空气动力学:第一章 流体动力学基础概要
- 格式:pptx
- 大小:5.52 MB
- 文档页数:54
流体的空气动力学空气动力学是研究流体在空气中的力学行为规律的学科,主要应用于航天、航空、汽车、水力学等领域。
在这个领域中,流体的运动特性、力学原理以及流体对物体的作用力都是非常重要的。
一、流体的运动特性流体的运动特性是研究流体在空气中的速度、压力、密度等相关性质。
流体在空气中的运动可分为两种类型:层流和湍流。
层流是指流体沿着平行方向以等速度、等压力且不交叉的方式运动;而湍流则是指流体以不规则、混乱的方式运动,速度和压力都存在剧烈而随机的变化。
二、流体的力学原理在空气动力学中,流体的力学原理主要涉及到气体动力学和液体动力学。
气体动力学是研究气体在空气中的运动规律,而液体动力学则是研究液体在空气中的运动规律。
这两个学科的基本原理都是基于质量守恒、动量守恒和能量守恒的基本定律。
对于气体动力学,包括气体的压力、密度和温度等变化对流体运动的影响。
科学家通过研究气体的压力分布、速度分布以及温度变化来了解流体的运动规律。
对于液体动力学,主要考虑的是液体在空气中的形状变化、速度分布、压力分布等。
通过研究液体的黏度、表面张力以及流体力学方程等来分析液体在空气中的运动特性。
三、流体对物体的作用力在空气动力学中,流体对物体的作用力是非常重要的研究内容。
当流体与物体接触时,会产生压力、摩擦力以及阻力等作用力。
这些作用力对于研究飞行器的设计、汽车的空气动力性能以及水流对于船只的影响等都具有重要的意义。
压力是由于流体分子的碰撞与物体表面产生的力。
而摩擦力则是由于流体与物体表面之间的相互作用而产生的力。
阻力则是由于物体在流体中运动时所受到的阻碍力。
四、应用领域空气动力学的研究成果在众多领域中得到广泛的应用。
在航天领域中,空气动力学的理论和实践为航天器的设计、发射以及返回等提供了重要的依据和方法。
在航空领域中,空气动力学的研究可用于优化飞机的外形设计,减小飞机的阻力,提高飞机的效率和稳定性。
在汽车领域中,空气动力学的研究可用于改进汽车设计,提高汽车的空气动力性能,减少空气阻力。
流体动力学基础流体动力学是研究流体的运动规律和性质的科学,它是流体力学的分支之一,广泛应用于航空、航天、水力、能源等领域。
本文将介绍流体动力学的基础概念、基本方程以及常用方法。
一、流体动力学的基本概念1. 流体力学与流体静力学的区别流体力学研究流体在运动中的行为,包括流体的流动速度、压力、密度等参数的分布规律;而流体静力学则研究流体在静止状态下的平衡规律,主要关注流体的静压力和浮力等性质。
2. 流体的本构关系流体的本构关系描述了流体的应力与变形速率之间的关系。
常见的本构关系有牛顿黏性流体、非牛顿流体以及理想流体等。
3. 流体的运动描述流体的运动可以通过流体速度场来描述,流体速度场是空间中的矢量函数,它描述了流体的速度分布。
流体速度场的描述可以使用欧拉描述方法或者拉格朗日描述方法。
二、流体动力学的基本方程1. 连续性方程连续性方程描述了质量守恒的原理,即单位时间内通过某一截面的质量是恒定的。
对于稳定流动的不可压缩流体来说,连续性方程可表示为流体密度与速度之积在空间中的量级是恒定的。
2. 动量方程动量方程是描述质点运动定律的基本方程,对流体来说,动量方程体现了运动流体的动力学行为。
对于稳定流动的不可压缩流体来说,动量方程可表示为流体的密度乘以速度与压力梯度的叠加等于外力的结果。
3. 能量方程能量方程描述了热力学系统的能量守恒原则,对于流体来说,能量方程考虑了流体的流动对能量转移的影响,以及热源、做功所导致的能量变化。
三、流体动力学的常用方法1. 数值模拟方法数值模拟是流体动力学研究的重要工具,通过在计算机上建立流体动力学方程的数值解,可以模拟复杂流动现象,如湍流、多相流等。
2. 实验方法实验方法是流体动力学研究的另一重要手段,通过搭建实验平台,测量流体的压力、速度等参数,从而验证理论和数值模拟结果的准确性。
