边形,∴每个内角为:(6-2)×180°÷6=120°,∴∠E+∠EDC+∠EFA=360°,∵∠E+∠EDF+∠EFD=180°,∴∠FDC+∠DFA=180°,∴AF∥DC,∴∠2=∠3,又∵m∥n,∴∠3+∠4=180°,∵∠4=∠1,∴∠1+∠2=180°,故答案为:180.【点睛】本题考查了多边形的内角与外角以及平行线的判定与性质,得出AF∥DC是本题的关键.16.18【分析】先由三角形的高和内角和求出∠DAC,然后由角平分线得出∠BAC,从而计算即可得到答案.【详解】解:∵AD是△ABC的BC边上的高,∠C=42°,∴∠DAC=180°-90°-4解析:18【分析】先由三角形的高和内角和求出∠DAC,然后由角平分线得出∠BAC,从而计算即可得到答案.【详解】解:∵AD是△ABC的BC边上的高,∠C=42°,∴∠DAC=180°-90°-42°=48°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=15°×2=30°,∴∠DAB=∠DAC-∠BAC=48°-30°=18°,故答案为:18.【点睛】本题主要考查了三角形的高和角平分线的内容,注意三角形的内角和是180°,以及三角形的高和角平分线的性质即可解答.三、解答题17.(1);(2)4;(3)【分析】(1)利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式变形后,利用平方差公式计算即可得到结果;(3)利用多项式乘以多项式以及单项式乘以多解析:(1)18;(2)4;(3)134x - 【分析】(1)利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式变形后,利用平方差公式计算即可得到结果;(3)利用多项式乘以多项式以及单项式乘以多项式法则展开,合并同类项计算即可;【详解】解:(1)原式=1118-++, 18=, (2)原式=2123(1232)(1232)-+-,=222123(1232)--,=4,(3)原式=2252104(55)x x x x x -+---,=225210455x x x x x -+--+,=134x -,【点睛】本题考查了整式的混合运算和0指数次幂、负指数次幂,熟练掌握整式混合运算法则及灵活运用乘法公式是解题关键.18.①x (x+2y)(x-2y);②(x+y -1)(x-y+1)【分析】①先提取公因式,然后运用平方差公式因式分解即可;②先运用完全平方公式将括号里因式分解,然后运用平方差公式因式分解即可.【详解析:①x (x +2y )(x -2y );②(x +y -1)(x -y +1)【分析】①先提取公因式x ,然后运用平方差公式因式分解即可;②先运用完全平方公式将括号里因式分解,然后运用平方差公式因式分解即可.【详解】解:①2223(4)(2)(2)4x xy x x y x x y x y =---=+;②2222(21)(1)(1)(1)x y y x y x y x y --+=--=+--+.【点睛】本题考查了提公因式法因式分解与公式法因式分解,熟知乘法公式的结构特点是解题的关键.19.(1);(2)【分析】(1)根据题意直接利用加减消元法解方程组即可得到答案;(2)由题意将方程化简后,利用代入消元法解方程组即可得到答案.【详解】解:(1),①+②可得,,解得,①-②解析:(1)12x y =⎧⎨=⎩;(2)32x y =⎧⎨=⎩ 【分析】(1)根据题意直接利用加减消元法解方程组即可得到答案;(2)由题意将方程化简后,利用代入消元法解方程组即可得到答案.【详解】解:(1)31x y x y +=⎧⎨-=-⎩①②, ①+②可得,22x =,解得1x =,①-②可得,24y =,解得2y =,∴原方程组的解为:12x y =⎧⎨=⎩; (2)()113216x y x y ⎧+=⎪⎨⎪+-=⎩将方程组化简,得3324x y x y -=-⎧⎨-=⎩①②, 由①得,33x y =-③,把③代入②,可得2(33)4y y --=,解得2y =,把2y =代入③,可得3x =,∴原方程组的解为:32x y =⎧⎨=⎩. 【点睛】本题考查的是解二元一次方程组,熟练掌握解二元一次方程组的加减消元法和代入消元法是解答此题的关键.20.,解集在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:,由①得:,由②得:,不等式组的解集为,如解析:21x -<≤,解集在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:()3241213x x x x ⎧---⎪⎨+-<⎪⎩①②, 由①得:1x ,由②得:2x >-,∴不等式组的解集为21x -<,如图所示:.【点睛】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,向右画;<,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“”,“ ”要用实心圆点表示;“<”,“ >”要用空心圆点表示.21.(1)详见解析;(2)58°【分析】(1)由平行线的判定定理进行证明,即可得到结论成立;(2)由角平分线性质和平行线的性质,求出∠2的度数,然后即可求出的度数.【详解】(1)证明:∵∠1=解析:(1)详见解析;(2)58°【分析】(1)由平行线的判定定理进行证明,即可得到结论成立;(2)由角平分线性质和平行线的性质,求出∠2的度数,然后即可求出FAB的度数.【详解】(1)证明:∵∠1=∠BDC∴AB//CD(同位角相等,两直线平行)∴∠2=∠ADC(两直线平行,内错角相等)∵∠2+∠3=180°∴∠ADC+∠3=180°(等量代换)∴AD//CE(同旁内角互补,两直线平行)(2)解:∵∠1=∠BDC,∠1=64°∴∠BDC=64°∵DA平分∠BDC∠BDC= 32°(角平分线定义)∴∠ADC=12∴∠2=∠ADC=32°(已证)又∵CE⊥AE∴∠AEC=90°(垂直定义)∵AD//CE(已证)∴∠DAF=∠AEC=90°(两直线平行,同位角相等)∴∠FAB=∠DAF-∠2=90°-32°=58°.【点睛】本题考查了平行线的判定和性质,角平分线的定义,以及余角的计算,解题的关键是熟练掌握所学的知识进行解题.22.(1)这两种蔬菜当天全部售完后一共能赚960元钱;(2)该超市最多能批发西红柿100千克【分析】(1)设批发西红柿千克,西兰花千克,根据批发西红柿和西兰花两种蔬菜共300千克,用去了1520元钱解析:(1)这两种蔬菜当天全部售完后一共能赚960元钱;(2)该超市最多能批发西红柿100千克【分析】(1)设批发西红柿x 千克,西兰花y 千克,根据批发西红柿和西兰花两种蔬菜共300千克,用去了1520元钱,列方程组求解即可;(2)设批发西红柿z 千克,根据当天全部售完后所赚钱数不少于1050元列不等式求解即可.【详解】解:(1)设批发西红柿x 千克,西兰花y 千克.由题意得300,3.681520,x y x y +=⎧⎨+=⎩ 解得200,100.x y =⎧⎨=⎩故批发西红柿200千克,西兰花100千克,则这两种蔬菜当天全部售完一共能赚:()()200 5.4 3.6100148960⨯-+⨯-=(元). 答:这两种蔬菜当天全部售完后一共能赚960元钱.(2)设批发西红柿z 千克,由题意得()()1520 3.65.4 3.614810508z z --+-⨯≥, 解得100z ≤.答:该超市最多能批发西红柿100千克.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解. 23.(1)初一(2)班共有53人或59人;(2)两个一起买票更省钱,比原计划节省298元或290元【分析】(1)设一班人有x 人,则二班有y 人,根据两班分别购票的费用为1136元建立方程,求出其解;解析:(1)初一(2)班共有53人或59人;(2)两个一起买票更省钱,比原计划节省298元或290元【分析】(1)设一班人有x 人,则二班有y 人,根据两班分别购票的费用为1136元建立方程,求出其解;(2)根据表格中的数据和(1)中结果,可知两个班一起购买最省钱,从而可以求得省多少钱.