25.3 用频率估计概率
- 格式:ppt
- 大小:2.28 MB
- 文档页数:14
第二十五章 概率初步25.3 用频率估计概率用频率估计概率连续抛掷一枚质地均匀的硬币10次、20次、30次、40次、50次……分别记录每轮试验中硬币“正面向上”和“反面向上”出现的次数,求出“正面向上”和“反面向上”的频率,分析数据,可探索出频率的变化规律.用频率估计概率(1)从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率. (2)一般地,在大量重复试验中,如果事件A 发生的频率mn稳定于某个常数p ,那么事件A 发生的概率P (A )=p .n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.3,那么估计摸到黄球的概率为A.0.3 B.0.7C.0.4 D.0.6【答案】A【解析】∵通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,∴估计摸到黄球的概率为0.3,故选A.【名师点睛】一般地,在大量重复试验中,如果事件A发生的频率mn稳定于某个常数p,那么估计事件A发生的概率P(A)=p.试验得出的频率只是概率的估计值.概率是针对大量重复试验而言的,大量重复试验反映出的规律并非在每一次试验中都发生.(1)将表格补充完成;(精确到0.01)(2)估计这名同学投篮一次,投中的概率约是多少(精确到0.1)?(3)根据此概率,估计这名同学投篮622次,投中的次数约是多少?【解析】(1)153÷300=0.51,252÷500≈0.50;故答案为:0.51,0.50;(2)估计这名同学投篮一次,投中的概率约是0.5;(3)622×0.5=311(次).所以估计这名同学投篮622次,投中的次数约是311次.1.关于频率和概率的关系,下列说法正确的是A.频率等于概率B.当试验次数很大时,概率稳定在频率附近C.当试验次数很大时,频率稳定在概率附近D.试验得到的频率和概率不可能相等2.随机事件A出现的频率mn满足A.mn=0 B.mn=1C.mn>1 D.0<mn<13.两人各抛一枚硬币,则下面说法正确的是A.每次抛出后出现正面或反面是一样的B.抛掷同样的次数,则出现正、反面的频数一样多C.在相同条件下,即使抛掷的次数很多,出现正、反面的频数也不一定相同D.当抛掷次数很多时,出现正、反面的次数就相同了4.一个不透明的口袋里装有除颜色不同外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出1球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球有A.60个B.50个C.40个D.30个5.在一个不透明的袋中装有黑色和红色两种颜色的球共15个,每个球除颜色外都相同,每次摇匀后随即摸出一个球,记下颜色后再放回袋中,通过大量重复摸球实验后,发现摸到黑球的频率稳定于0.6,则可估计这个袋中红球的个数约为__________.6.在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)上表中的a=__________;(2)“摸到白球”的概率的估计值是__________(精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少个?7.某批彩色弹力球的质量检验结果如下表:(1)请在图中完成这批彩色弹力球“优等品”频率的折线统计图(2)这批彩色弹力球“优等品”概率的估计值大约是多少?(精确到0.01)(3)从这批彩色弹力球中选择5个黄球、13个黑球、22个红球,它们除了颜色外都相同,将它们放入一个不透明的袋子中,求从袋子中摸出一个球是黄球的概率.(4)现从第(3)问所说的袋子中取出若干个黑球,并放入相同数量的黄球,搅拌均匀,使从袋子中摸出一个黄球的概率为14,求取出了多少个黑球?1.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,它们的形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色后放回……如此大量摸球试验后,小新发现从布袋中摸出红球的频率稳定于0.2,摸出黑球的频率稳定于0.5,对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率应稳定于0.3;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是A.①②③B.①②C.①③D.②③2.