指数函数求定义域,值域,单调性.
- 格式:pdf
- 大小:1.33 MB
- 文档页数:12
指数函数定义域,值域,复合函数单调性,平移,轴对称对你有一定的帮助!1.若函数1.若函数f ( x) = 2 x 3 + 3 的图像恒过定试求P的坐标。
点P,试求P的坐标。
2. 函数y=a x-1+4 恒过定点_____. 恒过定点_____ _____. = -3.方程2 3(2 ) 4 = 0的解为:____2x x对你有一定的帮助!一.求指数型复合函数的定义域、值域:求指数型复合函数的定义域、值域:(1) y = 0.4x1 x 1(2) y = 35 x 1(3) y = 2 + 1(4) y = 4 + 2xx+1+1对你有一定的帮助!二.求下列函数的定义域、值域:求下列函数的定义域、值域:(1) y = 31 2 x1 (2) y = ( ) 2x 11 x2 4x x (3) y = ( ) (4) y =3 + 1 4对你有一定的帮助!复合函数单调性复合函数的单调性,同增异减” 复合函数的单调性,根据“同增异减”的原则处理.u = g (x)增减增减f ( x) = a增减减增uf ( x) = a增增减减g ( x)对你有一定的帮助!练习讨论下列函数的定义域、值域、1、讨论下列函数的定义域、值域、单调区间(1) y = 2x 1(2) y = 3x2 2 x( 3) y = 3x1 ( 4) y = 3x2 2 x对你有一定的帮助!作业1、求函数的定义域、值域和单调区间. 求函数的定义域、值域和单调区间.(1) y = 0.5 (2) y = 21 2 x + x22x + 2 x +1对你有一定的帮助!求下列函数的的定义域、值域、求下列函数的的定义域、值域、单调区间(1) y = log2 ( x + 2x + 5)2(2) y = log 1 ( x + 4x + 5)2 3对你有一定的帮助!2 1 例已知函数f (x) = x 2 +1x(1)确定f(x)的奇偶性;(1)确定f(x)的奇偶性;奇函数确定f(x)的奇偶性(2)判断f(x)的单调性;(2)判断f(x)的单调性;R上是单调递增判断f(x)的单调性在(3)求f(x)的值域. (3)求f(x)的值域. 的值域值域( 值域(-1,1)对你有一定的帮助!练习: 练习:解下列不等式(1) 6x2 + x 211 x2 8 2x (2) ( )3 3 1 x2 x2 2 x (3) a ( ) ( a 0且a ≠ 1) a对你有一定的帮助!一、指数函数图象的变换1.说明下列函数图象与指数函数=2x的说明下列函数图象与指数函数y= 说明下列函数图象与指数函数图象关系,并画出它们的图象: 图象关系,并画出它们的图象(1) y = 2xx+1, y=2x+2;(2) y = 2x 1, y=2x 2;(3) y = 2 + 1, y = 2 1.x对你有一定的帮助!(1) y = 2xx+1, y=2-2x+2作出图象,显示出函数数据表作出图象,-3x -11 2 42 43 8y=20.125 0.25 0.5 1 0.25 0.5 0.5 1 1 2 2 4y=2y=2x+18 16x+28 16 32对你有一定的帮助!比较函数y=2xy9 8 7 6 5 4 3 2 1 -4 -2 O 2 4y=2x+1x+2y=2. 的图象关系x对你有一定的帮助!比较函数y=2xy9 8 7 6 5 4 3 2 1 -4 -2 O 2 4 y=2x+1x+2y=2. 的图象关系x对你有一定的帮助!比较函数y=2xy9 8 7 6 5 4 3 2 1 -4 -2 O 2 4 y=2x+1x+2y=2. 的图象关系x对你有一定的帮助!(2) y = 2xx 1, y=2x 2作出图象,显示出函数数据表作出图象,-3x -2 0.25 0.125-1 0.5 0.250 1 0.51 2 12 3 4 8 2 4y=2y=20.125 0.0625x 1y=2x 20.03125 0.0625 0.125 0.25 0.5 1 2对你有一定的帮助!比较函数y=2y=2__ 1y9 8 7 6 5 4 3 2 1 -4 -2 O 2 4y=2x 2. 的图象关系x对你有一定的帮助!比较函数y=2y=2__ 1y9 8 7 6 5 4 3 2 1 -4 -2 O 2 4 y=2x 2. 的图象关系x对你有一定的帮助!比较函数y=2y=2__ 1y9 8 7 6 5 4 3 2 1 -4 -2 O 2 4 y=2x 2. 的图象关系x对你有一定的帮助!。
指数函数的性质与计算指数函数是数学中一类重要的函数,具有独特的性质和计算方法。
本文将介绍指数函数的定义、性质以及常见的计算方法。
1. 指数函数的定义指数函数是以底数为常数,指数为自变量的函数,一般表示为f(x) = a^x,其中a为底数,x为指数。
底数a必须为正数且不等于1,指数x可以是任意实数。
指数函数的定义域为实数集R,值域为正实数集。
2. 指数函数的性质2.1 单调性当底数a大于1时,指数函数随着指数x的增大而增大,表现为单调递增的特点;当底数a在区间(0,1)内时,指数函数随着指数x的增大而减小,表现为单调递减的特点。
2.2 对称性指数函数在x轴上存在一个对称中心,即函数图像关于x轴对称。
2.3 渐近线指数函数在x趋近于无穷大时,函数值趋近于正无穷;在x趋近于负无穷大时,函数值趋近于0。
因此,指数函数的图像与x轴和y轴均有渐近线。
2.4 特殊值当x为0时,指数函数等于1,即f(0) = a^0 = 1;当底数a为0时,指数函数在x大于0时等于0,在x小于0时无定义。
3. 指数函数的计算方法3.1 指数函数的乘法与除法指数函数具有乘法和除法的运算性质。
当指数相同的两个指数函数相乘时,底数相乘,指数不变,即a^x * a^y = a^(x+y);当指数相同的两个指数函数相除时,底数相除,指数不变,即(a^x) / (a^y) = a^(x-y)。
3.2 指数函数的幂运算指数函数可以进行幂运算。
当指数为整数时,可以直接进行计算,例如a^2 = a * a,a^3 = a * a * a;当指数为分数时,可以通过化简为根式进行计算,例如a^(1/2) = √a,a^(1/3) = ∛a。
3.3 指数函数的对数运算对数是指数函数的逆运算,可以将指数函数的幂运算转化为对数运算。
对数以底数为常数,幂为自变量的函数,通常表示为loga(x),其中a为底数,x为幂。
底数a必须为正数且不等于1,幂x可以是任意实数。
指数函数一、课程标准1. 理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象。
2. 探索并理解指数函数的单调性与特殊点.3.在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型.二、基础知识回顾 指数函数的概念函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数. 形如y =ka x ,y =a x +k (k ∈R 且k ≠0,a >0且a ≠1)的函数叫做指数型函数,不是指数函数. 3.指数函数y =a x (a >0,且a ≠1)的图象与性质[常用结论]1.指数函数图象的画法画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a .2.指数函数的图象与底数大小的比较如图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b >0.由此我们可得到以下规律:在第一象限内,指数函数y =a x (a >0,a ≠1)的图象越高,底数越大.3.指数函数y =a x (a >0,a ≠1)的图象和性质跟a 的取值有关,要特别注意应分a >1与0<a <1来研究.三、自主热身、归纳总结1、 设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c <b C .b <a <cD .b <c <a2、函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A.a >1,b <0B.a >1,b >0C.0<a <1,b >0D.0<a <1,b <03、若函数y =(a 2-1)x 是R 上的减函数,则实数a 的取值范围是( ) A. 1<a <2 B. -2<a <-1C. 1<a <2,或-2<a <-1D. 22<a <1,或1<a <24、(2019·山东济宁二中期末)若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]5、已知函数f(x)=a x -3+2的图像恒过定点A ,则A 的坐标为 . 6. [课本题改编]若不等式223ax axx>13对一切实数x 恒成立,则实数a 的取值范围是 .四、例题选讲考点一 指数函数的性质与应用例1、已知f (x )=2x-2-x ,a =⎝⎛⎭⎫79-14,b =⎝⎛⎭⎫9715,c =log 279,则f (a ),f (b ),f (c )的大小关系为( ) A .f (b )<f (a )<f (c ) B .f (c )<f (b )<f (a ) C .f (c )<f (a )<f (b )D .f (b )<f (c )<f (a )变式1、(2019·广东韶关一中期末)设x >0,且1<b x <a x ,则( ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <b变式2、已知函数f (x )=()x ,若a =f (20.3),b =f (2),c =f (log 25),则a ,b ,c 的大小关系为( ) A .c >b >aB .a >b >cC .c >a >bD .b >c >a例2、设函数f(x)=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x<0,x ,x≥0,若f(a)<1,则实数a 的取值范围是 ;变式、(2020·包头模拟)已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为______.例3、(1)函数f(x)=22112x x -++⎛⎫⎪⎝⎭的单调减区间为 .(2)(一题两空)已知函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),则a 的取值范围为________,f (-4)与f (1)的大小关系是________.(3)(2019·福建泉州五中模拟)设a >0,且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,则实数a 的值为________.方法总结 指数函数的性质有着广泛的应用,常见的有:比较大小,解不等式,求函数的单调区间和值域、最值等等.(1)比较两个幂值的大小问题是常见问题,解决这类问题首先要分清底数是否相同;若底数相同,则可利用函数的单调性解决;若底数不同,则要利用中间变量进行比较.(2)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性问题,常常需要借助换元等手段将其化归于指数函数来解,体现化归与转化思想的运用.(3)在利用指数函数的性质解决与指数函数相关的问题时,要特别注意底数a 的取值范围,并在必要时须分底数0<a <1和a >1两种情形进行分类讨论,防止错解.考点二 指数函数的图像与性质例4、(2019·广西北海一中月考)函数y =a x-1a (a >0,且a ≠1)的图象可能是( )变式1、 (2019·山西平遥中学模拟)已知f (x )=|2x -1|,当a <b <c 时,有f (a )>f (c )>f (b ),则必有( ) A .a <0,b <0,c <0 B .a <0,b >0,c >0 C .2-a <2cD .1<2a +2c <2变式2、已知a >0,且a ≠1,若函数y =|a x -2|与y =3a 的图象有两个交点,则实数a 的取值范围是________. 变式3、 已知f(x)=|2x -1|. (1)求f(x)的单调区间; (2)比较f(x +1)与f(x)的大小;(3)试确定函数g(x)=f(x)-x 2的零点的个数.方法总结:指数函数的图像直观的刻画了指数函数的性质,在解题中有着十分广泛的应用. (1)已知函数解析式判断其图像一般是取特殊点,判断所给的图像是否过这些点,若不满足则排除; (2)对于有关指数型函数的图像问题,一般是从最基本的指数函数的图像入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论;(3)有关指数方程、不等式问题的求解,往往利用相应的指数函数图像,数形结合求解.考点三 指数函数的综合运用例5 已知定义域为R 的函数f (x )=-2x +b2x +1+a 是奇函数. (1) 求a ,b 的值;(2) 若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.变式1、设a 是实数,f (x )=a -22x+1(x ∈R ).(1) 试证明对于任意a ,f (x )都为增函数; (2) 试确定a 的值,使f (x )为奇函数.变式2、 已知函数f(x)=24313ax x -+⎛⎫ ⎪⎝⎭.(1)若a =-1,求f(x)的单调区间; (2)若f(x)有最大值3,求a 的值; (3)若f(x)的值域是(0,+∞),求a 的值.方法总结:是指数函数性质的综合应用,其方法是:首先判断指数型函数的性质,再利用其性质求解以上问题都是指数型函数问题,关键应判断其单调性,对于形如y =a f (x )的函数的单调性,它的单调区间与f (x )的单调区间有关:若a >1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调增(减)区间;若0<a <1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调减(增)区间五、优化提升与真题演练 1、函数的值域为( )A .B .C .(0,]D .(0,2]2、2017·北京卷)已知函数f (x )=3x-⎝⎛⎭⎫13x,则f (x )( )A.是偶函数,且在R 上是增函数B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是减函数3、.函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( ) A.y =1-x B.y =|x -2| C.y =2x -1D.y =log 2(2x )4、(2018·上海卷)已知常数a >0,函数f (x )=2x 2x +ax 的图象经过点P ⎝⎛⎭⎫p ,65、Q ⎝⎛⎭⎫q ,-15.若2p +q =36pq ,则a =________.5、(2020·河南商丘模拟)已知函数f (x )=(a 2-2a -2)a x 是指数函数. (1)求f (x )的表达式;(2)判断F (x )=f (x )+1f (x )的奇偶性,并加以证明.6、已知函数f(x)=a|x+b|(a>0,b∈R).(1)若f(x)为偶函数,求实数b的值;(2)若f(x)在区间[2,+∞)上是增函数,试求实数a,b应满足的条件.7、设函数f(x)=ka x-a-x(a>0且a≠1,k∈R),f(x)是定义域为R的奇函数.(1)求k的值,(2)判断并证明..当a>1时,函数f(x)在R上的单调性;(3)已知a=3,若f(3x)≥λ·f(x)对于x∈[1,2]时恒成立.请求出最大的整数.....λ..8、(2019·山东烟台二中模拟)已知函数f(x)=1-42a x+a(a>0,a≠1)且f(0)=0.(1)求a的值;(2)若函数g(x)=(2x+1)·f(x)+k有零点,求实数k的取值范围;(3)当x∈(0,1)时,f(x)>m·2x-2恒成立,求实数m的取值范围.参考答案1、设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<bC.b<a<c D.b<c<a【答案】C【解析】因为函数y=0.6x在R上单调递减,所以b=0.61.5<a=0.60.6<1.又c=1.50.6>1,所以b<a<c.2、函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a >1,b <0B.a >1,b >0C.0<a <1,b >0D.0<a <1,b <0【答案】D【解析】由f (x )=a x -b 的图象可以观察出,函数f (x )=a x -b 在定义域上单调递减,所以0<a <1. 函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0. 