2020年高考数学 考前最后押题
- 格式:doc
- 大小:165.00 KB
- 文档页数:8
目录2020年高考数学(理)终极押题卷(试卷) (2)2020年高考数学(文)终极押题卷(试卷) (8)2020年高考数学(理)终极押题卷(全解全析) (14)2020年高考数学(文)终极押题卷(全解全析) (24)2020年高考数学(理)终极押题卷(试卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z =A .2B CD .12.已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B =|(x ,y )|x ,y 为实数,且x +y =1},则A ∩B 的元素个数为 A .4B .3C .2D .13.已知命题2000:,10p x x x ∃∈-+≥R ;命题:q 若a b <,则11a b>,则下列为真命题的是 A .p q ∧ B .p q ∧⌝ C .p q ⌝∧D .p q ⌝∧⌝4.下图给出的是2000年至2016年我国实际利用外资情况,以下结论正确的是A .2010年以来我国实际利用外资规模逐年增大B .2000年以来我国实际利用外资规模与年份呈负相关C .2010年我国实际利用外资同比增速最大D .2008年我国实际利用外资同比增速最大5.等差数列{}n a 的首项为1,公差不为0,若2a ,3a ,6a 成等比数列,则数列{}n a 的前6项的和6S 为 A .24-B .3-C .3D .86.已知向量(3,2)a =-v,(,1)b x y =-v 且a v ∥b v ,若,x y 均为正数,则32x y+的最小值是A .24B .8C .83D .537.(x +y )(2x −y )5的展开式中x 3y 3的系数为 A .-80 B .-40C .40D .808.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 A .215πB .320π C .2115π-D .3120π-9.已知函数()f x 的图象如图所示,则函数()f x 的解析式可能是A .()()=44xxf x x -+ B .()()244log x x f x x -=-C .()2()44log||x xf x x -=+D .()12()44log x xf x x -=+ 10.已知函数sin()()xx f x a ωϕπ+=(0,0,)a ωϕπ><<∈R ,在[]3,3-的大致图象如图所示,则aω可取A .2πB .πC .2πD .4π11.如图,平面四边形ABCD 中,1AB AD CD ===,BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为A .3πB.2C .4πD.412.若函数22(31)3,0()ln ,0x m x x f x mx x x x ⎧-++≤=⎨+>⎩恰有三个极值点,则m 的取值范围是 A .11,23⎛⎫-- ⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .11,3⎛⎫-- ⎪⎝⎭D .11,2⎛⎫--⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分。
2020届高三数学高考押题试卷数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡...相应位置上...... 1.已知集合{13,}A x x x Z =≤≤∈,B={2,m ,4},若A ∩B={2,3},则实数m= .2.若复数2(1a a +∈+iiR )的实部与虚部互为相反数,则a 的值等于 . 3.两根相距6m 的木杆上系一根水平绳子,并在绳子上随机挂一盏灯,则灯与两端距离都大于2m 的概率为 .4.为了解一大片经济林的生长情况,随机测量其中若干株树木的底部周长(单位:cm),其数据绘制的频率分布直方图如图,则估计该片经济林中底部周长在[98,104)中的树木所占比例为 .5. 根据如图所示的伪代码,可知输出的结果为 .6. 已知数列是}{n a 等比数列,若456,1,a a a +成等差数列,且71a =,则10a = .则获利最大值为 百万元.(cm) 第4题图FEGHDCBAS 4S 2S 3S 113题图8.在△ABC 中,已知BC =4,AC =3,且cos(A -B)=1718,则cosC = . 9.设向量a ,b 满足2a b +=,6a b -=,则a 与b 夹角的最大值为 . 10.若函数(0)y ax a =>的最小值为4,则a 的值为_______.11. 底面半径为2cm 的圆柱形容器里放有四个半径为1cm 的实心铁球,使得四个球两两相切,其中底层两球与容器底面也相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3.12. 已知点12,F F 分别为双曲线22221(0)x y a b a b -=>>的左、右焦点,点P 为该双曲线左支上的任意一点.若221PF PF 的最小值为8a ,则该双曲线离心率e 的取值范围是 .13.如图,线段EF 和GH 把矩形ABCD 分割成四个小矩形,记四个小矩形的面积分别为(=1,2,3,4)i S i .已知AB=1,11S ≥,21S ≥,31S ≥,42S ≥,则BC 的最小值是 .14.若方程log x a a x =(1)a >有两个不相等的实数根,则实数a 的取值范围是 . 二、解答题: 本大题共6小题, 15-17每题14分,18-20每题16分,共计90分.请在答题卡指定的区域内作答..........., 解答时应写出文字说明, 证明过程或演算步骤. 15.设(,1)a x =,(2,1)b =-,(,1)c x m m =--(,x m ∈∈R R ). (1)若a 与b 的夹角为钝角,求x 的取值范围; (2)解关于x 的不等式a c a c +<-.16.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为1DD 的中点. (1)求证:1BD 面EAC ;(2)求四面体1EACB 的体积.17.如图,开发商欲对边长为1km 的正方形ABCD 地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路EF (点E F 、分别在BC CD 、上),根据规划要求ECF ∆的周长为2km . (1)试求EAF ∠的大小;(2)欲使EAF ∆的面积最小,试确定点E F 、的位置.18.如图,线段AB 两端点分别在x 轴,y 轴上滑动,且AB a b =+(a b >).M 为线1D A1B D E1A 1CB C FE DCB A段AB 上一点,且MB a =,MA b =. (1)求点M 的轨迹C 的方程;(2)已知圆O :221x y +=,设P 为轨迹C 上任一点,若存在以点P 为顶点,与圆O 外切且内接于轨迹C 的平行四边形,求证:22111a+=.19.已知数列{}n a 的各项均为整数,其前6项依次构成等比数列,且从第5项起依次构成等差数列.(1)设数列{}n a 的前n 项和为n S ,且44a =,81a =-.①求满足0n S <的n 的最小值;②是否存在正整数m ,使得221m m m m a a a a ++⋅+-=成立?若存在,求出m 的值;若不存在,说明理由.(2)设数列{}n a 的前6项均为正整数,公比为q ,且(1,2)q ∈,求6a 的最小值.20.已知函数2)(x x ae e x f -+=,2)(xx e e x g --=,(,)x a ∈∈R R .⑴当1=a 时,试用)(),(),(),(y g x g y f x f 表示)(y x f +;⑵研究函数)(x f y =的图象发现:取不同的a 值,)(x f y =的图象既可以是中心对称图形,也可以是轴对称图形(对称轴为垂直于x 轴的一条直线),试求其对称中心的坐标和对称轴方程;⑶设函数)(x h 的定义域为R ,若对于任意的实数y x ,,函数)(x h 满足)()()()()()(x yh y xh xy f x yf y xf xy h ++=++,且1)()(≤-x f x h .证明:)()(x f x h =数学附加题部分(考试时间30分钟,试卷满分40分) 21.【选做题】在A ,B ,C ,D 四个小题中只能选做2个小题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4-1:几何证明选讲如图,1O 和2O 外切于点P ,延长1PO 交1O 于点A ,延长2PO 交2O 于点D ,若AC 与2O 相切于点C ,且交1O 于点B. (1)PC 平分BPD ∠;(2)2PC PB PD =⋅.B .选修4-2:矩阵与变换已知矩阵2113A ⎡⎤=⎢⎥-⎣⎦将直线:10l x y +-=变换成直线l '. (1)求直线l '的方程;(2)判断矩阵A 是否可逆?若可逆,求出矩阵A 的逆矩阵1A -;若不可逆,请说明理由.C .选修4-4:坐标系与参数方程在极坐标系中,已知点P 为圆22sin 70ρρθ+-=上任一点.求点P 到直线cos sin 70ρθρθ+-=的距离的最小值与最大值.D .选修4-5:不等式选讲设2()13f x x x =-+,实数a 满足1x a -<,求证:()()2(1)f x f a a -<+.22. 必做题(1)用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?(2)用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花..①求恰有两个区域用红色鲜花的概率;②记花圃中红色鲜花区域的块数为ξ,求ξ的分布列及其数学期望()E ξ.23.必做题已知抛物线x y =2的焦点为F ,点),(00y x M (与原点不重合)在抛物线上. (1)作一条斜率为021y -的直线交抛物线于H G ,两点,连接MH MG ,分别交x 轴于B A ,两点,(直线MH MG ,与x 轴不垂直),求证MB MA =;(2)设D C ,为抛物线上两点,过D C ,作抛物线的两条切线相交于点P ,(D C ,与M 不重合,与M 的连线也不垂直于x 轴),求证:PFC PFD ∠=∠.命题人员:鲍立华 王正军 陆明明图一图二数学试题参考答案 一、填空题1.3 2.0 3. 4. 75% 5.11 6.18 7.14.75 8.169.120 10.1 11.83π+12.(1,3] 13.3+.11e a e << 二、解答题15.(1)由题知:210a b x ⋅=-<,解得12x <;又当2x =-时,a 与b 的夹角为π, 所以当a 与b 的夹角为钝角时, x 的取值范围为1(,2)(2,)2-∞-⋃-.…………………6分(2)由a c a c +<-知,0a c ⋅<,即(1)[(1)]0x x m ---<;……………………8分 当2m <时,解集为{11}x m x -<<;………………………………10分 当2m =时,解集为空集;………………………………12分当2m >时,解集为{11}x x m <<-.………………………………14分 16.(1)连接BD 交AC 于O 点,连接OE . 由题知,O 为BD 中点.∴在1BDD 中,OE 为中位线,∴OE ∥1BD ………………………………4分 又OE ⊆面EAC ,1BD ⊄面EAC∴1BD ∥面EAC .………………………………6分 (2)连接1OB .∵O 为AC 中点,EA=EC ,11B A B C = ∴EO AC ⊥,1B O AC ⊥∴1B OE ∠为二面角1E AC B --的平面角由正方体的棱长为2,得EO =1OB 13EB = ∴22211EO OB EB +=,即12B OE π∠=∴EO ⊥面1AB C ,即EO 为四面体1E AB C -的高………………………………12分∴1113E AB C AB C V EO S -=⋅11232=⨯=………………………………14分17.解:(1)设,BAE DAF αβ∠=∠=,,(01,01)CE x CF y x y ==<≤<≤, 则tan 1,tan 1x y αβ=-=-,由已知得:2x y +=,即2()2x y xy +-=…………………………………4分tan tan 112()2()tan()11tan tan 1(1)(1)[22()]x y x y x y x y x y xy x y x y αβαβαβ+-+--+-++=====----+-++-+0,24ππαβαβ<+<∴+=,即.4EAF π∠=…………………………8分(2)由(1)知,1111sin 244cos cos 4cos cos AEF S AE AF EAF AE AF αβαβ∆=⋅∠=⋅=⋅==2111142cos (sin cos )sin 22cos sin 2cos 21cos cos()4πααααααααα⋅===++++-=1)14πα++.…………………………………………………12分04πα<<,242ππα∴+=,即8πα=时AEF ∆1.22tan8tan,tan 1481tan 8ππππ=∴=-,故此时1BE DF ==所以,当1BE DF ==时,AEF ∆的面积最小.………………………………14分 18.(1)点M 的轨迹C 的方程为22221x y a b+=………………………………6分(2)显然圆O 外切的平行四边形为菱形,连接PO 并延长交椭圆C 于点Q ,过O 作PQ 垂线交椭圆于C ,D ,连接PC 与圆O 切于点H.当PO 斜率不存在时,可得22111a b+=………………………………8分 当PO 斜率存在时设为k ,PO 方程y kx =与22221x y a b +=联立解得222222a b x b a k =+,2222222a b k y b a k =+………………………………10分所以2222222222211b a k OP x y a b a b k +==++同理可求得2222222221a b k OC a b a b k+=+ 所以22221111OP OC a b +=+………………………………14分 又Rt POC ∆的斜边与圆O 切于点H ,故222111OP OC OH+= 所以22111a b +=………………………………16分 19.(1)①设数列{}n a 的前6项等比数列的公比为q ,从第5项起等差数列的公差为d .由544a a q q ==,22644a a q q ==,则244d q q =-; 又285343(44)1a a d q q q =+=+-=-,解得12q =或16q =(舍,因为n a 为整数), 所以12q =,1d =-.故61()(6,*)27(7,*)n n n n N a n n n N -⎧≤∈⎪=⎨⎪-≥∈⎩.……2分所以164[1()](6,*)2(7)(6)63(7,*)2n n n n N S n n n n N ⎧-≤∈⎪⎪=⎨--⎪-≥∈⎪⎩…………4分∵0n S < ∴7n ≥ 由(7)(6)6302n n ---<得17n >所以,满足0n S >的n 的最小值为18.……………………………6分②假设存在正整数m ,使得221m m m m a a a a ++⋅+-=成立, 即2(1)(1)0m m a a +-+= 由1m a =或21m a +=-得6m =所以,存在正整数6m =,使得221m m m m a a a a ++⋅+-=成立.…………………10分 (Ⅱ)设11n n a a q -=,由1a ,…,6a 都是正整数,则q 必为有理数.设sq r =,其中s ,r 都是正整数,且(,)1s r =,22r s r ≤<<,则5615s a a r =.由(,)1s r =,得55(,)1s r =,所以1a 是5r 的整数倍.因此,5556153243s a a s r=≥≥=.……………14分 当2r =,3s =时,即32q =,512a =时,6a 取到最小值243.……16分 20.⑴⎪⎪⎩⎪⎪⎨⎧-=+=--2)(2)(x x xx ee x g e e xf 得⎪⎩⎪⎨⎧-=+=-)()()()(xg x f e x g x f e x x )()()()(2)(y g x g y f x f e e e e y x f yx y x +=+=+--……………………………4分 (2)设)(x f 关于点),(n m 对称,则n x m f x f 2)2()(=-+n ae e ae e m x x m x x 422=+++---0)(4)(22222=++-+m m x m m x e a e e ne a e e 对R x ∈恒成立⎪⎩⎪⎨⎧==+04022m m ne a e 故当0<a 时存在对称点()0),ln(21(a - …………………………7分 同理当0>a 时存在对称轴a x ln 21=……………………………9分 当0=a 时函数不存在对称点或对称轴 ……………………………10分 (3)设)()()(x f x h x G -=,假设存在实数a 使得0)(≠a G因为)()()()()()(x yh y xh xy f x yf y xf xy h ++=++所以)()()(x yG y xG xy G +=)()()(x aG a xG xa G += ……………………………12分 )()()(x aG a xG xa G +=)()(x aG a xG -≥ 1a a G x -≥)()(1a G ax +≤ ……………………………14分即只有当)(1a G ax +≤时,)()()(x aG a xG xa G +=)()(x aG a xG -≥不等式才能恒成立与R x ∈矛盾所以不存在实数a 使得G (a )0≠,故)()(x f x h = ……………………………16分附加题部分21.A .选修4-1:几何证明选讲(1)连结2O C ,AC 切2O 于点C ,2AC OC ∴⊥,又AP 是1O 的直径,90ABP AB PB ∴∠=∴⊥,2//PB O C ∴, (2)分2BPC O PC ∴∠=∠,又22O P O C =,22O PC O CP ∴∠=∠, (4)分PC∴平分BPD ∠.………………………………………………………………………5分(2)连结CD ,可得BCP D ∠=∠,…………………………………………………6分又BPC CPD ∠=∠,BPC CPD ∴∆∆,………………………………………………………………… 8分PB PC PC PD∴=, 2PC PB PD ∴=⋅. ……………………………………………………………… 10分B .选修4-2:矩阵与变换(1)在直线l 上任取一点00(,)P x y ,设它在矩阵2113A ⎡⎤=⎢⎥-⎣⎦对应的变换作用下变为(,)Q x y .∵002113x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,………………………………………………………………2分∴000023x x y y x y =+⎧⎨=-+⎩,即003727x y x x y y -⎧=⎪⎪⎨+⎪=⎪⎩,……………………………………………………4分又∵点00(,)P x y 在直线:10l x y +-=, ∴321077x y x y -++-=, 即直线l '的方程为470x y +-=.…………………………………………………………5分(2)21013≠-,∴矩阵A 可逆. ………………………………………………7分设1a b A c d -⎡⎤=⎢⎥⎣⎦,∴11001AA -⎡⎤=⎢⎥⎣⎦, ……………………………………………8分∴21203031a c b d a c b d +=⎧⎪+=⎪⎨-+=⎪⎪-+=⎩,解之得37171727a b c d ⎧=⎪⎪⎪=-⎪⎨⎪=⎪⎪⎪=⎩,∴131771277A -⎡⎤-⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. ……………………10分 C .选修4-4:坐标系与参数方程圆22sin 70ρρθ+-=的普通方程为22270x y y ++-=,……………… 2分直线cos sin 70ρθρθ+-=的普通方程为70x y +-=, (4)分设点,1)P αα-,则点到直线70x y +-=的距离d == (8)分∴min d ==max d ==……………………………………10分 D .选修4-5:不等式选讲2()13f x x x =-+, 22()()-=--+f x f a x x a a ……………………………………………………2分 1=-⋅+-x a x a ……………………………………………………………………4分 1<+-x a ,………………………………………………………………………… 5分 又1()21+-=-+-x a x a a …………………………………………………… 7分 21≤-+-x a a ………………………………………………………………………9分 1212(1)<++=+a a .………………………………………………………………10分22. (1)根据分步计数原理,摆放鲜花的不同方案有:432248⨯⨯⨯=种.…………2分(2)① 设M 表示事件“恰有两个区域用红色鲜花”,如图二,当区域A 、D 同色时,共有54313180⨯⨯⨯⨯=种;当区域A 、D 不同色时,共有54322240⨯⨯⨯⨯=种;因此,所有基本事件总数为:180+240=420种.……………4分它们是等可能的。