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为A.500B.800C.1000D.12003.在一个不透明的盒子里装有4个黑球和若干个白球,它们除颜色外完全相同,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有________个白球.4.一鱼池里有鲤鱼,鲫鱼,鲢鱼共1000尾,一渔民通过多次捕捞试验后发现,鲤鱼,鲫鱼出现的概率约为31%和42%,则这个鱼池里大概有鲤鱼______尾,鲫鱼______尾,鲢鱼______尾.5.某公司对一批某品牌衬衣的质量抽检结果如下表.(1)从这批衬衣中抽1件是次品的概率约为多少?(2)如果销售这批衬衣600件,那么至少要再准备多少件正品衬衣供买到次品的顾客更换?6.小明抛硬币的过程(每枚硬币只有正面朝上和反面朝上两种情况)见下表,阅读并回答问题:(1)从表中可知,当抛完10次时正面出现3次,正面出现的频率为30%,那么,小明抛完10次时,得到__________次反面,反面出现的频率是__________;(2)当他抛完5000次时,反面出现的次数是__________,反面出现的频率是__________;(3)通过上表我们可以知道,正面出现的频数和反面出现的频数之和等于__________,正面出现的频率和反面出现的频率之和等于__________.1.(2019•湖北襄阳)下列说法错误的是A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得2.(2019•江苏泰州)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近A.20 B.300C.500 D.8003.(2019•绍兴)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是A.0.85 B.0.57 C.0.42 D.0.154.(2019•柳州)柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是__________(结果精确到0.01).5.(2019•长沙)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:根据试验所得数据,估计“摸出黑球”的概率是__________.(结果保留小数点后一位)6.(2019•雅安)某校为了解本校学生对课后服务情况的评价,随机抽取了部分学生进行调查,根据调查结果制成了如下不完整的统计图.根据统计图:(1)求该校被调查的学生总数及评价为“满意”的人数;(2)补全折线统计图;(3)根据调查结果,若要在全校学生中随机抽1名学生,估计该学生的评价为“非常满意”或“满意”的概率是多少?1.【答案】C【解析】概率是一个确定的数,频率是一个变化量,当试验次数很大时,频率会稳定在概率附近.由此可得,选项C 正确.故选C . 2.【答案】D【解析】大量重复试验中具有某种规律性的事件叫做随机事件,故频率mn的含义是在n 次试验中发生m 次,即必有0<mn<1.故选D . 3.【答案】C【解析】抛硬币是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料.故选C . 4.【答案】C【解析】∵小亮共摸了1000次,其中200次摸到白球,则有800次摸到红球, ∴白球与红球的数量之比为1:4, ∵白球有10个,∴红球有10×4=40(个), 故选C . 5.【答案】6【解析】黑球个数为:150.69⨯=,红球个数:1596-=.故答案为:6.【名师点睛】本题考查了频数和频率,频率是频数与总数之比,掌握频数频率的定义是解题的关键. 6.【解析】(1)a =290500=0.58,故答案为:0.58; (2)随着实验次数的增加“摸到白球”的频率趋向于0.60,所以其概率的估计值是0.60,故答案为:0.60; (3)由(2)摸到白球的概率估计值为0.60,所以可估计口袋中白球的个数=20×0.6=12(个),黑球20−12=8(个). 答:黑球8个,白球12个.【名师点睛】本题考查利用频率估计概率,事件A 发生的频率等于事件A 出现的次数除以实验总次数;在实验次数非常大时,事件A 发生的频率约等于事件发生的概率,本题可据此作答;对于(3)可直接用概率公式.7.【解析】(1)如图,(2)()10.9420.9460.9510.9490.9485⨯++++=1 4.7365⨯=0.9472≈0.95. (3)P (摸出一个球是黄球)=551322++=18.(4)设取出了x 个黑球,则放入了x 个黄球,则551322x +++=14,解得x =5.