3、若函数y =(a 2-1)x 是R 上的减函数,则实数a 的取值范围是( ) A. 1<a <2 B. -2<a <-1C. 1<a <2,或-2<a <-1D. 22<a <1,或1<a <2 【答案】C【解析】 由y =(a 2-1)x 在(-∞,+∞)上为减函数,得0<a 2-1<1,∴1<a 2<2,即1<a <2或-2<a <-1.∴数a 的取值范围是1<a <2或-2<a <-1.故选C. 4、(2019·山东济宁二中期末)若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]【答案】B【解析】由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=⎝⎛⎭⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减. 5、已知函数f(x)=a x -3+2的图像恒过定点A ,则A 的坐标为 . 【答案】(3,3)【解析】 由a 0=1知,当x -3=0,即x =3时,f(3)=3,即图像必过定点(3,3). 6. [课本题改编]若不等式223ax ax-x>13对一切实数x 恒成立,则实数a 的取值范围是 .【答案】[0,1)【解析】 原不等式即为223axax->3-1,则有ax 2-2ax>-1,即ax 2-2ax +1>0对一切实数恒成立.当a =0时,满足题意;当a>0时,Δ=(-2a)2-4a<0,即a 2-a<0,解得0<a<1. ∴实数a 的取值范围是[0,1). 五、 六、例题选讲考点一 指数函数的性质与应用例1、已知f (x )=2x-2-x ,a =⎝⎛⎭⎫79-14,b =⎝⎛⎭⎫9715,c =log 279,则f (a ),f (b ),f (c )的大小关系为( ) A .f (b )<f (a )<f (c ) B .f (c )<f (b )<f (a ) C .f (c )<f (a )<f (b ) D .f (b )<f (c )<f (a )【答案】 B【解析】 易知f (x )=2x-2-x 在R 上为增函数,又a =⎝⎛⎭⎫79-14=⎝⎛⎭⎫9714>⎝⎛⎭⎫9715=b >0,c =log 279<0,则a >b >c ,所以f (c )<f (b )<f (a ).变式1、(2019·广东韶关一中期末)设x >0,且1<b x <a x ,则( ) A .0<b <a <1 B .0<a <b <1 C .1<b <a D .1<a <b 【答案】C【解析】因为x >0时,1<b x ,所以b >1.因为x >0时,b x <a x,所以x >0时,⎝⎛⎭⎫a b x>1.所以ab >1,所以a >b ,所以1<b <a .变式2、已知函数f (x )=()x ,若a =f (20.3),b =f (2),c =f (log 25),则a ,b ,c 的大小关系为( ) A .c >b >a B .a >b >cC .c >a >bD .b >c >a【答案】B .【解析】根据题意,函数f (x )=()x ,则f (x )在R 上为减函数, 又由20.3<21<2<log 25, 则a >b >c ;故选:B .例2、设函数f(x)=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x<0,x ,x≥0,若f(a)<1,则实数a 的取值范围是 ; 【答案】(-3,1)【解析】当a <0时,不等式f (a )<1可化为12a ⎛⎫ ⎪⎝⎭-7<1,即12a ⎛⎫ ⎪⎝⎭<8,即12a ⎛⎫ ⎪⎝⎭<312-⎛⎫ ⎪⎝⎭,∴a >-3.又a <0,∴-3<a <0.当a ≥0时,不等式f (a )<1可化为a <1.∴0≤a <1, 综上,a 的取值范围为(-3,1).变式、(2020·包头模拟)已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x,x ≥0,2a -x,x <0,若f (1-a )=f (a -1),则a 的值为______. 【答案】12.【解析】(1)当a <1时,41-a=21,解得a =12;当a >1时,代入不成立.故a 的值为12. 例3、(1)函数f(x)=22112x x -++⎛⎫⎪⎝⎭的单调减区间为 .(2)(一题两空)已知函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),则a 的取值范围为________,f (-4)与f (1)的大小关系是________.(3)(2019·福建泉州五中模拟)设a >0,且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,则实数a 的值为________.【答案】(1) (-∞,1] (2)(1,+∞) f (-4)>f (1)(3)13或3 【解析】(1)设u =-x 2+2x +1,∵y =12a⎛⎫⎪⎝⎭在R 上为减函数,∴函数f (x )=22112x x -++⎛⎫⎪⎝⎭的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1],∴f (x )的减区间为(-∞,1]. (2)因为|x +1|≥0,函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),所以a >1.由于函数f (x )=a |x +1|在(-1,+∞)上是增函数,且它的图象关于直线x =-1对称,则函数f (x )在(-∞,-1)上是减函数,故f (1)=f (-3),f (-4)>f (1).(3)令t =a x (a >0,且a ≠1),则原函数化为y =f (t )=(t +1)2-2(t >0).①当0<a <1,x ∈[-1,1]时,t =a x∈⎣⎡⎦⎤a ,1a , 此时f (t )在⎣⎡⎦⎤a ,1a 上为增函数.所以f (t )max =f ⎝⎛⎭⎫1a =⎝⎛⎭⎫1a +12-2=14.所以⎝⎛⎭⎫1a +12=16,解得a =-15(舍去)或a =13.②当a >1时,x ∈[-1,1],t =a x∈⎣⎡⎦⎤1a ,a , 此时f (t )在⎣⎡⎦⎤1a ,a 上是增函数.所以f (t )max =f (a )=(a +1)2-2=14,解得a =3或a =-5(舍去).综上得a =13或3.方法总结 指数函数的性质有着广泛的应用,常见的有:比较大小,解不等式,求函数的单调区间和值域、最值等等.(1)比较两个幂值的大小问题是常见问题,解决这类问题首先要分清底数是否相同;若底数相同,则可利用函数的单调性解决;若底数不同,则要利用中间变量进行比较.(2)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性问题,常常需要借助换元等手段将其化归于指数函数来解,体现化归与转化思想的运用.(3)在利用指数函数的性质解决与指数函数相关的问题时,要特别注意底数a 的取值范围,并在必要时须分底数0<a <1和a >1两种情形进行分类讨论,防止错解.考点二 指数函数的图像与性质例4、(2019·广西北海一中月考)函数y =a x-1a (a >0,且a ≠1)的图象可能是( )【答案】D【解析】当a >1时,y =a x-1a 是增函数. 当x =0时,y =1-1a ∈(0,1),A ,B 不满足.当0<a <1时,y =a x-1a 在R 上是减函数. 当x =0时,y =1-1a <0,C 错,D 项满足.变式1、 (2019·山西平遥中学模拟)已知f (x )=|2x -1|,当a <b <c 时,有f (a )>f (c )>f (b ),则必有( ) A .a <0,b <0,c <0B .a <0,b >0,c >0C .2-a <2cD .1<2a +2c <2【答案】D【解析】作出函数f (x )=|2x -1|的图象如图所示,因为a <b <c ,且有f (a )>f (c )>f (b ),所以必有a <0,0<c <1,且|2a -1|>|2c -1|,所以1-2a >2c -1,则2a +2c <2,且2a +2c >1,故选D 。
专题32 指数函数的概念、图象与性质1.指数函数的定义一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R. 温馨提示:指数函数解析式的3个特征: (1)底数a 为大于0且不等于1的常数. (2)自变量x 的位置在指数上,且x 的系数是1. (3)a x 的系数是1.2.指数函数的图象和性质a 的范围a >10<a <1图象性质定义域 R 值域(0,+∞)过定点 (0,1),即当x =0时,y =1单调性 在R 上是增函数在R 上是减函数奇偶性 非奇非偶函数对称性函数y =a x 与y =a -x 的图象关于y 轴对称(1)底数的大小决定了图象相对位置的高低:不论是a >1,还是0<a <1,在第一象限内底数越大,函数图象越靠近y 轴.当a >b >1时,①若x >0,则a x >b x >1;②若x <0,则1>b x >a x >0. 当1>a >b >0时,①若x >0,则1>a x >b x >0;②若x <0,则b x >a x >1. (2)指数函数的图象都经过点(0,1),且图象都在x 轴上方.(3)当a >1时,x →-∞,y →0;当0<a <1时,x →+∞,y →0.(其中“x →+∞”的意义是“x 趋近于正无穷大”)题型一 指数函数的概念1.下列各函数中,是指数函数的是( )A .y =(-3)xB .y =-3xC . y =3x -1 D .y =⎝⎛⎭⎫13x [解析]由指数函数的定义知a >0且a ≠1,故选D. 2.下列函数一定是指数函数的是( )A .y =2x +1 B .y =x 3 C .y =3·2xD .y =3-x[解析]由指数函数的定义可知D 正确. 3.下列函数中,指数函数的个数为( )①y =⎝⎛⎭⎫12x -1;②y =a x (a >0,且a ≠1);③y =1x;④y =⎝⎛⎭⎫122x -1. A .0个 B .1个 C .3个D .4个[解析]由指数函数的定义可判定,只有②正确.[答案] B 4.下列函数:①y =2·3x ;②y =3x +1;③y =3x ;④y =x 3. 其中,指数函数的个数是( ) A .0 B .1 C .2D .3[解析]形如“y =a x (a >0,且a ≠1)”的函数为指数函数,只有③符合,选B. 5.下列函数中,是指数函数的个数是( )①y =(-8)x;②y =2x 2-1;③y =a x ;④y =2·3x .A .1B .2C .3D .0[解析] (1)①中底数-8<0,所以不是指数函数;②中指数不是自变量x ,而是x 的函数,所以不是指数函数; ③中底数a ,只有规定a >0且a ≠1时,才是指数函数; ④中3x 前的系数是2,而不是1,所以不是指数函数,故选D. 6.指出下列哪些是指数函数.(1)y =4x ;(2)y =x 4;(3)y =-4x ;(4)y =(-4)x ;(5)y =πx ;(6)y =4x 2;(7)y =x x ;(8)y =(2a -1)x ⎝⎛⎭⎫a >12,且a ≠1. [解析] (2)是四次函数;(3)是-1与4x 的乘积;(4)中底数-4<0;(6)是二次函数;(7)中底数x 不是常数. 它们都不符合指数函数的定义,故不是指数函数.综上可知,(1)(5)(8)是指数函数. 7.已知函数f (x )=(2a -1)x 是指数函数,则实数a 的取值范围是________.[解析]由题意可知⎩⎪⎨⎪⎧2a -1>0,2a -1≠1,解得a >12,且a ≠1,所以实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞). 8.函数y =(a -2)2a x 是指数函数,则( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠1[解析]由指数函数的概念可知,⎩⎪⎨⎪⎧(a -2)2=1,a >0,a ≠1,得a =3.9.函数f (x )=(m 2-m +1)a x (a >0,且a ≠1)是指数函数,则m =________. [解析]∵函数f (x )=(m 2-m +1)a x 是指数函数,∴m 2-m +1=1,解得m =0或1. 10.若函数y =(a 2-4a +4)a x 是指数函数,则a 的值是( )A .4B .1或3C .3D .1[解析]由题意得⎩⎪⎨⎪⎧a >0,a ≠1,a 2-4a +4=1,解得a =3,故选C.11.若函数f (x )=(a 2-2a +2)(a +1)x 是指数函数,则a =________. [解析]由指数函数的定义得⎩⎪⎨⎪⎧a 2-2a +2=1,a +1>0,a +1≠1,解得a =1.12.指数函数f (x )=a x 的图象经过点(2,4),则f (-3)的值是________. [解析]由题意知4=a 2,所以a =2,因此f (x )=2x ,故f (-3)=2-3=18.13.已知函数f (x )=a x +b (a >0,且a ≠1),经过点(-1,5),(0,4),则f (-2)的值为________.[解析]由已知得⎩⎪⎨⎪⎧a -1+b =5,a 0+b =4,解得⎩⎪⎨⎪⎧a =12,b =3,所以f (x )=⎝⎛⎭⎫12x+3,所以f (-2)=⎝⎛⎭⎫12-2+3=4+3=7. 14.已知函数f (x )为指数函数,且f ⎝⎛⎭⎫-32=39,则f (-2)=________. [解析]设f (x )=a x (a >0且a ≠1),由f ⎝⎛⎭⎫-32=39得a -32=39,所以a =3,又f (-2)=a -2, 所以f (-2)=3-2=19.15.若函数f (x )是指数函数,且f (2)=9,则f (-2)=________,f (1)=________. [解析]设f (x )=a x (a >0,且a ≠1),∵f (2)=9,∴a 2=9,a =3,即f (x )=3x . ∴f (-2)=3-2=19,f (1)=3.16.若点(a,27)在函数y =(3)x 的图象上,则a 的值为( )A. 6 B .1 C .2 2D .0[解析]选A 点(a,27)在函数y =(3)x 的图象上,∴27=(3)a , 即33=3a 2,∴a2=3,解得a =6,∴a = 6.故选A.17.已知函数f (x )=⎝⎛⎭⎫12ax ,a 为常数,且函数的图象过点(-1,2),则a =________,若g (x )=4-x-2, 且g (x )=f (x ),则x =________.[解析]因为函数的图象过点(-1,2),所以⎝⎛⎭⎫12-a=2,所以a =1,所以f (x )=⎝⎛⎭⎫12x , g (x )=f (x )可变形为4-x -2-x -2=0,解得2-x =2,所以x =-1. 18.已知f (x )=2x +12x ,若f (a )=5,则f (2a )=________.[解析]因为f (x )=2x +12x ,f (a )=5,则f (a )=2a +12a =5.所以f (2a )=22a +122a =(2a )2+⎝⎛⎭⎫12a 2=⎝⎛⎭⎫2a +12a 2-2=23. 19.若f (x )满足对任意的实数a ,b 都有f (a +b )=f (a )·f (b )且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2020)f (2019)=( )A .1010B .2020C .2019D .1009[解析]不妨设f (x )=2x ,则f (2)f (1)=f (4)f (3)=…=f (2020)f (2019)=2,所以原式=1010×2=2020.题型二 指数函数的图象及其应用1.y =⎝⎛⎭⎫34x的图象可能是( )[解析]0<34<1且过点(0,1),故选C.2.函数y =3-x 的图象是( )A B C D[解析]∵y =3-x=⎝⎛⎭⎫13x,∴B 选项正确.3.函数y =2-|x |的大致图象是( )[解析]y =2-|x |=⎩⎪⎨⎪⎧2-x ,x ≥0.2x ,x <0,画出图象,可知选C. 4.函数y =a -|x |(0<a <1)的图象是( )A B C D[解析]y =a-|x |=⎝⎛⎭⎫1a |x|,易知函数为偶函数,∵0<a <1,∴1a>1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A. 5.函数y =-2-x 的图象一定过第________象限.[解析]y =-2-x =-⎝⎛⎭⎫12x 与y =⎝⎛⎭⎫12x 关于x 轴对称,一定过第三、四象限. 6.函数f (x )=a x-b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0[解析]从曲线的变化趋势,可以得到函数f (x )为减函数,从而有0<a <1;从曲线位置看, 是由函数y =a x (0<a <1)的图象向左平移|-b |个单位长度得到,所以-b >0,即b <0. 