2020年全国高考数学临考押题试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知z=a+bi(i为虚数单位,a,b∈R),(1+ai)(2﹣i)=3+bi,则|z|=()A2 B C D12已知集合A={x∈Z|x2﹣2x﹣3≤0},B={x|y=},则A∩B=()A{0,1,2,3} B{1,2,3} C{﹣1,0,1} D{﹣1,0}32020年2月29日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据报表中2015年至2019年三次产业增加值占国内生产总值比重等高图,判断下列说法不正确的是()A2015年至2019年这五年内每年第二产业增加值占国内生产总值比重比较稳定B2015年至2019年每年第一产业产值持续下降C第三产业增加值占国内生产总值比重从2015年至2019年连续五年增加D第三产业增加值占国内生产总值比重在2015年至2019年这五年每年所占比例均超过半数4在等差数列{a n}中,a3=5,S3=12,则a10=()A10 B11 C12 D135已知sin2()=,则sin()=()A B﹣C D﹣6若a=5,b=0.70.2,c=0.30.5,则()A a>b>cB c>b>aC b>a>cD b>c>a7“m<4”是“∀x∈[3,+∞),x2﹣mx+4>0恒成立”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件8过圆O;x2﹣2x+y2﹣15=0内一点M(﹣1,3)作两条相互垂直的弦AB和CD,且AB=CD,则四边形ACBD的面积为()A16 B17 C18 D199将函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象向左平移个单位长度得到函数y=g(x)的图象,函数y=g(x)的周期为π,且函数y=g(x)图象的一条对称轴为直线x=,则函数y=f(x)的单调递增区间为()A,k∈Z B,k∈ZC,k∈Z D,k∈Z10已知P是椭圆=1上第一象限内一点,F1,F2分别是该椭圆的左、右焦点,且满足=0,若点P到直线y+m=0的距离小于,则m的取值范围是()A(﹣∞,7)∪(5,+∞)B(7,5)C(﹣10,0)D(﹣10,5)11在四棱锥P﹣ABCD中,平面PAD⊥底面ABCD,菱形ABCD的两条对角线交于点O,又PA =PD=3,AD=2,则三棱锥P﹣AOD的外接球的体积为()A B C D12已知函数f(x)=lnx﹣x﹣有两个极值点,且x1<x2,则下列选项错误的是()A x1+lnx2>0B x1+x2=1C x2D m二、填空题:本题共4小题,每小题5分,共20分.13已知定义在R上的函数y=f(x)+3是奇函数,且满足f(1)=﹣2,则f(﹣1)=14已知非零向量,满足(+)⊥(﹣),且=,则向量与的夹角为15已知双曲线(a>0,b>0),O为坐标原点,F1,F2分别为双曲线的左、右焦点,过点F2的直线l交双曲线右支于A,B两点,若|OA|=,|BF1|=5a,则双曲线的离心率为16已知数列{a n}满足(a n﹣a n﹣l)•2n2+(5a n﹣1﹣a n)•n﹣a n﹣3a n﹣1=0(n≥2),且a1=,S n 为数列{a n}的前n项和,若S n>,则正整数n的最小值为三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.17(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,且a=b cos C+c (1)求角B(2)若b=3,求△ABC面积的最大值18(12分)如图,在直四棱柱ABCD﹣A1B1C1D1中,四边形ABCD是直角梯形,AB∥CD,AB⊥AD,CD=5AB=5,AD=2(1)求证:BC⊥平面BDD1(2)若二面角A﹣BC﹣D1的平面角的正切值为,求四棱锥D1﹣ABCD的体积19(12分)区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式某校为了了解学生对区块链的了解程度,对高三600名文科生进行了区块链相关知识的测试(百分制),如表是该600名文科生测试成绩在各分数段上的人数分数[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)人数25 125 150 175 75 50 (1)根据表判断某文科生72分的成绩是否达到该校高三年级文科生的平均水平(同一组中的数据用该组区间的中点值为代表)(2)为了让学生重视区块链知识,该校高三年级也组织了800名理科学生进行测试,若学生取得80分及以上的成绩会被认为“对区块链知识有较好掌握”,且理科生中有75人取得了80分及以上的成绩,试完成下列2×2列联表,并判断是否有99.9%的把握认为“对区块链知识有较好掌握与学生分科情况有关”(3)用分层抽样的方式在“对区块链知识有较好掌握”的学生中抽取8人,再在8人中随机抽取2人,求2人中至少有1人学理科的概率文科理科总计较好掌握非较好掌握总计参考公式:,其中n=a+b+c+dP(K2≥k0)0.050 0.010 0.001 k0 3.841 6.635 10.82820(12分)已知抛物线C:y2=2px(p>0),P为C上任意一点,F为抛物线C的焦点,|PF|的最小值为1(1)求抛物线C的方程(2)过抛物线C的焦点F的直线l与抛物线C交于A,B两点,线段AB的垂直平分线与x轴交于点D,求证:为定值21(12分)已知函数f(x)=x﹣sin x(1)求曲线y=f(x)在点(π,f(π))处的切线方程(2)证明:当x∈(0,π)时,6f(x)<x3选考题:共10分,请考生在第22.23题中任选一题作答.如果多做,那么按所做的第一题计分.[选修4-4:坐标系与参数方程]22(10分)在平面直角坐标系xOy中,曲线C的参数方程为(φ为参数)直线l的参数方程为(t为参数)(1)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系求曲线C的极坐标方程,并求曲线C上的点到原点的最大距离(2)已知直线l与曲线C交于A,B两点,若|OA|+|OB|=2,O为坐标原点,求直线l的普通方程[选修4-5:不等式选讲]23已知函数f(x)=|x+2|+|x﹣a|(1)当a=3时,求f(x)≥6的解集(2)若f(x)≥2a恒成立,求实数a的取值范围参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知z=a+bi(i为虚数单位,a,b∈R),(1+ai)(2﹣i)=3+bi,则|z|=()A2 B C D1【分析】利用复数的运算法则、复数相等可得a,b,再利用模的计算公式即可得出【解答】解:(1+ai)(2﹣i)=3+bi,化为:2+a+(2a﹣1)i=3+bi,∴2+a=3,2a﹣1=b,解得a=1,b=1∴z=1+i,则|z|==,故选:C【点评】本题考查了复数的运算法则、复数相等、模的计算公式,考查了推理能力与计算能力,属于基础题2已知集合A={x∈Z|x2﹣2x﹣3≤0},B={x|y=},则A∩B=()A{0,1,2,3} B{1,2,3} C{﹣1,0,1} D{﹣1,0}【分析】求出集合A,B,再由交集的定义求出A∩B【解答】解:∵集合A={x∈Z|x2﹣2x﹣3≤0}={x∈Z|﹣1≤x≤3}={﹣1,0,1,2,3},B={x|y=}={x|x≤0},∴A∩B={﹣1,0}故选:D【点评】本题考查交集的求法,交集定义等基础知识,考查运算能力,是基础题32020年2月29日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据报表中2015年至2019年三次产业增加值占国内生产总值比重等高图,判断下列说法不正确的是()A2015年至2019年这五年内每年第二产业增加值占国内生产总值比重比较稳定B2015年至2019年每年第一产业产值持续下降C第三产业增加值占国内生产总值比重从2015年至2019年连续五年增加D第三产业增加值占国内生产总值比重在2015年至2019年这五年每年所占比例均超过半数【分析】根据题中给出的图形中的数据,对四个选项逐一分析判断即可【解答】解:由题意,2015年至2019年这五年内每年第二产业增加值占国内生产总值比重都在39%~40.8%,故选项A正确;2015年至2019年每年第一产业增加值占国内生产总值比重先下降后上升,但无法据此判断第一产业产值是否在下降,故选项B错误;第三产业增加值占国内生产总值比重从2015年至2019年连续五年增加,第三产业增加值占国内生产总值比重在2015年至2019年这五年每年所占比例均超过半数,故选项C,D正确故选:B【点评】本题考查了条形图的应用,读懂统计图并能从统计图得到必要的信息是解决问题的关键,属于基础题4在等差数列{a n}中,a3=5,S3=12,则a10=()A10 B11 C12 D13【分析】根据等差数列的通项公式和前n项和公式列方程组求出首项a1和公差d,即可求出a10的值【解答】解:等差数列{a n}中,a3=5,S3=12,所以,解得a1=3,d=1,所以a n=3+(n﹣1)×1=n+2,a10=10+2=12故选:C【点评】本题考查了等差数列的通项公式和前n项和公式应用问题,是基础题5已知sin2()=,则sin()=()A B﹣C D﹣【分析】利用二倍角公式化简已知等式可得cos(2α﹣)=,进而根据诱导公式即可化简求解【解答】解:因为sin2()==,可得cos(2α﹣)=,所以sin()=sin[+(2α﹣)]=cos(2α﹣)=故选:A【点评】本题主要考查了二倍角公式,诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题6若a=5,b=0.70.2,c=0.30.5,则()A a>b>cB c>b>aC b>a>cD b>c>a【分析】判断a<0,由幂函数y=x0.2的单调性得出0.70.2>0.30.2,由指数函数y=0.3x 的单调性得出0.30.2>0.30.5,判断b>c>0,即可得出结论【解答】解:因为a=5=﹣log35<0,由幂函数y=x0.2在(0,+∞)上是单调增函数,且0.7>0.3,所以0.70.2>0.30.2,又指数函数y=0.3x是定义域R上的单调减函数,且0.2<0.5,所以0.30.2>0.30.5,所以0.70.2>0.30.5>0,即b>c>0所以b>c>a故选:D【点评】本题考查了根据函数的单调性判断函数值大小的应用问题,是基础题7“m<4”是“∀x∈[3,+∞),x2﹣mx+4>0恒成立”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【分析】x2﹣mx+4>0对于∀x∈[3,+∞)恒成立,可得m<x+,求出x+的最小值,可得m的取值范围,再根据充要条件的定义即可判断【解答】解:∵x∈[3,+∞),由x2﹣mx+4>0x>0,得m<x+,∵当x∈[3,+∞)时,x+≥,当x=3时,取得最小值∴m<,∵{m|m<4}⫋{m|m}∴“m<4”是“∀x∈[3,+∞),x2﹣mx+4>0恒成立”的充分不必要条件,故选:A【点评】本题考查了不等式恒成立问题和充要条件的判断,属于基础题8过圆O;x2﹣2x+y2﹣15=0内一点M(﹣1,3)作两条相互垂直的弦AB和CD,且AB=CD,则四边形ACBD的面积为()A16 B17 C18 D19【分析】根据题意画出相应的图形,连接OM,OA,过O作OE⊥AB,OF⊥CD,利用垂径定理得到E、F分别为AB、CD的中点,由AB=CD得到弦心距OE=OF,可得出四边形EMFO 为正方形,由M与O的坐标,利用两点间的距离公式求出OM的长,即为正方形的对角线长,求出正方形的边长OE,由圆的方程找出半径r,得OA的长,在直角三角形AOE中,由OA与OE的长,利用勾股定理求出AE的长,进而求出AB与CD的长,再利用对角线互相垂直的四边形面积等于两对角线乘积的一半,即可求出四边形ACBD的面积【解答】解:由x2﹣2x+y2﹣15=0,得(x﹣1)2+y2=16,则圆心坐标为O(1,0),根据题意画出相应的图形,连接OM,OA,过O作OE⊥AB,OF⊥CD,∴E为AB的中点,F为CD的中点,又AB⊥CD,AB=CD,∴四边形EMFO为正方形,又M(﹣1,3),∴|OM|=,∴|OE|=×=,又|OA|=4,∴根据勾股定理得:|AE|=,∴|AB|=|CD|=2|AE|=,则S四边形ACBD=|AB|•|CD|=19故选:D【点评】本题考查了直线与圆相交的性质,涉及的知识有:垂径定理,勾股定理,正方形的判定与性质,两点间的距离公式,以及对角线互相垂直的四边形面积求法,当直线与圆相交时,常常由垂径定理根据垂直得中点,然后由弦心距,弦长的一半及圆的半径构造直角三角形,利用勾股定理来解决问题,是中档题9将函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象向左平移个单位长度得到函数y=g(x)的图象,函数y=g(x)的周期为π,且函数y=g(x)图象的一条对称轴为直线x=,则函数y=f(x)的单调递增区间为()A,k∈Z B,k∈ZC,k∈Z D,k∈Z【分析】首先利用关系式的平移变换和伸缩变换的应用,求出函数的关系式,进一步利用正弦函数的性质的应用求出结果【解答】解:将函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象向左平移个单位长度得到函数g(x)=sin(ωx+ω+φ)的图象,因为函数y=g(x)的周期为π=,可得ω=2,所以g(x)=sin(2x++φ),因为函数y=g(x)图象的一条对称轴为直线x=,且g(x)是由f(x)的图像向左平移个单位长度得到,所以f(x)的一条对称轴为x=+=,所以2×+φ=kπ+,k∈Z,解得φ=kπ﹣,k∈Z,因为|φ|<,可得φ=,可得f(x)=sin(2x+),令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z,函数y=f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z故选:B【点评】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转化能力,属于中档题10已知P是椭圆=1上第一象限内一点,F1,F2分别是该椭圆的左、右焦点,且满足=0,若点P到直线y+m=0的距离小于,则m的取值范围是()A(﹣∞,7)∪(5,+∞)B(7,5)C(﹣10,0)D(﹣10,5)【分析】设出点P的坐标,根据椭圆方程求出左右焦点的坐标,然后利用点P在椭圆上以及点P满足的向量关系联立求出点P的坐标,然后利用点到直线的距离公式建立不等关系,进而可以求解【解答】解:设点P的坐标为(x0,y0),则x0>0,y0>0,由椭圆的方程可得:a2=30,b2=5,则c=,所以F1(﹣5,0),F2(5,0),则=(﹣5﹣x0,﹣y0)•(5﹣x0,﹣y0)=x…①又…②,联立①②解得:x(负值舍去),所以点P的坐标为(2,1),则点P到直线AB的距离为d==,解得﹣10,即实数m的取值范围为(﹣10,0),故选:C【点评】本题考查了椭圆的性质以及向量的坐标运算性质,考查了学生的运算能力,属于中档题11在四棱锥P﹣ABCD中,平面PAD⊥底面ABCD,菱形ABCD的两条对角线交于点O,又PA =PD=3,AD=2,则三棱锥P﹣AOD的外接球的体积为()A B C D【分析】取AD中点M,连接PM,ON,MN,求解三角形证明OM=MA=MD=MP,说明三棱锥P﹣AOD的外接球的球心O,在PM上,求出外接球的半径,然后求解外接球的体积【解答】解:如图,取AD中点M,连接PM,∵平面PAD⊥底面ABCD,菱形ABCD的两条对角线交于点O,又PA=PD=3,AD=2,所以M为底面△AOD的外心,PM⊥平面AOD,所以三棱锥P﹣AOD的外接球的球心在PM上,球心为O,设球的半径为R,PM==2,所以R2=(2R)2+12,解得R=,∴PD⊥AD,PD⊥ON,三棱锥P﹣AOD的外接球的体积:=故选:D【点评】本题考查三棱锥的外接球的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题12已知函数f(x)=lnx﹣x﹣有两个极值点,且x1<x2,则下列选项错误的是()A x1+lnx2>0B x1+x2=1C x2D m【分析】利用极值点的定义,结合题意得到方程f'(x)=0有两个正解,从而求解得出正确结论【解答】解:∵函数的定义域为:x∈(0,+∞),∴函数有两个极值点,即得f'(x)=0有两个正解,∵f'(x)=∴方程x2﹣x﹣m=0有两个正解x1,x2,故有x1+x2=1,即得B正确;根据题意,可得△=1+4m>0⇒m>,且有x1•x2=﹣m>0⇒m<0所以可得<m<0,故D正确;又因为根据二次函数的性质可知,函数y=x2﹣x﹣m的对称轴为x=,由上可得0<x1<,<x2<1,故C正确;∴﹣ln2<lnx2<0,∴x1+lnx2∈(﹣ln2,),故A错误故选:A【点评】本题考查函数极值点的定义,以及函数零点与方程的根的关系属于基础题二、填空题:本题共4小题,每小题5分,共20分.13已知定义在R上的函数y=f(x)+3是奇函数,且满足f(1)=﹣2,则f(﹣1)=﹣4【分析】根据y=f(x)+3是R上的奇函数,并且f(1)=﹣2即可得出f(﹣1)+3=﹣(﹣2+3),然后解出f(﹣1)即可【解答】解:∵y=f(x)+3是R上的奇函数,且f(1)=﹣2,∴f(﹣1)+3=﹣[f(1)+3],即f(﹣1)+3=﹣(﹣2+3),解得f(﹣1)=﹣4 故答案为:﹣4【点评】本题考查了奇函数的定义,考查了计算能力,属于基础题14已知非零向量,满足(+)⊥(﹣),且=,则向量与的夹角为【分析】根据条件可得出,进而可求出的值,从而可得出与的夹角【解答】解:∵,∴,∴,且,∴,且,∴故答案为:【点评】本题考查了向量垂直的充要条件,向量数量积的运算,向量夹角的余弦公式,考查了计算能力,属于基础题15已知双曲线(a>0,b>0),O为坐标原点,F1,F2分别为双曲线的左、右焦点,过点F2的直线l交双曲线右支于A,B两点,若|OA|=,|BF1|=5a,则双曲线的离心率为【分析】由|OA|=c,得到AF1⊥AB,运用双曲线的定义和直角三角形的勾股定理,可得a,c的关系,进而得到离心率【解答】解:设双曲线的半焦距为c,由|OA|==c=|OF1|+|OF2|,可得AF1⊥AB,由|BF1|=5a,可得|BF2|=5a﹣2a=3a,设|AF1|=m,可得|AF2|=m+2a,|AB|=m+3a,由直角三角形ABF1,可得(m+3a)2+(m+2a)2=(5a)2,化为m2+5ma﹣6a2=0,解得m=a,则|AF1|=3a,|AF2|=a,所以(3a)2+a2=(2c)2,即为c=a,则离心率e==故答案为:【点评】本题考查双曲线的定义和性质,以及勾股定理法运用,考查方程思想和运算能力,属于中档题16已知数列{a n}满足(a n﹣a n﹣l)•2n2+(5a n﹣1﹣a n)•n﹣a n﹣3a n﹣1=0(n≥2),且a1=,S n 为数列{a n}的前n项和,若S n>,则正整数n的最小值为1010【分析】根据已知关系式推出,然后利用累乘法求出a n,再利用裂项相消法求出S n,进而可以求解【解答】解:由已知(a n﹣a n﹣l)•2n2+(5a n﹣1﹣a n)•n﹣a n﹣3a n﹣1=0(n≥2),则(2n2﹣n﹣1)a,即(2n+1)(n﹣1)a n=(2n﹣3)(n﹣1)a n﹣1,所以,则a×==,则S=,因为S,则,解得n,所以n的最小值为1010,故答案为:1010【点评】本题考查了数列的递推式的应用,涉及到利用累乘法求解数列的通项公式以及裂项相消求和的应用,考查了学生的运算能力,属于中档题三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.17(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,且a=b cos C+c (1)求角B(2)若b=3,求△ABC面积的最大值【分析】(1)由已知结合正弦定理及和差角公式进行化简可求cos B,进而可求B;(2)由余弦定理可求bc的范围,然后结合三角形的面积公式可求【解答】解:(1)因为a=b cos C+c,所以sin A=sin B cos C+sin C=sin(B+C)=sin B cos C+sin C cos B,即sin C=sin C cos B,因为sin C>0,所以cos B=,由B∈(0,π)得B=;(2)由余弦定理得b2=9=a2+c2﹣ac≥ac,当且仅当a=c时取等号,故ac≤9,△ABC面积S==故面积的最大值【点评】本题主要考查了余弦定理,正弦定理,和差角公式在三角化简求值中的应用,还考查了三角形的面积公式的应用,属于中档题18(12分)如图,在直四棱柱ABCD﹣A1B1C1D1中,四边形ABCD是直角梯形,AB∥CD,AB⊥AD,CD=5AB=5,AD=2(1)求证:BC⊥平面BDD1(2)若二面角A﹣BC﹣D1的平面角的正切值为,求四棱锥D1﹣ABCD的体积【分析】(1)由已知可得D1D⊥平面ABCD,则D1D⊥BC,再证明BC⊥BD,由直线与平面垂直的判定可得BC⊥平面BDD1;(2)由(1)可知,∠D1BD为二面角A﹣BC﹣D1的平面角,求得DD1=5,再由棱锥体积公式求四棱锥D1﹣ABCD的体积【解答】(1)证明:已知直四棱柱ABCD﹣A1B1C1D1,则D1D⊥平面ABCD,∵BC⊂平面ABCD,∴D1D⊥BC,在直角梯形ABCD中,过B作BE⊥CD,则BE=AD=2,CE=DC﹣DE=DC﹣AB=4,∴BC=,BD2=AD2+AB2=5,∴BC2+BD2=CD2,即BC⊥BD,∵BD∩DD1=D,∴BC⊥平面BDD1;(2)解:由(1)可知,∠D1BD为二面角A﹣BC﹣D1的平面角,且tan∠D1BD=,则DD1=5∴四棱锥D1﹣ABCD的体积V=【点评】本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题19(12分)区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式某校为了了解学生对区块链的了解程度,对高三600名文科生进行了区块链相关知识的测试(百分制),如表是该600名文科生测试成绩在各分数段上的人数分数[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)人数25 125 150 175 75 50 (1)根据表判断某文科生72分的成绩是否达到该校高三年级文科生的平均水平(同一组中的数据用该组区间的中点值为代表)(2)为了让学生重视区块链知识,该校高三年级也组织了800名理科学生进行测试,若学生取得80分及以上的成绩会被认为“对区块链知识有较好掌握”,且理科生中有75人取得了80分及以上的成绩,试完成下列2×2列联表,并判断是否有99.9%的把握认为“对区块链知识有较好掌握与学生分科情况有关”(3)用分层抽样的方式在“对区块链知识有较好掌握”的学生中抽取8人,再在8人中随机抽取2人,求2人中至少有1人学理科的概率文科理科总计较好掌握非较好掌握总计参考公式:,其中n=a+b+c+dP(K2≥k0)0.050 0.010 0.001 k0 3.841 6.635 10.828【分析】(1)求出平均值,由72与平均值比较大小得结论;(2)由题意填写2×2列联表,再求出K2的观测值k,与临界值表比较得结论;(3)利用分层抽样求出8人中文理科所占人数,再由古典概型概率计算公式求解【解答】解:(1)由表可得高三600名文科生的成绩的平均值为:=70,∴某文科生72分的成绩达到该校高三年级文科生的平均水平;(2)2×2列联表:文科理科总计较好掌握125 75 200非较好掌握475 725 1200 总计600 800 1400 K2的观测值k=≈36.762>10.828,故有99.9%的把握认为“对区块链知识有较好掌握与学生分科情况有关”;(3)由分层抽样方法从200名学生中抽取8名,文科所占人数为人,则理科有3人在8人中随机抽取2人,2人中至少有1人学理科的概率为P==【点评】本题考查频率分布表,考查独立性检验,训练了古典概型概率的求法,是中档题20(12分)已知抛物线C:y2=2px(p>0),P为C上任意一点,F为抛物线C的焦点,|PF|的最小值为1(1)求抛物线C的方程(2)过抛物线C的焦点F的直线l与抛物线C交于A,B两点,线段AB的垂直平分线与x轴交于点D,求证:为定值【分析】(1)由抛物线的定义和范围,可得|PF|的最小值为,可得所求抛物线的方程;(2)设直线l的方程为x=my+1,与抛物线的方程联立,运用韦达定理和弦长公式,以及中点坐标公式和两直线垂直的条件,求得|DF|,即可得到定值【解答】解:(1)抛物线C:y2=2px(p>0),焦点F(,0),准线方程为x=﹣,设P(x0,y0),x0≥0,可得x0+的最小值为=1,即p=2,所以抛物线的方程为y2=4x;(2)证明:设直线l的方程为x=my+1,与抛物线的方程y2=4x联立,可得y2﹣4my﹣4=0,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=﹣4,所以AB的中点坐标为(1+2m2,2m),AB的垂直平分线方程为y﹣2m=﹣m(x﹣1﹣2m2),令y=0,解得x=2+2m2,即D(3+2m2,0),|DF|=2(1+m2),又|AB|=x1+x2+2=m(y1+y2)+4=4m2+4,则为定值【点评】本题考查抛物线的定义、方程和性质,以及直线和抛物线的位置关系,考查方程思想和运算能力,属于中档题21(12分)已知函数f(x)=x﹣sin x(1)求曲线y=f(x)在点(π,f(π))处的切线方程(2)证明:当x∈(0,π)时,6f(x)<x3【分析】(1)f′(x)=1﹣cos x,可得f′(π),又f(π)=π,利用点斜式即可得出曲线y=f(x)在点(π,f(π))处的切线方程(2)令g(x)=f(x)﹣x3=x﹣sin x﹣x3,x∈(0,π),g(0)=0多次利用导数研究函数的单调性极值与最值即可证明结论【解答】解:(1)f′(x)=1﹣cos x,f′(π)=1﹣cosπ=2,又f(π)=π﹣sinπ=π,∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣π=2(x﹣π),即y=2x ﹣π(2)证明:令g(x)=f(x)﹣x3=x﹣sin x﹣x3,x∈(0,π),g(0)=0 g′(x)=1﹣cos x﹣x2=h(x),h(0)=0,x∈(0,π),h′(x)=sin x﹣x=u(x),u(0)=0,x∈(0,π),u′(x)=cos x﹣1<0,x∈(0,π),∴u(x)在x∈(0,π)上单调递减,∴h′(x)=u(x)<u(0)=0,∴h(x)在x∈(0,π)上单调递减,∴g′(x)=h(x)<h(0)=0,∴函数g(x)在x∈(0,π)单调递减,∴g(x)<g(0)=0∴x﹣sin x﹣x3<0,即当x∈(0,π)时,6f(x)<x3【点评】本题考查了利用导数研究函数的单调性极值、证明不等式,考查了推理能力与计算能力,属于难题选考题:共10分,请考生在第22.23题中任选一题作答.