3. 理论分析方法理论分析方法是流体动力学研究中的基础,通过建立假设和推导数学表达式,可以得到流体动力学问题的解析解,为实验和数值模拟提供参考。
流体动力学基础理论流体动力学是研究流体运动规律及其物理现象的学科,其基础理论包括流体静力学和流体动力学两个部分。
本文将围绕流体动力学的基础理论展开论述,包括主要概念、基本方程和典型应用等内容。
一、流体动力学概述流体动力学是研究流体在受力作用下的运动规律的学科。
在研究流体动力学时,通常将流体视为连续分布的介质,分析其运动状态和受力情况。
流体动力学的研究对象包括气体、液体和等离子体等。
流体动力学的基本假设有两个,即连续介质假设和边界层假设。
连续介质假设认为流体可以被看作是连续分布的介质,从而可以用连续函数来描述其物理量。
边界层假设认为流体与物体表面之间存在一层边界层,该层内的流体性质发生较大变化,而在该层外的流体相对稳定。
二、基本方程流体动力学的基本方程包括质量守恒方程、动量守恒方程和能量守恒方程三个方程。
这三个方程构成了描述流体运动规律的基本框架。
1. 质量守恒方程质量守恒方程描述了流体质量的变化情况,其数学表达式为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ表示流体的密度,t表示时间,v表示流体的速度,∇·表示散度运算符。
质量守恒方程表明在流体中,质量的增减与流体的速度有关,通过质量守恒方程可以研究流体的质量流动和密度分布情况。
2. 动量守恒方程动量守恒方程描述了流体运动的动力学规律,其数学表达式为:ρ(∂v/∂t + v·∇v) = -∇p + ∇·τ + ρg其中,p表示流体的压力,τ表示流体的黏性应力,g表示重力加速度。
动量守恒方程表明流体的运动受到压力、黏性应力和重力的综合作用,通过动量守恒方程可以研究流体的速度场和受力情况。
3. 能量守恒方程能量守恒方程描述了流体能量的变化情况,其数学表达式为:ρCv(∂T/∂t + v·∇T) = ∇·(κ∇T) + Q其中,Cv表示流体的定压比热容,T表示流体的温度,κ表示流体的热导率,Q表示流体受到的热源项。
空气动力学及飞行原理课程空气动力学部分知识要点一、流体属性与静动力学基础1、流体与固体在力学特性上最本质的区别在于:二者承受剪应力和产生剪切变形能力上的不同。
2、静止流体在剪应力作用下(不论所加剪切应力τ多么小,只要不等于零)将产生持续不断的变形运动(流动),换句话说,静止流体不能承受剪切应力,将这种特性称为流体的易流性。
3、流体受压时其体积发生改变的性质称为流体的压缩性,而抵抗压缩变形的能力和特性称为弹性。
4、当马赫数小于0.3时,气体的压缩性影响可以忽略不计。
5、流层间阻碍流体相对错动(变形)趋势的能力称为流体的粘性,相对错动流层间的一对摩擦力即粘性剪切力。
6、流体的剪切变形是指流体质点之间出现相对运动(例如流体层间的相对运动)流体的粘性是指流体抵抗剪切变形或质点之间的相对运动的能力。
流体的粘性力是抵抗流体质点之间相对运动(例如流体层间的相对运动)的剪应力或摩擦力。
在静止状态下流体不能承受剪力;但是在运动状态下,流体可以承受剪力,剪切力大小与流体变形速度梯度有关,而且与流体种类有关7、按照作用力的性质和作用方式,可分为彻体力和表面力(面力)两类。
例如重力,惯性力和磁流体具有的电磁力等都属于彻体力,彻体力也称为体积力或质量力。
8、表面力:相邻流体或物体作用于所研究流体团块外表面,大小与流体团块表面积成正比的接触力。
由于按面积分布,故用接触应力表示,并可将其分解为法向应力和切向应力:9、理想和静止流体中的法向应力称为压强,其指向沿着表面的内法线方向,压强的量纲是[力]/[长度]210、标准大气规定在海平面上,大气温度为15℃或T0=288.15K ,压强p0 = 760 毫米汞柱= 101325牛/米2,密度ρ0 =1.225千克/米311、从基准面到11 km 的高空称为对流层,在对流层内大气密度和温度随高度有明显变化,温度随高度增加而下降,高度每增加1km,温度下降6.5 K。