【详解】解:(1)设初一(1)班有x 人,初一(2)班有y 人,可得:12101106x y +=,化简为:65553x y +=且4050x <<,5060y <<,根据方程代入试算可得:当初一(1)班有48人时,4812576⨯=,1106576530-=,5301053÷=;当初一(1)班有43人时,4312516⨯=,1106516590-=,5901059÷=;所以,初一(2)班共有53人或59人;(2)两个班一起买票更省钱,根据题意及表中数据可得,两个班级合起来超过100人,每张票的价格为8元, ①84853808⨯+=(),1106808298-=;②84359816⨯+=(),1106816290-=.∴这样比原计划节省298元或290元.【点睛】题目主要考查二元一次方程的应用,明确题意,列出相应方程,根据方程的知识解决问题是解题关键.24.阅读材料:,见解析;拓展延伸:.【分析】(1)作,,,由平行线性质可得,结合已知,可证,进而得到,从而,,将代入可得.(2)过H 点作HP ∥MN ,可得∠CHA=∠PHA+∠PHC ,结合(1)的结解析:阅读材料:40∠=︒+∠ECD MAB ,见解析;拓展延伸:120CHA α=∠︒-.【分析】(1)作ECF ECD ∠=∠,DG MN ,BH MN ,由平行线性质可得180MAD ADG ∠+∠=︒,结合已知2DCE MAD ADC ∠=∠+∠,可证180CDG DCF ∠+∠=︒,进而得到DG CF ,从而CF BH ,140BCF MAB ABC ∠+∠=∠=︒,将180180BCF ECF ECD ∠=︒-∠=︒-∠代入可得40∠=︒+∠ECD MAB .(2)过H 点作HP ∥MN ,可得∠CHA=∠PHA+∠PHC ,结合(1)的结论和CG 平分∠ECD 可得∠PHC =∠FCH =120°-3MAB 2∠,即可得120CHA α=∠︒-.【详解】解:【阅读材料】作ECF ECD ∠=∠,DG MN ,BH MN (如图1).∵DG MN ,∴180MAD ADG ∠+∠=︒.∴()180CDG MAD ADC ∠+∠+∠=︒.∵2DCE MAD ADC ∠=∠+∠,∴2180CDG DCE ∠+∠=︒.∴180CDG DCF ∠+∠=︒.∴DGCF . ∵DGMN , ∴MNCF . ∵BHMN , ∴CF BH .∴BCF CBH ∠=∠,MAB ABH ∠=∠.∴140BCF MAB ABC ∠+∠=∠=︒.∵180180BCF ECF ECD ∠=︒-∠=︒-∠,∴40∠=︒+∠ECD MAB .【拓展延伸】结论:120CHA α=∠︒-.理由:如图,作ECF ECD ∠=∠,过H 点作HP ∥MN ,∴∠PHA=∠MAH=1BAM 2∠,由(1)得FC ∥MN ,∴FC ∥HP ,∴∠PHC=∠FCH ,∵40∠=︒+∠ECD MAB ,CG 平分∠ECD ,∴∠ECG=20°+1MAB 2∠,∴∠FCH=180ECG ECF ︒-∠-∠=180°-(40MAB ︒+∠)-(20°+1MAB 2∠)=120°-3MAB 2∠∴∠CHA=∠PHA+∠PHC=1MAB 2∠∠+(120°-3MAB 2∠)=120°-MAB ∠即:120CHA α=∠︒-.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用. 25.(1)105,15;(2)旋转角的所有可能的度数是:15°,45°,105°,135°,150°;(3),保持不变;见解析【分析】(1)三角板ADE 顺时针旋转后的三角板为,当时,,则可求得旋转角解析:(1)105,15;(2)旋转角α的所有可能的度数是:15°,45°,105°,135°,150°;(3) 105BDE CAE DBC ∠+∠+∠=︒,保持不变;见解析【分析】(1)三角板ADE 顺时针旋转后的三角板为AD E '',当AD BC '⊥时,D AD D AE EAD ''∠=∠+∠,则可求得旋转角度;当AD '∥BC 时,D AD DAE ACB '∠=∠-∠,则可求得旋转角度;(2)分五种情况考虑:AD ∥BC ,DE ∥AB ,DE ∥BC ,DE ∥AC ,AE ∥BC ,即可分别求出旋转角;(3)设BD 分别交AC 、AE 于点M 、N ,利用三角形的内外角的相等关系分别得出:ANM E BDE ∠=∠+∠及AMN C DBC ∠=∠+∠,由AMN 的内角和为180°,即可得出结论.【详解】(1)三角板ADE 顺时针旋转后的三角板为AD E '',当AD BC '⊥时,如图,∵9060D AE ACB '∠=︒-∠=︒,∠EAD =45°∴6045105D AD D AE EAD ''∠=∠+∠=︒+︒=︒即旋转角105α=︒当//AD BC '时,如图,则30D AE ACB '∠=∠=︒∴D AD DAE ACB '∠=∠-∠=45°-30°=15°即旋转角15α=°故答案为:105,15(2)当ADE 的一边与ABC 的某一边平行(不共线)时,有五种情况当AD ∥BC 时,由(1)知旋转角为15°;如图(1),当DE ∥AB 时,旋转角为45°;当DE ∥BC 时,由AD ⊥DE ,则有AD ⊥BC ,此时由(1)知,旋转角为105°;如图(2),当DE ∥AC 时,则旋转角为135°;如图(3),当AE ∥BC 时,则旋转角为150°;所以旋转角α的所有可能的度数是:15°,45°,105°,135°,150°(3)当045α︒<<︒,105BDE CAE DBC ∠+∠+∠=︒,保持不变;理由如下:设BD 分别交AC 、AE 于点M 、N ,如图在AMN 中,180AMN CAE ANM ∠+∠+∠=ANM E BDE ∠=∠+∠,AMN C DBC ∠=∠+∠180E BDE CAE C DBC ∴∠+∠+∠+∠+∠=︒30C ∠=︒,45E ∠=︒105BDE CAE DBC ∴∠+∠+∠=︒【点睛】本题考查了图形旋转的性质,三角形内角和定理,三角形的外角与不相邻的两个内角的相等关系等知识,注意旋转的三要素:旋转中心,旋转方向和旋转角度.。
2022—2023学年第二学期期末考试试题卷七年级数学(考试时间:100分钟)注意事项:1.本试卷分试题卷和答题卷两部分,考生务必将自己的姓名、准考证号等信息填写在试题卷和答题卷的相应位置上.2.作答选择题时,选出正确答案后,用2B 铅笔将答题卷上对应题目的答案字母涂黑.如需改动,用橡皮擦干净后,再选涂其他答案字母,在试题卷上作答无效.3.作答非选择题时,将答案写在答题卷上,在试题卷上作答无放.4.考试结束时,将本试题卷和答题卷一并交回.一、选择题(本大题共8小题,每题只有一个正确答案)1.2的算术平方根是()AB .C .D.42.在平面直角坐标系中,下列各点在第二象限的点是()A .B .C .D .3最接近的两个整数是()A .5与6B .6与7C .7与8D .6.3与6.44.下列选项中不能证明的是()A .B .C .D .5.某次考试中,某班的数学成绩统计图如图所示,下列说法中错误的是()A .得分在70~80范围内的人数最多B .该班的总人数为40C .得分在90~100范围内的人数最少D .及格(≥60分)人数是264-()4,5-()2,3-()0,4-()3,0-//a b 13∠=∠14∠=∠12180︒∠+∠=24180︒∠+∠=6.若,则下列式子错误的是()A .B .C .D.7.如图,,,则与满足()A .B .C .D .8.在等式中,当时,;当时,.则、的值是()A .,B .,C .,D .,二、填空题(本大题共6小题)9.为了调查夏季冷饮市场上的一批冰淇淋的质量情况,适宜的调查方式是______.10.的相反数是______.11.