如果多做,那么按所做的第一题计分.[选修4-4:坐标系与参数方程]22(10分)在平面直角坐标系xOy中,曲线C的参数方程为(φ为参数)直线l的参数方程为(t为参数)(1)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系求曲线C的极坐标方程,并求曲线C上的点到原点的最大距离(2)已知直线l与曲线C交于A,B两点,若|OA|+|OB|=2,O为坐标原点,求直线l的普通方程【分析】(1)直接利用转换关系,在参数方程极坐标方程和直角坐标方程之间进行转换,再利用三角函数的关系式的变换和三角函数的性质的应用求出结果(2)利用直线与圆的位置关系和一元二次方程根和系数关系式的应用求出直线的方程【解答】解:(1)曲线C的参数方程为(φ为参数),转换为直角坐标方程为x2+(y﹣1)2=4,根据,转换为极坐标方程为ρ2﹣2ρsinθ﹣3=设曲线上的点的坐标为P(2cosθ,1+2sinθ),原点的坐标为O(0,0),所以,当(k∈Z)时,|PO|max=3(2)直线l的参数方程为(t为参数),转换为极坐标方程为θ=α(ρ∈R),由于直线与圆相交,故,整理得ρ2﹣2ρsinα﹣3=0,所以ρA+ρB=2sinα,ρAρB=﹣3,故|OA|+|OB|==,整理得sinα=0,所以直线与x轴平行,故直线的方程为y=0【点评】本题考查的知识要点:参数方程,极坐标方程和直角坐标方程之间的转换,三角函数关系式的变换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和数学思维能力,属于基础题[选修4-5:不等式选讲]23已知函数f(x)=|x+2|+|x﹣a|(1)当a=3时,求f(x)≥6的解集(2)若f(x)≥2a恒成立,求实数a的取值范围【分析】(1)把a=3代入函数解析式,然后根据f(x)≥6,利用零点分段法解不等式即可;(2)根据绝对值不等式性质可得f(x)≥|a+2|,把不等式f(x)≥2a,对任意x∈R 恒成立转化为|a+2|≥2a恒成立,然后求出a的取值范围【解答】解:(1)把a=3代入f(x)=|x+2|+|x﹣a|,可得f(x)=|x+2|+|x﹣3|=,当x≤﹣2时,f(x)≥6等价于﹣2x+1≥6,解得x≤,则x≤﹣,当﹣2<x<3时,f(x)≥6等价于5≥6,此式不成立,当x≥3时,f(x)≥6等价于2x﹣1≥6,解得x,则x综上,不等式f(x)≥6的解集为:(﹣∞,]∪[,+∞)(2)∵f(x)=|x+2|+|x﹣a|=|x+2|+|a﹣x|≥|x+2+a﹣x|=|a+2|,∴不等式f(x)≥2a,对任意x∈R恒成立转化为|a+2|≥2a恒成立,若2a<0,即a<0,则不等式|a+2|≥2a成立,若2a≥0,即a≥0,则a2+4a+4≥4a2,即3a2﹣4a﹣4≤0,解得≤a≤2,则0≤a≤2综上,实数a的取值范围是(﹣∞,2]【点评】本题考查绝对值不等式的解法和不等式恒成立问题,考查分类讨论思想和转化思想,属于中档题。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一㊁选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A ={x |x 2-5x +4<0},B ={x |(x -a )2<1},则 a ɪ(2,3) 是 B ⊆A的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知复数z =2+3i i,则z 的共轭复数为( )A .3-2i B .3+2i C .-3-2i D .-3+2i3.向量a =(c o s α,s i n α),b =(c o s β,s i n β),其中0<α<β<π,若|2a +b |=|a -2b |,则α-β=( )A .π2B .-π2C .π4D .-π44.二项式a x +36æèçöø÷6的展开式的第二项的系数为-3,则ʏa-2x 2dx 的值为( )A .53B .73C .3D .1135.如图,在矩形A B C D 中,A B =8,B C =6,现沿A C 折起,使得平面A B C ʅ平面A D C ,连接B D ,得到三棱锥B -A C D,则其外接球的体积为( )A .500π9B .250π3C .1000π3D .500π36.下列函数中,为偶函数且在(0,+ɕ)上为增函数的是( )A .f (x )=c o s 2x B .f (x )=-x 2+3C .f (x )=x 14+x 2D .f (x )=x (3x -3-x)7.点P 是双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)与圆C 2:x 2+y 2=a 2+b 2的一个交点,且2øP F 1F 2=øP F 2F 1,其中F 1,F 2分别为双曲线C 1的左㊁右焦点,则双曲线C 1的离心率为( )A .3+1B .3+12C .5+12D .5-18.如图,在әA B C 中,D 是A B 边上的点,且满足A D =3B D ,A D +A C =B D +B C =2,C D =2,则c o s A =( )A .13B .24C .14D .09.已知函数f (x )=x c o s x -s i n x -13x 3,则不等式f (2x +3)+f (1)<0的解集为( )A .(-2,+ɕ)B .(-ɕ,-2)C .(-1,+ɕ)D .(-ɕ,-1)10.已知函数y =a +2l n x x ɪ1e,e []()的图象上存在点P ,函数y =-x 2-2的图象上存在点Q ,且点P ,Q 关于原点对称,则a 的取值范围是( )A .e 2,+ɕ[)B .3,4+1e[]C .4+1e2,e 2[]D .3,e 2[]11.某几何体的三视图如图所示,若图中小正方形的边长均为1,则该几何体的体积是( )A .283πB .323πC .523π D .563π12.若函数f (x )=s i n ωx -π6()(ω>0)的图象相邻两个对称中心之间的距离为π2,则f (x )的一个单调递减区间为( )A .-π6,π3()B .-π3,π6()C .π6,2π3()D .π3,5π6()第Ⅱ卷本卷包括必考题和选考题两部分.第13-21题为必考题,每个实体考生都必须作答.第22-23题为选考题,考生根据要求作答.二㊁填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若实数x ,y 满足约束条件2x +y -4ɤ0,x -2y -2ɤ0,x -1ȡ0,{则y -1x的最小值为 .14.数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ȡ1,n ɪN *),则数列{a n }的通项公式是 .15.某框图所给的程序运行结果为S =35,那么判断框中应填入的关于k 的条件是 .16.某航模兴趣小组的同学,为了测定在湖面上航模航行的速度,采用如下办法:在岸边设置两个观察点A ,B ,且A B长为80米,当航模在C 处时,测得øA B C =105ʎ和øB A C =30ʎ,经过20秒后,航模直线航行到D 处,测得øBA D =90ʎ和øAB D =45ʎ,则航模的速度为 米/秒.(答案保留根号)12020高考终极猜押最后一卷理科数学试题三㊁解答题(解答应写出文字说明,证明过程或演算步骤,17-21题每小题12分,22-23题每小题10分)17.已知公比不为1的等比数列{a n }的前3项积为27,且2a 2为3a 1和a 3的等差中项.(1)求数列{a n }的通项公式a n .(2)若数列{b n }满足b n =b n -1㊃l o g 3a n +1(n ȡ2,n ɪN *),且b 1=1,求数列b nb n +2{}的前n 项和S n.18.为了缓解城市交通压力和改善空气质量,有些城市出台了一些汽车限行政策,如单双号出行,外地车限行等措施,对城市交通拥堵的缓解和空气质量的改良起了一定的作用.某中部城市为了应对日益增长的交通压力,现组织调研,准备出台新的交通限行政策,为了了解群众对 汽车限行 的态度,在当地市民中随机抽取了100人进行了调查,调查情况如表:年龄段[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]频数51520n 2010赞成人数3121718162(1)求出表格中n 的值,并完成被调查人员年龄的频率分布直方图(如图所示).(2)若从年龄在[45,55)的被调查者中按照是否赞成进行分层抽样,从中抽取10人参与某项调查,然后再从这10人中随机抽取3人参加座谈会,记赞成的人数记为ξ,求ξ的分布列.19.如图,在四棱锥P -A B C D 中,底面A B C D 是边长为2的菱形,øA B C =60ʎ,P A ʅP B ,P C =2.(1)求证:平面P A B ʅ平面A B C D .(2)若P A =P B ,求二面角A -P C -D 的余弦值.20.已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的上㊁下两个焦点分别为F 1,F 2,过F 1的直线交椭圆于M ,N 两点,且әMN F 2的周长为8,椭圆C 的离心率为32.(1)求椭圆C 的标准方程.(2)已知O 为坐标原点,直线:y =k x +m 与椭圆C 有且仅有一个公共点,点M ',N '是直线上的两点,且F 1M'ʅl ,F 2M 'ʅl ,求四边形F 1M 'N 'F 2面积S 的最大值.21.已知函数f (x )=l n x +a x .(1)讨论函数f (x )的单调性.(2)当a =1时,函数g (x )=f (x )-x +12x -m 有两个零点x 1,x 2,且x 1<x 2.求证:x 1+x 2>1.请考生在第22-23题中任选一题作答.如果多做,则按所做的第一题计分.作答时请写清题号.22.在直角坐标系x O y 中,直线l 的参数方程为x =1+t c o s α,y =t s i n α{(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2-2ρc o s θ-4ρs i n θ+4=0.(1)若直线l 与曲线C 相切,求直线l 的直角坐标方程.(2)若t a n α=2,设直线l 与曲线C 的交点为点A ,B ,求әO A B 的面积.23.已知函数f (x )=|2x -1|+|2x +1|,g (x )=|a -1|-a |x |.(1)当x <0时,求不等式f (x )<4的解集.(2)设函数f (x )的值域为M ,函数g (x )的值域为N ,若满足M ɘN ʂ⌀,求a 的取值范围.第Ⅰ卷一㊁选择题1.选A .A ={x |1<x <4},B ={x |a -1<x <a +1}.因为B ⊆A ,所以a -1ȡ1,a +1ɤ4,{即2ɤa ɤ3.因为(2,3)⊆[2,3],所以 a ɪ(2,3) 是 B ⊆A 的充分不必要条件.2.选B .z =2+3i i =3-2i ,因此z 的共轭复数为3+2i .3.选B .由|2a +b |=|a -2b |两边平方整理,得3|a |2-3|b |2+8a ㊃b =0.因为|a |=|b |=1,故a ㊃b =0,所以c o s αc o s β+s i n αs i n β=0,即c o s (α-β)=0,因为0<α<β<π,故-π<α-β<0,所以α-β=-π2.4.选B .因为T r +1=C r 6(a x )6-r 36æèçöø÷r =C r 6a 6-r ㊃36æèçöø÷r x 6-r ,所以第二项的系数为C 16a 5㊃36=-3,所以a =-1,所以ʏa-2x 2d x =ʏ-1-2x 2d x =13x 3|-1-2=-13()--83()=73.5.选D .结合几何体的特征可得,外接球的球心为A C 的中点,外接球半径为R =12A B 2+B C 2=1282+62=5,则外接球的体积:V =43πR 3=500π3.6.选D .观察各选项,其中选项A 中的函数不可能在(0,+ɕ)上为增函数;选项B 中的函数在(0,+ɕ)上为减函数;选项C 中的函数定义域不关于原点对称,不是偶函数;选项D 中的函数是偶函数,且当x >0时,y =x 单调递增且大于零,函数y =e x -e -x 单调递增也大于零,所以y =x (3x -3-x )在(0,+ɕ)上为增函数.7.选A .x 2+y 2=a 2+b 2=c 2,所以点P 在以F 1F 2为直径的圆上,所以P F 1ʅP F 2,又2øP F 1F 2=øP F 2F 1,所以P F 2=c ,P F 1=3c ,又P 在双曲线上,2所以3c -c =2a ,所以e =c a =23-1=3+1.8.选D .设B D =x ,则A D =3x ,A C =2-3x ,B C =2-x ,易知c o s øA D C =-c o s øB D C ,由余弦定理的推论可得9x 2+2-(2-3x )22ˑ2ˑ3x =-x 2+2-(2-x )22ˑ2ˑx,解得x =13,故A D =1,A C =1,所以c o s A =A D 2+A C 2-C D 22ˑA D ˑA C=0.9.选A .易证函数f (x )是奇函数.由题得f '(x )=c o s x -x s i n x -c o s x -x 2=-x s i n x -x 2=-x (s i n x +x ).所以当x >0时,f'(x )<0,函数在(0,+ɕ)上单调递减,因为函数是奇函数,所以函数在(-ɕ,0)上单调递减,因为f (2x +3)+f (1)<0,所以f (2x +3)<-f (1)=f (-1),所以2x +3>-1,所以x >-2.故解集为(-2,+ɕ).10.选D .函数y =-x 2-2的图象与函数y =x 2+2的图象关于原点对称,若函数y =a +2l n x x ɪ1e,e []()的图象上存在点P ,函数y =-x 2-2的图象上存在点Q ,且P ,Q 关于原点对称,则函数y =a +2l n x x ɪ1e,e[]()的图象与函数y =x 2+2的图象有交点,即方程a +2l n x =x 2+2x ɪ1e,e[]()有解,即a =x 2+2-2l n x x ɪ1e,e []()有解,令f (x )=x 2+2-2l n x ,则f '(x )=2(x 2-1)x,当x ɪ1e,1[]时,f '(x )<0,当x ɪ(1,e ]时,f'(x )>0,故当x =1时,f (x )取最小值3,由f 1e ()=1e2+4,f (e )=e 2,故当x =e 时,f (x )取最大值e 2,故a ɪ3,e 2[].11.选A .由三视图可知,该几何体是由半个圆柱与半个圆锥组合而成,其中圆柱的底面半径为2,高为4,圆锥的底面半径和高均为2,其体积为V =12ˑ4πˑ4+12ˑ13ˑ4πˑ2=28π3.12.选D .f (x )=s i n ωx -π6()的图象相邻两个对称中心之间的距离为π2,于是有T =2πω=2ˑπ2=π,ω=2,所以f (x )=s i n2x -π6().当2k π+π2ɤ2x -π6ɤ2k π+3π2,k ɪZ ,即k π+π3ɤx ɤk π+5π6,k ɪZ 时,f (x )=s i n2x -π6()单调递减.因此结合各选项知,f (x )=s i n2x -π6()的一个单调递减区间为π3,5π6().第Ⅱ卷二㊁填空题13.ʌ解析ɔ作出不等式组表示的可行域如图中阴影部分所示,因为y -1x表示可行域内的点与定点P (0,1)连线的斜率.由图知,点P (0,1)与点A 1,-12()连线的斜率最小,所以y -1x ()m i n=k P A =-12-11-0=-32.答案:-3214.ʌ解析ɔ由a n +1=2S n +1可得a n =2S n -1+1(n ȡ2),两式相减得a n +1-a n =2a n ,即a n +1=3a n (nȡ2).又a 2=2S 1+1=3,所以a 2=3a 1,故{a n }是首项为1,公比为3的等比数列,所以a n =3n -1.答案:a n =3n -115.ʌ解析ɔ由题意可知输出结果为S =35,第1次循环,S =11,k =9,第2次循环,S =20,k =8,第3次循环,S =28,k =7,第4次循环,S =35,k =6,此时S 满足输出结果,退出循环,所以判断框中的条件为:k >6或k ȡ7?答案:k >6?或k ȡ7?16.ʌ解析ɔ在әA B D 中,因为øB A D =90ʎ,øA B D =45ʎ,所以øA D B =45ʎ,所以A D =A B =80米,所以B D =802米,在әA B C 中B C s i n 30ʎ=A B s i n 45ʎ,所以B C =A B s i n 30ʎs i n 45ʎ=80ˑ1222=402(米).在әD B C 中,D C 2=D B 2+B C 2-2D B ㊃B C c o s 60ʎ=(802)2+(402)2-2ˑ802ˑ402ˑ12=9600,所以D C =406米,航模的速度v =40620=26米/秒.因此航模的速度为26米/秒.答案:26三㊁解答题17.ʌ解析ɔ(1)由前3项积为27,得a 2=3,设等比数列的公比为q ,由2a 2为3a 1和a 3的等差中项,得3㊃3q +3q =4ˑ3,由公比不为1,解得:q =3,所以a n =3n -1.(2)由b n =b n -1㊃l o g 3a n +1=b n -1㊃n ,得b n =b nb n -1㊃b n -1b n -2㊃ ㊃b 2b 1㊃b 1=n !.令c n =b nb n +2=n !(n +2)!=1(n +2)(n +1)=1n +1-1n +2,则S n =12-13()+13-14()+ +1n +1-1n +2()=12-1n +2=n2(n +2)318.ʌ解析ɔ(1)由题知被调查者一共有100人,所以有5+15+20+n+20+10=100,所以n=30.所以被调查人员年龄各组的频率组距为0.005,0.015,0.020,0.030,0.020,0.010.2分…………………………所以被调查人员年龄的频率分布直方图如图所示:4分………………………………………………………(2)由(1)知,年龄在[45,55)的共有30人,其中赞成的有18人,不赞成的有12人.由分层抽样赞成者应选10ˑ35=6人,6分……………不赞成有4人.则ξ=0,1,2,3.7分……………………P(ξ=0)=C34C310=4120=130,8分…………………………P(ξ=1)=C16C24C310=36120=310,9分…………………………P(ξ=2)=C26C14C310=60120=12,10分………………………P(ξ=3)=C36C310=20120=16,11分…………………………所以ξ的分布列为ξ0123P130310121612分………………………………………………………19.ʌ解析ɔ(1)取A B中点O,连接A C,C O,P O,因为四边形A B C D是边长为2的菱形,所以A B=B C=2.因为øA B C=60ʎ,所以әA B C是等边三角形.所以C OʅA B,O C=3.因为P AʅP B,所以P O=12A B=1.因为P C=2,所以O P2+O C2=P C2.所以C OʅP O.因为A BɘP O=O,所以C Oʅ平面P A B.因为C O⊂平面A B C D,所以平面P A Bʅ平面A B C D.(2)因为P A=P B,O为A B的中点由(1)知,平面P A Bʅ平面A B C D,所以P Oʅ平面A B C D,所以直线O C,O B,O P两两垂直.以O为原点建立空间直角坐标系O-x y z,如图,则O(0,0,0),A(0,-1,0),B(0,1,0),C(3,0,0),D(3,-2,0),P(0,0,1)所以A Pң=(0,1,1),P Cң=(3,0,-1),D Cң=(0,2,0).设平面A P C的法向量m=(x,y,z),由m㊃A Pң=0,m㊃P Cң=0,{得y+z=0,3x-z=0,{取x=1,得m=(1,-3,3),设平面P C D的法向量为n=(x,y,z),由n㊃P Cң=0,n㊃D Cң=0,{得3x-z=0,2y=0,{取x=1,得n=(1,0,3),所以c o s<m,n>=m㊃n|m||n|=277,由图可知二面角A-P C-D为锐二面角.所以二面角A-P C-D的余弦值为277.20.ʌ解析ɔ(1)因为әMN F2的周长为8,所以4a=8,所以a =2.又因为c a=32,所以c=3,所以b=a2-c2=1,所以椭圆C的标准方程为y24+x2=1.(2)将直线的方程y=k x+m代入到椭圆方程y24+x2=1中,得(4+k2)x2+2k m x+m2-4=0.由直线与椭圆仅有一个公共点,知Δ=4k2m2-4(4+k2)(m2-4)=0,化简得m2=4+k2.设d1=|F1M'|=|-3+m|k2+1,d2=|F2N'|=|3+m|k2+1,所以d21+d22=m-3k2+1æèçöø÷2+m+3k2+1æèçöø÷2=2(m2+3)k2+1=2(k2+7)k2+1,d1d2=|-3+m|k2+1㊃|3+m|k2+1=|m2-3|k2+1=1,所以|M'N'|=|F1F2|2-(d1-d2)2=12-(d21+d22-2d1d2)=12k2k2+1.因为四边形F1M'N'F2的面积S=12|M'N'|(d1+d2),所以S2=14ˑ12k2k2+1ˑ(d21+d22+2d1d2)=3k2(4k2+16)(k2+1)2.令k2+1=t(tȡ1),则S2=3(t-1)[4(t-1)+16]t2=12(t-1)(t+3)t2=12(t2+2t-3)t2=12+12-31t-13()2+13[],所以当1t=13时,S2取得最大值为16,故S m a x=4,即四边形F1M'N'F2面积的最大值为4.21.ʌ解析ɔ(1)f'(x)=1x+a,xɪ(0,+ɕ).①当aȡ0时,f(x)在(0,+ɕ)上单调递增;②当a<0时,f(x)在0,-1a()上单调递增,在-1a,+ɕ()上单调递减.4(2)当a =1时,g (x )=l n x +12x-m ,由已知,得l n x 1+12x 1=m ,l n x 2+12x 2=m ,两式相减,得l n x 1x 2+12x 1-12x 2=0⇒x 1㊃x 2=x 1-x 22l nx 1x 2,所以x 1=x 1x 2-12l n x 1x 2,x 2=1-x 2x 12l nx 1x 2所以x 1+x 2=x 1x 2-x 2x 12l nx 1x 2,令t =x 1x 2ɪ(0,1),设h (t )=t -1t-2l n t ,所以h '(t )=1+1t 2-2t =t 2-2t +1t2>0,所以h (t )在(0,1)上单调递增,所以h (t )<h (1)=0,即t -1t<2l n t .又因为l n t <0,所以t -1t 2l n t >1,所以x 1+x 2>1.22.ʌ解析ɔ(1)由x =ρc o s θ,y =ρs i n θ可得曲线C 的直角坐标方程为x 2+y 2-2x -4y +4=0,即(x -1)2+(y -2)2=1,x =1+t c o s α,y =t s i n α{消去参数t ,可得y =t a n α(x -1).设k =t a n α,则直线l 的方程为y =k (x -1),由题意,得圆心(1,2)到直线l 的距离d 1=|k -2-k |k 2+1=1,解得k =ʃ3,所以直线l 的直角坐标方程为y =ʃ3(x -1).(2)因为t a n α=2,所以直线l 的方程为2x -y -2=0,原点到直线l 的距离d 2=25,联立2x -y -2=0,(x -1)2+(y -2)2=1,{解得x =2,y =2{或x =85,y =65,ìîíïïïï所以|A B |=2-85()2+2-65()2=25,所以S =12ˑ25ˑ25=25.23.ʌ解析ɔ(1)当x <0时,2x -1<0,所以f (x )<4可化为|2x +1|-2x <3.①当x ɤ-12时,①化为-2x -1-2x <3,解得x >-1,此时-1<x ɤ-12.当-12<x <0时,①化为2x +1-2x <3,解得x ɪR ,此时-12<x <0.综上,原不等式的解集是{x |-1<x <0}.(2)因为f (x )=|2x -1|+|2x +1|ȡ|(2x -1)-(2x +1)|=2,所以f (x )的值域为[2,+ɕ).当a ȡ0时,因为|x |ȡ0,所以g (x )的值域为(-ɕ,|a -1|].若M ɘN ʂ⌀,则|a -1|ȡ2,解得a ɤ-1或a ȡ3.从而a ȡ3.当a <0时,因为|x |ȡ0,所以g (x )的值域为[|a -1|,+ɕ),此时一定满足M ɘN ʂ⌀.从而a <0.综上,a 的取值范围是(-ɕ,0)ɣ[3,+ɕ).5。