7.已知0<m <n <1,则指数函数①y =m x ,②y =n x 的图象为( )[解析]由于0<m <n <1,所以y =m x 与y =n x 都是减函数,故排除A 、B ,作直线x =1与两个曲线相交, 交点在下面的是函数y =m x 的图象,故选C.8.若a >1,-1<b <0,则函数y =a x +b 的图象一定在( )A .第一、二、三象限B .第一、三、四象限C .第二、三、四象限D .第一、二、四象限[解析]A,∵a >1,且-1<b <0,故其图象如图所示.]9.若函数y =a x +b -1(a >0,且a ≠1)的图象经过第二、三、四象限,则一定有( )A .0<a <1,且b >0B .a >1,且b >0C .0<a <1,且b <0D .a >1,且b <0[解析]函数y =a x +b -1(a >0,且a ≠1)的图象是由函数y =a x 的图象经过向上或向下平移而得到的,因其图象不经过第一象限,所以a ∈(0,1).若经过第二、三、四象限,则需将函数y =a x (0<a <1)的图象向下平移至少大于1个单位长度,即b -1<-1⇒b <0.故选C.10.若函数y =a x +m -1(a >0)的图象经过第一、第三和第四象限,则( )A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <1[解析]选B,y =a x (a >0)的图象在第一、二象限内,欲使y =a x +m -1的图象经过第一、三、四象限,必须将y =a x 向下移动.当0<a <1时,图象向下移动,只能经过第一、二、四象限或第二、三、四象限,故只有当a >1时,图象向下移动才可能经过第一、三、四象限.当a >1时,图象向下移动不超过一个单位时,图象经过第一、二、三象限,向下移动一个单位时,图象恰好经过原点和第一、三象限,欲使图象经过第一、三、四象限,则必须向下平移超过一个单位,故m -1<-1,所以m <0,故选B. 11.函数f (x )=a x 与g (x )=-x +a 的图象大致是( )[解析]当a >1时,函数f (x )=a x 单调递增,当x =0时,g (0)=a >1,此时两函数的图象大致为选项A. 12.二次函数y =ax 2+bx 与指数函数y =⎝⎛⎭⎫b a x的图象可能是( )[解析]二次函数y =a ⎝⎛⎭⎫x +b 2a 2-b 24a ,其图象的顶点坐标为⎝⎛⎭⎫-b 2a ,-b 24a ,由指数函数的图象知0<ba<1, 所以-12<-b 2a <0,再观察四个选项,只有A 中的抛物线的顶点的横坐标在-12和0之间.13.已知函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()[解析]由函数f(x)=(x-a)(x-b)(其中a>b)的图象可知0<a<1,b<-1,所以函数g(x)=a x+b是减函数,排除选项C、D;又因为函数图象过点(0,1+b)(1+b<0),故选A.14.如图是指数函数①y=a x,②y=b x,③y=c x,④y=d x的图象,则a,b,c,d与1的大小关系为()A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c[解析](1)解法一:由图象可知③④的底数必大于1,①②的底数必小于1.作直线x=1,在第一象限内直线x=1与各曲线的交点的纵坐标即各指数函数的底数,则1<d<c,b<a<1,从而可知a,b,c,d与1的大小关系为b<a<1<d<c.解法二:根据图象可以先分两类:③④的底数大于1,①②的底数小于1,再由③④比较c,d的大小,由①②比较a,b的大小.当指数函数的底数大于1时,图象上升,且底数越大时图象向上越靠近y轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近x轴.15.方程|2x-1|=a有唯一实数解,则a的取值范围是________.[解析]作出y=|2x-1|的图象,如图,要使直线y=a与图象的交点只有一个,∴a≥1或a=0.16.函数y=a x-3+3(a>0,且a≠1)的图象过定点________.[解析]因为指数函数y=a x(a>0,且a≠1)的图象过定点(0,1),所以在函数y=a x-3+3中,令x-3=0,得x=3,此时y=1+3=4,即函数y=a x-3+3的图象过定点(3,4).17.函数y=2a x+3+2(a>0,且a≠1)的图象过定点________.[解析]令x+3=0得x=-3,此时y=2a0+2=2+2=4.即函数y=2a x+3+2(a>0,且a≠1)的图象过定点(-3,4).18.当a>0,且a≠1时,函数f(x)=a x+1-1的图象一定过点()A.(0,1) B.(0,-1)C .(-1,0)D .(1,0)[解析] 当x =-1时,显然f (x )=0,因此图象必过点(-1,0).19.已知函数y =2a x -1+1(a >0且a ≠1)恒过定点A (m ,n ),则m +n =( )A .1B .3C .4D .2[解析]选C,由题意知,当x =1时,y =3,故A (1,3),m +n =4. 20.函数y =a 2x +1+1(a >0,且a ≠1)的图象过定点________. [解析]令2x +1=0得x =-12,y =2,所以函数图象恒过点⎝⎛⎭⎫-12,2. 21.若函数y =2-|x |-m 的图象与x 轴有交点,则( )A .-1≤m <0B .0≤m ≤1C .0<m ≤1D .m ≥0[解析]易知y =2-|x |-m =⎝⎛⎭⎫12|x |-m .若函数y =2-|x |-m 的图象与x 轴有交点,则方程⎝⎛⎭⎫12|x |-m =0有解, 即m =⎝⎛⎭⎫12|x |有解.∵0<⎝⎛⎭⎫12|x |≤1,∴0<m ≤1. 22.已知f (x )=2x 的图象,指出下列函数的图象是由y =f (x )的图象通过怎样的变化得到:(1)y =2x +1;(2)y =2x -1;(3)y =2x +1;(4)y =2-x ;(5)y =2|x |. [解析] (1)y =2x +1的图象是由y =2x 的图象向左平移1个单位得到.(2)y =2x-1的图象是由y =2x 的图象向右平移1个单位得到.(3)y =2x +1的图象是由y =2x 的图象向上平移1个单位得到.(4)∵y =2-x 与y =2x 的图象关于y 轴对称,∴作y =2x 的图象关于y 轴的对称图形便可得到y =2-x的图象.(5)∵y =2|x |为偶函数,故其图象关于y 轴对称,故先作出当x ≥0时,y =2x 的图象,再作关于y 轴的对称图形,即可得到y =2|x |的图象.23.已知函数f (x )=a x +b (a >0,且a ≠1).(1)若f (x )的图象如图①所示,求a ,b 的值; (2)若f (x )的图象如图②所示,求a ,b 的取值范围;(3)在(1)中,若|f (x )|=m 有且仅有一个实数根,求m 的取值范围.[解析] (1)f (x )的图象过点(2,0),(0,-2),所以⎩⎪⎨⎪⎧a 2+b =0,a 0+b =-2,又因为a >0,且a ≠1,所以a =3,b =-3.(2)f (x )单调递减,所以0<a <1,又f (0)<0.即a 0+b <0,所以b <-1. 故a 的取值范围为(0,1),b 的取值范围为(-∞,-1).(3)画出|f (x )|=|(3)x -3|的图象如图所示,要使|f (x )|=m 有且仅有一个实数根, 则m =0或m ≥3.故m 的取值范围为[3,+∞)∪{0}.题型三 指数函数的定义域与值域1.求下列函数的定义域和值域:(1)y =1-3x ;(2)y =21x -4 ; (3)y =⎝⎛⎭⎫23-|x | ; (4)y =⎝⎛⎭⎫12x 2-2x -3;(5)y =4x +2x +1+2. [解析] (1)要使函数式有意义,则1-3x ≥0,即3x ≤1=30,因为函数y =3x 在R 上是增函数,所以x ≤0, 故函数y =1-3x 的定义域为(-∞,0].因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1, 所以1-3x ∈[0,1),即函数y =1-3x 的值域为[0,1). (2)要使函数式有意义,则x -4≠0,解得x ≠4. 所以函数y =21x -4的定义域为{x |x ≠4}.因为1x -4≠0,所以21x -4 ≠1,即函数y =21x -4 的值域为{y |y >0,且y ≠1}.(3)要使函数式有意义,则-|x |≥0,解得x =0.所以函数y =⎝⎛⎭⎫23-|x |的定义域为{x |x =0}.因为x =0,所以⎝⎛⎭⎫23-|x | =⎝⎛⎭⎫230=1,即函数y =⎝⎛⎭⎫23-|x |的值域为{y |y =1}. (4)定义域为R.∵x 2-2x -3=(x -1)2-4≥-4,∴⎝⎛⎭⎫12x 2-2x -3≤⎝⎛⎭⎫12-4=16. 又∵⎝⎛⎭⎫12x 2-2x -3>0,∴函数y =⎝⎛⎭⎫12x 2-2x -3的值域为(0,16]. (5)因为对于任意的x ∈R ,函数y =4x +2x +1+2都有意义,所以函数y =4x +2x +1+2的定义域为R. 因为2x >0,所以4x +2x +1+2=(2x )2+2×2x +2=(2x +1)2+1>1+1=2, 即函数y =4x +2x +1+2的值域为(2,+∞). 2.(1)求函数y =⎝⎛⎭⎫132x -的定义域与值域;(2)求函数y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,x ∈[0,2]的最大值和最小值及相应的x 的值. [解析] (1)由x -2≥0,得x ≥2,所以定义域为{x |x ≥2}.当x ≥2时,x -2≥0, 又因为0<13<1,所以y =⎝⎛⎭⎫13x -2的值域为{y |0<y ≤1}.(2)∵y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,∴y =4·⎝⎛⎭⎫14x -4·⎝⎛⎭⎫12x +2.令m =⎝⎛⎭⎫12x ,则⎝⎛⎭⎫14x =m 2. 由0≤x ≤2,知14≤m ≤1.∴f (m )=4m 2-4m +2=4⎝⎛⎭⎫m -122+1. ∴当m =12,即当x =1时,f (m )有最小值1;当m =1,即x =0时,f (m )有最大值2.故函数的最大值是2,此时x =0,函数的最小值为1,此时x =1. 3.函数y =2x -1的定义域是( )A .(-∞,0)B .(-∞,0]C .[0,+∞)D .(0,+∞)[解析]由2x -1≥0,得2x ≥20,∴x ≥0.[答案] C 4.函数y =1-⎝⎛⎭⎫12x的定义域是________.[解析]由1-⎝⎛⎭⎫12x≥0得⎝⎛⎭⎫12x ≤1=⎝⎛⎭⎫120,∴x ≥0,∴函数y =1-⎝⎛⎭⎫12x的定义域为[0,+∞).5.若函数y =a x -1的定义域是(-∞,0],则a 的取值范围为( )A .a >0B .a <1C .0<a <1D .a ≠1[解析]由a x -1≥0,得a x ≥a 0.∵函数的定义域为(-∞,0],∴0<a <1.6.若函数f (x )=a x -a 的定义域是[1,+∞),则a 的取值范围是( ) A .[0,1)∪(1,+∞) B .(1,+∞) C .(0,1)D .(2,+∞)[解析]∵a x -a ≥0,∴a x ≥a ,∴当a >1时,x ≥1.故函数定义域为[1,+∞)时,a >1. 7.y =2x ,x ∈[1,+∞)的值域是( )A .[1,+∞)B .[2,+∞)C .[0,+∞)D .(0,+∞)[解析]y =2x 在R 上是增函数,且21=2,故选B. 8.函数y =16-4x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)[解析]要使函数有意义,须满足16-4x ≥0.又因为4x >0,所以0≤16-4x <16, 即函数y =16-4x 的值域为[0,4).9.函数y =⎝⎛⎭⎫12x(x ≥8)的值域是( )A .R B.⎝⎛⎦⎤0,1256 C.⎝⎛⎦⎤-∞,1256 D.⎣⎡⎭⎫1256,+∞[解析]因为y =⎝⎛⎭⎫12x 在[8,+∞)上单调递减,所以0<⎝⎛⎭⎫12x≤⎝⎛⎭⎫128=1256. 10.函数y =1-2x ,x ∈[0,1]的值域是( )A .[0,1]B .[-1,0] C.⎣⎡⎦⎤0,12 D.⎣⎡⎦⎤-12,0 [解析]∵0≤x ≤1,∴1≤2x ≤2,∴-1≤1-2x ≤0,选B.11.已知函数y =⎝⎛⎭⎫13x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.[解析]∵y =⎝⎛⎭⎫13x 在R 上为减函数,∴m =⎝⎛⎭⎫13-1=3,n =⎝⎛⎭⎫13-2=9,故m +n =12. 12.函数y =⎝⎛⎭⎫1222x x -+的值域是________. [解析]设t =-x 2+2x =-(x 2-2x )=-(x -1)2+1≤1,∴t ≤1.∵⎝⎛⎭⎫12t ≥⎝⎛⎭⎫121=12,∴函数值域为⎣⎡⎭⎫12,+∞. 13.函数y =⎝⎛⎭⎫12x 2-1的值域是________.[解析]∵x 2-1≥-1,∴y =⎝⎛⎭⎫12x 2-1≤⎝⎛⎭⎫12-1=2,又y >0,∴函数值域为(0,2].14.若函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,-2-x ,x >0,则函数f (x )的值域是________. [解析]由x <0,得0<2x <1;由x >0,∴-x <0,0<2-x <1,∴-1<-2-x <0,∴函数f (x )的值域为(-1,0)∪(0,1).15.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝⎛⎭⎫2,12,其中a >0且a ≠1. (1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域.[解析](1)∵f (x )的图象过点⎝⎛⎭⎫2,12,∴a 2-1=12,则a =12. (2)由(1)知,f (x )=⎝⎛⎭⎫12x -1,x ≥0.由x ≥0,得x -1≥-1,于是0<⎝⎛⎭⎫12x -1≤⎝⎛⎭⎫12-1=2, 所以函数y =f (x )(x ≥0)的值域为(0,2].16.若定义运算a ⊙b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,则函数f (x )=3x ⊙3-x 的值域是________. [解析]当x >0时,3x >3-x, f (x )=3-x ,f (x )∈(0,1);当x =0时,f (x )=3x =3-x =1; 当x <0时,3x <3-x ,f (x )=3x ,f (x )∈(0,1).综上, f (x )的值域是(0,1].17.函数f (x )=3x 3x +1的值域是________.[解析]数y =f (x )=3x 3x +1,即有3x =-y y -1,由于3x >0,则-y y -1>0,解得0<y <1,值域为(0,1). 18.若函数f (x )=a x -1(a >0,且a ≠1)的定义域和值域都是[0,2],求实数a 的值.[解析]当0<a <1时,函数f (x )=a x -1(a >0,且a ≠1)为减函数,所以⎩⎪⎨⎪⎧ a 0-1=2,a 2-1=0无解. 当a >1时,函数f (x )=a x -1(a >0,且a ≠1)为增函数,所以⎩⎪⎨⎪⎧a 0-1=0,a 2-1=2,解得a = 3. 综上,a 的值为 3.19.已知f (x )=9x -2×3x +4,x ∈[-1,2].(1)设t =3x ,x ∈[-1,2],求t 的最大值与最小值;(2)求f (x )的最大值与最小值.[解析](1)设t =3x ,∵x ∈[-1,2],函数t =3x 在[-1,2]上是增函数,故有13≤t ≤9, 故t 的最大值为9,t 的最小值为13. (2)由f (x )=9x -2×3x +4=t 2-2t +4=(t -1)2+3,可得此二次函数的对称轴为t =1,且13≤t ≤9, 故当t =1时,函数f (x )有最小值为3,当t =9时,函数f (x )有最大值为67.。