从11 km 到21km 的高空大气温度基本不变,称为同温层或平流层,在同温层内温度保持为216.5 K。
第一章流体力学基础知识本章先介绍流体力学的基本任务,研究方向和流体力学及空气动力学的发展概述。
然后介绍流体介质,气动力系数,矢量积分知识。
最后引入控制体,流体微团及物质导数的概念。
为流体力学及飞行器空气动力学具体知识的学习做准备。
1.1流体力学的基本任务和研究方法1.1.1流体力学的基本任务流体力学是研究流体和物体之间相对运动(物体在流体中运动或者物体不动而流体流过物体)时流体运动的基本规律以及流体与物体之间的作用力。
而空气动力学则是一门研究运动空气的科学。
众所周知,空气动力学是和飞机的发生,发展联系在一起的。
在这个意义上,这门科学还要涉及到飞机的飞行性能,稳定性和操纵性能问题。
事实上,空气动力学研究的对象还不限于飞机。
空气相对物体的运动,可以在物体的外部进行,像空气流过飞机表面,导弹表面和螺旋浆等;也可以在物体的内部进行,像空气在风洞内部和进气道内部的流动。
在这些外部或内部流动中,尽管空气的具体运动和研究运动的目的有所不同,但它们都发生一些共同的流动现象和遵循一些共同的流动规律,例如质量守恒,牛顿第二定律,能量守恒和热力学第一定律,第二定律等。
研究空气动力学的基本任务,不仅是认识这些流动所发生现象的基本实质,要找出这些共同性的基本规律在空气动力学中的表达,并且研究如何应用这些规律能动地解决飞行器的空气动力学问题和与之相关的工程技术问题,并对流动的新情况、新进展加以预测。
1.1.2空气动力学的研究方法空气动力学研究是航空科学技术研究的重要组成部分,是飞行器研究的“先行官”。
其研究方法,如同物理学各个分支的研究方法一样,有实验研究、理论分析和数值计算三种方法。
这些不同的方法不是相互排斥,而是相互补充的。
通过这些方法以寻求最好的飞行器气动布局形式,确定整个飞行范围作用在飞行器的力和力矩,以得到其最终性能,并保证飞行器操纵的稳定性。
实验研究方法在空气动力学中有广泛的应用,其主要手段是依靠风洞、水洞、激波管以及测试设备进行模拟实验或飞行实验。
空气动力学的基础知识空气动力学是研究流体力学中与气体运动有关的力和运动的学科。
空气动力学的研究对象是运动的气体,其中包括飞行器、汽车、建筑物、船舶、火箭等物体在气体中的运动、流动和受力等问题。
本文将从空气动力学的基础知识入手,为读者介绍空气动力学的相关内容。
流场和速度场空气动力学研究的第一个问题是流体的流动。
流体的流动可以用流场和速度场来描述。
流场是指各点流体运动状态(流速、流速方向、密度、温度等)的分布情况。
速度场是指各点流体的流动速度。
流体的运动状态决定了它受力的状态,因此分析流场和速度场是空气动力学研究的第一步。
流场和速度场的计算方法以及它们之间的关系是空气动力学中的基础问题。
流体的连续性方程和动量守恒方程空气动力学中研究流体的运动过程需要遵循连续性方程和动量守恒定律。
连续性方程是描述流体运动过程的基本方程之一,它表述了流体在单位时间内通过任何一定横截面积内的物质流量相等。
动量守恒方程则描述了流体受力过程中的运动状态,这个方程能够反映物体在流体中穿过一个受力区域时所受的阻力、压力、力矩等信息。
空气动力学中的雷诺数在空气动力学中,雷诺数是一个非常重要的概念。
它是空气动力学中的无量纲参数,决定了流体的稳定性和不稳定性,可以用于描述边界层和湍流状态。
简而言之,当雷诺数越大时,流体会越容易变得湍流,这会对空气动力学的研究和设计带来许多影响。
翼型和飞行器翼型是空气动力学中的一个重要概念,它是描述飞行器机翼截面形状的函数。
翼形的设计对飞行器的性能有着至关重要的影响。