2020年高考数学(理)终极押题卷(全解全析)1.【答案】C 【解析】因为312iz i-=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z ==C .2.【答案】C【解析】由题得221,1,x y x y ⎧+=⎨+=⎩∴1,0,x y =⎧⎨=⎩或0,1,x y =⎧⎨=⎩则A ∩B ={(1,0),(0,1)}.故选C.3.【答案】B【解析】因为222131331()44244x x x x x -+=-++=-+≥,所以命题p 为真;1122,,22-<-<∴Q 命题q 为假,所以p q ∧⌝为真,故选B.4.【答案】D【解析】由图表可知:2012年我国实际利用外资规模较2011年下降,可知A 错误;2000年以来,我国实际利用外资规模总体呈现上升趋势,可知B 错误; 2008年我国实际利用外资同比增速最大,高于2010年,可知C 错误,D 正确.本题正确选项:D . 5.【答案】A【解析】Q 设等差数列{}n a 的公差为d ,()0d ≠,11a =,且2a ,3a ,6a 成等比数列,2326a a a ∴=⋅,()()()211125a d a d a d ∴+=++,解得2d =-,{}n a ∴前6项的和为616562S a d ⨯=+()65612242⨯=⨯+⨯-=-. 故选:A. 6.【答案】B【解析】由a r ∥b r得3(1)2233y x x y -=-⇒+=,因此3232231491()(12)(128333x y x y x y x y y x ++=+⋅=++≥+=,当且仅当49x y y x=时取等号,所以选B. 7.【答案】C【解析】()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2rrr r T x y -+=-可得:当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-; 当2r =时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=,则33x y 的系数为804040-=.故选C. 8.【答案】C【解析】如图所示,直角三角形的斜边长为2251213+=, 设内切圆的半径为r ,则51213r r -+-=,解得2r =. 所以内切圆的面积为24r ππ=, 所以豆子落在内切圆外部的概率42P 111155122ππ=-=-⨯⨯,故选C .9.【答案】C【解析】函数()f x 的图象如图所示,函数是偶函数,1x =时,函数值为0.()()44x x f x x -=+是偶函数,但是()10f ≠, ()()244log x x f x x -=-是奇函数,不满足题意. ()()244log x x f x x -=+是偶函数,()10f =满足题意;()()1244log x x f x x -=+是偶函数,()10f =,()0,1x ∈时,()0f x >,不满足题意.故选C 项. 10.【答案】B【解析】()f x 为[]3,3-上的偶函数,而xy a π=为[]3,3-上的偶函数,故()()sin g x x ωϕ=+为[]3,3-上的偶函数,所以,2k k πϕπ=+∈Z .因为0ϕπ<<,故2ϕπ=,()()sin cos 2x xx x f x a a πωωππ⎛⎫+ ⎪⎝⎭==. 因()10f =,故cos 0ω=,所以2k πωπ=+,k ∈N .因()02f =,故0cos 012a a π==,所以12a =. 综上,()21k aωπ=+,k ∈N ,故选B .11.【答案】A【解析】设BC 的中点是E ,连接DE ,A ′E , 因为AB =AD =1,BD, 由勾股定理得:BA ⊥AD ,又因为BD ⊥CD ,即三角形BCD 为直角三角形, 所以DE为球体的半径,2DE =,2432S ππ==, 故选A . 12.【答案】A【解析】由题可知2(31),0()2ln 1,0x m x f x mx x x -+≤++'⎧=⎨>⎩,当0x >时,令()0f x '=,可化为ln 12x m x +-=,令()ln 1x g x x +=,则()2ln xg x x-=',则函数()g x 在()0,1上单调递增,在(1,)+∞上单调递减,()g x 的图象如图所示,所以当021m <-<,即12m -<<时,()0f x '=有两个不同的解;当0x ≤,令()0f x '=,3102m x +=<,解得13m <-,综上,11,23m ⎛⎫∈-- ⎪⎝⎭.13.【答案】22【解析】作出不等式组表示的平面区域如下图中阴影部分所示,由3z x y =-可得3y x z =-,观察可知,当直线3y x z =-过点B 时,z 取得最大值,由2402x y y --=⎧⎨=⎩,解得82x y =⎧⎨=⎩,即(8,2)B ,所以max 38222z =⨯-=.故答案为:22. 14.【答案】乙【解析】根据甲与团支书的年龄不同,团支书比乙年龄小,得到丙是团支书, 丙的年龄比学委的大,甲与团支书的年龄不同,团支书比乙年龄小, 得到年龄从大到小是乙>丙>学委, 由此得到乙不是学委,故乙是班长. 故答案为乙. 15.【答案】985987【解析】由题1n a +=n a +n +2,∴12n n a a n +-=+,所以213a a -=,324a a -=,435a a -=,…,()112n n a a n n --=+≥,上式1n -个式子左右两边分别相加得()()1412n n n a a +--=,即()()122nn n a ++=,当n =1时,满足题意,所以111212n a n n ⎛⎫=- ⎪++⎝⎭,从而12985111111111985 (22334986987987)a a a L +++=-+-++-=. 故答案为985987. 16.【答案】y x =±【解析】设12,PF m PF n == ,可得2m n a -= ,可得22224m mn n a -+=(1), 在12PF F △中,由余弦定理可得2222242cos3c m n mn m n mn π=+-=+-(2),因为2PO b =,所以在1PFO △,2POF V 中分别利用余弦定理可得, ()2222221144cos ,44cos m c b b POF n c b b POF π=+-∠=+--∠,两式相加可得222228m n c b +=+ ,分别与(1)、(2)联立得22222222222284102,28462mn c b a b a mn c b c b a =+-=-=+-=-,消去mn 可得22a b =,a b = 所以双曲线的渐近线方程为by x a=±,即y x =±,故答案为y x =±.17.(12分)【解析】(1)因为sin sin sin sin sin B C b B c C a A A ⎛⎫+=+ ⎪ ⎪⎝⎭,由正弦定理可得:22b c a a ⎫+=⎪⎭,即222b c a +-=,再由余弦定理可得2cos bc A =,即cos A =所以4A π=.(6分)(2)因为3B π=,所以()sin sin C A B =+=由正弦定理sin sin a b A B=,可得b =13sin 24ABC S ab C ∆+==.(12分) 18.(12分)【解析】(1)证明:连接AC ,因为PB PC =,E 为线段BC 的中点, 所以PE BC ⊥.又AB BC =,60ABC ∠=︒,所以ABC ∆为等边三角形,BC AE ⊥. 因为AE PE E ⋂=,所以BC ⊥平面PAE ,又BC ⊂平面BCP ,所以平面PAE ⊥平面BCP .(5分) (2)解:设AB PA a ==,则PB PC ==,因为222PA AB PB +=,所以PA AB ⊥,同理可证PA AC ⊥,所以PA ⊥平面ABCD .如图,设AC BD O ⋂=,以O 为坐标原点,OB uuu v的方向为x 轴正方向,建立空间直角坐标系O xyz -.易知FOA ∠为二面角A BD F --的平面角,所以3cos 5FOA ∠=,从而4tan 3FOA ∠=.由432AFa=,得23AF a=.又由20,,23a a F⎛⎫-⎪⎝⎭,3,0,02B a⎛⎫⎪⎪⎝⎭,知32,,223a a aBF⎛⎫=--⎪⎪⎝⎭u u u v,20,,23a aOF⎛⎫=-⎪⎝⎭u u u v.设平面BDF的法向量为(),,n x y z=v,由n BF⊥u u u vv,n OFu u u vv⊥,得3223223a a ax y za ay z⎧--+=⎪⎪⎨⎪-+=⎪⎩,不妨设3z=,得()0,4,3n=v.又0,,2aP a⎛⎫-⎪⎝⎭,3,0,0D a⎛⎫-⎪⎪⎝⎭,所以3,,2a aPD a⎛⎫=--⎪⎪⎝⎭u u u v.设PD与平面BDF所成角为θ,则222232sin1031544n PD a an PDa a aθ⋅-===++u u u vvu u u vv.所以PD与平面BDF所成角的正弦值为210.(12分)19.(12分)【解析】(1)依题意得33,2cc aa==⇒=,又2231a b b-=⇒=∴椭圆C的方程为2214xy+=.(4分)(2)设直线l 的方程为()0y kx m m =+≠,()()1122,,,M x y N x y由2214y kx m x y =+⎧⎪⎨+=⎪⎩得()()222148410k x kmx m +++-=, ∴()2121222418,1414m km x x x x k k--+==++. 由题设知()()12212121212kx m kx m y y k k k x x x x ++=== ()212212km x x m k x x ++=+, ∴()2120km x x m ++=,∴22228014k m m k-+=+, ∵0m ≠,∴214k =. 此时()()()222221212224184,211414m km x x m x x m k k --⎛⎫+====- ⎪++⎝⎭则2222222222121122121144x x OM ON x y x y x x +=+++=+-++-()()2221212123322244x x x x x x ⎡⎤=⨯++=+-+⎣⎦()223441254m m ⎡⎤=--+=⎣⎦ 故直线l 的斜率为221,52k OM ON =±+=.(12分)20.(12分)【解析】(1)由频率分布直方图可知一台电脑使用时间在(]4,8上的概率为:()20.140.0620.45p =+⨯==, 设“任选3台电脑,至少有两台使用时间在(]4,8”为事件A ,则 ()23233323244·555125P A C C ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭.(4分) (2)(ⅰ)由a bxy e +=得ln y a bx =+,即t a bx =+,10110221110ˆ0i i i ii x t xtbx x =-=-=-∑∑279.7510 5.5 1.90.338510 5.5-⨯⨯==--⨯()1.90.3 5.53ˆ.55a=--⨯=,即0.3 3.55t x =-+,所以0.3 3.55ˆx y e -+=.(8分) (ⅱ)根据频率分布直方图对成交的二手折旧电脑使用时间在(]0,2,(]2,4,(]4,6,(]6,8,(]8,10上的频率依次为:0.2,0.36,0.28,0,12,0.04:根据(1)中的回归方程,在区间(]0,2上折旧电脑价格的预测值为 3.550.31 3.2526e e -⨯=≈, 在区间(]2,4上折旧电脑价格的预测值为 3.550.33 2.6514e e -⨯=≈, 在区间(]4,6上折旧电脑价格的预测值为 3.550.35 2.057.8e e -⨯=≈, 在区间(]6,8上折旧电脑价格的预测值为 3.550.37 1.45 4.3e e -⨯=≈, 在区间(]8,10上折旧电脑价格的预测值为 3.550.390.85 2.3e e -⨯=≈, 于是,可以预测该交易市场一台折旧电脑交易的平均价格为:0.2260.36140.287.80.12 4.30.04 2.313.032⨯+⨯+⨯+⨯+⨯=(百元)故该交易市场收购1000台折旧电脑所需的的费用为: 100013.0321303200⨯=(元)(12分) 21.(12分)【解析】(1)函数()f x 的定义域为(0,)+∞, 又221(1)[(1)]()1a a x x a f x x x x '----=-++=, 由()0f x '=,得1x =或1x a =-.当2a >即11a ->时,由()0f x '<得11x a <<-,由()0f x '>得01x <<或1x a >-;当2a =即11a -=时,当0x >时都有()0f x '≥;∴当2a >时,单调减区间是()1,1a -,单调增区间是()0,1,()1,a -+∞;当2a =时,单调增区间是()0,+?,没有单调减区间;(5分) (2)当21a e =+时,由(1)知()f x 在()21,e 单调递减,在()2,e +∞单调递增.从而()f x 在[)1,+∞上的最小值为22()3f e e =--. 对任意[)11,x ∈+∞,存在[)21,x ∈+∞,使()()2212g x f x e ≤+,即存在[)21,x ∈+∞,使的值不超过()22f x e +在区间[)1,+∞上的最小值23e -.由222e 32e e 3xmx --+≥+-得22xmx e e +≤,22xe e m x-∴≤. 令22()xe e h x x-=,则当[)1,x ∈+∞时,max ()m h x ≤. ()()()22223222()x x x x e x e e xxe e e h x x x ---+-'==-Q ,当[1,2]x ∈时()0h x '<;当[2,)x ∈+∞时,()22e 20xxxx xe exee +->-≥,()0h x '<.故()h x 在[1,)+∞上单调递减,从而2max ()(1)h x h e e ==-,从而实数2m e e ≤-得证.(12分) 22.[选修4−4:坐标系与参数方程](10分)【解析】(1)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=.(4分)(2)由题意,可设点P的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,π()sin()2|3d αα==+-.当且仅当π2π()6k k α=+∈Z 时,()d αP 的直角坐标为31(,)22.(10分)23.[选修4−5:不等式选讲](10分)【解析】(1)由题意, ()2,12,112,1x f x x x x -≤-⎧⎪=-⎨⎪≥⎩<<,①当1x ≤-时,()21f x =-<,不等式()1f x ≥无解; ②当11x -<<时,()21f x x =≥,解得12x ≥,所以112x ≤<. ③当1x ≥时,()21f x =≥恒成立,所以()1f x ≥的解集为1,2⎡⎫+∞⎪⎢⎣⎭.(5分)(2)当x ∈R 时,()()11112f x x x x x =+--≤++-=; ()()222222g x x a x b x a x b a b =++-≥+--=+.而()()()22222222222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭, 当且仅当1a b ==时,等号成立,即222a b +≥,因此,当x ∈R 时, ()()222f x a b g x ≤≤+≤,所以,当x R ∈时, ()()f x g x ≤.(10分)。
再苦再累,只要坚持往前走,属于你的风景终会出现。
人生如烟花,不可能永远悬挂天际,只要曾经绚烂过,便不枉此生。
秘密★启用前 2020年全国普通高等学校招生考试终极押题卷(全国新课标Ⅱ)理科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合,则A B ⋂=( )A. {}1,0-B. {}0,1C. {}1,0,1-D. {}1,2- 【答案】B 【解析】,,则,故选B.2.已知i 为虚数单位,复数1z i =+,则1z z-的实部与虚部之差为( )A . 1B .0C .21-D .2【答案】D 【解析】:复数1z i =+,∴111112,1,22,2---=21222i z z i z i z+==-∴-=-=--实部,虚部,实部虚部 【点睛】:该小题几乎考查了复数部分的所有概念,是一道优秀试题。
3.下图为国家统计局发布的2018年上半年全国居民消费价格指数(CPI )数据折线图,(注:同比是今年第n 个月与去年第n 个月之比,环比是现在的统计周期和上一个统计周期之比)下列说法错误的是( )A. 2018年6月CPI 环比下降0.1%,同比上涨1.9%B. 2018年3月CPI 环比下降1.1%,同比上涨2.1%C. 2018年2月CPI 环比上涨0.6%,同比上涨1.4%D. 2018年6月CPI 同比涨幅比上月略微扩大0.1个百分点 【答案】C【分析】对照表中数据逐项检验即可.【详解】观察表中数据知A,B,D 正确,对选项C ,2018年2月CPI 环比上涨2.9%,同比上涨1.2%,故C 错误,故选:C【点睛】本题考查折线图,准确识图读图理解题意是关键,是基础题.4. 我国古代数学名著《算法统宗》中有如下问题:“诸葛亮领八员将,每将又分八个营,每营里面排八阵,每阵先锋有八人,每人旗头俱八个,每个旗头八队成,每队更该八个甲,每个甲头八个兵.”则该问题中将官、先锋、旗头、队长、甲头、士兵共有( ) A .()71887-人 B .()91887-人 C .()718887+-人D .()9418887+-人 【答案】D【解析】由题意可得将官、营、阵、先锋、旗头、队长、甲头、士兵依次成等比数列,且首项为8,公比也是8,所以将官、先锋、旗头、队长、甲头、士兵共有:()()45456789481818888888888187-+++++=+=+--,故选D .再苦再累,只要坚持往前走,属于你的风景终会出现。
2020⾼考数学押题卷含答案⼀、选择题:本⼤题共11⼩题,每⼩题5分,共55分. 在每⼩题给出的4个选项中,只有⼀项是符合题⽬要求的. 1、集合A =1| 01x x x -??,B ={}|||x x b a -<,若“1a =”是“B A ≠?I ”的充分条件,则b 的取值范围可以是()A 、20b -≤<B 、02b <≤C 、31b -<<-D 、12b -≤<2、已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平⾯,给出下列四个命题:①若βαβα//,,则⊥⊥m m ;②若βααβγα//,,则⊥⊥;③若βαβα//,//,,则n m n m ??;④若m 、n 是异⾯直线,βααββα//,//,,//,则n n m m ??. 其中真命题是() A .①和② B .①和③C .③和④D .①和④3、函数ln(y x =的反函数是()A .2xx e e y -+= B .2x x e e y -+-=C .2xx e e y --=D .2xx e e y ---=4、若011log 22<++aa a,则a 的取值范围是()A .),21(+∞B .),1(+∞1(D .)21,0(5、在R 上定义运算).1(:y x y x -=??若不等式1)()(<+?-a x a x 对任意实数x 成⽴,则()A .11<<-aB .20<C .2321<<-aD .2123<<-a6、若钝⾓三⾓形三内⾓的度数成等差数列,且最⼤边长与最⼩边长的⽐值为m ,则m 的范围是()A .(1,2)B .(2,+∞)C .[3,+∞)D .(3,+∞)7、若直线02=+-c y x 按向量)1,1(-=a 平移后与圆522=+y x 相切,则c 的值()A .8或-2B .6或-4C .4或-6D .2或-88、已知)(x f y =是定义在R 上的单调函数,实数21x x ≠,,1,121λλλ++=-≠x x a λλβ++=112x x ,若|)()(||)()(|21βαf f x f x f -<-,则()A .0<λB .0=λC .10<<λD .1≥λ9、已知双曲线的中⼼在原点,离⼼率为3.若它的⼀条准线与抛物线x y 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是()B .21C .21218+D .2110、⼀给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满⾜)(*1N n a a n n ∈>+,则该函数的图象是()A B CD11、设定义域为R 的函数|lg |1||,1()0,1x x f x x -≠?=?=?,则关于x 的⽅程2()()0f x bf x c ++=有7个不同实数解的充要条件是( )(A)b<0且c>0 (B) b>0且c<0 (C)b<0且c=0 (D)b≥0且c=0⼆、填空题:本⼤题共7⼩题,每⼩题4分,共28分.把答案填在题中横线上. 12、11622(2)x x --的展开式中常数项是 .13、如图,正⽅体的棱长为1,C 、D 分别是两条棱的中点, A 、B 、M 是顶点,那么点M 到截⾯ABCD 的距离是 .14、设函数f (x )的图象关于点(1,2)对称,且存在反函数1()f x -,f(4)=0,则1(4)f -= .15、某班有50名学⽣,其中 15⼈选修A 课程,另外35⼈选修B课程.从班级中任选两名学⽣,他们是选修不同课程的学⽣的慨率是.(结果⽤分数表⽰) 16、直⾓坐标平⾯xoy 中,若定点A(1,2)与动点P(x ,y)满⾜=4。