是关于、的二元一次方程的一个解,则的值是______.12.如图,,,则当______时,.13.我国古代数学著作《孙子算经》中的一个数学问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔几何.”,设鸡有只,兔有只,可列二元一次方程组为______.14.某种商品的进价为120元,标价为240元,商店规定可以打折销售,但其利润率不低于20%,则该商品最多______打折.三、解答题(本大题共8小题,解答应写出必要的文字说明、证明过程或演算步骤)15x y >11x y ->-11x y +>+33x y ->-33x y >90BCD ∠=︒//AB DE α∠β∠180αβ︒∠+∠=90βα︒∠-∠=3βα∠=∠90αβ︒∠+∠=2y x bx c =++1x =-0y =2x =6y =-b c 3b =-4c =-3b =2c =73b =-103c =-9b =-8c =π 3.14-21x y =⎧⎨=-⎩x y 5kx y +=k AD DB ⊥130∠=︒A ∠=//AB DC x y 2-16.解二元一次方程组:17.解不等式组:,并在数轴上表示出不等式组的解集.18.如图,直线,相交于点平分,,.求:(1)的度数;(2)的度数.19.在平面直角坐标系中,已知有四个点,,,,请完成下列问题:(1)在平面直角坐标系中请描出点,,,四个点,并顺次连接,再请判断是什么图形?(2)写出点向右平移4个单位长度,再向下平移3个单位长度后,得到的点的坐标.20.某校七年级全体学生参加校级组织的数学运算能力比赛,我们从中随机抽取了部分学生的考试成绩,将他们的成绩进行统计后分为、、、四等级,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:级:25分~30分;级:20分~24分;级:15分~19分;级:15分以下)(1)请把条形统计图补充完整;(2)扇形统计图中级所占的百分比是______;1312223x y x y ⎧-=-⎪⎨⎪+=⎩211841x x x +≥⎧⎨+<-⎩AB CD ,O OA EOC ∠OF CD ⊥36AOE ∠=︒EOC ∠BOF ∠()3,4A -()3,2B -()1,2C -()1,4D -A B C D ABCD A A 'A B C D A B C D D(3)求扇形统计图中级所对应的圆心角度数;(4)若该校七年级有450名学生,请你估计全年级级和级的学生人数共约多少人?21.如图,于,,.求证:.证明:∵∴∵∴____________( )∴______( )∵∴____________∴____________( )∴( )∴∴22.某文化用品商店计划同时购进一批,两种型号的计算器,若购进型计算器10只和型计算器8只,共需要资金880元;若购进型计算器2只和型计算器5只,共需要资金380元.(1)求,两种型号的计算器每只进价各是多少元?(2)该商店老板计划购进这两种型号的计算器共50只,而可用于购买这两种型号的计算器的总费用不超过2520元,请问至少要购买多少只型计算器?2022—2023学年第二学期期末考试七年级数学参考答案一、选择题(每小题4分,共32分)题号12345678答案A B B C D C B AA AB CF AB ⊥F 12∠=∠AGF ACB ∠=∠DE AB ⊥CF AB⊥90CFB ∠=︒AGF ACB∠=∠∥3=∠12∠=∠=∥180DEF CFB ∠+∠=︒90DEF ∠=︒DE AB⊥A B A B A B A B A二、填空题(每小题3分,共18分)9.抽样调查10.11.312.60° 13.14.6三、解答题(共50分)15.(本题4分)16.(本题5分)解:(1)×4得:(3)(2)-(3)得:,把代入(2)得∴是二元一次方程组的解17.(本题6分)解:由(1)得由(2)得∴是不等式组的解集18.(本题5分)解:(1)∵平分,∴∴(2)∵,∴∵,∴∴19.(本题6分)解:(1)图略是正方形π 3.14-+352494x y x y +=⎧⎨+=⎩120.710.70.510.22⎛⎫-=---=+-= ⎪⎝⎭()()131122232x y x y ⎧-=-⎪⎨⎪+=⎩264x y -=-77y =1y =1y =1x =11x y =⎧⎨=⎩()()21118412x x x +≥⎧⎪⎨+<-⎪⎩0x ≥3x >3x >OA EOC ∠36AOE ∠=︒36AOC AOE ︒∠=∠=72EOC AOC AOE ∠=∠+∠=︒36AOC ∠=︒36BOD AOC ︒∠=∠=OF CD ⊥90DOF ∠=︒54BOF DOF BOD ∠︒=∠-∠=(2)点的坐标是20.(本题7分)解:(1)由(人),可得级有5人,图略(2)(3)级所对应的圆心角度数为(4)用样本估计总体得:(人)21.(本题8分);同位角相等,两直线平行;;两直线平行,内错角相等;;;同位角相等,两直线平行;两直线平行,同旁内角互补.22.(本题9分)解:(1)设:型计算器每只进价元,型计算器每只进价元.,解得答:型计算器每只进价40元,型计算器每只进价60元.(2)设购买只型计算器,则购买只型计算器.,解得答:至少要购买24只型计算器.A '()1,12346%50÷=D 5100%10%50⨯=A 103607250︒︒⨯=102345029750+⨯=//FG BC 2∠13∠=∠//DE CF A x B y 10888025380x y x y +=⎧⎨+=⎩4060x y =⎧⎨=⎩A B m A ()50m -B ()4060502520m m +-≤24m ≥A。
广东省东莞市2023-2024学年七年级下学期期末数学试卷学校:___________姓名:___________班级:___________考号:___________2.下列各点中,在第一象限的点是( )A. B. C. D.3.下列调查中,适合采用全面调查的是( )A.了解我市中小学生上学所用的交通工具B.了解“五一”假期来旗峰山游览的游客满意度C.了解某校701班学生的视力情况D.了解全国七年级学生的身高情况4.如图,是一块梯形铁片的残余部分,量得,则的度数是( )A. B. C. D.5.若,下列各式错误的是( )A. B. C. D.6.能满足方程的一组解是( )A. B.C. D.7.如图,直线与相交于点O ,过O 点作射线,下列选项中两个角是对顶角的是( )()2,3()2,3--()2,3-()2,3-110B ∠=︒A ∠30︒70︒110︒120︒a b >22a b ->-22a b >11a b ->-11a b +>+24x y -=12x y =-⎧⎨=⎩21x y =⎧⎨=-⎩12x y =⎧⎨=⎩32x y =⎧⎨=⎩AB CD OEA.与B.与C.与D.与8.如图所示是中国象棋棋盘的一半.放置在平面直角坐标系中,若“相”的坐标为,D 的坐标为,则“马”的坐标为( )A. B. C. D.9.已知x ,y 满足方程组,则无论m 取何值,x,y 恒有的关系式是( )A. B. C. D.10.已知关于x 的方程的解大于0,则m 的取值范围为( )A.______.12.2024年4月25日,神舟十八号载人飞船发射成功,神舟十八号将在太空“养鱼”,若想了解“鱼”生长的变化趋势,最适合的统计图是______(填“条形”“扇形”或“折线”)统计图.13.已知,则代数式的值为______.14.如图,直线a ,b 被直线c 所截,则的同旁内角是______.15.如图,平面直角坐标系中,正方形四个顶点的坐标分别是,,1∠4∠1∠3∠3∠5∠2∠4∠()4,2()3,1(1,1)-(3,0)-(2,2)-(0,4)43x m y m +=⎧⎨+=⎩1x y +=1x y -=7x y +=7x y -=-25x m -=m ><>52<=23x y +=248x y +-4∠ABCD ()1,0A ()3,1B,,以点A 为圆心,的长度为半径作圆弧,交x 轴的正半轴于点E ,则的长为______.