《指数函数与对数函数》本章教材分析一、本章知能对标二、本章教学规划本章在研究指数幂和对数的基础上,以研究函数概念与性质的一般方法为指导,借鉴研究幂函数的过程与方法,学习指数函数和对数函数,帮助学生学会用函数图象和代数运算的方法研究它们的性质,理解这两类函数中蕴含的变化规律;运用函数思想和方法,探索用二分法求方程的近似解;通过建立指数函数、对数函数模型解决简单的实际问题,体会指数函数、对数函数在解决实际问题中的作用,从而进一步理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具,提升数学抽象、数学建模、数学运算、直观想象和逻辑推理等数学核心素养.三、本章教学目标1.指数函数:通过了解指数的拓展过程,让学生掌握指数幂的运算性质;了解指数函数的实际意义,理解指数函数的概念.能借助描点法、信息技术画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.2.对数函数:通过具体事例,让学生理解对数的概念和运算性质,掌握换底公式;了解对数函数的概念,能画对数函数的图象,了解对数函数的单调性与特殊点;知道对数函数y=log a x与指数函数y=a x互为反函数(a>0,且a≠1).3.二分法与求方程近似解:结合指数函数和对数函数的图象,让学生了解函数的零点与方程解的关系、函数零点存在定理,探索用二分法求方程近似解的思路并会画程序框图,能借助计算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性.4.函数与数学模型:利用计算工具,比较对数函数、线性函数、指数函数增长速度的差异,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义.在实际情境中,会选择合适的函数类型刻画现实问题的变化规律.四、本章教学重点难点重点:实数指数幂及其运算,对数及其运算,指数函数和对数函数的概念、图象、性质及其应用. 难点:抽象概括指数函数和对数函数的概念及性质.五、课时安排建议本章教学约需11课时,具体安排如下:六、本章教学建议1.注重引导学生按研究函数的基本思路展开研究本章教学要注重让学生再次经历研究函数的基本过程:背景—概念—图象和性质—应用.要注意引导学生通过计算分析具体实例的数据中蕴含的变化规律抽象形成相应的函数概念,利用教科书中的问题引导学生思考和总结.2.用函数的观点联系相关内容,培养学生的数学整体观本章的核心内容是指数函数和对数函数,全章都应该围绕核心内容展开教学,以更好地帮助学生形成函数观点和思想方法.指数幂的运算、对数的概念及其运算性质和公式、指数和对数的关系,是学习指数函数、对数函数必备的基础,运用这些运算性质,通过运算,解决具体的问题教学中要从整体上把握上述运算性质、函数概念、图象、性质以及应用的关系.3.加强“形”与“数”的融合,循序渐进地研究指数函数和对数函数为了能选择合适的函数类型构建数学模型,刻画现实问题的变化规律,教学时可以依据教科书,从两个方面帮助学生体会不同函数模型增长的差异:一是通过观察函数图象,利用图象直观比较指数函数与线性函数、对数函数与线性函数增长速度的差异;二是通过教科书中的实例,结合具体问题情境理解不同函数增长的差异,教学的关键是从局部到整体,从不同角度观察、比较不同函数图象增长变化的差异,从而直观体会直线的增长、指数爆炸、对数增长的含义4.加强背景和应用,发展学生数学建模素养数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养.教学中,应注意参考教科书,结合这些素材,引导学生从数学的视角发现问题、提出问题,构建指数函数和对数函数模型,确定模型中的参数,计算求解,检验结果,改进模型,最终解决问题,让学生体会数学的来源与应用,丰富学生对数学的认识,提升数学建模素养.5.注重借助信息技术工具研究指数函数和对数函数在不同函数增长差异的教学中,利用信息技术可以作出函数在两个不同范围的图象,帮助学生从不同角度观察到不同函数增长的差异.6.注意通过无理数指数幂的教学渗透极限思想教科书通过“用有理数指数幂逼近无理数指数幂”的思想方法引入无理数指数幂.教学中,可以类比初中用有理数逼近无理数,让学生充分经历从“过剩近似值”和“不足近似值”两个方向,用有理数指数幂逼近无理数指数幂的过程;通过在数轴上表示这些“过剩近似值”和“不足近似值”的对应点,发现这些点逼近一个确定的点,其对应的数就是这个无理数指数幂.这样从“数”与“形”的两个角度,加强了逼近和极限思想的渗透,有助于学生从中初步体会这一重要思想.。
高职高考指数函数知识点在高职高考数学中,指数函数是一个非常重要的知识点。
本文将从指数函数的定义、性质以及应用等方面,简要介绍高职高考涉及的指数函数知识点。
一、指数函数的定义指数函数是以底数为常数的指数与自变量的幂次关系而定义的函数。
通常表示为f(x)=a^x,其中a为底数,x为指数。
指数函数的定义中,底数a可以为任意实数,但当a>0且a≠1时,指数函数才是一种特殊的函数形式,也是高职高考中所关注的指数函数。
二、指数函数的性质1. 基本性质:指数函数的定义域为全体实数集R,值域为(0,+∞)。
2. 单调性:当0<a<1时,指数函数单调递减;当a>1时,指数函数单调递增。
3. 与指数幂和乘方函数的关系:- 对于底数a>0且a≠1,指数函数f(x)=a^x与指数幂函数f(x)=a^m(m为整数)的定义域均为全体实数集R,并且具有相同的增减性质。
- 指数函数f(x)=a^x与乘方函数f(x)=x^m(m为正偶数)的图象关于y轴对称。
三、指数函数的应用1. 生活中的应用:- 金融领域:复利计算中,投资本金与时间的关系可以用指数函数来表示。
- 科学领域:在自然界的许多现象中,往往跟时间的增长呈指数规律变化,如放射性元素的衰变、细菌的繁殖等。
- 经济领域:人口增长、市场营销、市场份额等都存在着指数函数的规律。
2. 题型分析与解题方法:- 基本指数函数的性质运用:根据指数函数的基本性质,解题过程中常用到的方法有:配方、比较、取对数化简等。
- 正题型与反题型:在指数函数题型中,存在着正题型和反题型。
正题型是已知指数、底数或函数的特点,求解指数函数的函数值或解析式;反题型则相反,已知函数值或函数的特点,求解指数或底数等。
四、典型例题分析下面通过几个典型的高职高考指数函数题来进行分析和解答。
例题一:若指数函数f(x)=2^x中存在两个整数x1、x2(x1<x2),使得2^(x1+x2)=8,则x1、x2的值分别为多少?解析:根据指数函数的性质,指数为x1的函数值为2^x1,指数为x2的函数值为2^x2。
指数函数有什么性质?如何证明指数函数的单调性? 指数函数是数学中重要的函数。
应用到值e上的这个函数写为exp(x)。
还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。
在高中数学中占有一定位置。
那幺指数函数有什幺性质?如何证明指数函数的单调性? 指数函数有什幺性质? 指数函数一般具有以下性质:(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑, 同时a等于0函数无意义一般也不考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
小编推荐:《2018年高考数学备考计划好的复习计划是成功的开始》(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。
(7) 函数总是通过(0,1)这点,(若Y=Ax+B,则函数定过点(0,1+b) (8) 显然指数函数无界。
(9) 指数函数既不是奇函数也不是偶函数。
(10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。
指数函数1.指数函数的定义: y a x(a 0且a 1) 的图象和性质。
a>1 0<a<1图 象111性 质(1) 定义域: R(2)值域:(0,+∞)(3)过点( 0,1),即 x=0 时,y=1 (4)在 R 上是增函(4)在 R 上是减函指数函数是高中数学中的一个基本初等函数, 有关指数函数的图象与性质的 题目类型较多, 同时也是学习后续数学内容的基础和高考考查的重点, 本文对此 部分题目类型作了初步总结,与大家共同探讨.1.比较大小例 1 已知函数 f (x) x 2 bx c 满足 f (1 x) f (1 x),且 f(0) 3 ,则 f(b x)与函数 y a x(a 0且a 1)叫做指数函数,其中 x 是自变量,函数定义域是 R我 们 观 察 y= 2x , y= 2 , y=10x, y= 10 图 象 特 征 , 就 可 以 得 到f(c ) 的大小关系是.分析:先求b,c的值再比较大小,要注意b x,c x的取值是否在同一单调区间内.解:∵ f (1 x) f (1 x) ,∴函数 f (x) 的对称轴是x 1 .故b 2,又f(0) 3,∴ c 3.∴函数f(x)在∞,1 上递减,在1,∞ 上递增.若x≥0,则3x≥2x≥1,∴ f(3x)≥f(2x);若x 0,则3x 2x 1,∴ f(3x) f(2x).综上可得f(3x)≥ f(2x),即f(c x)≥ f(b x).评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论.2.求解有关指数不等式例 2 已知(a2 2a 5)3x (a2 2a 5)1 x,则x 的取值范围是_____ .分析:利用指数函数的单调性求解,注意底数的取值范围.解:∵ a2 2a 5 (a 1)2 4≥ 4 1 ,∴函数y (a2 2a 5)x在( ∞,∞) 上是增函数,∴3x 1 x,解得x 1.∴x的取值范围是1,∞ .44 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与 1 的大小,对于含有参数的要注意对参数进行讨论.3.求定义域及值域问题例 3 求函数y 1 6x 2的定义域和值域.解:由题意可得 1 6x 2≥0,即6x 2≤1,∴x 2≤0,故x≤2.∴函数 f (x)的定义域是∞,2 .令t 6x 2,则y 1 t ,又∵ x≤2 ,∴ x 2≤ 0.∴ 0 6x 2≤1,即0 t≤1.∴ 0 ≤ 1 t 1 ,即0 ≤ y 1 .∴函数的值域是0,1 .评注:利用指数函数的单调性求值域时,要注意定义域对它的影响. 4.最值问题例 4 函数 y a 2x 2a x 1(a 0且a 1)在区间 [ 1,1] 上有最大值 14,则a 的值 是 .分析:令 t a x 可将问题转化成二次函数的最值问题,需注意换元后 t 的取值 范围.解:令 t a x,则 t 0,函数 y a 2x 2a x 1可化为 y (t 1)22 ,其对称轴为 t 1 .∴当a1 时,∵x 1,1 ,∴1≤ a x ≤ a ,即 1≤t ≤ a . aa∴当t a 时, y max2(a 1)2214 . 解得a 3 或a 5 (舍去) 当 0 a 1 时,∵ x 1,1 ,∴a ≤ a x≤ 1,即 a ≤ t ≤ 1, aa1 12∴ t 时, y max 1 2 14 ,aa解得a 1或a 1 (舍去),∴ a 的值是 3或1.3 5 3 评注:利用指数函数的单调性求最值时注意一些方法的运用, 比如:换元法, 整体代入等. 5.解指数方程 例 5 解方程 3x 2 32 x80 .解:原方程可化为 9 (3x )2 80 3x 9 0 ,令 t 3x(t 0),上述方程可化为9t 2 80t 9 0,解得 t 9或t 1 (舍去),∴ 3x 9,∴ x 2 ,经检验原方程的 9解是 x 2 . 评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 6.图象变换及应用问题例 6 为了得到函数 y 9 3x 5的图象,可以把函数 y 3x 的图象( ).A .向左平移 9 个单位长度,再向上平移 5 个单位长度B .向右平移 9个单位长度,再向下平移 5 个单位长度C .向左平移 2 个单位长度,再向上平移 5 个单位长度D .向右平移 2 个单位长度,再向下平移 5 个单位长度 分析:注意先将函数 y 9 3x5转化为t 3x 25 ,再利用图象的平移规律进 行判断.解:∵ y 9 3x5 3x 25 ,∴把函数 y 3x的图象向左平移 2 个单位长度, 再向上平移 5 个单位长度,可得到函数 y 9 3x5的图象,故选( C ). 评注:用函数图象解决问题是中学数学的重要方法, 利用其直观性实现数形 结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、 伸缩、对称等. 习题1、比较下列各组数的大小:1)若 ,比较与2) 3) 4若 ,比较 与 ; 若 ,比较 与 ; 若 ,且 , 若 ,且 ,故解:(1)由,此时函数比较 a 与 b ; ,比较 a 与 b . 为减函数. 由 ,.又 ,故 (3)由 ,因 ,故 .又而.2)由 ,故.从而 ,故.从(4)应有 .因若 ,则.又.又因 ,故 .从而 , (5)应有 .因若,则.又,故 这与已知,故这样 矛,这样有.又因 ,且 ,故 .从而 ,这与已知矛盾.小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.2,曲线分别是指数函数, 和的图象, 则与1 的大小关系是( ).(分析:首先可以根据指数函数单调性, 确定, 在轴右侧令, 由小到大依次为, 故应选.小结: 这种类型题目是比较典型的数形结合的题目由数到形的转化,第(2) 题则是由图到数的翻译,它的主要目的是提高学生识图,用图的意识. 求最值3,求下列函数的定义域与值域1(1)y =2 x 3; (2)y =4x+2x+1+1.5、设 ,求函数 的最大值和最小值.分析:注意到 ,设,利用闭区间上二次函数的值域的求法,可求得函数的最值. 解:设 ,由 知, ,函数成为 , ,对称轴,因端点 较 距对称.6.(9 分)已知函数 y a 2x 2a x1(a 1) 在区间[-1,1]上的最大值是 14,求 a 的值.1.解: y a 2x 2a x 1(a 1), 换元为 y t 22t 1( t a ) ,对称轴为 t 1. a 当a 1,t a ,即 x=1 时取最大值,略 解得 a=3 (a= -5舍去 )7.已知函数 ( 且(1)求 的最小值; (2)若 求 的取值范围..解:( 1) 时, 有最小值为( 2) ,解得当 时, ; 当 时, .28(10分)(1)已知 f (x ) x 2m 是奇函数,求常数 m 的值;3x12)画出函数 y |3x1|的图象,并利用图象回答: k 为何值时,方程 |3Xk 无解?有一解?有两解?,则原来的函数成为,故函数最小值为轴 远,故函数的最大值为)解: (1)常数 m=1(2)当k<0时,直线y=k 与函数 y |3x1|的图象无交点 ,即方程无解;当k=0或k 1时, 直线y=k 与函数 y |3 1| 的图象有唯一的交点,所以方程 有一解;当 0<k<1 时, 直线 y=k 与函数 y |3x 1|的图象有两个不同交点, 所以方程有 两解。
指数函数的一般表达式指数函数是数学中常见的一类函数,其一般形式可以表示为$f(x)=a^x$,其中$a$是常数为底数,$x$是函数的自变量。
1.定义域和值域2.单调性当底数$a>1$时,指数函数是递增的,即随着自变量的增大,函数值也随之增大。
当底数$a<1$时,指数函数是递减的,即随着自变量的增大,函数值却减小。
3.交点与极限指数函数与$x$轴交于点$(0,1)$,即当$x=0$时,函数的值始终为1、此外,指数函数具有一个特殊的极限性质:当$x$趋于负无穷时,函数的值趋近于0;当$x$趋于正无穷时,函数的值趋近于正无穷。
4.对称性指数函数具有对称性。
以$a>1$为例,当$x$取正数时,函数值逐渐增大,当$x$取负数时,函数值逐渐减小。
两者关于$x=0$对称。
5.运算性质指数函数具有一些重要的运算性质。
当底数相同时,两个指数函数的乘积等于以相同底数,指数为两个函数指数之和的新指数函数。
即$f(x)\cdot g(x) = a^{x+y}$。
此外,指数函数的幂运算规律也适用于指数函数的运算。
指数函数在自然科学中的应用广泛。
在生物学中,指数增长函数可以用于描述生物种群的增长。
在化学动力学中,指数函数被用来表示反应速率与浓度的关系。
在经济学中,指数函数被用于描述复利计算。
总结来说,指数函数是一类常见的数学函数,其一般形式为$f(x)=a^x$,可以用于描述各种增长或衰减规律。
指数函数具有一些重要的特性,如定义域、值域、单调性、交点与极限、对称性和运算性质。
指数函数在自然科学、工程技术、经济学等领域中有广泛的应用。
数学中的幂函数与指数函数幂函数与指数函数是数学中常见的两种函数形式,它们在数学运算、科学实验、经济学模型等领域都有广泛的应用。
本文将对幂函数与指数函数的定义、特点以及应用进行介绍。
一、幂函数幂函数是指以自变量为底数,指数为幂的函数形式,通常表示为f(x)=axⁿ,其中a为实数,n为指数。
幂函数的特点如下:1. 定义域和值域:幂函数的定义域一般是实数集R,值域则取决于指数的奇偶性以及底数的正负性。
2. 对称性:当指数n为偶数时,幂函数关于y轴对称;当指数n为奇数时,幂函数关于原点对称。
3. 增减性:当指数n为正数时,幂函数是增函数;当指数n为负数时,幂函数是减函数。
4. 特殊情况:当指数n为0时得到常函数,即f(x)=a⁰=1,此时幂函数的图像为一条水平直线。