理科数学答案全解全析一、选择题1. 【答案】D【解析】集合 A 满足 x2 2x 3 0 ,(x 3)(x 1) 0 ,解得x3或x 1 ,则C UA {x|1 x3},集合B满足1 2x 20,2x 2x 2 20 0,解得x1,可知(CUA)B {x |1 x 3} .故选 D.2. 【答案】B【解析】由题可得 z i i2020 1 i (1 2i)(1 i) 3 1 i ,可知1 2i 1 2i555| z | (3)2 ( 1)2 10 .故选 B.5553. 【答案】A【解析】由偶函数定义可知,函数 f (x) x2 (a 1)x a 满足f (x) f (x) ,所以 x2 (a 1)x a x2 (a 1)x a 在 [2,2] 上恒成立,解得 a 1 ,所以 f (x) x2 1 ,当 f (x) 2 时,即 x2 1 2 ,解得 1 x 1,可知所求的概率为 P 1 .故选 A. 24. 【答案】B【解析】已知数列 an2n 1 ,其前 n项的和 Sn(2 11 22n 1)n n(n 2) ,则 1 1 1 ( 1 1 ) ,所以 1 1 1Sn n(n 2) 2 n n 2S1 S2Sn 1 (1 1 1 1 1 1 ) 1 (1 1 1 1 ) .故选 B.2 324n n 2 2 2 n 1 n 25. 【答案】D【解析】第一次执行, c 4,a 5,b 4,k 2 ;第二次执行,c 1,a 4,b 1,k 3 ;第三次执行, c 5,a 1,b 5,k 4 ;第四次执行, c 4,a 5,b 4,k 5 ;第五次执行,c 1,a 4,b 1,k 6 ;第六次执行, c 5,a 1,b 5,k 7 ;第七次执行, c 4,a 5,b 4,k 8 ;….故该循环具有周期性,且周期为 6,则输出的 c 的值为 4 .故选 D.6. 【答案】B【解析】设圆心到双曲线的渐近线的距离为 d ,由弦长公式可得,函数 f (x) 的最小值为 2 3 3 ,最大值为 2 3 3 .故选 D.449. 【答案】A【解析】解法一:设 D 是 ABC 的边 BC 的中点,连接GD ,因为G 是 ABC 的重心,所以 A,G,D 三点共线, AG 2 AD 2 331 (AB AC) 1 (AB AC) .又 H 是 BG 的中点,所以 AH 1 ( AB232 AG) 1 [ AB 1 (AB AC)] 1 (4AB AC),236则 AG·AH 1 (AB AC)·1 (4AB AC)36 1 (4 | AB |2 5 | AB |·| AC | cos BAC | AC |2) 18 1 (4 22 5 2 3 1 32) 20 .故选 A.1829解法二:以点 A 为原点建立平面直角坐标系如图,由已知可得 A(0,0),B(1, 3),C(3,0),G( 4 , 3 ),H (7 ,2 3 )3363 AG ( 4 , 3 ) , AH (7 ,2 3 ) ,3363 AG·AH 4 7 3 2 3 20 .故选 A. 36 3 3 910.【答案】A【解析】如图所示,2 2 d 2 2 ,解得 d 1,又双曲线 C 的渐近线方程为 bx ay 0 ,圆心坐标为 (0,2) ,故 | 0 2a | 1 ,即 2a 1 ,所以双曲线 C 的离a2 b2c心率 e c 2 .故选 B. a7. 【答案】A【解析】在 (2 x3)(x a)5 中,令 x 1 ,得展开式的各项系数和为(1 a)5 32 ,解得 a 1 ,故 (x 1)5 的展开式的通项 Tr1 C5r x5r .当 r 1 时 , 得 T2 C15x4 5x4 , 当 r 4 时 , 得 T5 C54x 5x , 故 (2 x3)(x 1)5 的展开式中 x4 的系数为 25 5 5 .故选 A.8. 【答案】D【解析】由 f (x) 3 cos(x )cos x 的图象过点 (0, 3) , 2得 cos 3 .0 π, 5π , f (x) 3 cos(x 5π)cos x266 3( 3 cos x 1 sin x) cos x 3 cos2 x 3 sin x cos x2222 3(1 cos 2x) 3 sin 2x 3 3 sin 2x 3cos 2x443 2 3 sin(2x π ) 3 3 sin(2x π ) 3 .点 ( π ,0) 不是函数42343f (x) 图象的对称中心,直线 x π 也不是函数 f (x) 图象的对称轴, 3由图知 tan NMF b ,tan FNO c , MFN NMF 90°,abMFN FNO 90°,NMF FNO , b c , ab则 b2 a2 c2 ac ,e2 e 1 0 ,得 e 5 1 .故选 A. 211.【答案】B【解析】由 a2 4ab 16b2 c 0 ,得 a2 4ab 16b2 c ,所以a2 4ab 16b2 12 a2·16b2 4ab 4ab ,可得 ab 的最大值cc ccc c cc为 1 ,当且仅当 a 4b 时取等号,且 c 16b2 ,则 c 4a 3244b 416b2 16b 32 4(b2 b 2) 4[(b 1)2 3(b 1) 4]4b 4b 1b 1 4[(b 1) 4 3] 4(2 (b 1)· 4 3) 4 ,当且仅当 b 1时b 1b 1取得最小值为 4.故选 B.理科数学答案第 1 页(共 3 页)12.【答案】B【解析】易知 f (0) 1 ,故函数 f (x) 有三个不同的零点,可以转化为 | 2x m | 1 有三个不同的非零实数根,即函数 y | 2x m | 与xy 1 (x 0) 的图象有三个不同的交点.易知,当 x m 时,直线x2y 2x m 与曲线 y 1 (x 0) 有且仅有一个交点,当 0 x m 时,x2直线 y 2x m 与曲线 y 1 (x 0) 必须有两个不同的交点.而当x直线y 2x m 与曲线y1 (x 0) x相切时,1 x22 ,解得x 2 ,此时 m 2 2 ,结合图象可知 m 2 2 .故选 B. 2二、填空题13.【答案】 26【解析】由题可得 23 3k 0 ,可得 k 2 ,则 a b (5,1) , a b 52 1 26 .14.【答案】 234【解析】由题得 x 3 4 a 6 , y 2.5 3 4 4.5 3.5 ,这组44数据的样本中心点是 (x,3.5) ,代入回归直线方程可得 3.5 0.7(2)由 b 2 , A π ,S 3ABC1 bc sin A 3 223,得 c 1 3 .-------------------------------------------------------------8 分M 是 AB 的中点, AB c 1 3, AM 1 3 ,-------------------------------------------------------10 分 2在 AMC 中,由余弦定理得, CM 2 b2 AM 2 2b AM cos A 4 (1 3 )2 2 2 1 3 1 4 3 .------------------------12 分222218.【解析】(1) 四边形 ABCD 是矩形, AB CD .CD 平面 DCFE,AB 平面 DCFE , AB 平面 DCFE .----------------------------------------------------2 分又 AB 平面 ABFE ,平面 ABFE 平面 DCFE EF , AB EF ,又 AB 平面 ABCD,EF 平面 ABCD ,EF 平面 ABCD .----------------------------------------------------5 分(2)过点 E 作 EO CD 于点 O ,平面 ABCD 平面 DCFE ,EO 平面 ABCD .过点 O 作 OH AD ,交 AB 于点 H ,四边形 ABCD 是矩形,OH CD .以 O 为坐标原点, OH ,OC,OE 所在直线分别为 x,y,z 轴,建立如图所示的空间直角坐标系.3 4 a 6 0.35 ,解得 a 5 ,所以样本的中位数为 4 5 4.5 ,42方差为 1 [(3 4.5)2 (4 4.5)2 (5 4.5)2 (6 4.5)2] 5 ,故样本44x 的方差与中位数的和为 23 . 415.【答案】 2【解析】由 S3 ,S9 ,S6 成等差数列,得 2S9 S3 S6 .设等比数列{ an }的公比 q 1 ,则 Sn na1 .由 2 9a1 3a1 6a1 ,解得 a1 0 .又因为a2a540,所以 q 1 .所以Sna1(1 qn ) 1 q,所以 2a1(1 q9) 1 qa1(1 q3) 1 qa1(1 q6) 1 q,解得q31( 2q3 1 舍去).又因为a2a5 4 ,即 a1q(1 q3) 4 ,所以 a1q 8 ,则 a8 a1q7 (a1q)·(q3)2 8 ( 1)2 2 .216.【答案】 21 3【解析】如图过等边三角形 ABD 的中心 F 作平面 ABD 的垂线 l ,取 BD 的中点 E ,过点 E 作平面 CBD 的垂线 l .设 l l G ,则点G 为四面体 ABCD 的外接球的球心.因为 ABD 是边长为 2 的等边三角形,所以 EF 3 .因为二面角 A BD C 的大小为150°,所 3以 GEF 60°.所以在 Rt EFG 中, GF EF·tan60°1 .所以四面体 ABCD 的外接球的半径为 GA GF 2 AF 2 1 4 21 .33设 BC 1,则 EF ED FC BC 1 ,AB 2BC 2 ,由(1)知, EF CD .在梯形 CDEF 中, EF ED FC 1, DC 2 , DO 1 ,EO 3 ,--------------------------------------------------7 分22于是 E(0,0, 3 ) , A(1, 1 ,0) , C(0,3 ,0) , F (0,1, 3 )2222则 AE (1,1 , 3 ) ,CF (0, 1 , 3 ) .-------------------------10 分2222设异面直线 AE 与 CF 所成的角为 ,则 cos AE·CF1 3 4 42.| AE || CF |24故异面直线 AE 与 CF 所成角的余弦值为 2 .-------------------12 分 419.【解析】(1)完成 2 2 列联表如下:前 20 名后 30 名总计男生82028女生121022总计203050三、解答题 17.【解析】(1) 4a cos2 B 2a b 2c ,2 2c b 2acosB ,--------------------------------------------------2 分 由正弦定理得, 2sinC sin B 2cos Bsin A ,又 C π A B , 2sin(A B) sin B 2cos Bsin A ,------------------------------4 分2sin Bcos A sin B . sin B 0 ,cos A 1 ,A π .-----------------------------------6 分 23--------------------------------------------------------------------------------2 分由列联表得 K 2 50 (8 10 20 12)2 3.463 . 28 22 20 303.463 2.706 , 在犯错误的概率不超过 0.1 的前提下,可以认为该班“成绩是否优等与性别有关”.--------------------------------5 分(2) 的可能取值为 0,1,2, P( 0) C36 5 , C83 14P( 1)C12C62 C8315 28,P(2)C22C16 C833 28.----------------------8分 的分布列为0125153P142828-------------------------------------------------------------------------------10 分理科数学答案第 2 页(共 3 页)E( ) 1 15 2 3 3 .-------------------------------------------12 分 28 28 420.【解析】(1) 抛物线 :x2 2 py( p 0) 的焦点为 F(0,1) ,抛物线 的方程为 x2 4y .-----------------------------------------2 分由直线 l1 的斜率为 k1 ,且过 F(0,1) ,得 l1 的方程为 y k1x 1 ,代 入 x2 4y ,化简得 x2 4k1x 4 0 , 设 A(x1 ,y1),B(x2 ,y2) ,则 x1 x2 4k1 , y1 y2 k1(x1 x2) 2 4k12 2 ,-------------------------------------4 分 | AB | y1 y2 2 4k12 4 .又 k1 3 ,| AB |16 .-------------------------------------------------6 分(2)设P( x0,x02 4),将的方程x2 4y 化为yx2 4,求导得 y x ,------------------------------------------------------------8 分 2斜率为 k2 的直线 l2 与 相切于点 P , k2x0 2,则P(2k2 ,k22 ) ,由(1)知 x1 x2 4k1 ,且 Q 为 AB 的中点,易得 Q(2k1 ,2k12 1) ,∵直线 PQ 过 (0,2) , k22 2 2k12 1 ,------------------------10 分2k22k1整理得 (k1k2 1)(k2 2k1) 0 ,l2 与 l1 不垂直,k1k2 1 0 ,则k2 2k1 0 ,即k1 k21 2.---------------------------------------------12分21.【解析】(1)由题可得 f (x) ex b ,当 b 0 时, f (x) 0 ,f (x) 在 (∞, ∞) 上单调递增;------------------------------------2 分 当 b 0 时,若 x ln(b) ,则 f (x) 0 , f (x) 在 (ln(b), ∞) 上单调递增,若 x ln(b) ,则 f (x) 0, f (x) 在 (∞,ln(b)) 上单调递减.------------------------------------------------------------------------4 分(2)令 g(x) ex bx 1 ln x(x 0) ,则 g(x) ex b 1 ,易知 xg(x) 单调递增且一定有大于 0 的零点,不妨设为 x0 ,则 g(x0) 0 ,即 ex0b1 x00,b1 x0 ex0,故若g(x)有两个零点,则g(x0) 0 ,即 ex0 bx0 1 ln x0e x0( 1 x0 ex0 ) x0 1 ln x0 ex0 ex0 x0 ln x0 0 ,--------------------------------------------------6 分令 h(x) ex exx ln x(x 0) ,则 h(x) ex x 1 0 , xh(x) 在 (0, ∞) 上单调递减.又 h(1) 0 ,ex0 ex0 x0 ln x0 0 的解集为 (1, ∞) , --------------------------------------------------------------------------------8 分b 1 ex0 ,b 1 e . x0当 b 1 e 时,有 ex bx 1 ln x x bx ln x ,则 g(eb) eb beb lneb (b 1)eb b ,----------------------------10 分令 m(x) (x 1)ex x (x 1)(ex 1) 1 ,由于 x 1 e ,x 1 2 e 0 , ex 1 ,故 m(x) (x 1)ex x 0 , g(eb) 0 ,故 g(eb)g(x0) 0,g(x) 在 (0,x0) 上有唯一零点, 另一方面,当 x ∞ 时, g(x) ∞ ,b 1 e .-----------12 分22.【解析】(1)曲线 C:(x 2)2 ( y 1)2 9 ,-----------------------2 分故 x2 y2 4x 2y 4 0 ,即曲线 C 的极坐标方程为 2 4 cos 2 sin 4 0 .-------4 分(2)由题可知直线 l 的斜率存在,否则无交点.设直线 l 的方程为 y 1 k(x 2) ,即 kx y 2k 1 0 .--------6 分而| AB | 2 ,则圆心到直线 l 的距离 d r2 AB 2 2 91 2 2 .--------------------------------------------------------------------------------8 分又 d | 4k | , | 4k | 2 2 ,解得 k 1 .k2 1k2 1直线 l 的方程为 x y 1 0 或 x y 3 0 .-------------------10 分23.【解析】(1)当 a 2 时,3,x 2 f (x) | x 2 | | x 1| 1 2x,1 x 2 .3,x 1 f (x) 1,当 x 2 时,不等式无解;--------------------------2 分当 1 x 2 时,令1 2x 1,解得 x 0 ,不等式的解集为1 x 0 ;当 x 1时, 3 1 ,符合题意. 综上可得,不等式 f (x) 1 的解集为 (∞,0] .---------------------5 分 (2) f (x) a2 1 0 恒成立等价于 f (x)max a2 1.| x a | | x 1| | (x a) (x 1) | | a 1| , | a 1| | x a | | x 1| | a 1| .---------------------------------8 分 | a 1| a2 1 ,a2 1 a 1 a2 1(a2 1 0) ,解得 a 1或 a 2 . 实数 a 的取值范围为 (∞,1] [2, ∞) .---------------------10 分理科数学答案第 3 页(共 3 页)。
2020年高考数学押题(全国III 卷)时间:120分钟满分:61分命卷人:*审核人:一、选择题(每小题5分,共15分)1. 【本题来自于江西师大附中唐志威】已知椭圆C 的焦点为F 1(−1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B|,|AB|=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1【答案】B【解析】命题意图: 通过此题来考察学生的对解析几何的基本掌握情况,对椭圆定义与公式的运用。
主要考察数形结合思想 试题分析: 本题主要考察椭圆方程的求解、椭圆与直线的关系。