三、解答题16.计算∶17.我们通常在施工项目附近的地面上,看到如下图中的向导标识,它是道路施工安全标志,表示车辆及行人向左或向右行驶,为其作出正确的向导,如果你是安全标志的设计人员,请利用下面的方格图,解决下列问题:(1)画出安全标志图形向右平移4格后的图形,并标注A 、B 的对应点A'、B';(2)完成(1)后,图中AB 与的位置关系是_______,数量关系是_______.18.解不等式,并在数轴上表示解集.19.如图,B 线,相交于点O .(1)求的度数;()2,3C ()0,2D AB OE 2+A B ''()13122x x ->+AB CD 12AOC BOC ∠=∠.AOC ∠(2)若,求的度数.20.解方程组.21.我市某校为了更好的开展劳动教育,采用随机抽样的方法,抽取了一部分学生,对他们一年前平均每月的劳动时间(单位:小时)进行了调查,将数据整理后绘制了如图不完整的频数分布直方面和扇形图.根据图中提供指出,解答下列问题:(1)扇形形,______,E 组对应的圆心角度数为度;(2)这次抖音的样本容量是,补全频数分布直方图;(3)请估计游技2000名学生中一年前平均每月的劳动时间不低于6小时的人数?22.2024年5月5日,是中国羽毛球队的荣耀时刻,中国队时隔6年重新夺得代表羽毛球男子团体世界最高水平的汤姆斯杯、羽毛球运动消耗最大是羽毛球,为节约开支,羽毛球爱好者通常会购买2种羽毛球,即训练球和比赛球.若购买3桶训练球和2桶比赛球,共花费675元:购买3桶训练球的费用与购买1桶比赛球的费用相同.(1)每桶羽毛球训练球和比赛球的价格各是多少元?(2)若购买两种球共20桶,其中比赛球不少于6桶,所需费用总额不超过2800元,至少买训练球多少桶?请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方式23.台球运动蕴含数学知识:台球桌面如1图是一个长方形,两组对边分别平行;台游直线运动:过台球与桌型碰撞的点作桌壁的垂线,该垂线平分台球碰撞前后运动所形成的天角.OE CD ⊥BOE ∠243x y x y x z +=⎧⎪-=-⎨⎪+=⎩m =(1)如2图,已知长方形桌面中,,一个球在桌面上的点A 处滚向桌边,碰到上的点B 后反弹,再碰到边上的点C 后,再次反弹进入底袋点Q ,在球碰到桌边反弹的过程中,,,都是直线,且,,,.求证:.(2)如3图,若球在桌面的点A 处,经过两次反弹后碰到边上的点D 处,已站长方形桌面中,,.通过观察猜想与的位置关系,并证明你的猜想.24.我国著名数学家华罗庚在杂志上看到这样的问题:求59319的立方根.他脱口而出:39.他是怎样快速准确算出来的呢?,因为,,因此,我们需要熟悉一些数及其立方.请补全表格:(2)【思路探究】尝试求出19683的立方根是哪个整数:①确定立方根的位数:由,是______;③确定十位的数字:由,且位上的数字是______;④确定立方根的值:由(3)【尝试应用】某商场拟建一个棱长为整数、容积为373248的正方体玻璃柜放置东莞迎思门(西城楼)模型,请问这个正方形棱长是多少?请写出求解过程.PQRS //PQ RS PQ PQ RS AB BC CD 12∠=∠34∠=∠BN PQ ⊥CM RS ⊥//AB CD PQ PQRS //PQ RS 90R ∠=︒AB CD 0=()328-=-2=-3101000=3100=3208000=33027000=8000196837000<<~①25.综合探究:表示无理数整数部分与小数部分的思路:,,根据观察上述的规律后试解下面的问题:(2)已知其中a 是方根;(3)已知的解集.26.如图1,在平面直角坐标系中,点,,,且满足P 点在线段上运动(不与O 、A 重合).(1)直接写出点A 的坐标,B 的坐标,C 的坐标;(2)如图2,Q 点在线段上运动,与的平分线交于点M ,当时,点P 在运动过程中,的大小是否变化?若不变,求出其值;若变化,说明理由:(3)若点Q 在y 轴上运动(不与O 、C 重合),当与的角平分线交于点M 时,根据点Q 的运动位置,直接写出,和三者的数量关系.<<23∴<<214a b =+14++b -+5+-()23113322m n x x x m n x ⎧+-<+⎪⎨-->-⎪⎩(,0)A a (,)B c c ()0,C c ()280a +=,OA OC OPQ ∠CBQ ∠PQ BQ ⊥M ∠OPQ ∠CBQ ∠M ∠OPQ ∠CBQ ∠参考答案1.答案:B故选:B.2.答案:A解析:因为第一象限内点的特征是,所以符合条件的选项只有,故选A.3.答案:C解析:A 、了解我市中小学生上学所用的交通工具,适合采用抽样调查;故此选项不符合题意;B 、了解“五一”假期来旗峰山游览的游客满意度,适合采用抽样调查;故此选项不符合题意;C 、了解某校701班学生的视力情况,适合采用全面调查,故此选项符合题意;D 、了解全国七年级学生的身高情况,适合采用抽样调查;故此选项不符合题意;故选:C.4.答案:B解析:∵上图是梯形铁片,,则,则,故选:B.5.答案:A解析:A 、∵,∴,∴,故此选项符合题意;B 、∵,∴,故此选项不符合题意;C 、∵,∴,故此选项不符合题意;D 、∵,∴,故此选项不符合题意;故选:A.6.答案:D解析:A 、把代入方程左边,故此选项不符合题意;(),++()2,3A //AD BC ∴180A B ∠+∠=︒18011070A ∠=︒-︒=︒a b >a b -<-22a b -<-a b >22a b >a b >11a b ->-a b >11a b +>+12x y =-⎧⎨=⎩()21244=⨯--=-≠B 、把代入方程左边,故此选项不符合题意;C 、把代入方程左边,故此选项不符合题意;D 、把代入方程左边,故此选项符合题意;故选:D.7.答案:D解析:A 、与不是对顶角,故此选项不符合题意;B 、与不是对顶角,故此选项不符合题意;C 、与不是对顶角,故此选项不符合题意;D 、与是对顶角,故此选项符合题意;故选:D.8.答案:B解析:“相”的坐标为,D 的坐标为,可建立如图所示的平面直角坐标系:所以“马”所在点的坐标为.故选:B9.答案:A 解析:把②代入①,得,∴,故选:A.10.答案:A解析:21x y =⎧⎨=-⎩()22154=⨯--=≠12x y =⎧⎨=⎩21204=⨯-=≠32x y =⎧⎨=⎩2324=⨯-=1∠4∠1∠3∠3∠5∠2∠4∠()4,2()3,1(3,0)-43x m y m +=⎧⎨+=⎩①②34x y ++=1x y +=25x m -=由题意,得解得:故选:A.11.答案:4解析:原式.故答案为4.12.答案:折线解析:折线统计图,用点表示变化的数据,并且连接成线,能很好地反应数据变化情况.因此想要了解“鱼”生长的变化趋势,应该选择的统计图是折线图.故答案为:折线.13.答案:解析:,∴∴故答案为:.14.答案:解析:与都在直线a 、b 之间,且它们都在直线c 的同旁,的同旁内角是.故答案为:.15.答案:解析:正方形,∴∴故答案为:16.答案:252x m=+520m +>52m >-4==2-23x y += 246x y +=248x y +-68=-2=-2-5∠5∠ 4∠4∴∠5∠5∠113341252ABCD =⨯-⨯⨯⨯=AE AB ==1OE OA AE =+=1解析:原式.17.答案:(1)图见解析(2)平行(或),相等(或)解析:(1)图形如图所示:(2),,故答案为:,.18.答案:,图见解析解析:在数轴上表示解集为:.19.答案:(1)(2)解析:(1),,,;(2),233=+-2=//AB A B ''AB A B =''//AB A B ''AB A B =''//AB A B ''AB A B =''2x >()13122x x ->+13322x x ->+13232x x ->+552x >2x >60︒30︒12AOC BOC ∠=∠ 180AOC BOC ∠+∠=︒2180AOC AOC ∴∠+∠=︒60AOC ∴∠=︒OE CD ⊥,,,,.20.