它能够影响到飞机的升力、阻力、抗扭稳定性、滚转和俯仰稳定性等方面。
因此,研究翼型的设计和性能是空气动力学研究的重要方向。
结语空气动力学是一门重要的学科,涉及众多的物理和数学知识。
通过本文的介绍,我们可以了解到空气动力学中的一些基础知识,例如流场和速度场、连续性方程和动量守恒方程、雷诺数、翼型和飞行器等。
对于空气动力学的学习者来说,深入了解这些基础知识对于学习和掌握这门学科是非常有帮助的。
流体动力学的基本概念和原理流体动力学是研究流体在运动中的行为和性质的学科。
它探究了流体的静力学、动力学以及其它相关问题。
本文将介绍流体动力学的基本概念和原理,包括流体的性质、力学原理和其应用。
一、流体的性质流体是指可以流动的物质,通常分为液体和气体两种状态。
液体具有固定体积和可变形状的特性,而气体具有可变体积和可变形状的特性。
流体具有以下基本性质:1. 静力学性质:包括流体的压强和密度等。
压强是单位面积上的力的作用,常用帕斯卡(Pa)作为单位;密度是单位体积上的质量,常用千克/立方米(kg/m³)作为单位。
2. 动力学性质:包括流体的运动速度和流量等。
运动速度是流体中某点在单位时间内通过该点的位移,常用米/秒(m/s)作为单位;流量是单位时间内通过某一横截面的流体体积,常用立方米/秒(m³/s)作为单位。
3. 黏性:流体的相对运动会产生内部的摩擦力。
黏性是流体抵抗剪切性变形的能力,通常用粘度来表示,其单位为帕斯卡秒(Pa·s)。
二、流体的力学原理流体动力学依赖于一些重要的力学原理,包括质量守恒定律、动量定律和能量守恒定律。
1. 质量守恒定律:它描述了在封闭系统中质量的守恒。
即在单位时间内通过某一横截面的流体质量相等于该段时间内流入和流出的质量之和。
2. 动量定律:流体动量变化率等于合外力的作用。
这个原理描述了流体在流动过程中受到的力和力的变化情况。
动量定律可以用来推导流体的运动方程和流体的受力情况。
3. 能量守恒定律:它讲述了能量的守恒。
流体在运动过程中一般存在着压力能、动能和重力势能等形式的能量,并且能量守恒定律可以用来分析流体在不同形式能量之间的转化。
三、流体动力学的应用流体动力学的应用广泛,以下是一些典型的应用领域:1. 工程应用:流体动力学可以应用于液体和气体的管道系统、水力发电、空气动力学等工程领域,通过分析流体的行为来优化系统设计和改进效率。
2. 生物医学:流体动力学在生物医学领域中的应用包括血液循环、呼吸系统等的研究,通过模拟和分析流体行为来了解生物体内部的生理过程。
空气动力学基础空气动力学是研究空气对物体的作用力和物体在空气中运动规律的学科。
它在航空航天工程中起着重要的作用。
本文将介绍空气动力学的基本概念、主要原理和应用。
一、空气动力学概述空气动力学是围绕着气体流动学和力学展开的学科,主要研究气体与物体相互作用产生的力以及物体在气体中的运动。
空气动力学基础理论包括气体流动方程、边界条件和流场特性等。
它是航空航天工程设计和性能分析的重要依据。
二、空气动力学原理1. 气体流动方程空气动力学中的主要流动方程是连续性方程、动量方程和能量方程。
连续性方程描述了流体的质量守恒,动量方程描述了流体的动量守恒,能量方程描述了流体的能量守恒。
2. 升力和阻力在运动中的物体受到空气的作用力,其中最重要的是升力和阻力。
升力使得物体能够克服重力向上运动,而阻力则阻碍物体的运动。
这两个力的大小和方向与物体的形状、速度和气体性质等有关。
3. 测试和模拟为了研究物体在空气中的行为,人们通常会进行实验和数值模拟。
实验方法包括风洞试验和模型试飞等,而数值模拟则利用计算机技术对气体流动进行数值计算和模拟。
三、空气动力学应用1. 飞行器设计空气动力学是飞行器设计的重要基础。
通过研究飞行器在不同速度和高度下的空气动力学特性,可以优化飞行器的外形设计,提高其升阻比,提高飞行效率和安全性。
2. 空气动力学仿真使用计算机模拟和仿真技术,可以在设计阶段对飞行器进行空气动力学分析。