解法一 由椭圆的焦点为,可知,又,,可设,则,,根据椭圆的定义可知,得,所以,,可知,根据相似可得代入椭圆的标准方程,得,,椭圆的方程为. 解法二 也可以先利用椭圆定义结合余弦定理求解即可.2. 【本题来自于江西师大附中唐志威】关于函数f(x)=sin |x |+|sinx |有下述四个结论: ①f(x)是偶函数 ②f(x)在区间(π2,π)单调递增 ③f(x)在[−π,π]有4个零点 ④f(x)的最大值为2其中所有正确结论的编号是( )A. ①②④B. ②④C. ①④D. ①③ 【答案】C【解析】命题意图: 试题分析: 解法一 因为,所以是偶函数,①正确, 因为,而,所以②错误, 画出函数在上的图像,很容易知道有零点,所以③错误, 结合函数图像,可知的最大值为,④正确,故答案选C. 解法二3. 【本题来自于江西师大附中唐志威】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,ΔABC 是边长为2的正三角形,E,F 分别是PA ,AB 的中点,∠CEF =90∘,则球O 的体积为( )A. 8√6πB. 4√6πC. 2√6πD. √6π 【答案】D【解析】命题意图: 试题分析: 解法一 设,则∴∵,∴,即,解得, ∴又易知两两相互垂直, 故三棱锥的外接球的半径为, ∴三棱锥的外接球的体积为,故选D. 解法二二、填空题(每小题5分,共10分) 4. 【本题来自于江西师大附中唐志威】甲乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该对获胜,决赛结束)根据前期的比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛相互独立,则甲队以4:1获胜的概率是__________.【答案】【解析】命题意图: 试题分析: 解法一 甲队要以,则甲队在前4场比赛中输一场,第5场甲获胜,由于在前4场比赛中甲有2个主场2个客场,于是分两种情况:. 解法二5. 【本题来自于江西师大附中唐志威】已知双曲线C:x 2a 2−y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ ∙F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为装订线【答案】【解析】命题意图: 试题分析: 解法一 由知是的中点,,又是的中点,所以为中位线且,所以,因此,又根据两渐近线对称,,所以,.解法二三、解答题(每小题12分,共36分)6. 【本题来自于江西师大附中唐志威】已知抛物线C:y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若|AF|+|BF|=4,求l 的方程; (2)若AP⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB|.【答案】(1); (2).【解析】命题意图:试题分析: 解法一 设直线的方程为,设,, (1)联立直线与抛物线的方程:消去化简整理得,,,,依题意可知,即,故,得,满足,故直线的方程为,即. (2)联立方程组消去化简整理得,,,,,,可知,则,得,,故可知满足,. 解法二7. 【本题来自于江西师大附中唐志威】已知函数f(x)=sinx −ln(1+x),f ′(x)为f(x)的导函数.证明: (1)f ′(x)在区间(−1,π2)存在唯一极大值点; (2)f(x)有且仅有2个零点.【答案】略【解析】命题意图: 试题分析: 解法一 (1)对进行求导可得,,取,则, 在内为单调递减函数,且,所以在内存在一个,使得,所以在内,为增函数;在内,为减函数,所以在在区间存在唯一极大值点; (2)由(1)可知当时,单调增,且,可得则在此区间单调减; 当时,单调增,且,则在此区间单调增;又则在上有唯一零点.当时,单调减,且,则存在唯一的,使得,在时,,单调增;当时,单调减,且,所以在上无零点; 当时,单调减,单调减,则在上单调减,,所以在上存在一个零点. 当时,恒成立,则在上无零点. 综上可得,有且仅有个零点. 解法二8. 【本题来自于江西师大附中唐志威】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.实验方案如下:每一轮选取两只白鼠对药效进行对比实验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮实验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止实验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮实验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得−1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得−1分;若都治愈或都未治愈则两种药均得0分.甲、乙班级: 姓名: 线订装两种药的治愈率分别记为α和β,一轮实验中甲药的得分记为X . (1)求X 的分布列; (2)若甲药、乙药在实验开始时都赋予4分,表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则,,,其中,,.假设α=0.5,β=0.8. (i)证明:为等比数列; (ii)求,并根据的值解释这种实验方案的合理性.【答案】(1)略;(2)略【解析】命题意图: 试题分析: 解法一 (1)一轮实验中甲药的得分有三种情况:、、. 得分时是施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则; 得分时是施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则; 得分时是都治愈或都未治愈,则. 则的分布列为:(2)(i)因为,, 则,,. 可得,则, 则,则, 所以为等比数列. (ii)的首项为,那么可得:,, ………………, 以上7个式子相加,得到, 则,则, 再把后面三个式子相加,得, 则.表示“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”,因为,,,则实验结果中“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”这种情况的概率是非常小的,而的确非常小,说明这种实验方案是合理的. 解法二。
2020年江苏省高考数学考前最后押题试卷(一)一、填空题(本大题共14小题,共70.0分)1.已知集合A={1,2,9},B={1,7},则A∩B=______.2.已知复数z=2+ii.求|z|=______ .3.某工厂生产A,B,C三种不同型号的产品,产品数量之比为k︰5︰3,现用分层抽样的方法抽出一个容量为120的样本,已知A种型号产品共抽取了24件,则C种型号产品抽取的件数为________.4.阅读下面的伪代码,最后输出的a,b,c分别为_________,_________,_________.a←3b←5c←6a←bb←cPrint a,b,c5._____________.6.双曲线x225−y27=1的两条渐近线方程为________.7.函数f(x)=2sin(ωx+ϕ)(ω>0)的部分图象如图所示,若AB=5,则ω的值为______ .8.在等差数列{a n}中,a3+a9=27−a6,S n表示数列{a n}的前n项和,则S11=______ .9.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥S−ABCD,该四棱锥的体积为4√23,则该半球的体积为__________.10. 设α∈(π,2π),若tan(α+π6)=2,则cos(π6−2α)的值为______ .11. △OBC 中,A 为BC 中点,OB 长为3,OC 长为5,则OA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ =_________. 12. 已知圆C :(x −2)2+y 2=4,点P 在直线l :y =x +3上,若圆C 上存在两点A 、B 使得PA ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,则点P 的横坐标的取值范围是______. 13. 已知函数,若存在实数a,b,c,d ,满足a <b <c <d ,且f(a)=f(b)=f(c)=f(d),则(c−2)(d−2)ab 的取值范围是______________.14. 在△ABC 中,若则的最大值为_______.二、解答题(本大题共11小题,共142.0分)15. 已知△ABC 中,(sinA −sinB)(sinA +sinB)=sinAsinC −sin 2C .(1)求sin B 的值;(2)若△ABC 的面积S △ABC =20√3,且AB +BC =13√2,求AC 的值.16. 如图,在三棱柱ABC A 1B 1C 1中,AB =AC ,A 1C ⊥BC 1,AB 1⊥BC 1,D ,E 分别是AB 1和BC 的中点.求证:(1) DE//平面ACC 1A 1; (2) AE ⊥平面BCC 1B 1.17. 某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m ,三块矩形区域的前、后与内墙各保留1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3m 宽的通道,如图.设矩形温室的室内长为x(m),三块种植植物的矩形区域的总. 面. 积.为S(m 2).(1)求S 关于x 的函数关系式; (2)求S 的最大值.18. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为,F 1和F 2,上顶点为B ,BF 2,延长线交椭圆于点A ,△ABF 的周长为8,且BF 1⃗⃗⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ =0. (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l ⊥AB 且与椭圆C 相交于两点P ,Q ,求|PQ|的最大值.19.已知函数f(x)=ax2+x−1e x.(1)求曲线y=f(x)在点(0,−1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.20.已知数列{a n}中,a1=1,其前n项和为S n,且满足a n=2S n22S n−1(n≥2,n∈N+).(Ⅰ)求证:数列{1S n}是等差数列;(Ⅱ)证明:13S1+15S2+17S3+⋯+12n+1S n<12.21.已知矩阵A=[110−1],二阶矩阵B满足AB=[2001],求矩阵B的特征值.22.在平面直角坐标系xOy中,以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρ=21−cosθ.(1)试将曲线C的极坐标方程转化为直角坐标系下的普通方程;(2)直线l过点M(m,0),交曲线C于A、B两点,若1|MA|2+1|MB|2的定值为14,求实数m的值.23.已知a,b,c都是正数,求证:a2b2+b2c2+c2a2a+b+c≥abc.24.如图,已知正方体ABCD−A1B1C1D1的棱长为2,点M,N分别为A1A和B1B的中点.(Ⅰ)求异面直线CM与D1N所成角的余弦值;(Ⅱ)求点D1到平面MDC的距离.25.设(2x−1)n=a0+a1x+a2x2+⋯+a n x n展开式中只有第1010项的二项式系数最大.(1)求n;(2)求|a0|+|a1|+|a2|+⋯+|a n|;(3)求a12+a222+a323+⋯+a n2n.-------- 答案与解析 --------1.答案:{1}解析:解:∵A={1,2,9},B={1,7};∴A∩B={1}.故答案为:{1}.进行交集的运算即可.考查列举法的定义,以及交集的运算.2.答案:√5解析:解:复数z=2+ii =−i(2+i)−i⋅i=1−2i.则|z|=√12+(−2)2=√5.故答案为:√5.利用复数的运算法则、模的计算公式即可得出.本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.答案:36解析:【分析】本题主要考查分层抽样的应用,利用条件建立比例关系是解决本题的关键,比较基础.根据分层抽样的定义求出k,即可得到结论.【解答】解:∵新产品数量之比依次为k:5:3,∴由kk+3+5=24120,解得k=2,则C种型号产品抽取的件数为120×310=36,故答案为36.4.答案:5;6;6解析:【分析】本题考查算法语句中的赋值语句,根据条件直接得出答案,属基础题.【解答】解:由算法语句可知:在该算法中给a赋值两次,最终a的值为5;给b赋值两次,最终b的值为6;给c赋值一次,c的值为6.故答案为5;6;6.5.答案:23解析:【分析】本题主要考查概率的计算,得出总的基本事件数和满足题意的基本事件数可得答案,属于基础题.【解答】解:从甲、乙、丙、丁四个人中随机选取两人,共有4×32=6种基本事件,而甲、乙两人有且仅有一人被选中的基本事件有2×2=4种,故所求概率为46=23.故答案为23.6.答案:y=±√75x解析:【分析】本题考查双曲线的方程和性质,考查渐近线方程的求法,属于基础题.由双曲线x2a2−y2b2=1(a>0,b>0)的渐近线方程为y=±bax,即可得到所求方程.【解答】解:由于双曲线x2a2−y2b2=1(a>0,b>0)的渐近线方程为y=±bax,则双曲线x225−y27=1的两条渐近线方程为y=±√75x.故答案为y=±√75x.7.答案:π3解析:解:∵函数f(x)=2sin(ωx+φ),图象中AB两点距离为5,设A(x1,2),B(x2,−2),∴(x2−x1)2+42=52,解得:x2−x1=3,∴函数的周期T=2×3=2πω,解得:ω=π3.故答案为:π3.设A(x1,2),B(x2,−2),由函数图象可得(x2−x1)2+42=52,解得:x2−x1=3,利用T=2×3=2πω,即可解得ω的值.本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了正弦函数的图象和性质,属于基础题.8.答案:99解析:解:由题意得,a3+a9=27−a6,根据等差数列的性质得,2a6=27−a6,解得a6=9,所以S11=11(a1+a11)2=11a6=99,故答案为:99.根据题意和等差数列的性质求出a6,由等差数列的前n项和公式得S11=11(a1+a11)2=11a6,代入求值即可.本题考查等差数列的性质、前n项和公式的灵活应用,属于基础题.9.答案:4√23π解析:设所给半球的半径为R,则棱锥的高ℎ=R,底面正方形中有AB=BC=CD=DA=√2R,所以其体积23R3=4√23,则R3=2√2,于是所求半球的体积为V=23πR3=4√23π.10.答案:45解析:解:∵tan(α+π6)=2=tanα+tanπ61−tanαtanπ6=tanα+√331−√33tanα,∴tanα=5√3−8.再由sin2α=2sinαcosαsin2α+ cos2α=2tanα1+tan2α=√3−16140−80√3,cos2α= cos2α−sin2α cos2α+sin2α=1−tan2α1+tan2α=√3140−80√3,可得cos(π6−2α)=cosπ6cos2α+sinπ6sin2α=45,故答案为45.利用两角和差的正切公式求得tanα=5√3−8,再利用同角三角函数的基本关系求得sin2α和cos2α的值,再由cos(π6−2α)=cos π6cos2α+sin π6sin2α,运算求得结果.本题主要考查两角和差的正切公式、余弦公式、同角三角函数的基本关系的应用,属于中档题.11.答案:−8解析: 【分析】本题考查平面向量的数量积运算,属于基础题目. 利用平面向量数量积公式求解即可. 【解答】解:∵A 为BC 中点,OB 长为3,OC 长为5,∴OA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =12(OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )·(OB ⃗⃗⃗⃗⃗⃗ −OC ⃗⃗⃗⃗⃗ )=12(OB ⃗⃗⃗⃗⃗⃗ 2−OC ⃗⃗⃗⃗⃗ 2)=12(32−52)=−8. 故答案为−8.12.答案:[−1−√72,−1+√72]解析: 【分析】本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,判断点P 到圆上的点的最小距离应小于或等于半径,是解题的关键,体现了转化的数学思想,属于较难题.由题意可得圆心C(2,0),推导出点P 到圆上的点的最小距离应小于或等于半径r =2.设点P 的坐标为(m,m +3),则√(m −2)2+(m +3−0)2−2≤2,由此能求出点P 的横坐标的取值范围. 【解答】解:由题意可得圆心C(2,0),∵点P 在直线l :y =x +3上,圆C 上存在两点A 、B 使得PA ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ , 如图,|AB|=2|PB|,|CD|=|CE|=r =2,∴点P到圆上的点的最小距离|PD|应小于或等于半径r=2.设点P的坐标为(m,m+3),则√(m−2)2+(m+3−0)2−2≤2,化简可得2m2+2m−3≤0,解得−1−√72≤m≤−1+√72,∴点P的横坐标的取值范围是:[−1−√72,−1+√72]故答案为:[−1−√72,−1+√72].13.答案:(0,4)解析:【分析】本题考查函数与方程的综合应用,解决问题的关键是画出函数图象,分析得到ab=1,d=8−c,进而得到(c−2)(d−2)ab=−c2+8c−12,结合二次函数性质求解范围.【解答】解:设f(a)=m,则y=m与f(x)的图象的交点的横坐标依次为a,b,c,d(如图),,且f(a)=f(b)=f(c)=f(d),a<b<c<d,,2<c<4,∴ab=1,d=8−c,∴(c−2)(d−2)ab=(c−2)(8−c−2)=−c2+8c−12=−(c−4)2+4,∵2<c<4,∴0<−(c−4)2+4<4,故答案为(0,4).14.答案:3√57解析:【分析】本题考查三角函数的切化弦,及两角和的正弦公式和诱导公式的运用,同时考查正弦定理和余弦定理的运用,属于中档题.先将题设条件转化为tanAtanB +tanAtanC=5,利用切化弦将等式整理得sin2AcosAsinBsinC=5,再根据正弦定理推出a2=5bccosA,根据余弦定理推出b2+c2=7a25,继而利用基本不等式得到cos A的最小值,即可利用同角三角函数关系式推出sin A的最大值.【解答】解:∵在△ABC中,tanAtanC+tanAtanB=5tanBtanC,∴tanAtanB +tanAtanC=5,∴sinAcosB cosAsinB +sinAcosCcosAsinC=5,∴sinA(cosBsinC+cosCsinB)cosAsinBsinC=5,∴sinAsin(B+C)cosAsinBsinC=5,∴sin2AcosAsinBsinC=5,由正弦定理得:a2bccosA=5,,又根据余弦定理得:a2=b2+c2−2bccosA,∴b2+c2=7a25,=b2+c27ab ≥2bc7bc=27,当且仅当“b=c”时取等号,∴cos2A≥449,∴1−sin2A≥449,∴sin2A≤4549,∴sinA≤3√57.故答案为3√57.15.答案:解:(1)记三角形ABC中,角A,B,C所对的边分别为a,b,c;依题意,sin2A−sin2B=sinAsinC−sin2C,由正弦定理得∴a2+c2−b2=ac,∴cosB=a2+c2−b22ac =ac2ac=12,∵B∈(0,π),∴B=π3,∴sinB=√32;(2)因为△ABC的面积为20√3,acsinB=20√3,所以12∴ac=80;∵AB+BC=13√2,即a+c=13√2,∴b2=a2+c2−2accos60°=(a+c)2−3ac=338−240=98,得b=7√2=AC.解析:本题主要考查解三角形的应用,结合正弦定理以及余弦定理建立方程关系是解决本题的关键.(1)由正弦定理和余弦定理进行转化求解即可(2)结合三角形的面积公式以及余弦定理建立方程关系进行求解即可.16.答案:证明:(1)连结A1B,在三棱柱ABC−A1B1C1中,AA1//BB1,且AA1=BB1,∴四边形AA1B1B是平行四边形,又∵D是AB1的中点,∴D是BA1的中点,在△BA1C中,D和E分别是BA1和BC的中点,∴DE//A1C,∵DE⊄平面ACC1A1,A1C⊂平面ACC1A1,∴DE//平面ACC1A1;(2)由(1)知DE//A1C,∵A1C⊥BC1,AB1⊥BC1,A1C∩DE=D,AB1,DE⊂平面ADE,∴BC1⊥平面ADE,∵AE⊂平面ADE,∴AE⊥BC1,在△ABC中,AB=AC,E是BC的中点,∴AE⊥BC,∵AE⊥BC1,AE⊥BC,BC1∩BC=B,BC1⊂平面BCC1B1,BC⊂平面BCC1B1,∴AE⊥平面BCC1B1.解析:本题考查线面平行、线面垂直的证明,考查空间中线线、线面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.(1)连结A 1B ,推导出四边形AA 1B 1B 是平行四边形,DE//A 1C ,由此能证明DE//平面ACC 1A 1. (2)推导出BC 1⊥平面ADE ,从而AE ⊥BC 1,推导AE ⊥BC ,由此能证明AE ⊥平面BCC 1B 1.17.答案:解:(1)由题设得S =(x −8)(900x−2)=−2x −7200x+916,x ∈(8,450).(2)因为8<x <450, 所以2x +7200x≥2√2x ⋅7200x=240,当且仅当x =60时等号成立. 从而S ≤676.答:当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,最大为676 m 2.解析:【分析】本题考查了函数模型的应用以及利用基本不等式求最值,是一般题. (1)由题设得S =(x −8)(900x−2)=−2x −7200x+916,x ∈(8,450).(2)利用基本不等式求最值.18.答案:解:(Ⅰ)由椭圆定义可得△ABF 1的周长为4a ,即有4a =8,解得a =2,由B(0,b),F 1(−c,0),F 2(c,0),BF 1⃗⃗⃗⃗⃗⃗⃗ =(−c,−b),BF 2⃗⃗⃗⃗⃗⃗⃗ =(c,−b),且BF 1⃗⃗⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ =0,则−c 2+b 2=0,即为b =c ,又b 2+c 2=a 2=4,解得b =c =√2,则椭圆的方程为x24+y22=1;(Ⅱ)由B(0,√2),F2(√2,0),可得直线AB的斜率为−1,由l⊥AB,可得直线l的斜率为1,设直线l的方程为y=x+t,代入椭圆方程,可得3x2+4tx+2t2−4=0,由判别式大于0,即16t2−12(2t2−4)>0,解得−√6<t<√6.设P(x1,y1),Q(x2,y2),则x1+x2=−43t,x1x2=2t2−43,|PQ|=√1+1⋅√(x1+x2)2−4x1x2=√2⋅√16t29−8t2−163=√23√48−8t2,当t=0时,|PQ|取得最大值,且为4√63.则有|PQ|的最大值为4√63.解析:(Ⅰ)由椭圆定义可得△ABF1的周长为4a,解得a=2,再由向量的数量积的坐标表示,可得b=c,结合椭圆的a,b,c的关系,可得椭圆方程;(Ⅱ)由两直线垂直的条件:斜率之积为−1,可得直线l的斜率,进而设出直线l的方程,联立椭圆方程,运用韦达定理和弦长公式,化简整理,可得弦长的最大值.本题考查椭圆的定义、方程和性质,主要考查椭圆方程的运用,联立直线方程,运用韦达定理和弦长公式,考查运算能力,属于中档题.19.答案:(1)解:f′(x)=−ax2+(2a−1)x+2e x,f′(0)=2,因此曲线y=f(x)在点(0,−1)处的切线方程是2x−y−1=0.(2)证明:当a≥1时,f(x)+e≥(x2+x−1+e x+1)e−x.令g(x)=x2+x−1+e x+1,则g′(x)=2x+1+e x+1,当x<−1时,g′(x)<0,g(x)单调递减;当x>−1时,g′(x)>0,g(x)单调递增;所以g(x)≥g(−1)=0.因此f(x)+e≥0.解析:本题考查利用导数求曲线的切线,考查恒成立问题,考查利用导数求函数的单调性以及最值,解题的关键是正确求导.(1)求出f′(x)得出f′(0),进而得出切线方程;(2)构造新函数g(x),求出g′(x)得出g(x)的单调性,进而得出g(x)≥g(−1)=0,不等式得证.20.答案:证明:(Ⅰ)数列{a n }中,a 1=1,其前n 项和为S n ,且满足a n =2S n 22Sn −1(n ≥2,n ∈N +).则:当n ≥2时,S n −S n−1=2S n 22Sn −1,整理得:S n−1−S n =2S n−1S n , 所以:1S n−1Sn−1=2(常数).所以:数列{1S n}是以1S 1=1为首项,2为公差的等差数列.证明:(Ⅱ)由(Ⅰ)得:1S n=1+2(n −1)=2n −1,所以:S n =12n−1, 当n =1时,符合通项. 故:12n+1⋅S n =12(12n−1−12n+1), 所以:13S 1+15S 2+17S 3+⋯+12n+1S n , =12(1−13+13−15+⋯+12n−1−12n+1),=1(1−1)<1解析:(Ⅰ)直接利用递推关系式求出数列的通项公式. (Ⅱ)利用列想想效法求出数列的和.本题考查的知识要点:利用递推关系式求出数列的通项公式及应用,利用裂项相消法求出数列的和,主要考查学生的运算能力和转化能力,属于基础题型. 