答案:解析:得:,解得:,将代入①得:,解得:,将代入③得:,解得:,则方程组的解为.21.答案:(1)40;14.4(2)100;图见解析(3)580人解析:(1)本次调查的学生有:(人,,E 组对应的圆心角度数为:,故答案为:40,14.4;(2)由(1)可知:这次抖音的样本容量是100;D 组的频数为:,补全的频数分布直方图如图所示;90COE ∴∠=︒12AOC BOC ∠=∠ 60AOC ∠=︒120BOC ∴∠=︒1209030BOE BOC COE ∴∠=∠-∠=︒-︒=︒134x y z =-⎧⎪=⎨⎪=⎩243x y x y x z +=⎧⎪-=-⎨⎪+=⎩①②③+①②22x =-1x =-1x =-12y -+=3y =1x =-13z -+=4z =134x y z =-⎧⎪=⎨⎪=⎩1010%100÷=)%40100100%40%m =÷⨯=436014.4100︒⨯=︒10025%25⨯=(3)(人,答:该校2000名学生中每周的运动时间不少于6小时的约有580人.22.答案:(1)每桶羽毛球训练球的价格是30元,比赛球的价格是20元;(2)至少买训练球12桶,最省钱的购买方式为买训练球14桶,买比赛球6桶解析:(1)设每桶羽毛球训练球的价格是a 元,比赛球的价格是b 元,由题意得:,解得:,每桶羽毛球训练球的价格是75元,比赛球的价格是225元.(2)设买训练球x 桶,则买比赛球桶,根据题意,得,,∵x 为整数,∴至少买训练球12桶;∴或13或14,∴或7或6,∴共有三种方案:方案一:买训练球12桶,则买比赛球8桶,所需费用总额为:(元);方案二:买训练球13桶,则买比赛球7桶,所需费用总额为:(元);方案三:买训练球14桶,则买比赛球6桶,所需费用总额为:(元);∵,∴最省钱的购买方式为买训练球14桶,买比赛球6桶.2542000580100+⨯=)326753a b a b +=⎧⎨=⎩75225a b =⎧⎨=⎩()20x -()75225202800206x x x ⎧+-≤⎨-≥⎩14x ≤≤12x =208x -=127582252700⨯+⨯=137572252550⨯+⨯=147562252400⨯+⨯=240025502700<<23.答案:(1)证明见解析(2),理由见解析解析:(1)∵,,,∴,∴,∵,,∴,即,∴.(2),证明:∵,∴,由题意可知:,,∴∵,∴,∴.24.答案:(1)64,125,343,512(2)①两②7③2;④27(3)这个正方形棱长是72解析:(1),,,,故答案为:64,125,343,512;①∵,,而,∴,②∵19683的个位上的数是3,而只有7的立方的个位上的数是3,//AB CD //PQ RS BN PQ ⊥CM RS ⊥//BN CM 23∠=∠12∠=∠34∠=∠1234∠+∠=∠+∠ABC BCD ∠=∠//AB CD //AB CD 90R ∠=︒90RBC RCB ∠+∠=︒ABS RBC ∠=∠RCB QCD ∠=∠()2180ABS RBC RCB QCD RBC RCB ∠+∠+∠+∠=∠+∠=︒360ABS RBC ABC RCB QCD BCD ∠+∠+∠+∠+∠+∠=︒180ABC BCD ∠+∠=︒//AB CD 3444464=⨯⨯=35555125=⨯⨯=37777343=⨯⨯=38888512=⨯⨯=3101000=31001000000=100196831000000<<10010<<③∵,,且,;(3)设这个正方形棱长是x ,根据题意得:,故,,而,所以第二步:确定个位数字,因为373248的个位上的数是8,而2的立方的个位上的数是8,所以第三步:确定十位数字,划去373248后面的三位248得到373,因为,,而,故这个正方形棱长是72.(2)(3)解析:(1),,,;(2),,,即,,,;3208000=33027000=80001968327000<<27=3373248x =x =31000=31001000000=1003732481000000<<10<<37343=38512=343373<<72=3-4±2x >91516<< 34∴<<33-12<< 1516∴<<∴151-=-15a =1b =)15116a b ∴-+=--+=a b ∴-+4(3),,,,,即,化为,解不等式得:得:,此不等式组的解集为.26.答案:(1);;(2)的大小没有变化,其值为(3)当点Q 在线段上时,;当点Q 在延长线上时,;当点Q 在延长线上时,解析:(1)∵∴,,解得:,,∴,,.(2)过点M 作,如图2,∵∴34<< 43-<<- 89∴<<1<5<2∴83=514-=3m =-4n =()23113322m n x x x m n x ⎧+-<+⎪∴⎨-->-⎪⎩231131322x x x x -<+⎧⎪⎨->-⎪⎩231x x -<+x >3132x x ->-2x >∴2x >()8,0-()4,4--()0,4-BMP ∠45︒OC 1122BMP OPQ CBQ ∠=∠+∠OC 1122BMP OPQ CBQ ∠=∠-∠CO 1122BMP CBQ OPQ ∠=∠-∠()280a ++=80a +=20a c -=8a =-4c =-()8,0A -()4,4B --()0,4-//MN AO 90AOQ ∠=︒90OPQ PQO ∠+∠=︒∵,,∴∴∴∴∵∴∴∵与的平分线交于点M ,∴,,∵∴,∵,,∴∴∴∴的大小没有变化,其值为.(3)当点P 在线段上时,过点M 作,∵与的平分线交于点M ,∴,,∵∴,()4,4B --()0,4-//BC AO180BCQ POQ ∠+∠=︒90BCQ ∠=︒90CBQ CQB ∠+∠=︒PQ BQ⊥90CQB PQO ∠+∠=︒90CBQ OPQ ∠+∠=︒OPQ ∠CBQ ∠12OPM OPQ ∠=∠12CBM CBQ ∠=∠//MN AO12PMN OPM OPQ ∠=∠=∠//BC AO //MN AO //MN BC12BMN CBM CBQ ∠=∠=()111190452222BMP PMN BMN CBQ OPQ CBQ OPQ ∠=∠+∠=∠+∠=∠+∠=⨯︒=︒BMP ∠45︒OC //MN AO OPQ ∠CBQ ∠12OPM OPQ ∠=∠12CBM CBQ ∠=∠//MN AO12PMN OPM OPQ ∠=∠=∠∵,,∴∴∴即;当点P 在延长线上时,过点M 作,如图,同理即,当点P 在延长线上时,过点M 作,如图,同理,即.综上,当点P 在线段上时,;当点P 在;当点P 在延长线上时,//BC AO //MN AO //MN BC12BMN CBM CBQ ∠=∠=1122BMP PMN BMN CBQ OPQ ∠=∠+∠=∠+∠1122BMP OPQ CBQ ∠=∠+∠OC //MN AO 1122BMP PMN BMN OPQ CBQ ∠=∠-∠=∠-∠1122BMP OPQ CBQ ∠=∠-∠CO //MN AO 1122BMP BMN PMN CBQ OPQ ∠=∠-∠=∠-∠1122BMP CBQ OPQ ∠=∠-∠OC 1122BMP OPQ CBQ ∠=∠+∠OC 1122BMP OPQ CBQ ∠=∠-∠CO 12BMP ∠=∠。