答:取出了5个黑球.【名师点睛】本题考查利用频率估算概率,数量较大、批次较多时用求平均值的方法更接近概率,理解题意灵活运用概率公式是解题关键.1.【答案】B【解析】∵在一个不透明的布袋中,红球、黑球、白球共有若干个,其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,∴①若进行大量摸球实验,摸出白球的频率稳定于:1–20%–50%=30%,故此选项正确; ∵摸出黑球的频率稳定于50%,大于其它频率,∴②从布袋中任意摸出一个球,该球是黑球的概率最大,故此选项正确;③若再摸球100次,不一定有20次摸出的是红球,故此选项错误;故正确的有①②.故选B.【名师点睛】此题主要考查了利用频率估计概率,根据频率与概率的关系得出是解题关键.2.【答案】C【解析】抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次,故选C.【名师点睛】本题主要考查随机事件,关键是理解必然事件为一定会发生的事件;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.3.【答案】12【解析】∵共试验40次,其中有10次摸到黑球,∴白球所占的比例为:40103 404-=,设盒子中共有白球x个,则344xx=+,解得x=12,经检验,x=12是原方程的根,故答案为:12.【名师点睛】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据白球的频率得到相应的等量关系.4.【答案】310;420;270【解析】根据所给数据可得:鲤鱼:1000×31%=310(尾);鲫鱼:1000×42%=420(尾);鲢鱼:1000–310–420=270(尾).故答案为:310;420;270.5.【答案】(1)0.06;(2)36件【解析】(1)抽查总体数m=50+100+200+300+400+500=1550,次品件数n=0+4+16+19+24+30=93,P(抽到次品)=931550=0.06.(2)根据(1)的结论:P(抽到次品)=0.06,则600×0.06=36(件).答:至少准备36件正品衬衣供顾客调换.6.【答案】(1)7;70%;(2)2502;50.04%;(3)抛掷总次数;1【解析】(1)从表中可知,当抛完10次时正面出现3次,正面出现的频率为30%,那么,小明抛完 10次时,得到7次反面,反面出现的频率是710=0.7=70%; (2)当他抛完5000次时,反面出现的次数是5000–2498=2502,反面出现的频率是2502÷5000=0.5004=50.04%;(3)通过上面我们可以知道,正面出现的频数和反面出现的频数之和等于抛掷总次数,正面出现的频率和反面出现的频率之和等于1.1.【答案】C【解析】A 、必然事件发生的概率是1,正确;B 、通过大量重复试验,可以用频率估计概率,正确;C 、概率很小的事件也有可能发生,故错误;D 、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选C .2.【答案】C【解析】观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选C .3.【答案】D【解析】样本中身高不低于180cm 的频率==0.15,所以估计他的身高不低于180cm 的概率是0.15.故选D .4.【答案】【解析】概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,∴这种种子在此条件下发芽的概率约为0.95.故答案为:0.95.5.【解答】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.6.【解析】(1)由折线统计图知“非常满意”9人,由扇形统计图知“非常满意”占15%,所以被调查学生总数为9÷15%=60(人),所以“满意”的人数为60–(9+21+3)=27(人);15100(2)如图:(3)所求概率为.=6927035。
25.3 用频率估计概率【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。
它是学习了前两节概率和用列举法求概率的基础上,即学习了理论概率后,进一步从试验的角度来估计概率,让学生再次体会频率与概率间的关系,通过这部分内容的学习可以帮助学生进一步理解试验频率和理论概率的关系。
概率与人们的日常生活密切相关,应用十分广泛。
纵观近几年的中考题,概率已是考查的热点,同时,对此内容的学习,也是为高中深入研究概率的相关知识打下坚实基础。