幂函数在实际问题中的应用十分广泛,比如:1. 物体体积的求解:当物体的形状与其体积之间存在幂函数关系时,可以借助幂函数来求解物体的体积。
2. 经济增长模型:在经济学中,幂函数常被用来描述经济增长与时间之间的关系,其中时间通常作为指数。
二、指数函数指数函数是以底数为常数,指数为自变量的函数形式,通常表示为g(x)=aᵗ,其中a为底数,t为指数。
指数函数的特点如下:1. 定义域和值域:指数函数的定义域为实数集R,值域为正实数集(0,+∞)。
2. 单调性:当底数a大于1时,指数函数是增函数;当底数a介于0和1之间时,指数函数是减函数。
3. 渐近线:当底数a大于1时,指数函数的图像在x轴的右侧趋近于x轴;当底数a介于0和1之间时,指数函数的图像在x轴的右侧趋近于y轴。
4. 特殊情况:当底数a等于1时得到常函数,即g(x)=1ᵗ=1,此时指数函数的图像为一条水平直线。
指数函数在实际问题中也有广泛的应用,比如:1. 活化能的计算:在化学反应速率的计算中,指数函数常常用来表达活化能与温度之间的关系。
2. 金融领域的利息计算:复利计算中,指数函数常用于计算利率、本金以及复利的关系。
函数复习内容:函数的定义域、值域、单调性、奇偶性、对称性、周期性、函数的综合应用 一.常见函数(基本初等函数): 1.)(为常数C C y = 2.)0(≠+=k b kx y 3.)0(2≠++=a c bx axy 4.xy 1=5.幂函数:)(Q a x y a∈=(包括前四个函数) 6.指数函数:)10(≠>=a a a y x且 7.对数函数:)10(log≠>=a a x y a 且8.三角函数:x y sin =,x y cos =,x y tan =,x y cot =,x y sec =,x y csc =由以上函数进行四则运算、复合运算得到的函数都是初等函数。
如:d cx bxax y +++=23,xx y 2log1sin +=,xxy 513+=,试着分析以上函数的构成。
二.定义域: 1.“定义域优先”的思想是研究函数的前提,在求值域、奇偶性、换元时易忽略定义域。
2.求定义域:例1求下列函数定义域:(1)2()lg (31)f x x =+ (2))25(logsin )(221x x x f -+=例2设2()lg 2x f x x+=-,则2()()2x f f x+的定义域为__________变式练习:24)2(xx f -=-,求)(x f 的定义域。
三.值域:1.①432+=xx y ②11y 22+-=xx2. ①1+=x x y ②11+-=x x y③]5,1(,14522∈-+-=x xx xy ④1sin 10sin 7sin2+++=x x x y3. ①2123y x x =++; ②22422--=x xx y4. ①12-+-=x x y ; ②y x =-5. ①)3)(cos 3(sin ++=x x y②已知直角三角形的三边之和为2,求此三角形面积S 的最大值。
③1cos 2cos --=x x y ④2sin 1cos --=x x y6.函数23x x21)x (f 2+-=的定义域和值域都是]b ,1[(b>1),求b 的值。
指数函数及其性质知识点总结本节知识点(1)指数函数的概念 (2)指数函数的图象和性质 (3)指数函数的定义域和值域 (4)指数函数的单调性及其应用 (5)指数函数的图象变换 知识点一 指数函数的概念一般地,函数xa y =(0>a 且1≠a )叫做指数函数,其中x 是自变量,函数的定义域是R . 1.为什么规定“0>a 且1≠a ”?答:若0=a ,则当0>x 时,0=x a ,当x ≤0时,xa 无意义;若0<a ,则对于x 的某些值,xa 无意义,如函数()xy 2-=,当 41,21=x 时,函数无意义;若1=a ,则对任意的∈x R ,都有1=x a ,没有研究的必要.基于上面的原因,在指数函数的定义中,规定0>a 且1≠a .上面的定义,是形式定义. 2.为什么指数函数的定义域是R ?答:对于指数幂来说,当底数大于0时,指数已经由整数指数推广到了实数指数,所以在指数函数的定义里面,自变量的取值范围是全体实数,即函数的定义域为R . 3.指数函数的结构特征指数函数的定义是形式上的定义,其函数解析式的结构具有非常明显的特征,如下: (1)指数中只有一个自变量x ,而不是含自变量的多项式; (2)xa 的系数必须为1,不能是其它的数字,也不能含有自变量; (3)底数a 必须满足0>a 且1≠a 的一个常数.根据上面的三个特征,可以判断一个函数是否为指数函数,也可以在已知指数函数的前提下,求参数的值或参数的取值范围.例1. 已知函数()()x a a x f ⋅-=32是指数函数,求a 的值. 分析:本题考查指数函数的定义,指数函数的定义有三个特征: (1)指数的位置只有一个自变量,但不是含自变量的多项式; (2)底数是一个大于0且不等于1的常数;(3)x a 的系数必须为1.解:∵函数()()x a a x f ⋅-=32是指数函数∴⎪⎩⎪⎨⎧≠>=-10132a a a ,解之得:2=a . 例2. 已知指数函数()()32--+=a a a y x 的图象过点()4,2,则=a _________.解:由题意可得:()()⎪⎩⎪⎨⎧≠>=--10032a a a a ,解之得:2=a 或3=a .∵函数的图象经过点()4,2 ∴2=a .例3. 若指数函数()x f 的图象经过点()9,2,求()x f 的解析式及()1-f 的值. 解:设函数()x a x f =.∵其图象经过点()9,2,∴2239==a ,∴3=a . ∴()x f 的解析式为()x x f 3=. ∴()31311==--f . 例4. 函数()x a a a y 442+-=是指数函数,则a 的值是【 】 (A )4 (B )1或3 (C )3 (D )1解:由题意可得:⎪⎩⎪⎨⎧≠>=+-101442a a a a ,解之得:3=a .∴x y 3=.选择【 C 】.例5. 若函数()xa y 12-=(x 是自变量)是指数函数,则a 的取值范围是_________.解:∵函数()xa y 12-=是指数函数∴⎩⎨⎧≠->-112012a a ,解之得:21>a 且1≠a .∴a 的取值范围是⎭⎬⎫⎩⎨⎧≠>121a a a 且.例6. 若函数()xa a y 32-=是指数函数,求实数a 的取值范围.解:∵函数()xa a y 32-=是指数函数∴⎩⎨⎧≠->-130322a a a a ,解之得:⎪⎩⎪⎨⎧±≠<>213303a a a 或. ∴实数a 的取值范围是⎭⎬⎫⎩⎨⎧±≠<>213303a a a a 且或.知识点二 指数函数的图象和性质一般地,指数函数xa y =(0>a 且1≠a )的图象和性质如下表所示:指数函数函数值的特点:(1)当10<<a 时,若0<x ,则恒有1>y ;若0>x ,则恒有10<<y ; (2)当1>a 时,若0<x ,则恒有10<<y ;若0>x ,则恒有1>y . 1. 指数函数图象的画法对于指数函数xa y =(0>a 且1≠a ),当0=x 时,1=y ;当1=x 时,a y =;当1-=x时,a y 1=.所以指数函数的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1.在画指数函数图象的草图时,应抓住以上三个关键点作图.(1)由于指数函数xa y =(0>a 且1≠a )的图象经过点()a ,1,所以指数函数的图象与直线1=x 的交点的纵坐标等于函数的底数.交点的位置越高,底数a 就越大. (2)由于指数函数xa y =(0>a 且1≠a )的图象经过点⎪⎭⎫⎝⎛-a 1,1,所以指数函数的图象与直线1-=x 的交点的纵坐标等于底数的倒数.交点的位置越高,a1越大,底数就越小. 2. 函数xa y =(0>a 且1≠a )与函数xa y ⎪⎭⎫ ⎝⎛=1(0>a 且1≠a )的图象的关系在同一平面直角坐标系中,函数xa y =(0>a 且1≠a )与函数xa y ⎪⎭⎫ ⎝⎛=1(0>a 且1≠a )的图象关于y 轴对称.即两个指数函数底数互为倒数,图象关于y 轴对称. 如下图所示,指数函数x y 2=与xy ⎪⎭⎫⎝⎛=21的图象关于y 轴对称.(1)指数函数xa y =(0>a 且1≠a )与函数xa y -=(0>a 且1≠a )的图象关于x 轴对称.如上右图所示,指数函数xy 2=与函数xy 2-=的图象关于x 轴对称.(2)指数函数x a y =(0>a 且1≠a )与函数xa y --=(0>a 且1≠a )(即xa y ⎪⎭⎫ ⎝⎛-=1)的图象关于原点对称(成中心对称).如下图所示,指数函数x y 2=与函数xy --=2(即xy ⎪⎭⎫ ⎝⎛-=21)的图象关于原点对称.3.与指数函数有关的恒过定点问题由于指数函数xa y =(0>a 且1≠a )的图象恒过定点()1,0,因此我们讨论与指数函数有关的函数的图象过定点的问题时,只需令指数等于0,解出相应的y x ,,即为定点坐标.例7. 函数()531-=-x a x f (1,0≠>a a 且)的图象恒过定点_________. 解:令01=-x ,则1=x ,2513-=-⨯=y .∴函数()531-=-x a x f (1,0≠>a a 且)的图象恒过定点()2,1-.例8. 函数1-=x a y (1,0≠>a a 且)的图象恒过定点P ,则点P 的坐标为【 】 (A )()1,0 (B )()1,1 (C )()1,1- (D )()0,1 解:令01=-x ,则1=x ,10==a y . ∴定点P 的坐标为()1,1.选择【 B 】.例9. 函数1+=x a y (1,0≠>a a 且)的图象恒过的定点坐标为_________. 解:令01=+x ,则1-=x ,10==a y .∴函数1+=x a y (1,0≠>a a 且)的图象恒过定点()1,1-.例10. 函数33+=-x a y (1,0≠>a a 且)的图象过定点_________.解:令03=-x ,则3=x ,43130=+=+=a y .∴函数33+=-x a y (1,0≠>a a 且)的图象过定点()4,3.例11. 如果指数函数()()xa x f 1-=是R 上的减函数,那么a 的取值范围是【 】(A )2<a (B )2>a (C )21<<a (D )10<<a分析 对于指数函数xa y =(0>a 且1≠a ),当10<<a 时,函数的图象从左到右是下降的,函数为R 上的减函数.解:∵函数()()xa x f 1-=是R 上的减函数∴110<-<a ,解之得:21<<a . ∴a 的取值范围是()2,1.选择【 C 】.例12. 已知集合{}3<=x x A ,{}42>=x x B ,则=B A __________. 分析:指数函数x y 2=为R 上的增函数. 解:42>x ,222>x∵函数x y 2=为R 上的增函数 ∴2>x ,∴{}2>=x x B ∴{}32<<=x x B A .例13. 解不等式22112>⎪⎭⎫ ⎝⎛-x .解:()22121>--x ,2221>-x∵函数x y 2=为R 上的增函数 ∴121>-x ,解之得:0<x . ∴原不等式的解集为()0,∞-. 例14. 不等式422<-xx 的解集为__________.解:2222<-xx∵函数x y 2=为R 上的增函数 ∴22<-x x ,解之得:21<<-x . ∵原不等式的解集为()2,1-.4.指数函数xa y =(0>a 且1≠a )的底数a 对函数图象的影响 底数a 与1的大小关系决定了指数函数图象的“升”与“降”:(1)当1>a 时,指数函数的图象是上升的,函数是R 上的增函数.底数越大,函数图象在y 轴右侧部分越接近于y 轴,即图象越陡,说明函数值增长得越快;(2)当10<<a 时,指数函数的图象是下降的,函数为R 上的减函数.底数越小,函数图象在y 轴左侧部分越接近于y 轴,即函数图象越陡,说明函数值减小得越快.根据上面的介绍,在上图中,各个指数函数的底数之间的大小关系为:01>>>>>>>f e d c b a .前面已经提到,因为指数函数x a y =(0>a ,且1≠a )的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1,所以直线1=x 与指数函数图象的交点即为点()a ,1,交点的纵坐标等于指数函数的底数,故底数越大,交点的位置越高.于是有下面的结论:结论 底数a 的大小决定了指数函数图象相对位置的高低:不论是1>a 还是10<<a ,在第一象限内底数越大,函数图象越靠上.简记为:在y 轴右侧,底大图高.另外,直线1-=x 与指数函数图象的交点为⎪⎭⎫ ⎝⎛-a 1,1(即()1,1--a ),交点的纵坐标等于底数的倒数,故底数越小,倒数越大,交点的位置越高.简记为:在y 轴左侧,底大图低.5.指数函数xa y =(0>a 且1≠a )与xb y =(0>b 且1≠b )的图象特点(1)若1>>b a ,则当0<x 时,总有10<<<xxb a ;当0=x 时,总有1==xxb a ;当0>x 时,总有1>>x x b a ;(2)若10<<<a b ,则当0<x 时,总有1>>xxa b ;当0=x 时,总有1==xxb a ;当0>x 时,总有10<<<x x a b .综上所述,当0>x ,0>>b a ,且1≠a ,1≠b 时,总有xx b a >;当0<x ,0>>b a ,且1≠a ,1≠b 时,总有xx b a <.6. 指数函数xa y =(0>a 且1≠a )的图象和性质再说明 指数函数xa y =(0>a 且1≠a )的定义域是R ,值域是()+∞,0.图象:(1)若1>a ,当-∞→x 时,0→y ,即x 的值越小,函数的图象越接近于x 轴,但不相交; (2)若10<<a ,当+∞→x 时,0→y .即x 的值越大,函数的图象越接近于x 轴,但不相交.因此,x 轴(即直线0=y )是指数函数xa y =(0>a 且1≠a )的图象的一条渐近线. 性质:(1)若1>a ,则当0>x 时,总有1>y ,即函数图象y 轴右侧的部分在直线1=y 的上方;当0<x 时,总有10<<y ,即函数图象y 轴左侧的部分在直线1=y 和x 轴之间. (2)若10<<a ,则当0>x 时,总有10<<y ,即函数图象y 轴右侧的部分在直线1=y 和x 轴之间;当0<x 时,总有1>y ,即函数图象y 轴左侧的部分在直线1=y 的上方.例15. 设0>x ,且x x a b <<1,则【 】(A )10<<<a b (B )10<<<b a (C )a b <<1 (D )b a <<1 解法一:∵0>x ,且x x a b <<1∴指数函数x a y =(0>a 且1≠a )和x b y =(0>b 且1≠b )在y 轴右侧的图象f x () =12(都在直线1=y 的上方,它们的的图象是上升的,∴1>a ,1>b∵在y 轴右侧,指数函数x a y =(0>a 且1≠a )的图象在x b y =(0>b 且1≠b )的图象的上方∴根据第一象限“底大图上”,有b a >. ∴1>>b a .选择【 C 】.解法二:∵x x a b <<1,∴x x a a b b <<00, ∵0>x ,∴1,1>>a b . ∵x x a b <,0>x a ,0>x∴1<⎪⎭⎫⎝⎛=xx x a b a b ,∴10<<a b ,∴b a >.∴1>>b a .例16. 已知实数b a ,满足ba ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛3121,给出下面的五种关系,则其中可能成立的序号为__________.①b a <<0; ②a b <<0; ③0<<a b ; ④0<<b a ; ⑤0==a b . 分析:采用数形结合的方法解决本题:在同一平面直角坐标系中分别画出指数函数x y ⎪⎭⎫ ⎝⎛=21和xy ⎪⎭⎫⎝⎛=31的草图,在画图时要注意y 轴左侧“底小图高”和y 轴右侧“底大图高”,还有指数函数的图象都经过定点()1,0.解:如下图所示,在同一平面直角坐标系中分别画出函数x y ⎪⎭⎫ ⎝⎛=21和xy ⎪⎭⎫ ⎝⎛=31的图象.为便于观察并发现问题,设m ba=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛3121.当0<x 时,有0<<b a ; 当0>x 时,有a b <<0;当0=x 时,有0==b a ,此时1=m . ∴可能成立的序号为②④⑤.例17. 设3132⎪⎭⎫ ⎝⎛=a ,3231⎪⎭⎫ ⎝⎛=b ,3131⎪⎭⎫ ⎝⎛=c ,则c b a ,,的大小关系是【 】 (A )b c a >> (B )c b a >> (C )b a c >> (D )a c b >>分析:(1)对于同底数幂比较大小,则可以利用指数函数的单调性比较.如本题中b 与c 的大小比较;(2)对于非同底数幂比较大小,则要借助于中间量或借助于指数函数的图象比较大小.如本题中a 与c 的大小比较.