第5题图第9题图七年级下学期期末考试数学试卷(附含答案)一 选择题(每小题4分,共40分) 1. 9的平方根是( )A.3±B. 3C. 81D.81± 2.在平在直角坐标系中,点M (3,-2)位于( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 3.下列调查中适合采用全面调查的是( )A.了解凯里市“停课不停学”期间全市七年级学生的听课情况B.了解新冠肺炎疫情期间某校七(1)班学生的每日体温C.了解疫情期间某省生产的所有口罩的合格率D.了解全国各地七年级学生对新冠状病毒相关知识的了解情况 4.下列运动属于平移的是( )A. 荡秋千B. 地球绕太阳转C. 风车的转动D.急刹车时,汽车在地面上的滑动5. 如图,在下列条件中,不能判定AB ∥DF 的是( )A. ∠A+∠AFD=180°B.∠A=∠CFDC. ∠BED=∠EDFD. ∠A=∠BED 6. 已知二元一次方程432=-y x ,用含x 的代数式表示y ,正确的是( ) A.342+=x y B. 342-=x y C. 234y x += D. 234yx -= 7. 已知b a >,下列不等式中错误的是( )A. 11+>+b aB. 22->-b aC. b a 22>D. b a 44->-8. 下列命题是真命题的是( )A.若||||b a =,则b a =B.经过直线外一点有且只有一条直线与已知直线平行C.同位角相等D.在同一平面内,如果b a ⊥,c b ⊥,那么c a ⊥ 9.如图,数轴上与40对应的点是( ) A.点A B.点B C.点C D.点D 10. 某种服装的进价为200元,出售时标价为300元; 由于换季,商店准备对该服装打折销售,但要保持利 润不低于20%,那么最多打( )A. 6折B. 7折C. 8折D. 9折 二 填空题(每小题4分,共32分) 11. 在实数①21,②11,③1415926.3,④16,⑤π,⑥ 2020020002.0(相邻两个2之间依次多一个0)中,无理数有 (填写序号).12. 如图,要在河岸l 上建立一水泵房引水到C 处,做法是:过点C 作CD ⊥l 于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是 . 13. 已知⎩⎨⎧=-=13y x 是方程7=+y mx 的解,则m .14.如图,直线a ∥b ,点B 在a 上,点A 与点C 在b 上; 且AB ⊥BC.若∠1=034,则∠2= .第12题图第14题图15. 将50个数据分成5组列出频数分布表,其中第一组的频数为6,第二组与第五组的频数和为18,第三组的频率为0.2,则第四组的频率为 . 16.一个正数b 有两个不同的平方根1+a 和72-a ,则b a -21的立方根是 . 17.若关于x 的不等式组⎪⎩⎪⎨⎧<->-2210x a x 的所有整数解之和等于9,则a 的取值范围是 .18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上 向右 向下 向右的方向依次不断移动,每次移动1个单位,移动的路线如图所示。
【必考题】初一数学下期末试题含答案一、选择题1.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=()A.100°B.130°C.150°D.80°2.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°3.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折4.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 5.16的平方根为()A.±4B.±2C.+4D.26.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15﹣x)≥1.8B.90x+210(15﹣x)≤1800C.210x+90(15﹣x)≥1800D.90x+210(15﹣x)≤1.87.已知关于x 的不等式组321123x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤8.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为() A .()8,3--B .()4,2C .()0,1D .()1,89.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180°10.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( )A .B .C .D .11.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②二、填空题13.不等式组有3个整数解,则m 的取值范围是_____.14.如果不等式组213(1)x x x m->-⎧⎨⎩<的解集是x <2,那么m 的取值范围是_____15.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____. 16.已知13x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则2m +n 的值为_____. 17.二项方程32540x +=在实数范围内的解是_______________18.线段CD 是由线段AB 平移得到的,其中点A (﹣1,4)平移到点C (﹣3,2),点B (5,﹣8)平移到点D ,则D 点的坐标是________. 19.若不等式组1x x a ⎧⎨⎩><有解,则a 的取值范围是______. 20.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____.三、解答题21.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 22.某校在“传承经典”宣传活动中,计划采用四种形式:A-器乐,B-舞蹈,C-朗诵,D-唱歌.每名学生从中选择并且只能选择一种自己最喜欢的形式,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图:请结合图中所给信息,解答下列问题:(1)本次调查的学生共有 人,补全条形统计图; (2)求扇形统计图中“B -舞蹈”项目所对应扇形的圆心角度数; (3)该校共有1200名学生,请估计选择最喜欢“唱歌”的学生有多少人? 23.一个正数x 的两个平方根是2a -3与5-a ,求x 的值.24.解不等式-3+3+121-3-18-x x x x ⎧≥⎪⎨⎪<⎩()25.计算:2009111()3tan3013o --+---.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】1=1303=502=23=100∠︒∴∠︒∴∠∠︒Q .故选A.2.A解析:A 【解析】试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.3.B解析:B 【解析】 【详解】设可打x 折,则有1200×10x-800≥800×5%, 解得x≥7. 即最多打7折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.4.D解析:D 【解析】 【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线. 【详解】A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.A解析:A【解析】【分析】根据平方根的概念即可求出答案.【详解】∵(±4)2=16,∴16的平方根是±4.故选A.【点睛】本题考查了平方根的概念,属于基础题型.6.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.7.A解析:A【解析】【分析】先根据一元一次不等式组解出x的取值范围,再根据不等式组只有三个整数解,求出实数a的取值范围即可.