这样可以预测飞行器在各种工况下的性能和稳定性,指导设计改进。
3. 空气动力学研究空气动力学研究不仅应用于飞行器设计,还广泛用于其他领域,如汽车、建筑物和体育器材等的设计和优化。
通过研究空气动力学原理,可以改进产品性能,提高安全性和舒适度。
四、结论空气动力学作为研究物体在空气中运动的学科,对于航空航天工程和其他领域的设计和性能分析至关重要。
通过学习空气动力学的基本概念和原理,并运用到实际应用中,可以推动科技的进步,提升产品的质量和性能。
空气动力学水流动力学基础研究一、前言空气动力学和水流动力学是两个重要的力学分支,有着广泛的应用。
空气动力学研究空气对物体的流动、压力和力的作用规律,是航空、汽车、建筑等领域必不可少的技术;水流动力学则研究水在各类水体中流动的力学特性,是建筑、水利等领域不可或缺的技术。
本文将分别从理论基础、实验研究和应用方面介绍这两个分支的基础研究。
二、空气动力学基础研究1. 理论基础空气动力学的理论基础是流体力学和热力学。
流体力学研究液体和气体在不同条件下的运动规律,而热力学研究热量和能量的转化规律。
在空气动力学中,主要研究空气在各种条件下的流动、压力和力的作用规律。
2. 实验研究空气动力学实验主要有两种类型:一种是基于数学模拟的仿真实验,另一种是基于实际空气流动的试验。
数学模拟实验利用计算机模拟空气流动,可对不同条件下的空气流动特性进行评估和预测。
试验实践是通过设计特殊的实验设备,通过实验对不同条件下的空气流动进行观察、测量和分析。
3. 应用研究空气动力学应用研究广泛,主要应用于航空、汽车、建筑和环境保护等领域。
在航空领域,空气动力学主要用于飞机、导弹和航天器的设计与研发;在汽车领域,空气动力学可用于汽车的气动优化设计,以减少空气阻力;在建筑领域,空气动力学研究建筑物的空气流动特性,以提高建筑物的环境适应能力和节能效果。
三、水流动力学基础研究1. 理论基础水流动力学的理论基础是流体力学和水动力学。
流体力学已在空气动力学中介绍,这里不再赘述。
水动力学研究水在不同条件下的流动规律,其研究的主要内容包括水流的物理特性、水流的力学特性和水流的数学模型等方面。
2. 实验研究水流动力学的实验研究主要有三种类型:一是基于物理模型的实验,依靠实验设备设计搭建实验水槽等进行的;二是基于数值模型的仿真实验,采用计算机数值计算的方法模拟水流的运动规律;三是基于实际水流的试验,通过现场测量和分析实际水体流动情况来研究水流的运动规律。
流体动力学基础流体动力学是一个操作系统的一部分,主要研究流体运动规律和流体力学的原理。
无论是研究天气变化的气象学家,还是设计飞机、火箭的工程师,都离不开流体动力学的科学知识。
下面让我们从基础知识开始,深入了解流体动力学。
一、概述流体动力学分为静止流体动力学和运动流体动力学两大类。
前者研究的是静止流体的压力、浮力等问题,后者则是研究运动流体的物理过程和原理,包括涡旋、流动阻力、热输运等问题。
二、基础概念在流体动力学中,我们需了解几个基本概念。
首先,流体。
流体是一种液体和气体通称,其特点是无法保持固定的形状,而且会随外力作用发生变形。
其次,继原理。
继原理是流体动力学中极其重要的一项原则,用以研究保质量、能量以及动量。
又如雷诺数,这是判断流体的流动方式是层流还是湍流的无量纲数。
三、基础原理流体动力学原理中,最核心的就是质点和控制体系。
质点是流体动力学假设中的一个理论模型,它具有质量,但没有体积和形状和能够省去在实际研究中的空间集中和温度等因素。
控制体系则是流体动力学中控制流体流动的体积元素,包括控制面和控制体。
四、基础公式在流体动力学中,有许多重要的公式。
例如伯努利方程,它是流体动力学中的一个重要原理,告诉我们流速快的地方,流体的压力就小。
再例如动量定理,它告诉我们流体动力学中系统的总动量是守恒的。