本题知识储备(1)对于指数函数xa y =(0>a 且1≠a ),当10<<a 时,函数在R 上为减函数,即y 随x 的增大而减小.(2)对于指数函数xa y =(0>a 且1≠a )与xb y =(0>b 且1≠b ),若b a >,则当0<x 时,xxb a <;当0>x 时,xxb a >.解:∵指数函数xy ⎪⎭⎫ ⎝⎛=31在R 上为减函数∴31323131⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛,即b c >. ∵3132>,∴31313132⎪⎭⎫⎝⎛>⎪⎭⎫ ⎝⎛,即c a >. ∴b c a >>,选择【 A 】.另外,也可以这样比较a 与c 的大小:∵12231323132031313131=>=⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=ca ,∴c a >. 例18. 设6.06.0=a ,5.16.0=b ,6.05.1=c ,则c b a ,,的大小关系是__________.解:∵指数函数xxy ⎪⎭⎫⎝⎛==536.0在R 上为减函数∴6.05.16.06.0<,即a b <. ∵16.06.006.0=<,15.15.106.0=>∴6.06.05.16.0<,即c a <. ∴c a b <<.另外,根据: 对于指数函数x a y =(0>a 且1≠a )与x b y =(0>b 且1≠b ),若b a >,则当0<x 时,x x b a <;当0>x 时,xx b a >.可直接得到c a <.例19. 设9.014=y ,61.028=y ,5.1321-⎪⎭⎫⎝⎛=y ,则【 】(A )321y y y >> (B )312y y y >> (C )231y y y >> (D )123y y y >>分析:三个幂是不同底数的幂,但每个幂根据底数与2的关系都可以化为以2为底的幂,最后借助于指数函数的单调性即可得到三者之间的大小关系. 解:∵9.014=y ,61.028=y ,5.1321-⎪⎭⎫ ⎝⎛=y∴()8.19.02122==y ,()83.161.03222==y ,()5.15.11322==--y .∵指数函数x y 2=在R 上为增函数∴83.18.15.1222<<,即61.09.05.18421<<⎪⎭⎫⎝⎛-∴312y y y >>.选择【 B 】.例20. 设1212121<⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<ab ,那么【 】(A )a b a b a a << (B )b a a a b a << (C )a a b b a a << (D )a a b a b a <<解:∵1212121<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<a b ,∴0121212121⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛a b . ∵指数函数xy ⎪⎭⎫ ⎝⎛=21为R 上的减函数∴10<<<b a .在同一平面直角坐标系中分别画出函数x a y =与x b y =的图象如下页图所示.x x由图象可得:a a b b a a <<.选择【 C 】.知识点三 指数函数的定义域和值域 1 定义域(1)指数函数xa y =(0>a 且1≠a )的定义域为R . (2)函数()x f ay =(0>a 且1≠a )的定义域与函数()x f 的定义域相同.(3)函数()xa f y =的定义域与函数()x f 的定义域不一定相同.例如,函数()x x f =的定义域为[)+∞,0,而函数x a y =的定义域为R .注意:求指数型复合函数的定义域时,先观察函数是()xa f y =型还是()x f ay =型.例21. 函数()3121++-=x x f x 的定义域为【 】(A )(]0,3- (B )(]1,3-(C )()(]0,33,--∞- (D )()(]1,33,--∞-解:由题意可得:⎩⎨⎧>+≥-03021x x,解之得:x <-3≤0.∴函数()x f 的定义域为(]0,3-.选择【 A 】. 例22. 求下列函数的定义域:(1)xy ⎪⎭⎫⎝⎛-=211; (2)153-=x y .解:由题意可知:x⎪⎭⎫ ⎝⎛-211≥0,∴x⎪⎭⎫ ⎝⎛21≤1021⎪⎭⎫ ⎝⎛=,∴x ≥0.∴该函数的定义域为[)+∞,0;(2)由题意可知:15-x ≥0,解之得:x ≥51.∴该函数的定义域为⎪⎭⎫⎢⎣⎡+∞,51.例23. 函数()2311-⎪⎭⎫ ⎝⎛-=x x f x的定义域为__________. 解:由题意可得:⎪⎩⎪⎨⎧≠-≥⎪⎭⎫⎝⎛-020311x x,解之得:x ≥0且2≠x .∴函数()x f 的定义域为[)()+∞,22,0 . 例24. 求函数()423212-⨯-=xxx f 的定义域.解:由题意可得:042322>-⨯-x x∴()()04212>-+x x ,解之得:12-<x (舍去),42>x . ∵函数x y 2=为R 上的增函数,2242=>x ,∴2>x . ∴函数()x f 的定义域为()+∞,2.2 值域(1)指数函数xa y =(0>a 且1≠a )的值域为()+∞,0.(2)求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数ta y =的单调性,即可求出函数()x f a y =的值域.(3)求形如()xa f y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.例25. 求函数1241--=+x x y 的值域. 解:()122212421-⨯-=--=+x x x x y .设x t 2=,则0>t ,∴()211222--=--=t t t y .∵()+∞∈,0t∴()21min -==f y ,无最大值.∴函数1241--=+x x y 的值域为[)+∞-,2. 例26. 求函数1241-+=+x x y 的值域. 解:()122212421-⨯+=-+=+x x x x y .设x t 2=,则0>t ,∴()211222-+=-+=t t t y .∴函数在()+∞∈,0t 上为增函数 ∴函数1241-+=+x x y 的值域为()+∞-,1. 注意例25和例26的区别.例27. 已知函数()1-=x a x f (x ≥0)的图象经过点⎪⎭⎫⎝⎛21,2,其中0>a ,且1≠a .(1)求a 的值;(2)求函数()x f 的值域.分析:求指数函数x a y =(0>a 且1≠a )的解析式,只需要其图象上一个点的坐标即可.解:(1)把⎪⎭⎫⎝⎛21,2代入()1-=x a x f 得:21=a ;(2)由(1)知()121-⎪⎭⎫⎝⎛=x x f ,为R 上的减函数∵x ≥0,∴1-x ≥1-,∴()x f <0≤2211=⎪⎭⎫⎝⎛-.∴函数()x f 的值域为(]2,0.注意:指数函数x a y =(0>a 且1≠a )的图象位于x 轴的上方,并且在一个方向上无限接近于x 轴,函数的值域为()+∞,0.本题易错结果为(]2,∞-.总结 求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数t a y =的单调性,即可求出函数()x f ay =的值域.例28. 若函数()1-=x a x f (0>a 且1≠a )的定义域和值域都是[]2,0,求实数a 的值.分析:指数函数的单调性与底数和1的大小关系有关,若关系不明确,必要时要进行分类讨论. 解:由题意可知:当10<<a 时,函数()1-=x a x f 在[]2,0上为减函数∴⎩⎨⎧=-=-012120a a ,显然无解; 当1>a 时,函数()1-=x a x f 在[]2,0上为增函数∴⎩⎨⎧=-=-210120a a ,解之得:3=a (3-=a 舍去). 综上所述,实数a 的值为3. 例29. 求下列函数的定义域和值域: (1)412-=x y ; (2)32221--⎪⎭⎫⎝⎛=x x y .本题知识点储备 (1)函数()x f ay =(0>a 且1≠a )的定义域与函数()x f 的定义域相同.(2)求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数ta y =的单调性,即可求出函数()x f ay =的值域.解:(1)由题意可得:04≠-x ,解之得:4≠x . ∴函数412-=x y 的定义域为()()+∞∞-,44, .∵041≠-x ,∴122041=≠=-x y ,且0>y . ∴函数412-=x y 的值域为{}10≠>y y y 且;(2)函数32221--⎪⎭⎫⎝⎛=x x y 的定义域为R .∵()413222--=--x x x ≥4-∴32221--⎪⎭⎫ ⎝⎛x x ≤16214=⎪⎭⎫ ⎝⎛-,且021322>⎪⎭⎫ ⎝⎛--x x .∴函数32221--⎪⎭⎫⎝⎛=x x y 的值域为(]16,0.例30. 求下列函数的定义域和值域:(1)xy -⎪⎭⎫⎝⎛=32; (2)222x x y -=.解:(1)函数xy -⎪⎭⎫⎝⎛=32的定义域为R .∵x ≥0,∴x -≤0. ∴1320min=⎪⎭⎫⎝⎛=y ∴函数xy -⎪⎭⎫⎝⎛=32的值域为[)+∞,1;(2)函数222x x y -=的定义域为R . ∵()11222+--=-x x x ≤1∴()2211max ===f y ,且0>y . ∴函数222x x y -=的值域为(]2,0.例31. 如果函数122-+=x x a a y (0>a 且1≠a )在[]1,1-上有最大值,且最大值为14,试求a 的值.分析:这是求()x a f y =型函数的定义域和值域.求形如()xaf y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.解:()121222-+=-+=x x x x a a a a y .设x a t =,则0>t ,∴()211222-+=-+=t t t y .当1>a 时,∵[]1,1-∈x ,∴⎥⎦⎤⎢⎣⎡∈a a t ,1.∵函数()212-+=t y 在⎥⎦⎤⎢⎣⎡∈a a t ,1上为增函数∴()14122max =-+==a a a f y ,解之得:3=a (5-=a 不符合题意,舍去);当10<<a 时,∵[]1,1-∈x ,∴⎥⎦⎤⎢⎣⎡∈a a t 1,∵函数()212-+=t y 在⎥⎦⎤⎢⎣⎡∈a a t 1,上为增函数∴1412112max =-+=⎪⎭⎫ ⎝⎛=a a a f y ,解之得:31=a (51-=a 不符合题意,舍去).综上所述,3=a 或31=a . 例32. 求函数12141+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=xxy 的值域.解:12121121412+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=xxxxy 设xt ⎪⎭⎫ ⎝⎛=21,则0>t ,∴4321122+⎪⎭⎫ ⎝⎛+=++=t t t y . ∴函数43212+⎪⎭⎫ ⎝⎛+=t y 在()+∞∈,0t 上为增函数.取0=t ,得1=y .∴函数12141+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=xx y 的值域为()+∞,1.例33. 已知[]3,2-∈x ,求函数()12141+-=x x x f 的最值. 解:()1212112141121412+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+-=xxxxx x x f .设xt ⎪⎭⎫ ⎝⎛=21,∵[]3,2-∈x ,∴⎥⎦⎤⎢⎣⎡∈4,81t .∴4321122+⎪⎭⎫ ⎝⎛-=+-=t t t y∵⎥⎦⎤⎢⎣⎡∈4,81t∴()134,4321max min ===⎪⎭⎫ ⎝⎛=f y f y .例34. 若122+x ≤241-⎪⎭⎫ ⎝⎛x ,则函数x y 2=的值域是_________.解:∵122+x ≤241-⎪⎭⎫ ⎝⎛x ,∴122+x≤()x x 242222---=.∵函数x y 2=在R 上为增函数∴12+x ≤x 24-,解之得:3-≤x ≤1,即[]1,3-∈x .∴函数x y 2=在[]1,3-上的值域为⎥⎦⎤⎢⎣⎡2,81.例35. ()1331+=+x x x f 的值域是【 】(A )()+∞,3 (B )()3,0 (C )()2,0 (D )()+∞,2解法一:()13331331+⋅=+=+x xx x x f 设x t 3=,则()+∞∈,0t ,()()133131313+-+=+-+=+=t t t t t t f . ∵()+∞∈,0t ,∴0133<+-<-t ,∴31330<+-+<t .∴()30<<t f ,即函数()1331+=+x x x f 的值域为()3,0.选择【 B 】.解法二:()xxx xx x x f ⎪⎭⎫ ⎝⎛+=+=+⋅=+=+3113311313331331. ∵031>⎪⎭⎫ ⎝⎛x ,∴1311>⎪⎭⎫ ⎝⎛+x,∴331130<⎪⎭⎫ ⎝⎛+<x,∴()()3,0∈x f .例36. 已知定义在R 上的偶函数()x f 满足:当x ≥0时,()x x a x f 22+=,()251=f . (1)求实数a 的值;(2)用定义法证明()x f 在()+∞,0上是增函数; (3)求函数()x f 在[]2,1-上的值域. 解:(1)∵当x ≥0时,()x x a x f 22+=,()251=f ∴2522=+a ,解之得:1=a ; (2)证明:由(1)可知:()xx x f 212+=. 任取()+∞∈,0,21x x ,且21x x <,则()()()()()212121212122112122221212221221221x x x x x x x x x x x x x x x f x f ++--=⎪⎭⎫ ⎝⎛-+-=⎪⎭⎫ ⎝⎛+-+=-∵()+∞∈,0,21x x ,且21x x < ∴02,012,022212121>>-<-++x x x x x x ∴()()()()2121,0x f x f x f x f <<-. ∴()x f 在()+∞,0上是增函数;(3)∵函数()x f 为偶函数,且在[)+∞,0上为增函数 ∴()x f 在(]0,∞-上为减函数 ∴()()20min ==f x f .∵()252211=+=-f ,()4174142=+=f ,25417> ∴在区间[]2,1-上()()4172max ==f x f .∴函数()x f 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡417,2.利用单调性法求最值的结论(1)如果函数()x f y =在区间[]b a ,上单调递增,在区间[]c b ,上单调递减,那么函数()x f y =在区间[]c a ,上有最大值)()(max b f x f =.如下页图所示;(2)如果函数()x f y =在区间[]b a ,上单调递减,在区间[]c b ,上单调递增,那么函数()x f y =在区间[]c a ,上有最小值)()(min b f x f =.如下图所示.f x ()max = f b ()f x ()min = f b ()第(3)问另解:∵函数()x f 为定义在R 上的偶函数 ∴()x f 在区间[]0,1-和[]1,0上的值域相同 ∴()x f 在[]2,1-上的值域即在[]2,0上的值域. ∵()x f 在[)+∞,0上为增函数 ∴()x f 在[]2,0上为增函数∴()()20min ==f x f ,()()4172max ==f x f . ∴函数()x f 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡417,2.例37. 设函数()axx f -⎪⎭⎫⎝⎛=1021,a 是不为零的常数.(1)若()213=f ,求使()x f ≥4的x 的取值范围; (2)当[]2,1-∈x 时,()x f 的最大值是16,求a 的值.解:(1)∵()axx f -⎪⎭⎫⎝⎛=1021,()213=f ∴2121310=⎪⎭⎫ ⎝⎛-a,∴1310=-a ,解之得:3=a . ∴()()103310122---==x xx f .∵()x f ≥4,∴1032-x ≥22,∴103-x ≥2,解之得:x ≥4. ∴使()x f ≥4的x 的取值范围是[)+∞,4;(2)()()10101102221----==⎪⎭⎫⎝⎛=ax axaxx f .当0>a 时,()x f 在[]2,1-上为增函数∴()()4102max 21622====-a f x f ,∴4102=-a ,解之得:7=a ; 当0<a 时,()x f 在[]2,1-上为减函数∴()()410max 21621===-=--a f x f ,∴410=--a ,解之得:14-=a . 