【详解】3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1, 解不等式②得:x<a ,∵不等式组321123x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解, ∴不等式的整数解为:-1、0、1, ∴1<a≤2, 故选:A 【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.C解析:C 【解析】 【分析】根据点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D 的对应点的坐标. 【详解】点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B (-4,-1)的对应点D 的横坐标为-4+4=0,点D 的纵坐标为-1+2=1, 故D (0,1). 故选C . 【点睛】此题考查了坐标与图形的变化----平移,根据A (-2,3)变为C (2,5)的规律,将点的变化转化为坐标的变化是解题的关键.9.D解析:D 【解析】 【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180°一定正确. 【详解】1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12l l //时,故A 、B 、C 选项不一定成立, ∵1∠与4∠是邻补角, ∴∠1+∠4=180°,故D 正确. 故选D . 【点睛】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.10.D解析:D 【解析】 【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答. 【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1; 解不等式②得,x ≤1; ∴不等式组的解集是﹣1<x ≤1. 不等式组的解集在数轴上表示为:故选D. 【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.11.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可. 详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确; 根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确. 故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.12.B解析:B 【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.二、填空题13.2<m≤3【解析】【分析】根据不等式组x>-1x<m有3个整数解先根据x>-1可确定3个整数解是012所以2<m≤3【详解】根据不等式组x>-1x<m有3个整数解可得:2<m≤3故答案为:2<m≤3解析:2<m≤3【解析】【分析】根据不等式组有3个整数解,先根据可确定3个整数解是0,1,2,所以.【详解】根据不等式组有3个整数解,可得:.故答案为:.【点睛】本题主要考查不等式组整数解问题,解决本题的关键是要熟练掌握不等式组的解法. 14.m≥2【解析】【分析】先解第一个不等式再根据不等式组的解集是x<2从而得出关于m的不等式解不等式即可【详解】解:解第一个不等式得x<2∵不等式组的解集是x<2∴m≥2故答案为m≥2【点睛】本题是已知解析:m≥2.【解析】【分析】先解第一个不等式,再根据不等式组()2131x xx m⎧->-⎨<⎩的解集是x<2,从而得出关于m的不等式,解不等式即可. 【详解】解:解第一个不等式得,x <2, ∵不等式组()2131x x x m⎧->-⎨<⎩的解集是x <2,∴m ≥2, 故答案为m ≥2. 【点睛】本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.15.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过解析:510x y =⎧⎨=⎩【解析】 【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决. 【详解】111222325325a x b y c a x b y c +=⎧⎨+=⎩两边同时除以5得, 11122232()()5532()()55a x b y c a x b y c ⎧+⎪⎪⎨⎪+⎪⎩==, 和方程组111222a x b y c a x b y c +⎧⎨+⎩==的形式一样,所以335245x y ⎧⎪⎪⎨⎪⎪⎩==,解得510x y ⎧⎨⎩==.故答案为510x y ⎧⎨⎩==. 【点睛】本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决,有一定的难度.16.3【解析】解:由题意可得:①-②得:4m+2n=6故2m +n=3故答案为3解析:3解:由题意可得:3731m nn m+=⎧⎨-=⎩①②,①-②得:4m+2n=6,故2m+n =3.故答案为3.17.x=-3【解析】【分析】由2x3+54=0得x3=-27解出x值即可【详解】由2x3+54=0得x3=-27∴x=-3故答案为:x=-3【点睛】本题考查了立方根正确理解立方根的意义是解题的关键解析:x=-3【解析】【分析】由2x3+54=0,得x3=-27,解出x值即可.【详解】由2x3+54=0,得x3=-27,∴x=-3,故答案为:x=-3.【点睛】本题考查了立方根,正确理解立方根的意义是解题的关键.18.(3﹣10)【解析】【分析】由于线段CD是由线段AB平移得到的而点A (-14)的对应点为C(-32)比较它们的坐标发现横坐标减小2纵坐标减小2利用此规律即可求出点B(5-8)的对应点D的坐标【详解】解析:(3,﹣10)【解析】【分析】由于线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(-3,2),比较它们的坐标发现横坐标减小2,纵坐标减小2,利用此规律即可求出点B(5,-8)的对应点D的坐标.【详解】∵线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(-3,2),∴由A平移到C点的横坐标减小2,纵坐标减小2,则点B(5,-8)的对应点D的坐标为(3,-10),故答案为:(3,-10).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.19.a>1【解析】【分析】根据题意利用不等式组取解集的方法即可得到a的范围【详解】∵不等式组有解∴a>1故答案为:a>1【点睛】此题考查不等式的解集解题关键在于掌握运算法则【解析】【分析】根据题意,利用不等式组取解集的方法即可得到a 的范围.【详解】∵不等式组1x x a ⎧⎨⎩><有解, ∴a>1,故答案为:a>1.【点睛】此题考查不等式的解集,解题关键在于掌握运算法则.20.【解析】【分析】设答对1道题得x 分答错1道题得y 分根据图表列出关于x 和y 的二元一次方程组解之即可【详解】解:设答对1道题得x 分答错1道题得y 分根据题意得:解得:答对13道题打错7道题得分为:13×6解析:【解析】【分析】设答对1道题得x 分,答错1道题得y 分,根据图表,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设答对1道题得x 分,答错1道题得y 分,根据题意得:19112182104x y x y +=⎧⎨+=⎩ , 解得:62x y =⎧⎨=-⎩ , 答对13道题,打错7道题,得分为:13×6+(﹣2)×7=78﹣14=64(分),故答案为:64.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.三、解答题21.