【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。
因此,我把本节课的教学目标确定为以下三个方面:知识目标:1.理解当事件的试验结果不是有限个,或各种可能结果发生的可能性不相等时,要用频率来估计概率,进一步发展概率观念。
2.进一步理解概率与频率之间的联系与区别,培养学生根据频率集中趋势估计概率的能力。
方法与过程目标:1.选择生活中的实例进行教学,使学生在解决实际问题过程中加强对概率的认识,突出用频率的集中趋势估计概率的思想,体现数学与生活的紧密联系.2.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.情感态度与价值观目标:1.利用生活实例,介绍数学史,激发学生学习数学的热情和兴趣。
2.结合试验的随机性和规律性,让学生理解试验频率和理论概率的关系。
【重点与难点】重点:1.体会用频率估计概率的必要性和合理性。
2.学会依据问题特点,用频率来估计事件发生的概率。
难点:1.理解频率与概率的关系,2.用频率估计概率解决实际问题。
【学生分析】学习统计概率的学生并不是难在用频率估计概率,而是难在多大程度上感受用频率估计概率的必要性以及体会用频率估计概率所蕴含的基本思想,然后自觉地运用到实际生活中。
所以,要发动学生积极参与,动手实验,在实践中感悟。
【教学方法】树立以学生为本的思想,通过创设问题情境,利用《问题生成评价单》,以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。
合作探究探究点用频率估计概率知识讲解在相同条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.注意(1)用频率估计概率时,试验一定要在相同的条件下进行,试验次数越多,得到的频率就越准确,规律就越明显,此时可以用频率稳定值估计事件发生的概率.(2)当试验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.(3)用频率估计得到的概率是个近似值,是大量重复试验基础上的频率的集中趋势值.. 典例剖析例从一副没有大小王的52张扑克牌中毎次抽出1张,然后放回洗匀再抽,在抽牌试验中得到下表中部分数据:试验次数50 100 150 200 250 300 350 400 出现红桃的频数13 30 35 51 60 76 90 98出现红桃的频率26.0% 30.0% 2A.0% 25.3% 24.5% 24.5%(1)请将数据表补充完整(所得结果保留三个有效数宇〉;(2)随着试验次数的增多,出现红桃的频率逐渐稳定为多少(精确到1%)?(3)你能估计从52张牌中任意抽出1张师红桃的概率师多少吗?解析用频率枯计概率时,般是观察所计算的各频率教值的变化趋势,即观察各数值主要集中在哪个常数的附近,这个常数就是所求概率的估计值.答案(1)从左到右,依次填入23. 3%,25.5%,25.7%.(2)随着试验次数的增多,出现红桃的频宇逐渐稳定为 25%.(3)根据题意,可知从52张牌中任意抽出1张是红桃的概枣为 0.25.类题突破某出版社对其发行的杂志的写作风格进行了 5次“读者问卷调查结果如下:被调査人数/n 1000 1500 2 000 2500 3000 满意人数/m 996 1496 1 996 2496 2998 满意频率/(1)计算表中的各个频率;(2)读各对该杂志满意的概率约是多少?(结果保留小数点一位)答案(1)0.996 0. ,997 0.998 0.998 0.999(2)由第(1)题的结果知出版社5次“读者问卷调査”中,收到的反馈信息是:读者对该杂志满意的概率约是0.9点拨(1)直接根据频车的计算公式进行计算;(2)根据频率与概率的关系回答。
25.3用频率估计概率1.小明为估计一个不规则图案的面积,采取了以下办法:首先用一个面积为10 cm2的长方形将不规则图案围起来(如图①);然后在一固定位置随机朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在边界线上或长方形区域外不计试验结果);最后将若干次有效试验的结果绘制成了图②所示的折线统计图.请估计不规则图案的面积大约为(B)A.4 cm2B.3.5 cm2C.4.5 cm2D.5 cm22.数学兴趣小组做“任意抛掷一枚图钉”的重复试验,多次试验后获得如表数据:重复试验次数1050100500 1 000钉尖朝上次数51536200400由此可以估计任意抛掷一次图钉,钉尖朝上的概率约为(B)A.0.50B.0.40C.0.36D.0.303.