综上所述,7=a 或14-=a .例38. 已知函数()ax a x f -=3(0>a 且1≠a ). (1)当2=a 时,()4<x f ,求x 的取值范围;(2)若()x f 在[]1,0上的最小值大于1,求a 的取值范围. 解:(1)当2=a 时,()x ax a x f 2332--==.∵()4<x f ,∴223242=<-x ,∴223<-x ,解之得:21>x . ∴x 的取值范围是⎪⎭⎫⎝⎛+∞,21;(2)∵0>a 且1≠a∴函数ax y -=3在[]1,0上为减函数. 当1>a 时,()x f 在[]1,0上为减函数∴()()03min 11a a f x f a =>==-,∴03>-a ,解之得:3<a . ∴31<<a ;当10<<a 时,()x f 在[]1,0上为增函数 ∴()()103min >==a f x f ,显然不成立. 综上所述,a 的取值范围是()3,1.例39. 已知函数()1+=-a x a x f 的图象(0>a 且1≠a )过点⎪⎭⎫⎝⎛2,21.(1)求实数a 的值;(2)若函数()121-⎪⎭⎫ ⎝⎛+=x f x g ,求函数()x g 的解析式;(3)在(2)的条件下,若函数()()()12--=x mg x g x F ,求()x F 在[]0,1-∈x 上的最小值()m h .本题知识储备 求形如()xaf y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.解:(1)∵函数()1+=-a x a x f 的图象过点⎪⎭⎫⎝⎛2,21∴2121=+-a a,解之得:21=a . ∴实数a 的值为21; (2)由(1)知:()12121+⎪⎭⎫⎝⎛=-x x f∵()121-⎪⎭⎫ ⎝⎛+=x f x g∴()xx x g ⎪⎭⎫⎝⎛=-+⎪⎭⎫⎝⎛=-+2111212121;(3)∵()()()12--=x mg x g x F∴()xx x x m m x F ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-212212121212. 设xt ⎪⎭⎫⎝⎛=21,∵[]0,1-∈x ,∴[]2,1∈t∴()()2222m m t mt t t F --=-=,[]2,1∈t .①当2>m 时,()t F 在[]2,1∈t 上为减函数∴()()()442222min +-=--==m m m F t F ,∴()44+-=m m h ;②当1≤m ≤2时,()()2min m m F t F -==,∴()2m m h -=; ③当1<m 时,()t F 在[]2,1∈t 上为增函数∴()()()121122+-=--==m m m F t F ,∴()12+-=m m h .综上所述,()⎪⎩⎪⎨⎧<+-≤≤->+-=1,1221,2,442m m m m m m m h .例40. 已知函数()x a x f =,()m a x g x +=2,其中1,0,0≠>>a a m 且.当[]1,1-∈x 时,()x f y =的最大值与最小值之和为25. (1)求a 的值;(2)若1>a ,记函数()()()x mf x g x h 2-=,求当[]1,0∈x 时,()x h 的最小值()m H . 分析:(1)指数函数()x a x f =(10≠>a a 且)在其定义域内为单调函数,所以指数函数在给定闭区间上的最值在区间的端点处取得,故本问不用进行分类讨论. 解:(1)∵函数()x a x f =(10≠>a a 且)在[]1,1-上为单调函数 ∴由题意可知:()()2511=-+f f . ∴251=+a a ,解之得:2,2121==a a . ∴a 的值为21或2;(2)∵1>a ,∴2=a ,∴()()m x g x f x x +==22,2. ∵()()()x mf x g x h 2-=∴()()m m m m x h x x x x +⋅-=⋅-+=22222222.设x t 2=,∵[]1,0∈x ,∴∈t []2,1 ∴()()m m m t m mt t t h +--=+-=2222①当2>m 时,()t h 在[]2,1上为减函数 ∴()()432min +-==m h t h ,即()43+-=m m H ;②当1≤m ≤2时,()()m m m h t h +-==2min ,即()m m m H +-=2; ③当1<m 时,()t h 在[]2,1上为增函数 ∴()()11min +-==m h t h ,即()1+-=m m H .综上所述,()⎪⎩⎪⎨⎧<+-≤≤+->+-=1,121,2,432m m m m m m m m H .例41. 已知函数()1242--⋅=x x a x f . (1)当1=a 时,解不等式()0>x f ; (2)当21=a ,∈x []2,0时,求()x f 的值域. 解:(1)当1=a 时,()()122212422--=--⋅=x x x x x f . 设x t 2=,则0>t ,()122--=t t t f .∵()0>x f ,∴0122>--t t ,解之得:1>t 或21-<t .∵0>t∴1>t ,∴0212=>x ,∴0>x . ∴不等式()0>x f 的解集为()+∞,0; (2)当21=a 时,()()1221242--=--=x x x x x f . 设xt 2=,∵∈x []2,0,∴∈t []4,1,()4521122-⎪⎭⎫ ⎝⎛-=--=t t t t f∵()t f 在[]4,1上为增函数∴()()()()114,11max min ==-==f t f f t f .∴函数()t f 的值域为[]11,1-,即函数()x f 在∈x []2,0上的值域为[]11,1-. 例42. 已知函数()x x b a x f +=(其中b a ,为常数,10,10≠>≠>b b a a 且且)的图象经过点()6,1A ,⎪⎭⎫ ⎝⎛-43,1B .(1)求函数()x f 的解析式;(2)若b a >,函数()211+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=xx b a x g ,求函数()x g 在[]2,1-上的值域.解:(1)把()6,1A ,⎪⎭⎫ ⎝⎛-43,1B 分别代入()x x b a x f +=得:⎪⎩⎪⎨⎧=+=+43116b a b a ,解之得:⎩⎨⎧==42b a 或⎩⎨⎧==24b a . ∴函数()x f 的解析式为()x x x f 42+=; (2)若b a >,则2,4==b a∴()22141211+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=xx x x b a x g设xt ⎪⎭⎫ ⎝⎛=21,∵∈x []2,1-,∴∈t ⎥⎦⎤⎢⎣⎡2,41,()4721222+⎪⎭⎫ ⎝⎛-=+-=t t t t g . ∴()4721min =⎪⎭⎫ ⎝⎛=g t g ,()()42max ==g t g .∴()t g 在⎥⎦⎤⎢⎣⎡2,41上的值域为⎥⎦⎤⎢⎣⎡4,47,即函数()x g 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡4,47.说明:方程组⎪⎩⎪⎨⎧=+=+43116b a b a 可以这样求解:∵⎪⎩⎪⎨⎧=+=+43116b a b a ,∴⎩⎨⎧==+86ab b a .∴b a ,是方程0862=+-x x 的两个实数根(方程思想).解之得:4,221==x x ,∴⎩⎨⎧==42b a 或⎩⎨⎧==24b a .例43. 函数221341+⎪⎭⎫ ⎝⎛⨯-⎪⎭⎫ ⎝⎛=xxy ,∈x []2,2-的值域是__________.解:设xt ⎪⎭⎫ ⎝⎛=21,∵∈x []2,2-,∴∈t ⎥⎦⎤⎢⎣⎡4,41,41232322-⎪⎭⎫ ⎝⎛-=+-=t t t y . ∴()64,4123max min ==-=⎪⎭⎫⎝⎛=f y f y∴函数41232-⎪⎭⎫ ⎝⎛-=t y 在∈t ⎥⎦⎤⎢⎣⎡4,41上的值域为⎥⎦⎤⎢⎣⎡-6,41.∴函数221341+⎪⎭⎫ ⎝⎛⨯-⎪⎭⎫ ⎝⎛=xx y ,∈x []2,2-的值域是⎥⎦⎤⎢⎣⎡-6,41. 例44. 已知函数()ax xx f ++-=223(∈a R ).(1)若()271=f ,求a 的值; (2)若()x f 有最大值9,求a 的值. 解:(1)∵()271=f∴3213273==++-a ,∴31=+a ,解之得:2=a ; (2)设()()11222++--=++-=a x a x x x g∴()()11max +==a g x g∴()()21max 3933max ====+a x g x f ,∴21=+a ,解之得:1=a .例45. 若函数()m x f x -=-3的最大值为2,则实数m 的值为【 】 (A )1- (B )2- (C )3- (D )4- 解:设()x x g -=3,则()x g <0≤130=,即函数()x g 的最大值为1. ∵函数()m x f x -=-3的最大值为2 ∴()2max =-m x g ,∴21=-m 解之得:1-=m .选择【 A 】.例46. 例45的第三种解法 以下几例为求()x a f y =型函数的值域()1331+=+x x x f 的值域是【 】(A )()+∞,3 (B )()3,0 (C )()2,0 (D )()+∞,2 解:设x t 3=,则0>t ,()13+==t t t f y . ∴03>-=yyt ,解之得:30<<y .选择【 B 】.例47. 函数x y --=328(x ≥0)的值域为__________.不等分析法和单调性法解:∵x ≥0,∴x -≤0,∴x -3≤3 ∴x -<320≤823=,∴8-≤023<--x .∴0≤8283<--x ,0≤8<y ,即函数x y --=328(x ≥0)的值域为[)8,0.注意: 不要漏掉023>-x这一范围.例48. 函数x y 416-=的值域是__________.解:由题意可知:x 40<≤16,∴16-≤04<-x ,∴0≤16416<-x . ∴0≤4416<-x ,0≤4<y . ∴函数x y 416-=的值域是[)4,0. 例49. 函数()xxx f 242-=的定义域是__________,值域是__________. 解:由题意可知:0242>-xx,∴024>-x ,解之得:2<x . ∴函数()x f 的定义域是()2,∞-.设x t 2=,则40<<t (2<x ),()tt t t g -+-=-=4414. ∵40<<t ,∴04<-<-t ,∴440<-<t ,∴144>-t(可结合图象)∴0441>-+-t ,()0>t g ,∴()0>x f∴函数()x f 的值域为()+∞,0. 例50. 函数xx y +-=112的值域为__________.解:()xxx xx y ++-+++-+-===12112111222∵012≠+x ,∴1121-≠++-x ,∴21221121=≠-++-x ,即21≠y . ∵0>y ,∴该函数的值域为⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛,2121,0 .例51. 函数()xx xx x f --+-=10101010的值域是【 】(A )(][)+∞-∞-,11, (B )()()+∞-∞-,11, (C )[]1,1- (D )()1,1-解:()11021110211011011010110101101010101022222+-=+-+=+-=+-=+-=--x x x x x xx x x x x xxx f . ∵0102>x ,∴11102>+x ,∴2110202<+<x ,∴0110222<+-<-x∴11102112<+-<-x ,即()11<<-x f .∴函数()xx xx x f --+-=10101010的值域是()1,1-.选择【 D 】. 解法二:()11011010110101101010101022+-=+-=+-=--x x xxx x x x x x x f 设t x =210,则0>t ,11+-=t t y∴011>---=y y t ,∴011<-+y y ,解之得:11<<-y . ∴函数()x f 的值域为()1,1-. 例52. 求下列函数的值域:(1)11+-=x x a a y (0>a ,且1≠a );(2)124+-=x x y .解:(1)12112111+-=+-+=+-=xx x x x a a a a a y . ∵0>x a ,∴11>+x a ,∴2120<+<x a ,∴0122<+-<-x a ∴11211<+-<-x a ,即11<<-y . ∴该函数的值域为()1,1-.解法二:设x a t =,则0>t ,11+-=t t y ∴011>---=y y t ,∴011<-+y y ,解之得:11<<-y . ∴该函数的值域为()1,1-. (2)()1221242+-=+-=x x x x y设xt 2=,则0>t ,4321122+⎪⎭⎫ ⎝⎛-=+-=t t t y∵()+∞∈,0t ,∴4321min =⎪⎭⎫ ⎝⎛=f y .∴函数124+-=x x y 的值域为⎪⎭⎫⎢⎣⎡+∞,43.例53. 已知函数()b a x f x +=(10≠>a a 且)的定义域和值域都是[]0,1-,则=+b a _________.解:当10<<a 时,函数()x f 在[]0,1-上为减函数∴()()⎩⎨⎧-==-1001f f ,即⎪⎩⎪⎨⎧-=+=+1101b b a ,解之得:⎪⎩⎪⎨⎧-==221b a .∴=+b a 23-; 当1>a 时,函数()x f 在[]0,1-上为增函数∴()()⎩⎨⎧=-=-0011f f ,即⎪⎩⎪⎨⎧=+-=+0111b b a ,显然方程组无解.综上所述,=+b a 23-. 例54. 函数124--=x y 的值域为【 】 (A )[)+∞,1 (B )()1,1- (C )()+∞-,1 (D )[)1,1-解:由题意可知:x 20<≤4,∴4-≤02<-x ,∴0≤424<-x ∴0≤224<-x ,∴1-≤1124<--x ,即1-≤1<y . ∴函数124--=x y 的值域为[)1,1-,选择【 D 】. 例55. 已知函数()13-=-x x f ,则()x f 的【 】 (A )定义域是()+∞,0,值域是R (B )定义域是R ,值域是()+∞,0 (C )定义域是R ,值域是()+∞-,1 (D )定义域、值域都是R 解:函数()13-=-x x f 的定义域为R . ∵03>-x ,∴13->-x ,即()1->x f∴函数()13-=-x x f 的值域为()+∞-,1.选择【 C 】. 例56. 下列各函数中,值域为()+∞,0的是【 】 (A )22x y -= (B )x y 21-= (C )12++=x x y (D )113+=x y解:(A )函数22x y -=的定义域为R ,值域为()+∞,0,故(A )正确; (B )∵x 20<≤1,∴1-≤02<-x ,∴0≤121<-x ,∴0≤121<-x . ∴函数x y 21-=的值域为[)1,0;(C )∵4321122+⎪⎭⎫ ⎝⎛+=++=x x x y ≥43 ∴函数12++=x x y 的值域为⎪⎭⎫⎢⎣⎡+∞,43;(D )对于函数113+=x y ,因为011≠+x ,所以130=≠y ,且0>y ,故该函数的值域为()()+∞,11,0 .例57. 关于x 的方程0131=--⎪⎭⎫⎝⎛a x有解,则a 的取值范围是__________.解:∵0131=--⎪⎭⎫ ⎝⎛a x,∴131+=⎪⎭⎫ ⎝⎛a x∵x ≥0,∴x⎪⎭⎫ ⎝⎛<310≤1∵方程0131=--⎪⎭⎫⎝⎛a x有解∴10+<a ≤1,解之得:a <-1≤0. ∴a 的取值范围是(]0,1-.例58. 关于x 的方程a a x-+=⎪⎭⎫ ⎝⎛52353有正实数根,则实数a 的取值范围是_________. 分析:该方程有正实数根指的是0>x .解:∵方程a a x-+=⎪⎭⎫ ⎝⎛52353有正实数根 ∴0>x ,∴1535300=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<x,∴15230<-+<a a . 解之得:4332<<-a ,即实数a 的取值范围是⎪⎭⎫⎝⎛-43,32. 例59. 已知方程013329=-+⋅-k x x 有两个实数解,求实数k 的取值范围. 分析:设x t 3=,则0>t ,方程可转化为关于t 的一元二次方程,且方程有两个正实数根.