21.答案:解:设矩阵B =[a b cd],因为AB =[2001], 所以[110−1][abcd]=[2001]得{a +c =2b +d =0−c =0−d =1即{a =2b =1c =0d =−1所以B =[210−1], 则矩阵B 的特征多项式f(λ)=|λE −B|=(λ+1)(λ−2). 令f(λ)=0,得λ=2或λ=−1,所以矩阵B 的特征值为2或−1.解析:【分析】本题主要考查矩阵的乘法和矩阵的特征值,考查考生的化归与转化能力和运算求解能力. 设矩阵B =[abc d],由AB =[2001],得[110−1][a bc d]=[2001],求得a ,b ,c ,d 的值,进而即可求得结果.22.答案:解:(1)曲线C 的极坐标方程为ρ=21−cosθ.转化为普通方程:y 2=4x +4.(2)设直线l 的参数方程{x =m +tcosαy =tsinα为为参数,α为直线l 的倾斜角,),代入C 的方程y 2=4x +4,整理得,sin 2αt 2−4tcosα−(4m +4)=0, 所以t 1+t 2=4cosαsin 2α,t 1⋅t 2=−(4m+4)sin 2α,1|MA|2+1|MB|2=1t 12+1t 22=(t 1+t 2)2−2t 1t 2t 12t 22=14,整理得:16cos 2α+(8m+8)sin 2α(4m+4)2=14,解得:m =1.解析:本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,一元二次方程根与系数的关系的应用.属于中档题.(1)直接利用转换关系把参数方程和极坐标方程与直角坐标方程进行转化. (2)利用方程组建立关于t 的一元二次方程,利用根和系数的关系求出结果.23.答案:证明:∵a ,b ,c 都是正数,∴a 2b 2+b 2c 2≥2ab 2c ,a 2b 2+c 2a 2≥2a 2bc ,c 2a 2+b 2c 2≥2abc 2 ∴2(a 2b 2+b 2c 2+c 2a 2)≥2ab 2c +2a 2bc +2abc 2 ∴a 2b 2+b 2c 2+c 2a 2≥ab 2c +a 2bc +abc 2∴a 2b 2+b 2c 2+c 2a 2a+b+c≥abc .解析:利用基本不等式,再相加,即可证得结论.本题考查利用基本不等式证明不等式,考查学生的计算能力,属于基础题.24.答案:解:(Ⅰ)分别是以DA 1、DC 1、DD 1所成在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系. 则M(2,0,1)C(0,2,0)N(2,2,1)D 1(0,0,2) ∴MC ⃗⃗⃗⃗⃗⃗ =(−2,2,−1)D 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =(−2,−2,1)∴cos <MC ⃗⃗⃗⃗⃗⃗ ,D 1N ⃗⃗⃗⃗⃗⃗⃗⃗ >=4−4−13×3=−19∴异面直线CM 与D 1N 所成角的余弦值为19(Ⅱ)由(Ⅰ)可得DM ⃗⃗⃗⃗⃗⃗⃗ =(2,0,1),DC ⃗⃗⃗⃗⃗ =(0,2,0),DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,2) 设面DMC 的法向量为n ⃗ =(x,y,z) 则{2x +z =0y =0⇒n ⃗ =(1,0,−2) ∴点D 1到平面MDC 的距离ℎ=|DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||n ⃗⃗ |=4√5=4√55解析:(Ⅰ)分别是以DA 1、DC 1、DD 1所成在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,可得MC ⃗⃗⃗⃗⃗⃗ 与D 1N ⃗⃗⃗⃗⃗⃗⃗⃗ 的坐标,可得cos <MC ⃗⃗⃗⃗⃗⃗ ,D 1N ⃗⃗⃗⃗⃗⃗⃗⃗ >,取其绝对值即可;(Ⅱ)设面DMC 的法向量为n ⃗ =(x,y,z),由垂直关系可得xyz 的关系,而点D 1到平面MDC 的距离ℎ=|DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||n ⃗⃗ |,计算可得.本题考查异面直线所成的角,以及点到平面的距离,建立空间直角坐标系是解决问题的关键,属中档题.25.答案:解:(1)由二项式系数的对称性,可得展开式共计2019项,且n2+1=1010,∴n =2018.(2)|a 0|+|a 1|+|a 2|+⋯+|a n |,即(2x +1)n =(2x +1)2018的展开式中各项系数和, 令x =1,可得|a 0|+|a 1|+|a 2|+⋯+|a n |=32018.(3)在(2x −1)n =a 0+a 1x +a 2x 2+⋯+a n x n 中,令x =0,可得a 0=1, 再令x =12,可得1+a 12+a 222+a 323+⋯+an2n =0,∴a 12+a222+a 323+⋯+an2n =−1.解析:本题主要考查二项式定理的应用,属于中档题.(1)由二项式系数的对称性,可得展开式共计2019项,n2+1=1010,由此求得n 的值. (2)|a 0|+|a 1|+|a 2|+⋯+|a n |,即(2x +1)n =(2x +1)2018的展开式中各项系数和,令x =1,可得|a 0|+|a 1|+|a 2|+⋯+|a n |的值. (3)先求得a 0=1,再令x =12,可得1+a 12+a 222+a 323+⋯+a n 2n =0,由此可得a 12+a 222+a 323+⋯+an 2n 的值.。
2020年全国高考数学试卷及答案(名师押题预测试卷+解析答案,值得下载)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,则(A B = )A .(1,2)B .(1,)+∞C .(1,2]D .(2,)+∞【解析】解:,,则【答案】A . 2.已知向量,(3,1)b =,若//a b ,则(a b = ) A .1 B .1-C .10-D .1±【解析】解:,(3,1)b =, 若//a b ,则,1m ∴=-,【答案】C .3.已知α是第二象限角,若,则sin (α= )A .223-B .13-C .13D .223【解析】解:α是第二象限角,若可得1cos 3α=-,所以.【答案】D .4.等差数列{}n a 的前项和为n S ,若3a 与8a 的等差中项为10,则10(S = ) A .200B .100C .50D .25【解析】解:由等差数列的性质可得:,则.【答案】B .5.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题: ①若m α⊂,//n α,则//m n ; ②若//m α,//m β,则//αβ; ③若n αβ=,//m n ,则//m α且//m β;④若m α⊥,m β⊥,则//αβ. 其中真命题的个数是( ) A .0B .1C .2D .3【解析】解:①若m α⊂,//n α,则m 与n 平行或异面,故不正确; ②若//m α,//m β,则α与β可能相交或平行,故不正确; ③若n αβ=,//m n ,则//m α且//m β,m 也可能在平面内,故不正确;④若m α⊥,m β⊥,则//αβ,垂直与同一直线的两平面平行,故正确 【答案】B .6.执行如图所示的程序框图,则输出的n 值是( )A.11 B.9 C.7 D.5 【解析】解:模拟程序的运行,可得1n=,0S=不满足条件37S,执行循环体,113S=⨯,3n=不满足条件37S,执行循环体,,5n=不满足条件37S,执行循环体,,7n=此时,满足条件37S,退出循环,输出n的值为7.【答案】C.7.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD-中,AB⊥平面BCD,BC CD⊥,且,M为AD的中点,则异面直线BM与CD夹角的余弦值为()A.23B.34C.33D.24【解析】解:以D为原点,DB为x轴,DC为y轴,过D作平面BDC的垂线为z轴,建立空间直角坐标系,设,则(1A,0,1),(1B,0,0),(0C,0,0),(0D,1,0),111 (,,)222 M,则,(0CD =,1,0),设异面直线BM 与CD 夹角为θ,则.∴异面直线BM 与CD 夹角的余弦值为33. 【答案】C .8.设0a >且1a ≠,则“b a >”是“log 1a b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解析】解:充分性:当01a <<时,“b a >”时“log 1a b <”故充分性不成立. 必要性:当log 1a b >时,若01a <<,则0b a <<,故充分性不成立. 综上,“b a >”是“log 1a b >”的既不充分也不必要条件. 【答案】D .9.某空间几何体的三视图如图所示,其中正视图和俯视图均为边长为1的等腰直角三角形,则此空间几何体的表面积是( )A.322+B.312+C.3122++D.23+【解析】解:由题意可知几何体的直观图如图是正方体的一部分,三棱锥A BCD-,正方体的棱长为1,所以几何体的表面积为:.【答案】C.10.程序框图如图,若输入的2a=,则输出的结果为()A .20192B .1010C .20232D .1012【解析】解:模拟程序的运行,可得2a =,0S =,0i = 执行循环体,2S =,12a =,1i = 满足条件2019i ,执行循环体,122S =+,1a =-,2i = 满足条件2019i ,执行循环体,1212S =+-,2a =,3i = 满足条件2019i ,执行循环体,,12a =,4i = ⋯由于,观察规律可知,满足条件2019i ,执行循环体,,12a =,2020i = 此时,不满足条件2019i ,退出循环,输出.【答案】D .11.将三颗骰子各掷一次,设事件A = “三个点数互不相同”, B = “至多出现一个奇数”,则概率()P A B 等于( ) A .14B .3536C .518D .512【解析】解:将三颗骰子各掷一次,设事件A = “三个点数互不相同”, B = “至多出现一个奇数”, 基本事件总数,AB 包含的基本事件个数,∴概率.【答案】C .12.已知定义在R 上的连续可导函数()f x 无极值,且x R ∀∈,,若在3[,2]2ππ上与函数()f x 的单调性相同,则实数m 的取值范围是( ) A .(-∞,2]- B .[2-,)+∞ C .(-∞,2] D .[2-,1]-【解析】解:定义在R 上的连续可导函数()f x 无极值,方程()0f x '=无解,即()f x 为R 上的单调函数,,则()2018x f x +为定值, 设,则,易知()f x 为R 上的减函数,,,又()g x 与()f x 的单调性相同, ()g x ∴在R 上单调递减,则当3[,2]2x ππ∈,()0g x '恒成立, 即,当3[,2]2x ππ∈,则5[63x ππ+∈,13]6π, 则当26x ππ+=时,取得最大值2,此时取得最小值2-,即2m -,即实数m 的取值范围是(-∞,2]-, 【答案】A .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.函数1()x f x e -=在(1,1)处切线方程是 . 【解析】解:函数1()x f x e -=的导数为1()x f x e -'=,∴切线的斜率k f ='(1)1=,切点坐标为(1,1),∴切线方程为1y x -=,即y x =.故答案为:y x =.14.已知P 是抛物线24y x =上一动点,定点(0,22)A ,过点P 作PQ y ⊥轴于点Q ,则||||PA PQ +的最小值是 .【解析】解:抛物线24y x =的焦点坐标(1,0),P 是抛物线24y x =上一动点,定点(0,22)A ,过点P 作PQ y ⊥轴于点Q ,则||||PA PQ +的最小值,就是PF 的距离减去y 轴与准线方程的距离, 可得最小值为:.故答案为:2.15.设n S 是数列{}n a 的前n 项和,点(n ,*)()n a n N ∈在直线2y x =上,则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为 1nn + .【解析】解:点(n ,*)()n a n N ∈在直线2y x =上,2n a n ∴=..∴.则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和.故答案为:1nn +. 16.已知球O 的内接圆锥体积为23π,其底面半径为1,则球O 的表面积为 254π .【解析】解:由圆锥体积为23π,其底面半径为1, 可求得圆锥的高为2, 设球半径为R ,可得方程:,解得54R =, ∴,故答案为:254π. 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知a ,b ,c 分别是ABC ∆的三个内角A ,B ,C 的对边,若10a =,角B 是最小的内角,且.(Ⅰ)求sin B 的值;(Ⅱ)若ABC ∆的面积为42,求b 的值. 【解析】(本题满分为12分) 解:(Ⅰ)由、及正弦定理可得:,⋯⋯由于sin 0A >,整理可得:,又sin 0B >, 因此得3sin 5B =.⋯⋯ (Ⅱ)由(Ⅰ)知3sin 5B =, 又ABC ∆的面积为42,且10a =, 从而有,解得14c =,⋯⋯又角B 是最小的内角, 所以03Bπ<,且3sin 5B =,得4cos 5B =,⋯⋯ 由余弦定理得,即62b =.⋯⋯18.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、0~2000步,(说明:“0~2000”表示“大于或等于0,小于2000”,以下同理),B 、2000~5000步,C 、5000~8000步,D 、8000~10000步,E 、步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.若某人一天的走路步数大于或等于8000,则被系统认定为“超越者”,否则被系统认定为“参与者”. (Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在2000~8000的人数;(Ⅱ)若在大学生M 该天抽取的步数在8000~12000的微信好友中,按男女比例分层抽取9人进行身体状况调查,然后再从这9位微信好友中随机抽取4人进行采访,求其中至少有一位女性微信好友被采访的概率;(Ⅲ)请根据抽取的样本数据完成下面的22⨯列联表,并据此判断能否有95%的把握认为“认定类别”与“性别”有关?参与者超越者 合计 男 20 女20合计 40附:,,20()P K k0.10 0.050 0.010 0k 2.706 3.841 6.635【解析】解:(Ⅰ)所抽取的40人中,该天行走2000~8000步的人数:男12人, 女14人⋯⋯,400位参与“微信运动”的微信好友中,每天行走2000~8000步的人数 约为:人⋯⋯;(Ⅱ)该天抽取的步数在8000~12000的人数:男8人,女4人, 再按男女比例分层抽取9人,则其中男6人,女3人⋯⋯所求概率(或⋯⋯ (Ⅲ)完成22⨯列联表⋯⋯参与者 超越者 合计男 12 8 20女 16 4 20合计 28 12 40计算,⋯⋯因为1.905 3.841<,所以没有理由认为“认定类别”与“性别”有关, 即“认定类别”与“性别”无关 ⋯⋯19.如图,在正三棱柱中,12AB AA ==,E ,F 分别为AB ,11B C 的中点.(Ⅰ)求证:1//B E 平面ACF ;(Ⅱ)求CE 与平面ACF 所成角的正弦值.【解析】证明:(Ⅰ)取AC 的中点M ,连结EM ,FM ,在ABC ∆中, 因为E 、M 分别为AB ,AC 的中点,所以//EM BC 且12EM BC =, 又F 为11B C 的中点,11//B C BC ,所以1//B F BC 且112B F BC =,即1//EM B F 且1EM B F =,故四边形1EMFB 为平行四边形,所以,又MF ⊂平面ACF ,1B E ⊂/平面ACF ,所以1//B E 平面ACF .⋯⋯解:(Ⅱ)取BC 中点O ,连结AO 、OF ,则AO BC ⊥,OF ⊥平面ABC ,以O 为原点,分别以OB 、AO 、OF 为x 轴、y 轴、z 轴,建立空间直角坐标系 ⋯⋯ 则有, 得 设平面ACF 的一个法向量为(n x =,y ,)z则00n CA n CF ⎧=⎪⎨=⎪⎩,即3020x y x z ⎧-=⎪⎨+=⎪⎩,令3z =-,则(23n =,2,3)-,⋯⋯ 设CE 与平面ACF 所成的角为θ,则,所以直线CE 与平面ACF 所成角的正弦值为21919.⋯⋯。
2020年高考数学(文)终极押题卷(全解全析)1.【答案】B【解析】集合{|11}A x x =-<<,{|02}B x x =≤≤,则{|01}A B x x =≤<I . 故选B. 2.【答案】D【解析】∵m <1,∴m ﹣1<0,∴复数2+(m ﹣1)i 在复平面内对应的点(2,m-1)位于第四象限,故选D . 3.【答案】A【解析】已知()1,0A ,()3,2,B 向量()3,4AC =--u u u v , BC AC AB =-u u u v u u u v u u u v ,()()2,2,5,6AB BC ==--u u u r u u u r , ()()·2,25,6101222.AB BC =⋅--=--=-u u u vu u u v故答案为A. 4.【答案】C 【解析】因为13212112(0,1),log 0,log 1,33a b c -=∈=<=>所以.b a c <<选C . 5.【答案】A【解析】由题意,根据频率分布直方图,可得获得复赛资格的人数为()100010.00252020.007520⨯-⨯-⨯⨯=650人, 故选:A . 6.【答案】A【解析】若命题p :“[]1,e ∀∈,ln a x >,为真命题,则ln 1a e >=,若命题q :“x R ∃∈,240x x a -+=”为真命题,则1640a ∆=-≥,解得4a ≤, 若命题“p q ∧”为真命题,则p ,q 都是真命题, 则1{4a a >≤,解得:14a <≤.故实数a 的取值范围为(]1,4. 故选A . 7.【答案】C【解析】由三视图可得四棱锥P ABCD -,在四棱锥P ABCD -中,2,2,2,1PD AD CD AB ====, 由勾股定理可知:22,22,3,5PA PC PB BC ====,则在四棱锥中,直角三角形有:,,PAD PCD PAB ∆∆∆共三个,故选C.8.【答案】B【解析】根据已知函数()()sin f x A x ωϕ=+(其中0A >,)2πϕ<的图象过点,03π⎛⎫ ⎪⎝⎭,7,112π⎛⎫-⎪⎝⎭, 可得1A =,1274123πππω⋅=-,解得:2ω=. 再根据五点法作图可得23πϕπ⋅+=,可得:3πϕ=,可得函数解析式为:()sin 2.3f x x π⎛⎫=+ ⎪⎝⎭故把()sin 23f x x π⎛⎫=+⎪⎝⎭的图象向左平移12π个单位长度, 可得sin 2cos236y x x ππ⎛⎫=++= ⎪⎝⎭的图象, 故选B . 9.【答案】C【解析】()211sin sin 11x x xe f x x x e e -⎛⎫=-= ⎪++⎝⎭, 则()()()()111sin sin sin 111x x xx x xe e ef x x x x f x e e e------=-=⋅-==+++,是偶函数,排除B 、D.当0,2x π⎛⎫∈ ⎪⎝⎭时,e 1x>,sin 0x >,即()0f x <,排除A. 故选:C.10.【答案】D【解析】根据题意可知,第一天12S =,所以满足2S S =,不满足1S S i=-,故排除AB , 由框图可知,计算第二十天的剩余时,有2SS =,且21i =,所以循环条件应该是20i ≤. 故选D. 11.【答案】C【解析】设t =2x ,函数f (t )=t 2﹣mt +m +3有两个不同的零点,()11,2t ∈,()24,t ∈+∞,∴()()()102040f f f ><<⎧⎪⎨⎪⎩,即130423016430m m m m m m -++>⎧⎪-++<⎨⎪-++<⎩,解得:m 7> 故选:C 12.【答案】C【解析】因为直线y =与双曲线C 的一个交点P 在以线段12F F 为直径的圆上, 所以12PF PF ⊥,不妨令P 在第一象限内, 又O 为12F F 中点,12(c,0),(,0)F F c -,所以1212OP F F c ==,因为直线y =的倾斜角为260POF ∠=o,所以2POF ∆为等边三角形,所以2PF c =, 因此,在12Rt PF F ∆中,1PF ==,由双曲线的定义可得:212PF PF c a -=-=, 所以双曲线C的离心率为1c e a ===. 故选C13.【答案】12【解析】∵函数()()()()2x x 2x 0f x f x 3x 0⎧-≤⎪=⎨-⎪⎩,,>,∴f (5)=f (2)=f (﹣1)=(﹣1)2﹣2﹣112=. 故答案为12. 14.【答案】2【解析】抛物线y 2=2px (p >0)的准线方程为x=﹣, 因为抛物线y 2=2px (p >0)的准线与圆(x ﹣3)2+y 2=16相切, 所以3+=4,解得p=2. 故答案为2 15.【答案】22【解析】因为cos 2cos B C =,所以)222222222a b c a c b ac ab+-+-=,结合2c b =,化简得3a b =,从而有222b c a +=,即在ABC ∆为直角三角形,将2c b =,3a =222b c a +=,得1b =,于是2c =1222ABC S bc ∆==16.2015【解析】取BDC ∆的外心为1O ,设O 为球心,连接1OO ,则1OO ⊥平面BDC ,取BD 的中点M ,连接AM ,1O M ,过O 做OG AM ⊥于点G ,易知四边形1OO MG 为矩形,连接OA ,OC ,设OA R =,1OO MG h ==.连接MC ,则1O ,M ,C 三点共线,易知3MA MC ==133OG MO ==1233CO =.在Rt AGO ∆和1Rt OO C ∆中,222GA GO OA +=,22211O C O O OC +=,即)22233h R +=⎝⎭,22223h R +=⎝⎭,所以33h =,253R =,得153R=.所以342015==327O V R ππ球.17.(12分)【解析】(1)设数列{a n }的公比为q,由23a =9a 2a 6得23a =924a ,所以q 2=19. 由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13. 故数列{a n }的通项公式为a n =13n .(6分)(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-()21n n +.故()1211211n b n n n n ⎛⎫=-=-- ⎪++⎝⎭. 121111111122122311n n b b b n n n L L ⎡⎤⎛⎫⎛⎫⎛⎫+++=--+-++-=- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦ 所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为21nn -+.