五、应用领域流体动力学的应用领域极其广泛,如航天飞机设计,气象学研究,地球物理探测,海洋动力发电等。
能够说,生活中的许多领域都离不开流体动力学的应用。
流体动力学,作为物理学的一个重要分支,旨在研究流体运动的规律,及其与周围物体的相互作用。
同时,它也是如火箭、飞机等依托的科学理论基础,因此其理论研究和应用价值不可忽视。
流体力学与空气动力学流体力学与空气动力学是研究流体运动和空气运动的学科,它们在工程、物理学和地球科学等领域中具有重要的应用价值。
本文将介绍流体力学与空气动力学的基本概念、原理和应用,并探讨其在航空航天、汽车工程和气象学等领域中的重要性。
流体力学流体的定义流体是指能够流动的物质,包括液体和气体。
与固体不同,流体没有固定的形状,可以自由地流动和变形。
流体静力学流体静力学研究静止流体的性质和行为。
根据帕斯卡定律,静止流体中的压强在各个方向上是均匀分布的。
通过应用连续性方程和伯努利定律,可以计算出静止流体中的压强、密度和速度等参数。
流体动力学流体动力学研究流体在运动过程中的性质和行为。
根据牛顿第二定律,流体运动受到外力的作用,会产生加速度。
通过应用连续性方程、动量方程和能量方程,可以计算出流体在运动过程中的速度、压强和温度等参数。
空气动力学空气的性质空气是地球大气层中的气体,主要由氮气、氧气和少量的其他气体组成。
空气具有压强、密度和温度等性质,这些性质对于空气动力学的研究具有重要意义。
空气动力学基本方程空气动力学基本方程包括连续性方程、动量方程和能量方程。
通过这些方程,可以描述空气在运动过程中的速度、压强和温度等参数的变化规律。
空气动力学应用空气动力学在航空航天工程中具有重要的应用价值。
通过研究飞机和火箭等飞行器在空气中的运动特性,可以优化设计,提高飞行性能和安全性。
此外,空气动力学还在汽车工程中发挥着重要作用。
通过研究汽车在行驶过程中与空气的相互作用,可以减小空气阻力,提高燃油效率和行驶稳定性。
在气象学中,空气动力学用于研究大气运动和天气现象。
通过模拟大气环流和风场等参数,可以预测天气变化和气候演变。
结论流体力学与空气动力学是研究流体运动和空气运动的学科,它们在工程、物理学和地球科学等领域中具有重要的应用价值。
通过研究流体和空气的性质和行为,可以优化设计,提高性能和安全性。
未来,随着科技的不断发展,流体力学与空气动力学将继续发挥重要作用,并为人类社会带来更多的创新和进步。
空气动力学基础(教学重点)绪论(1学时)第一章流体静力学(5学时)1、掌握连续介质假设的概念、意义和条件;2、了解掌握流体的基本物理属性,尤其是易流性、粘性、压缩性等属性的物理本质和数学表达;3、掌握流体力学中作用力的分类和表达、静止流体中压强的定义及其特性;4、初步掌握静止流体微团的力学分析方法,重点掌握流体平衡微分方程的表达及其物理意义;5、在流体平衡微分方程的应用方面,掌握重力场静止液体中的压强分布规律,重点掌握标准大气问题。
第二章流体运动学与动力学基础(12学时)1、了解两种描述流场的方法的区别与特点,重点掌握欧拉法下加速度的表达和意义2、掌握流体微团的几种变形和运动及其数学表达,掌握流体微团的运动分解与刚体运动的异同;3、了解系统分析方法与控制体分析方法的区别与联系,了解雷诺输运方程的表达及意义;4、空气动力学基本方程是本章重点,积分形式方程要掌握质量方程、动量方程和能量方程的表达和意义,并会用它们解决实际工程问题;微分形式方程要重点掌握连续方程、欧拉方程和能量方程的表达和意义;掌握微元控制体分析方法;掌握伯努利方程的表达、意义、条件和应用;5、重点需要掌握的概念:流线、流量、散度、旋度、位函数、流函数、环量与涡的表达、意义及其相互之间的关系;第3章低速平面位流(6学时)3.1 平面不可压位流的基本方程及其边界条件二维流动不可压无旋流动的基本方程是位函数满足的拉普拉斯方程不穿透条件(可滑移条件)拉普拉斯方程的叠加原理,速度也可叠加,压强不可叠加流函数也满足拉普拉斯方程3.2 