在一个暗箱里放有n个除颜色外其他完全相同的球,这n个球中红球只有4个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱,通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算出n大约是16.4.质检部门对某工厂生产的头盔质量进行抽查,抽查结果如表:抽查的100200300500800 1 000 3 000头盔数n合格的头盔数m95189289479769960 2 880合格头盔的频率mn0.9500.9450.9630.9580.9610.9600.960请估计该工厂生产5 000个头盔,合格的头盔数有 4 800个.5.瓷砖生产受烧制时间、温度、材质的影响,一块砖坯放在炉中烧制,可能成为合格品,也可能成为次品或废品,究竟发生哪种结果,在烧制前无法预知,所以这是一种随机现象.由于烧制结果不是等可能的,所以我们常用合格品的频率来估计合格品的概率.某瓷砖厂对最近出炉的一批瓷砖进行了质量抽检,结果如下:抽取瓷砖数n100200300400500600800 1 0002 000合格品数m95192287385481577770961 1 924合格品频率mn0.9500.960a0.9630.9620.9620.9630.961b(1)计算:a=;b=.(结果保留三位小数)【解析】(1)a=mn =287300≈0.957;b=mn=19242000=0.962;答案:0.9570.962(2)根据上表,在这批瓷砖中任取一个,它为合格品的概率大约是多少?(结果保留两位小数)【解析】(2)观察题表,可以发现,当抽取的瓷砖数n≥400时,合格品频率mn稳定在0.962附近,所以合格品的概率大约为0.96.素养提升攻略趣味数学天算不如人算——概率的故事公元1053年,北宋大将军狄青奉旨征讨南方叛军.因为当时南方有崇拜鬼神的风俗,所以大军刚到桂林以南,他便设坛拜神说:“这次用兵,胜败还没有把握.”于是拿了一百枚铜币,许愿:“如果这次出征能够打败敌人,那么把这些铜币扔在地上,钱面(不铸文字的那一面)定然会全部朝上.”左右官员很害怕,力劝主帅放弃这个念头,因为经验告诉他们这种尝试是注定要失败的.他们担心最终弄不好,反而会动摇军心.可是狄青对此全然不理,固执如牛.在千万人的注视下,狄青突然举手一挥,把铜币全部扔到地上.结果这一百个铜币的钱面,竟然鬼使神差般全部朝上.顿时全军欢呼,士气大振.狄青本人也很兴奋,命令士兵,取来一百枚钉子,把铜钱钉在地上,然后说道:“胜利归来,定将酬谢神灵,收回铜钱.”由于士兵个个认定神灵护佑,在战斗中奋勇争先.再说叛军闻听百钱之讯也是人心惶惶,不敢恋战.于是,狄青迅速平定叛乱.回师时,按原先所约,把钱取下.将士们一看,原来那些铜币两面都是铸成一样的.对狄青来说,一百个钱面全部朝上,是个必然事件,但在别人看来,却是几乎不可能出现的.自信帮助了他们,自信是最伟大的神.这个故事给人的启示是:“观察一种现象,不能忽视它的前提.”素养训练23模型观念、运算能力、创新意识为什么左右官员力劝狄青“放弃这个念头”?你能算出掷100枚铜币(每枚铜币正反面不同)同时正面朝上的概率吗?【解析】掷1枚铜币,出现正、反面是随机的.100枚铜币同时正面朝上的机会几乎是没有的,掷两枚铜币会出现四种可能:(正,正)、(正,反)、(反,正)、(反,反),两枚都是正面的可能性是四分之一;掷三枚铜币会出现八种可能:(正,正,正)、(正,正,反)、(正,反,正)、(正,反,反)、(反,正,正)、(反,正,反)、(反,反,正)、(反,反,反),三枚都是正面的可能性是八分之一;……100枚都是正面的可能性是(12)100.趣味数学频率与概率的关系联系大量重复试验时,事件发生的频率稳定在它发生的概率附近.区别频率本身是随机的,在试验前不能确定,做同样次数或不同次数的重复试验得到的事件的频率都可能不同;而概率是一个确定数,是客观存在的,与试验无关.特别提醒:用频率估计概率时,试验次数越多估计得越准确.试验次数太少时,频率不能估计概率.素养训练24抽象能力、推理能力、运算能力小明的爸爸这几天迷上了体育彩票,该彩票每注是一个七位数码,如能与开奖结果完全一致,则获特等奖,如有相连的6位数码一致,则获一等奖,如有相连的5位数码一致,则获二等奖……以此类推.小明的爸爸昨天一次性买了10注这种彩票,结果中了一注一等奖,他高兴地说:“这种彩票好,因为中奖率高,中一等奖的机会就有10%!”请你针对小明爸爸的这种说法说一下该说法是否合理.【解析】小明爸爸的说法不对.因为体育彩票的中奖率是针对一期所有的彩票而言,而不是任抽几张的中奖频率为概率,所抽取的几张,可能都有奖,也可能都没有奖.用频率估计概率的前提是大量重复试验,本题试验的次数(即买彩票的注数)太少,不能用中一等奖的频率去估计概率.。