(12分) 18.(12分)【解析】(1)证明:Q 在正方形ABCD 中,AB AD ⊥,CD BC ⊥,∴在三棱锥M DEF -中,有MD MF ⊥,MD ME ⊥,且ME MF M ⋂=,MD ∴⊥面MEF ,则MD EF ⊥;(5分) (2)解:E Q 、F 分别是边长为2的正方形ABCD 中AB 、BC 边的中点,1BE BF ∴==,111122MEF BEF S S V V ∴==⨯⨯=,由(1)知,111123323M DEF MEF V S MD -=⋅=⨯⨯=V .(12分)19.(12分)【解析】(1)选择模型①.理由如下:根据残差图可以看出,模型①的估计值和真实值比较相近,模型②的残差值相对较大一些,所以模型①的拟合效果相对较好.(5分)(2)由(1)可知,y 关于x 的回归方程为$$2y bx a =+$, 令2t x =,则$$y bta =+$. 由所给数据可得8111(1491625364964)25.588i i t t ===⨯+++++++=∑.8111(0.40.8 1.6 3.1 5.17.19.712.2)588i i y y ===⨯+++++++=∑,()()()81921686.80.193570ii i i i tt y y bt t ==--∴==≈-∑∑$ $50.1925.50.16ay bt =-≈-⨯≈$, 所以y 关于x 的回归方程为$20.190.16y x =+预测该地区2020年新增光伏装机量为$20.19100.1619.16y =⨯+=(兆瓦).(12分) 20.(12分)【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎨=⎩.故C 的方程为2214x y +=.(4分)(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且2t <,可得A ,B 的坐标分别为(t2),(t,.则121k k +=-=-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得()222418440kx kmx m +++-=由题设可知()22=16410k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841km k -+,x 1x 2=224441m k -+. 而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ ()()12121221kx x m x x x x +-+=.由题设121k k +=-,故()()()12122110k x x m x x ++-+=.即()()22244821104141m km k m k k --+⋅+-⋅=++. 解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即()1122m y x ++=--, 所以l 过定点(2,1-).(12分) 21.(12分)【解析】(1)∵()ln 2x f x a x a b a =+--'=ln 2x a x b -,∴()1f '=-2b=-1,()312f b a =--=-, ∴b=12,a=1.(4分) (2)若0a ≤,12b =时,()ln x f x a x '=-,在x ()1,e ∈上()0f x '<恒成立,∴f (x )在区间()1,e 上是减函数. 不妨设1<x 1<x 2<e ,则()()12f x f x >, 则()()12123f x f x x x -<-等价于()()122133f x f x x x -<-.即()()112233f x x f x x +<+,即函数()()3h x f x x =+在x ∈()1,e 时是增函数.∴()ln x 30h x a x -+'=≥,即3x a lnx -≥在x ∈()1,e 时恒成立.令g(x)=3x lnx-,则()()231lnx x g x lnx -+=',令31y lnx x =-+,则y '=1x -23x =23x x -<0在x ∈()1,e 时恒成立, ∴31y lnx x =-+在x ∈()1,e 时是减函数,且x=e 时,y=3e>0,∴y>0在x ∈()1,e 时恒成立,即()0g x '>在x ∈()1,e 时恒成立, ∴ g(x) 在x ∈()1,e 时是增函数,∴g(x)<g(e)=e-3 ∴e 3a ≥-.所以,实数a 的取值范围是[]e 30,-.(12分)22.[选修4−4:坐标系与参数方程](10分)【解析】(1)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=.(4分)(2)由题意,可设点P 的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C的距离()d α的最小值,π()sin()2|3d αα==+-.当且仅当π2π()6k k α=+∈Z 时,()d α取得最小值,,此时P 的直角坐标为31(,)22.(10分)23.[选修4−5:不等式选讲](10分)【解析】(1)由题意, ()2,12,112,1x f x x x x -≤-⎧⎪=-⎨⎪≥⎩<<,①当1x ≤-时,()21f x =-<,不等式()1f x ≥无解; ②当11x -<<时,()21f x x =≥,解得12x ≥,所以112x ≤<. ③当1x ≥时,()21f x =≥恒成立,所以()1f x ≥的解集为1,2⎡⎫+∞⎪⎢⎣⎭.(5分) (2)当x ∈R 时,()()11112f x x x x x =+--≤++-=;()()222222g x x a x b x a x b a b =++-≥+--=+.而()()()22222222222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯==⎪⎝⎭,当且仅当1a b ==时,等号成立,即222a b +≥,因此,当x ∈R 时, ()()222f x a b g x ≤≤+≤,所以,当x R ∈时, ()()f x g x ≤.(10分)。
数学是“教会年轻人思考”的科学, 针对代数推理型问题, 我们不但要寻求它的解法是什么, 还要思考有没有其它的解法, 更要反思为什么要这样解, 不这样解行吗?我们通过典型的问题, 解析代数推理题的解题思路, 方法和技巧. 在解题思维的过程中, 既重视通性通法的演练, 又注意特殊技巧的作用, 同时将函数与方程, 数形结合, 分类与讨论, 等价与化归等数学思想方法贯穿于整个的解题训练过程当中.例1设函数134)(,4)(2+=--+=x x g x x a x f ,已知]0,4[-∈x ,时恒有)()(x g x f ≤,求a 的取值范围.讲解: 由得实施移项技巧,)()(x g x f ≤ ,134:,4:,134422a x y L x x y C a x x x -+=--=-+≤--令, 从而只要求直线L 不在半圆C 下方时, 直线L 的y 截距的最小值. 当直线与半圆相切时,易求得35(5=-=a a 舍去). 故)()(,5x g x f a ≤-≤时.本例的求解在于,实施移项技巧 关键在于构造新的函数, 进而通过解几模型进行推理解题, 当中, 渗透着数形结合的数学思想方法, 显示了解题思维转换的灵活性和流畅性.还须指出的是: 数形结合未必一定要画出图形, 但图形早已在你的心中了, 这也许是解题能力的提升, 还请三思而后行.例2 已知不等式32)1(log 121212111+-≥+++++a n n n a Λ对于大于1的正整数n 恒成立,试确定a 的取值范围. 讲解: 构造函数n n n n f 212111)(+++++=Λ,易证(请思考:用什么方法证明呢?))(n f 为增函数.∵n 是大于1的 正整数,.127)2()(=≥∴f n f 32)1(log 121212111+-≥+++++a n n n a Λ要使对一切大于1的正整数恒成立,必须12732)1(log 121≤+-a a , 即.2511,1)1(log +≤<-≤-a a a 解得 这里的构造函数和例1属于同类型, 学习解题就应当在解题活动的过程中不断的逐类旁通, 举一反三, 总结一些解题的小结论. 针对恒成立的问题, 函数最值解法似乎是一种非常有效的同法, 请提炼你的小结论.例3 已知函数)0(49433)(22>++--=b b x x x f 在区间[-b ,1-b]上的最大值为25,求b 的值.讲解: 由已知二次函数配方, 得 .34)21(3)(22+++-=b x x f 2321,121)1(≤≤-≤-≤-b b b 即当时,)(x f 的最大值为4b 2+3=25. ;23214252矛盾与≤≤=∴b b ]1,[)(,210,21)2(b b x f b b --<<-<-在时即当上递增, ;25)23()(2<+=-∴b b f ]1,[)(23,121)3(b b x f b b -->->-在时,即当上递增, ∴25,2541596)1(2==-+=-b b b f 解得. 关于二次函数问题是历年高考的热门话题, 值得读者在复课时重点强化训练. 针对抛物线顶点横坐标21在不在区间[-b ,1-b], 自然引出解题形态的三种情况, 这显示了分类讨论的数学思想在解题当中的充分运用. 该分就分, 该合就合, 这种辨证的统一完全依具体的数学问题而定, 需要在解题时灵活把握.例4已知).1(1)(-≠+=x x x x f )()1(x f 求的单调区间;(2)若.43)()(:,)(1,0>+-=>>c f a f b b a c b a 求证 讲解: (1) 对 已 知 函 数 进 行 降 次 分 项 变 形 , 得 111)(+-=x x f , .),1()1,()(上分别单调递增和在区间+∞---∞∴x f(2)首先证明任意).()()(,0y f x f y x f y x +<+>>有事实上,)(1111)()(y x xy f y x xy y x xy y x xy y x xy xy y y x x y f x f ++=+++++>++++++=+++=+ 而 ()),()1(,y x f y x xy f y x y x xy +>+++>++知由)()()(y x f y f x f +>+∴Θ,04)2(1)(122>=+-≥-=a b b a b b a c .34222≥++≥+∴aa a c a 43)3()()()(=≥+>+∴f c a f c f a f . 函 数 与 不 等 式 证 明 的 综 合 题 在 高 考 中 常 考 常 新 , 是 既 考 知 识 又 考 能 力 的 好 题 型 , 在 高 考 备 考 中 有 较 高 的 训 练 价 值.. 针对本例的求解, 你能够想到证明任意).()()(,0y f x f y x f y x +<+>>有采用逆向分析法, 给出你的想法!例5 已知函数f (x )=a a a x x+(a>0,a≠1).(1) 证明函数f (x )的图象关于点P (21,21)对称. (2) 令a n =)1()(n f n f a -,对一切自然数n ,先猜想使a n >n2成立的最小自然数a ,并证明之.(3) 求证:n n n n )(!(lg 3lg )1(41>+∈N). 讲解: (1)关于函数的图象关于定点P 对称, 可采用解几中的坐标证法. 设M (x ,y )是f (x )图象上任一点,则M 关于P (21,21)的对称点为M ’(1-x,1-y),y x f aa a aa a y a a a a a a aa a a x x x x xx x-=-∴+=+-=-+=⋅+=+--1)1(1111Θ ∴M′(1-x ,1-y )亦在f (x )的图象上,故函数f (x )的图象关于点P (21,21)对称. (2)将f (n )、f (1-n )的表达式代入a n 的表达式,化简可得a n =an猜a =3,即3n>n2.下面用数学归纳法证明.设n =k (k ≥2)时,3k>k2.那么n =k +1,3k+1>3·3k>3k2又3k 2-(k+1)2=2(k-21)2-23≥0(k≥2,k∈N) ∴3n>n2.(3)∵3k>k2 ∴klg3>2lgk令k =1,2,…,n ,得n 个同向不等式,并相加得:).!lg(3lg )1(4),21lg(23lg 2)1(n n n n n n >-⨯>+故Λ 函数与数列综合型问题在高考中频频出现,是历年高考试题中的一道亮丽的风景线.针对本例,你能够猜想出最小自然数a=3吗? 试试你的数学猜想能力.例6 已知二次函数)0,,(1)(2>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实根为x 1和x 2.(1)如果4221<<<x x ,若函数)(x f 的对称轴为x =x 0,求证:x 0>-1;(2)如果2||,2||121=-<x x x ,求b 的取值范围.讲解:(1)设01)1()()(2>+-+=-=a x b ax x x f x g 且,由4221<<<x x 得0)4(,0)2(><g g 且, 即,81,221443.221443034160124>-<--<<-∴⎩⎨⎧>-+<-+a a a a b a b a b a 得由 aa b a 4112832->->-∴, 故18141120-=⋅->-=a b x ; (2)由,01,01)1()(212>==+-+=ax x x b ax x g 可知21,x x ∴同号. ①若0124)2(,22,2,2012121<-+=∴>+=∴=-<<b a g x x x x x 则.又0(1)1(1244)1(||222212>+-=+=--=-a b a a a b x x 得,负根舍去)代入上式得 b b 231)1(22-<+-,解得41<b ;②若,0)2(,22,02121<-∴-<+-=<<-g x x x 则 即4a -2b+3<0.同理可求得47>b .故当.47,02,41,2011><<-<<<b x b x 时当时 对你而言, 本例解题思维的障碍点在哪里, 找找看, 如何排除? 下一次遇到同类问题, 你会很顺利的克服吗? 我们力求做到学一题会一类, 不断提高逻辑推理能力.例7 对于函数)(x f ,若存在000)(,x x f R x =∈使成立,则称)(0x f x 为的不动点。
如果函数),()(2N c b c bx a x x f ∈-+=有且只有两个不动点0,2,且,21)2(-<-f (1)求函数)(x f 的解析式;(2)已知各项不为零的数列1)1(4}{=⋅nn n a f S a 满足,求数列通项n a ; (3)如果数列}{n a 满足)(,411n n a f a a ==+,求证:当2≥n 时,恒有3<n a 成立.讲解: 依题意有x cbx a x =-+2,化简为 ,0)1(2=++-a cx x b 由违达定理, 得 ⎪⎪⎩⎪⎪⎨⎧-=⋅--=+,102,102b a b c解得 ,210⎪⎩⎪⎨⎧+==c b a 代入表达式c x c x x f -+=)21()(2,由,2112)2(-<+-=-c f 得 x x f b c N b N c c ===∈∈<)(,1,0,,,3则若又不止有两个不动点, ).1(,)1(2)(,2,22≠-===∴x x x x f b c 故 (2)由题设得,2:1)11(2)1(422n n n n n n a a S a a S -==-⋅得 (*) 且21112:1,1----=-≠n n n n a a S n n a 得代以 (**)由(*)与(**)两式相减得:,0)1)((),()(2112121=+-+---=----n n n n n n n n n a a a a a a a a a 即,2:(*)1,1211111a a a n a a a a n n n n -==-=--=∴--得代入以或解得01=a (舍去)或11-=a ,由11-=a ,若,121=-=-a a a n n 得这与1≠n a 矛盾,11-=-∴-n n a a ,即{}n a 是以-1为首项,-1为公差的等差数列,n a n -=∴;(3)采用反证法,假设),2(3≥≥n a n 则由(1)知22)(21-==+n n n n a a a f a ),2(,143)211(21)111(21)1(211N n n a a a a a a a n n n n n n n ∈≥<<=+<-+⋅=-=∴++即,有 21a a a n n <<<-K ,而当,3;338281622,21212<∴<=-=-==n a a a a n 时这与假设矛盾,故假设不成立,3<∴n a .关于本例的第(3)题,我们还可给出直接证法,事实上:由2121)211(21,22)(21211≤+--=-==+++n n n n n n n a a a a a a f a 得得1+n a <0或.21≥+n a ,30,011<<<++n n a a 则若结论成立;若1+n a 2≥,此时,2≥n 从而,0)1(2)2(1≤---=-+n n n n n a a a a a 即数列{n a }在2≥n 时单调递减,由3222=a ,可知2,33222≥<=≤n a a n 在上成立. 比较上述两种证法,你能找出其中的异同吗? 数学解题后需要进行必要的反思, 学会反思才能长进.例8 设a ,b 为常数,F x b x a x f x f M };sin cos )(|)({+==:把平面上任意一点(a ,b )映射为函数.sin cos x b x a +(1)证明:不存在两个不同点对应于同一个函数;(2)证明:当M t x f x f M x f ∈+=∈)()(,)(010时,这里t 为常数;(3)对于属于M 的一个固定值)(0x f ,得}),({01R t t x f M ∈+=,在映射F 的作用下,M 1作为象,求其原象,并说明它是什么图象.讲解: (1)假设有两个不同的点(a ,b ),(c ,d )对应同一函数,即x b x a b a F sin cos ),(+=与x d x c d c F sin cos ),(+=相同,即 x d x c x b x a sin cos sin cos +=+对一切实数x 均成立.特别令x =0,得a =c ;令2π=x ,得b=d 这与(a ,b ),(c ,d )是两个不同点矛盾,假设不成立.故不存在两个不同点对应同函数.(2)当M x f ∈)(0时,可得常数a 0,b 0,使)()(,sin cos )(01000t x f x f x b x a x f +=+==,sin )sin cos (cos )sin cos ()sin()cos(000000x t a t b x t b t a t x b t x a -++=+++ 由于t b a ,,00为常数,设n m n t a t b m t b t a ,,sin cos ,sin cos 0000则=-=+是常数. 从而M x n x m x f ∈+=sin cos )(1.(3)设M x f ∈)(0,由此得,sin cos ,sin cos )(000t b t a m x n x m t x f +=+=+其中 ,sin cos 00t a t b n -=在映射F 之下,)(0t x f +的原象是(m ,n ),则M 1的原象是},sin cos ,sin cos |),{(0000R t t a t b n t b t a m n m ∈-=+=.消去t 得202022b a n m +=+,即在映射F 之下,M 1的原象}|),{(202022b a n m n m +=+是以原点为圆心,2020b a +为半径的圆.本题将集合, 映射, 函数综合为一体, 其典型性和新颖性兼顾, 是一道用“活题考死知识”的好题目, 具有很强的训练价值.例9 已知函数f (t )满足对任意实数x 、y 都有f (x +y )=f (x )+f (y)+x y+1,且f (-2)=-2.(1)求f (1)的值;(2)证明:对一切大于1的正整数t ,恒有f (t)>t ;(3)试求满足f (t)=t 的整数t 的个数,并说明理由.讲解 (1)为求f(1)的值,需令.1)0(,0-===f y x 得令2)1(,2)2(,1-=-∴-=--==f f y x Θ.令1)1(),1()1()0(,1,1=-+=∴-==f f f f y x 即.(2)令2)()1(2)()1(,1+=-+++=+∴=y y f y f y y f y f x 即(※) 0)()1(,>-+∈∴y f y f N y 有时当.由0)(,1)1(),()1(>=>+y f y f y f y f 都有对一切正整数可知,111)(2)()1(,+>+++=++=+∈∴y y y f y y f y f N y 时当,于是对于一切大于1的正整数t ,恒有f (t )>t.(3)由※及(1)可知1)4(,1)3(=--=-f f .下面证明当整数t t f t >-≤)(,4时.由,02)2(,4>≥+-∴-≤t t Θ(※)得,0)2()1()(>+-=+-t t f t f即,0)5()6(,0)4()5(>--->---f f f f 同理……,.0)1()(,0)2()1(>+->+-+t f t f t f t f将诸不等式相加得t t f t f t f >∴-≤∴->=->)(,4,41)4()(.综上,满足条件的整数只有t=1,2-.本题的求解显示了对函数方程f (x +y )=f (x )+f (y)+x y+1中的x 、y 取特殊值的技巧,这种赋值法在2002年全国高考第(21)题中得到了很好的考查.例10 已知函数f (x )在(-1,1)上有定义,1)21(-=f 且满足x 、y ∈(-1,1) 有 )1()()(xyy x f y f x f ++=+. (1)证明:f (x )在(-1,1)上为奇函数;(2)对数列,12,21211nn n x x x x +==+求)(n x f ; (3)求证.252)(1)(1)(121++->+++n n x f x f x f n Λ 讲解 (1)令,0==y x 则0)0(),0()0(2=∴=f f f令,x y -=则)()(,0)0()()(x f x f f x f x f -=-∴==-+ 为奇函数.(2)1)21()(1-==f x f , ),(2)()()1()12()(21n n n n n n n nn n x f x f x f x x x x f x x f x f =+=⋅++=+=+ )}({.2)()(1n n n x f x f x f 即=∴+是以-1为首项,2为公比的等比数列. .2)(1--=∴n n x f(3))2121211()(1)(1)(11221-++++-=+++n n x f x f x f ΛΛ ,2212)212(21121111->+-=--=---=--n n n 而 ,2212)212(252-<+--=++-=++-n n n n .252)(1)(1)(121++->+++∴n n x f x f x f n Λ 本例将函数、方程、数列、不等式等代数知识集于一题,是考查分析问题和解决问题能力的范例. 在求解当中,化归出等比(等差)数列是数列问题常用的解题方法.。