几种简单的二维位流各基本解的速度、位函数、流函数直匀流源,汇偶极子,偶极子的形成,轴线,方向点涡点涡的环量3.3 一些简单的迭加举例直匀流加点源压强系数直匀流加偶极子达朗培尔疑题直匀流加偶极子加点涡儒可夫斯基升力定理了解二维对称物体绕流的数值解粘性流体动力学基础(4学时)流体粘性及其对流动的影响(流体的粘滞性,粘性流体运动特点)粘性流体的应力状态(理想流体与粘性流体作用面的受力特点,粘性流体的应力状态)广义牛顿内摩擦定理粘性流体动力学方程N-S方程粘性流体运动的基本性质(了解Re实验)边界层理论及其近似(6学时)边界层近似及其特征平面不可压缩流体层流边界层方程平板层流边界层相似解边界层动量积分方程(应用例子)边界层的分离现象第6章高速可压流(12)6.1 热力学基础知识(掌握)热力学的物系;平衡过程和可逆过程热力学一定律:内能和焓热力学第二定律,熵气体的状态方程完全气体等熵过程关系式6.2 音速和马赫数(重点)现象微弱扰动传播过程与传播速度——音速音速公式马赫数6.3 高速一维定常流(重点)一维定常绝热流的能量方程一维定常绝热流参数间的基本关系式总温T0,,总焓,临界点,速度系数使用驻点参考量的参数关系式使用临界参考量的参数关系式等熵管流的速度与截面积关系,拉瓦尔管喷管的设计压强比,M(λ)及流量的计算6.4 微弱扰动的传播区,马赫锥(重点)马赫角6.5 膨胀波(介绍)壁面外折dδ外折δ诸参数的变化趋势超音速流绕外钝角膨胀的计算6·6 激波正激波(重点)正激波的形成,计算弱激波可以看作等熵波斜激波(介绍)波前波后气流参数的关系激波图线及应用压强决定激波圆锥激波(介绍)收敛—扩张喷管在非设计状态下的工作(介绍)。
第一章空气动力学简介第1节流体流动的基本概念和基本规律1.1 流体流动的基本概念1.1.1 相对运动原理作用在飞机上的空气动力取决于飞机和空气之间的相对运动情况,而与观察、研究时所选用的参考坐标无关。
也就是说,飞机以速度V在平静的空气中飞行时,作用在飞机上的空气动力与远方空气以速度V流过静止不动的飞机时所产生的空气动力完全相同。
这就是相对运动原理在空气动力学中的应用。
空气相对飞机的运动称为相对气流,相对气流的方向与飞机运动的方向相反,见图1-1。
只要相对气流速度相同,产生的空气动力也就相等。
将飞机的飞行转换为空气的流动,使空气动力问题的研究大大简化。
风洞实验就是根据这个原理建立起来的。
图1-1 飞机的运动方向与相对气流的方向1.1.2 连续性假设连续性假设是在进行空气动力学研究时,将大量的、单个分子组成的大气看成是连续的介质。
所谓连续介质就是组成介质的物质连成一片,内部没有任何空隙。
在其中任意取一个微团都可以看成是由无数分子组成,微团表现出来的特性体现了众多分子的共同特性。
对大气采用连续性假设的理由是与所研究的对象—飞机相比,空气分子的平均自由行程要比飞机的尺寸小得多。
空气流过飞机表面时,与飞机之间产生的相互作用不是单个分子所为,而是无数分子共同作用的结果。
1.1.3 流场、定常流和非定常流流体流动所占据的空间称为流场。
在流场中的任何一点处,如果流体微团流过时的流动参数,速度、压力、温度、密度等随时间变化,这种流动就称为非定常流,这种流场被称为非定常流场。
反之,如果流体微团流过时的流动参数,速度、压力、温度、密度等不随时间变化,这种流动就称为定常流,这种流场被称为定常流场。
1.1.4 流线、流线谱、流管和流量流线是在流场中用来描绘流体微团流动状态的曲线。
在流线每一点上,曲线的切线方向正是流体微团流过该点时流动速度的方向。
在流场中,用流线组成的描绘流体微团流动情况的图画称为流线谱。
图1-2就是描绘气流流过翼型的流线谱。
第 1 章 流体属性与流体静力学§ 1.1 作用在连续介质上的力作用在连续介质上的力包括质量力和表面力。
质量力是作用连续介质内部的力,无需物体之间的相互接触,如:重力、电磁力、惯性力等。