(1)400;(2)补全条形图见解析;C 类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A 类别人数及其所占百分比可得总人数;(2)总人数减去A 、C 、D 三个类别人数求得B 的人数即可补全条形图,再用360°乘以C类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D 类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人; (2)B 类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.22.(1)100,见解析;(2)72︒;(3)480人【解析】【分析】(1)根据A 项目的人数和所占的百分比求出总人数即可;(2)根据扇形统计图中的数据可以求得“舞蹈”所对应的扇形的圆心角度数;(3)根据统计图中的数据可以估计该校1200名学生中有多少学生最喜欢唱歌.【详解】解:(1)本次调查的学生共有:30÷30%=100(人); 故答案为:100;(2)10030104020---=(人)2036072100︒⨯=︒(3)401200480100⨯=(人) 【点睛】 此题考查条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.x=49【解析】试题分析:根据一个正数的平方根有两个,它们是互为相反数可得: 2a -3+5-a =0,可求出a =2-,即可求出这个正数的两个平方根是-7和7,根据平方根的意义可求出x .试题解析: 因为一个正数x 的两个平方根是2a -3与5-a ,所以2a -3+5-a =0,解得a =2-,所以2a -3=7-,所以49x =.24.﹣2<x≤1.【解析】【分析】【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可. 试题解析:331(1)213(1)8(2)x x x x -⎧++⎪⎨⎪--<-⎩…,∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.25.3-【解析】【分析】直接利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质分别化简得出答案.【详解】原式1331⎛⎫=---- ⎪ ⎪⎝⎭)41=--,3=--【点睛】此题主要考查了实数运算,正确化简各数是解题关键.。
初一数学下学期期末试
卷含答案
TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】
七年级(下)数学期末试题
检测范围:下册 完卷时间:90分钟 满分:120分
一、填空题。
(每小题4分,共32分)
1、写出一个在第二象限的点的坐标:_______。
2、将点(-2,1)向右平移5个单位长度得到的点的坐标是________。
3、a 、b 、c 是直线,且a ⊥b ,c ⊥b ,则a 与c 的位置关系是________。
4、如图,已知a ∥b ,∠1=70°, 则∠2=______度。
5、一个等腰三角形的两边长是4cm 和10cm ,则第三边的长是________cm 。
6、写出一个以 为解的二元一次方程组:________。
7、不等式2-x >1
的解集是____________。
8、在对25
个数据进行整理的频数分布表中,各组频数之和等于_________。
二、选择题。
(每小题5分,共40分)
9、一个长方形在平面直角坐标系中,三个顶点的坐标为(-2,-1)、(-2,3)、 (4,-1),则第四个顶点的坐标是 ( ) A 、(3,2) B 、(4,2) C 、(3,3) D 、(4,3) 10、如图,已知∠1 =∠2,则 AB ∥CD 的根据是(A 、内错角相等,两直线平行 B 、同位角相等,两直线平行
y=-3 x =5
C 、同旁内角相等,两直线平行
D 、两直线平行,内错角相等
11、ΔABC 中,∠A=80°,∠B=∠C ,则∠B= ( ) A 、80° B 、60° C 、50° D 、40°
12、商店出售下列形状的地砖:(1)正方形;(2)长方形;(3)正五边形;(4)正六边形;若只选购其中一种地砖镶嵌地面,则可供选择的地砖共有 ( ) A 、1种 B 、2种 C 、3种 D 、4种
13、如图,ΔABC 中,∠A=50°,点D 、E 分别在 AB 、AC 上,则∠1+∠2 的大小为 ( )
A 、130°
B 、180°
C 、230°
D 、310°
14、方程组
(
)
A
、
15、不等式组 (
) A 、
x <1 B 、x ≥
2 C
、1<
x ≤2 D 、无解
16、下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;
(3)为了解本班学生的平均上网时间;(4) 为了解中央电视台春节联欢晚会的收视率。
其中适合用抽样调查的个数有 ( ) A 、1个
B 、2个
C 、3个
D 、4个 三、解答题。
(每小题8分,共48分)
17、解不等式组
18、线段AB 的长为1,点B -1),求点
A 的坐标。
19
、如图,已知AC
、DF 分别与MN 相交于B 、E ,∠1=75°,∠
2=105°, 求证:AC ∥DF 。
20、如图, BD 、CD 分别是∠ABC 和∠ACB D ,试探索∠A 与∠D 之间的数量关系,并证明你的结论。
21、某商场购进商品后,均加价40%顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到7折和9折,共付款399元。
已知这两种商品原销售价之和为490元,问甲、乙两种商品的进价分别是多少元?
22、
某市实行中考改革,需要根据该市中学生体能的实际情况重新制定中考体育标准。
为此,抽取了50名初中毕业的女学生进行“一分钟仰卧起坐”次数测试,测试的情况绘制成表格如下: (1)求这次抽样测试数据的平均数、众数和中位数;
(2)根据这一样本数据的特点,你认为该市中考女生“一分钟仰卧起坐”项目
测试的合格标准应定为多少次较为合适?请简要说明理由;
(3)根据(2)中你认为合格的标准,试估计该市中考女生“一分钟仰卧起坐”项目测试的合格率是多少?
七年级数学参考答案
一、 填空题(每小题4分,共32分)
1、(-1,1)等
2、(3,1)
3、平行(或a ∥b )
4、110°
5、10
6
x <1 8、25
二、选择题(每小题5分,共40分)
9、D 10、C 11、C 12、C 13、C 14、D 15、D 16、C
三、 解答题(每小题8分,共48分)
17、解:解不等式(1)得x>1,解不等式(2)得x<6, ∴不等式组的解集是1<x <6。
(图略) 18、解:∵AB ∥y 轴,而点B 的坐标为(
21,-1),∴ 设点A 的坐标为(2
1
,y ),又AB 的长为1,∴∣y-(-1)∣=1,∴∣y+1∣=1,∴y=0,或y=-2,∴点A 的坐标为(
21,0)或(2
1
,-2)。
19、证明:∵∠1 =75°,∴∠ABN=∠1 =75°,又∠2=105°, ∴∠ABN+∠2 = 180°,∴AC ∥DF 。
20、解:∠D=90°+
2
1
∠A 。
证明:BD 、CD 分别是∠ABC 和∠ACB 的平分线, ∴∠DBC+∠DCB=
21(180°-∠A )=90°-2
1
∠A ,
∴∠D =180°-(∠DBC+∠DCB )=180°-(90°-
21∠A )=90°+2
1
∠A 。
21、解:设甲、乙两种商品的进价分别为x 元、y 元,则
22、解:(1)平均数,众数是18,中位数是18。
(2)该市中考女生 “一分钟仰卧起坐”项目测试的合格标准应定为18次较为合适,因为众数和中位数均为18,且50人中达到18次以上的人数有41人,确定18次能保证大多数人达标;
(3)∵41÷50≈80%,∴根据(2)的标准,估计该市中考女生 “一分钟仰卧起坐”项目测试的合格率为80%。