结论 一元二次方程()002≠=++a c bx ax 有两个正实数根的条件是⎪⎪⎪⎩⎪⎪⎪⎨⎧>=⋅>-=+≥∆0002121ac x x a b x x 解:设x t 3=,则0>t ,∵013329=-+⋅-k x x ,∴01322=-+-k t t由题意可知:方程01322=-+-k t t 有两个正实数根∴()()⎪⎩⎪⎨⎧>-=⋅>=+≥---013020134221212k t t t t k ,解之得:k <31≤32.∴实数k 的取值范围是⎥⎦⎤⎝⎛32,31.例60. 已知函数122-+=x x a a y (0>a 且1≠a ),当x ≥0时,求该函数的值域. 解:设x a t =,则0>t ,()211222-+=-+=t t t y .当1>a 时,∵x ≥0,∴t ≥1∵函数()212-+=t y 在[)+∞,1上为增函数∴()21min ==f y ,∴函数的值域为[)+∞,2; 当10<<a 时,∵x ≥0,∴t <0≤1∴()y f <0≤()1f ,∴y <-1≤2,即函数的值域为(]2,1-.综上所述,当1>a 时,函数的值域为[)+∞,2;当10<<a 时,函数的值域为(]2,1-.知识点四 指数函数的单调性及其应用 1 单调性当1>a 时,函数xa y =在R 上为增函数;当10<<a 时,函数xa y =在R 上为减函数.利用这一性质,可以判断复合函数()x f a y =的单调性,判断的依据是:同增异减.如下表:注意 讨论形如()x f ay =的函数的单调性,首先要确定函数()x f 的单调性,然后结合底数a 的范围来确定函数()x f a y =的单调性.确定的依据是:同增异减.2 单调性的应用 (1)应用于比较大小类型一 比较同底数不同指数的幂的大小,利用指数函数的单调性进行比较;类型二 比较不同底数同指数的幂的大小,借助于函数的图象比较大小,或者借助于口诀:在y 轴右侧(即0>x )底大图高(函数值大),在y 轴左侧,底小图高;类型三 比较不同底数不同指数的幂的大小,利用中间量(如0和1)并结合函数的单调性比较大小.(2)应用于解简单不等式 不等式可化为()()x g x f a a<的形式,利用指数函数的单调性,将不等式转化为()()x g x f <(当1>a 时)或()()x g x f >(当10<<a 时),然后进行求解.例61. 求函数x y -=2的单调性.解:设x t -=,则函数t 在(]0,∞-上为增函数,在[)+∞,0上为减函数 ∴函数x y -=2在(]0,∞-上为增函数,在[)+∞,0上为减函数.例62. 求函数xy -⎪⎭⎫⎝⎛=21的单调性.解:设x t -=,则函数t 在(]0,∞-上为增函数,在[)+∞,0上为减函数∴函数xy -⎪⎭⎫⎝⎛=21在(]0,∞-上为减函数,在[)+∞,0上为增函数.例63. 函数xx y 2221+-⎪⎭⎫⎝⎛=的单调递增区间是【 】(A )[)+∞-,1 (B )(]1,-∞- (C )[)+∞,1 (D )(]1,∞-解:设()11222+--=+-=x x x t ,则函数t 在(]1,∞-上为增函数,在[)+∞,1上为减函数∵指数函数ty ⎪⎭⎫⎝⎛=21在R 上为减函数∴函数xx y 2221+-⎪⎭⎫⎝⎛=的单调递增区间为[)+∞,1.选择【 C 】.例64. 求函数()2222++-=x xx f 的单调区间.解:设()312222+--=++-=x x x t ,则()t y x f 2==.∵函数t 在(]1,∞-上为增函数,在[)+∞,1上为减函数,函数t y 2=在R 上为增函数 ∴函数()x f 的单调递增区间为(]1,∞-,单调递减区间为[)+∞,1. 例65. 求函数32212+-=+x x y 的单调区间. 解:()3222322212+⋅-=+-=+x x x x y设x t 2=,则0>t ,且函数x t 2=在R 上为增函数 ∴()213222+-=+-=t t t y∴函数()212+-=t y 在∈t (]1,0上为减函数,此时(]0,∞-∈x ;在[)+∞∈,1t 上为增函数,此时[)+∞∈,0x .∴函数32212+-=+x x y 的单调递增区间为[)+∞,0,单调递减区间为(]0,∞-.例66. 求函数1121+-⎪⎭⎫⎝⎛=x x y 的单调区间.解:设12112111+-=+-+=+-=x x x x x t ,()()+∞--∞-∈,11, x ,则ty ⎪⎭⎫⎝⎛=21,且1≠t .∵函数121+-=x t 在()1,-∞-和()+∞-,1上均为增函数 函数ty ⎪⎭⎫⎝⎛=21在()()+∞∞-∈,11, t 上为减函数∴函数1121+-⎪⎭⎫⎝⎛=x x y 的单调递减区间为()1,-∞-和()+∞-,1,无单调递增区间.1例67. 函数()()32212---=x x x f 的单调增区间为__________.解:∵221<<,∴1120<-< ∴函数()()32212---=x x x f 的单调增区间即函数322--=x x t 的单调减区间.∵()413222--=--=x x x t∴函数t 的单调减区间为(]1,∞- ∴函数()()32212---=x x x f 的单调增区间为(]1,∞-.例68. 若函数axxy +-=22在()1,∞-内单调递增,则a 的取值范围是__________.解:设42222a a x ax x t +⎪⎭⎫ ⎝⎛--=+-=∵函数axxy +-=22在()1,∞-内单调递增∴函数4222a a x t +⎪⎭⎫ ⎝⎛--=在()1,∞-内单调递增∴2a≥1,解之得:a ≥2,即a 的取值范围是[)+∞,2. 例69. 若函数12-=x y 在(]m ,∞-上单调递减,则m 的取值范围是__________. 解法一:设x t 2=,则0>t ,1-=t y . ∵函数1-=t y 在(]1,0∈t 上为减函数 ∴x 20<≤021=,解之得:x ≤0.∴函数12-=x y 在(]0,∞-∈x 上为减函数. ∵函数12-=x y 在(]m ,∞-上单调递减 ∴m ≤0,即m 的取值范围是(]0,∞-. 解法二:函数12-=x y 的图象大致如图所示. 由图象可知:函数12-=x y 的单调递减区间 为(]0,∞-,所以(]0,∞-∈m .。
指数函数的定义域指数函数是数学中常见的一类函数,它与指数和对数的概念密切相关,广泛应用于各个领域。
在研究指数函数之前,我们首先要讨论的是指数函数的定义域。
指数函数的定义域指的是函数可以取值的实数范围。
为了确定一个函数的定义域,我们需要先了解指数函数的基本特点。
指数函数的一般形式为 f(x) = a^x,其中 a 是底数,x 是指数。
底数 a 可以是任意正实数,除了 1,而指数 x 可以是任意实数。
首先,让我们考虑当底数 a 大于 1 时的情况。
在这种情况下,随着指数 x 的增加,函数的值将不断增长。
由于指数函数的特殊性,它的值可以取到任意大的正实数,因此该函数的定义域为整个实数集。
例如,当底数 a=2 时,指数函数 f(x) = 2^x 的定义域是 (-∞, +∞)。
无论 x 是正数、负数还是零,都可以找到一个对应的实数值来满足该函数。
然而,当底数 a 小于 1 时,情况有所不同。
在这种情况下,随着指数 x 的增加,函数的值将不断减小。
当指数 x 趋向于无穷大时,函数的值趋近于零。
因此,当底数 a 小于 1 时,指数函数的值范围是(0, +∞)。
例如,当底数 a=1/3 时,指数函数 f(x) = (1/3)^x 的定义域是 (0, +∞)。
无论 x 是正数、负数还是零,都可以找到一个对应的实数值来满足该函数。
需要特别注意的是,当底数 a=1 时,指数函数 f(x) = 1^x 的定义域是 {0}。
这是因为任何数的 0 次方都等于 1,而指数函数的定义域必须要遵循函数的性质,即每个 x 值只能对应一个唯一的 y 值。
另外,当底数 a 小于 0 时,指数函数没有定义。
这是因为这种情况下,指数函数会出现无意义的数学操作,如对负数进行非整数次方运算。
综上所述,指数函数的定义域取决于底数 a 的取值。
当底数 a 大于1 时,其定义域为整个实数集。
当底数 a 小于 1 时,其定义域为 (0, +∞)。
当底数 a=1 时,其定义域为 {0}。
指数函数单调区间指数函数单调区间指数函数是一类常见的函数,其形式为f(x) = a^x,其中a为一个正实数且不等于1。
在指数函数中,a被称为底数,x被称为指数。
指数函数在数学、物理、化学等领域都有广泛的应用。
本文将介绍指数函数的单调性及其单调区间。
一、定义与基本性质1. 定义指数函数是以常数e为底的幂函数,即f(x) = e^x。
2. 基本性质(1)定义域:实数集R。
(2)值域:(0,+∞)。
(3)单调性:当x1<x2时,e^x1<e^x2,即指数函数在整个定义域上是严格增加的。
(4)连续性:e^x在整个定义域上连续。
二、单调性指数函数在整个定义域上是严格增加的。
这意味着对于任意两个实数x1和x2,如果满足x1<x2,则有e^x1<e^x2。
这一特点可以通过求导来证明。
三、单调区间根据上述结论,我们可以得到指数函数的单调区间。
由于其在整个定义域上都是严格增加的,因此不存在下降的区间。
因此,指数函数的单调区间为整个定义域,即(-∞,+∞)。
四、例题解析下面通过一道例题来进一步理解指数函数的单调性及其单调区间。
例题:求指数函数y=2^x的单调区间。
解析:根据指数函数的定义和基本性质,我们可以知道2^x在整个定义域上是严格增加的。
因此,其单调区间为整个定义域,即(-∞,+∞)。
五、总结本文介绍了指数函数的定义、基本性质、单调性及其单调区间。
通过对指数函数的学习,我们可以更好地理解和应用这一类常见的函数。
指数函数考点总结指数函数定义:函数)1,0(≠>=a a a y x且称指数函数,函数的定义域为R ;函数的值域为),0(+∞;(2)函数图像及性质:①指数函数的图象都经过点(0,1),且图象都在第一、二象限; ②当10<<a 时函数为减函数,当1>a 时函数为增函数。
③指数函数都以x 轴为渐近线(当10<<a 时,图象向左无限接近x 轴,当1>a 时,图象向右无限接近x 轴);④对于相同的)1,0(≠>a a a 且,函数xxa y a y -==与的图象关于y 轴对称。
⑤函数值的变化特征:()()()10110010y x a y x y x >>⎧⎪>==⎨⎪<<<⎩时 ()()()010011010y x a y x y x <<>⎧⎪<<==⎨⎪><⎩时一指数函数定义1.某种细菌在培养过程中,每20分钟分裂一次(一次分裂为2个),经过3小时,这种细菌由1个繁殖成( ) 个2.已知以x 为自变量的函数,其中属于指数函数的是( )A.y =(a+1)x(其中a>-1,且a ≠0) B.y =(-3)xC.y =-(-3)xD.y =3x+12(33)x y a a a =-+是指数函数,则a 的值为 .3.已知a <41,则化简42)14(-a 的结果是定点问题1..指数函数()f x 的图象过点(2,9),则(2)f -=2.函数5()26x f x -=+恒过定点求奇偶性1.当a>1时,证明函数 是奇函数。
2.函数y =xx aa 2211-+(a>0,且a ≠1)( ) f(x) 奇偶性 3.设f(x)=244+x x,若0<a<1,f(x)奇偶性4.F(x)=(1+122-x )f(x)(x ≠0)是偶函数,且f(x)不恒等于零,则f(x)奇偶性 5.判断函数xx xx 10101010)x (f +-=--的奇偶性6.试求:f(a)+f(1-a)的值,进一步求f(10011)+f(10012)+f(10013)+……+f(10011000)的值. (1)f(x)=x x 2)21(2+;判断函数的奇偶性:f(x)=xx 2)21(2+是偶函数.(2)f(x)=11+x a -21 (a>0,且a ≠1). 判断函数的奇偶性:f(x)=11+x a -21是奇函数. 7.对于解析式比较复杂的函数通常将其化简(在确定了其定义域的情况下),然后再判定函11)(-+=xx a a x f数的奇偶性.8.判断函数的奇偶性的问题,通常是根据函数奇偶性定义,也可将问题转化为证明下述结论:若f(-x)+f(x)=0,则f(x)为奇函数;若f(-x)+f(x)=2f(x),则f(x)为偶函数奇偶性解析式1.已知函数)(x f y =是奇函数,则当0≥x 时,13)(-=x x f ,求当0x <时()y f x =的解析式。
求指数型函数值域的常用方法求指数型函数的值域是一个难点,下面举例说明常见的四种类型及其相应的求法,供同学们在学习中参考.一、观察法例1 求下列函数的值域:412)1(-=x y ;1213)2(+-=x x y . 【解析】(1)观察可知041≠-x ,所以122041=≠=-x y , 又0>y ,所以0>y 且1≠y .即原函数的值域为:{}10≠>y y y 且. (2)因为21)12(23211223)12(21121≠+-=+-+=+-x x x x x , 所以33321121=≠=+-x x y .又0>y ,所以0>y 且3≠y . 所以,原函数的值域为: {}30≠>y y y 且. 点评:一般的,型如d cx b ax my ++=函数的值域,可用观察法来求.观察时要注意考虑两个方面:①函数d cx b ax t ++=的值域ca t ≠;②对函数t m y =有0>y . 二、逆求法例2 求下列函数的值域:1212)1(+-=x x y ;xx xx y --+-=10101010)2(. 【解析】(1)原函数可变为:122-=+⋅x x y y ,即:yy x +---=112.因为02>x ,即: 011>+---y y ,亦即: 011<-+y y ,所以,11<<-y . 所以原函数的值域为: {}11<<-y y . (2)原函数即11011022+-=x x y ,所以y y x +---=1110. 因为010>x ,所以11<<-y .所以原函数的值域为: {}11<<-y y . 点评:一般的,型如na m a y x x +-=函数的值域,都可用逆求法获解. 三、单调性法例3 求下列函数的值域x x y 22)21()1(+=;)1(3)2(<=-x y x . 【解析】(1)因为11)1(222-≥-+=+x x x . 又函数t y )21(=在R 上是减函数,所以2)21()21(122=≤=-+x x y . 又0>y ,所以20≤<y .所以原函数的值域为: {}20≤<y y .(2)因为1<x ,所以0≤-x ,又t y 3=在R 上是增函数,所以1330=≤=-x y . 又0>y ,所以10≤<y .所以原函数的值域为: {}10≤<y y .点评:一般的,型如)(x f ay =函数的值域,可用单调性求解.四、换元法例4 求下列函数的值域)20(524)2(;)31(29)1(121≤≤+-=⋅+=+--x y y x x x x . 【解析】(1)令x t )31(=,则0>t ,原函数变为:)0(22>+=t t t y . 由二次函数的图象,易知,0>y .所以,原函数的值域为: {}0>y y(2)令x t 2=,由20≤≤x 有41≤≤t ,原函数变为: )41(52212≤≤+-=t t t y . 由二次函数的图象知,当2=t 时,3min =y ,当4=t 时,5max =y. 所以,原函数的值域为: {}53≤≤y y .。
求指数函数的解析式指数函数是一类常见的数学函数,可以用一个解析式来表示。
指数函数的解析式通常采用以下形式:f(x)=a^x其中,a是常数且大于0且不等于1,x是变量,f(x)表示函数的值。
指数函数的性质和图像指数函数具有以下性质:1.定义域:指数函数的定义域是所有实数。
2.值域:指数函数的值域是所有大于0的实数。
3.单调性:当a>1时,指数函数是递增函数;当0<a<1时,指数函数是递减函数。
4.零点:指数函数没有零点,因为它的值域是所有大于0的实数。
5.渐近线:指数函数的图像在y=0这条直线上没有渐近线。
指数函数的图像也具有一些特点:1.当a>1时,随着x的增大,函数值f(x)不断增大;当0<a<1时,随着x的增大,函数值f(x)不断减小。
2.当x=0时,指数函数的值为13.当x>0时,指数函数是严格正数的,因为a^x大于0。
4.当x<0时,指数函数的值为正数或者分数,具体取决于a的取值。
指数函数的解析式的推导指数函数的解析式可以通过以下推导获得:我们从f(0)=1开始,考虑a的正值情况。
由于指数函数要递增或递减,所以假设a>1,即指数函数是递增函数。
当x是整数时,我们可以使用重复乘法的方式计算a^x。
例如,我们有a^1=a,a^2=a×a,a^3=a×a×a,以此类推。
当x是自然数时,我们可以使用a^1×a^1×a^1×...(共有x个a^1)的形式表达a^x。
对于非整数的x,我们可以使用x=p/q(p,q是整数,且q≠0)这种形式,将a^x表达为a^(p/q),这是因为:(a^(p/q))^q=a^(p/q*q)=a^p所以,根据指数函数的性质,我们可以将a^x表达为a^(p/q)=(a^p)^(1/q)。
根据以上推导,我们可以得到指数函数的解析式:f(x)=a^x这就是指数函数的解析式。