在单位质量连续介质受到的质量力可表示为一向量b f 。
作用在连续介质微团上的质量力:d d b b F f ρτ= (1.1) 其中, ρ为连续介质的密度, d τ为连续介质微团的体积。
作用在一团连续介质的质量力的合力:d b b F f ρτΩ=⎰ (1.2)表面力:连续介质微元微团表面上的力,单位面积上的表面力称为应力。
应力不仅是位置的函数,而且是方位的函数。
任一点的应力状态可用一张量来表示:x xx y x zy xy y y z z xz y z zp p p P p p p p p p ⎛⎫⎪= ⎪ ⎪⎝⎭ (1.3) 其中,,,xz zx xy yx yz zy p p p p p p ===。
作用于任一微元面n δ上的表面力n dF 可表示为n d F P nds =⋅ (1.4)其中,n 为平面n δ的法向量。
(,,)x y z n n n n =x x x y x z xy xy y y z y z x z y z z z p p p n P n p p p n p p p n ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(1.5)作用在一团连续介质的表面力的合力: ()s F P nds ∑Ω=⋅⎰(1.6)§ 1.2 固体、流体的区别固体与流体(包括液体、气体)的区别:静止的流体能不能承受拉力和剪切力而静止的固体可以承受拉力和剪切力。
(实践中总结出来的)流体中的应力只有压强。
推论:静止流体内的压强只是位置的函数。
(可由理论证明得到) 证明: 如图, 围绕空间某一点取一四面体。
四面体的各个面的单位法向量分别为,,,i j k n ---,所对应的压强分别为:,,,x y z n p p p p ,,,i j k 分别为沿x , y , z 方向的单位向量, n 为任意取的单位法向量。
流体力学与空气动力学流体力学与空气动力学是研究流体运动规律和空气在运动中所受力学影响的学科。
流体力学是力学的一个重要分支,研究流体的运动规律和性质,包括液体和气体。
而空气动力学则是流体力学的一个特殊领域,专门研究空气在运动中所受的力学影响,尤其是在飞行器设计和空气动力学性能方面的应用。
本文将从流体力学和空气动力学的基本概念、应用领域以及未来发展趋势等方面进行探讨。
一、流体力学基本概念流体力学是研究流体静力学和流体动力学的学科。
流体静力学研究静止流体中的压力分布和力的平衡条件,而流体动力学则研究流体在运动中的力学性质。
流体包括液体和气体,其特点是没有固定的形状,能够流动并填充容器。
流体力学的基本方程是连续性方程、动量方程和能量方程,通过这些方程可以描述流体的运动规律和性质。
在流体力学中,流体的运动可以分为层流和湍流两种状态。
层流是指流体沿着流线有序地流动,流速分布均匀,流线间没有明显的交错和混合现象;而湍流则是指流体运动呈现混乱、不规则的状态,流速分布不均匀,流线间有交错和混合现象。
湍流状态下流体的阻力较大,能量损失也较多,因此在工程实践中需要尽量减少湍流的发生,以提高系统的效率和性能。
二、空气动力学基本概念空气动力学是研究空气在运动中所受的力学影响的学科,是流体力学的一个重要分支。
空气动力学主要应用于飞行器设计、空气动力学性能分析、空气动力学实验等领域。
在空气动力学中,流体的密度、速度、压力等参数对飞行器的飞行性能有着重要影响,因此需要通过数值模拟、实验测试等手段来研究和分析空气动力学性能。
空气动力学的基本方程包括连续性方程、动量方程和能量方程,通过这些方程可以描述空气在运动中所受的力学影响。
在飞行器设计中,空气动力学性能是一个重要的考虑因素,包括升力、阻力、侧向力等参数的计算和优化,以确保飞行器具有良好的飞行性能和稳定性。
三、流体力学与空气动力学的应用领域流体力学与空气动力学在工程领域有着广泛的应用,涉及航空航天、汽车工程、船舶工程、建筑工程等多个领域。